JP2008013862A - Cation dyeable polyester composite fiber, method for producing the same and fiber product - Google Patents

Cation dyeable polyester composite fiber, method for producing the same and fiber product Download PDF

Info

Publication number
JP2008013862A
JP2008013862A JP2006183641A JP2006183641A JP2008013862A JP 2008013862 A JP2008013862 A JP 2008013862A JP 2006183641 A JP2006183641 A JP 2006183641A JP 2006183641 A JP2006183641 A JP 2006183641A JP 2008013862 A JP2008013862 A JP 2008013862A
Authority
JP
Japan
Prior art keywords
mol
core
fiber
polyester
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006183641A
Other languages
Japanese (ja)
Other versions
JP4822959B2 (en
Inventor
Takeshi Shirai
剛 白井
Juetsu Fukui
寿悦 福井
Danichi Ichikawa
団一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Mitsubishi Rayon Textile Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006183641A priority Critical patent/JP4822959B2/en
Publication of JP2008013862A publication Critical patent/JP2008013862A/en
Application granted granted Critical
Publication of JP4822959B2 publication Critical patent/JP4822959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cation dyeable polyester composite fiber having cation dyeability excellent in clearness, able to be dyed under normal pressure by accurate and stable production method and excellent in tensile strength and elongation characteristics, and a product including the fiber. <P>SOLUTION: The polyester composite fiber is a core-sheath type one and comprises a modified polyester as the sheath part and a non-modified polyester as the core part. The modified polyester includes a polyethylene terephthalate as a main repeating unit, copolymerized with 1.0-3.0 mol% 5-sodium sulfoisophthalate as a dicarboxylic acid component and 3.0-10.0 mol% adipic acid, and has an intrinsic viscosity of 0.46-0.63. The non-modified polyester comprises ≥95 mol% ethylene terephthalate and has an intrinsic viscosity of 0.73-0.83. The polyester composite fiber is cation dyeable, has a volume ratio of the core part/the sheath part of 1/1-4/1, simultaneously satisfies a strength at break (DS) of ≥4.0cN/dtex and an elongation at break (DE) of ≥40% and satisfies ≥DS×(DE)<SP>1/2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カチオン染料の染色性、および強伸度特性に優れたポリエステル複合繊維とその製造方法、並びに同複合繊維を含んだ繊維製品に関する。   The present invention relates to a polyester composite fiber excellent in dyeability and strong elongation characteristics of a cationic dye, a method for producing the same, and a fiber product including the composite fiber.

従来より、エンブロイダリーレース分野においては種々の異なる素材が使用されている。例えば、刺繍糸は主にレーヨン又は綿が使用され、刺繍の裏糸であるコップ糸には主にナイロンが使用されている。そして刺繍の基布となるチュールレース、オーガンジーにはナイロンや絹が使用されてきた。   Conventionally, various different materials have been used in the embroidery race field. For example, rayon or cotton is mainly used for the embroidery thread, and nylon is mainly used for the cup thread that is the back thread of the embroidery. Nylon and silk have been used for tulle lace, organdy, which is the base fabric for embroidery.

エンブロイダリー分野においてはこのように種々の繊維素材が混用されているため、染色に当っては、常圧染色が必須であるとともに、それぞれの糸に先染工程が必要であり、染色工程が複雑であるといった問題があった。   In the embroidery field, since various fiber materials are used in this way, atmospheric dyeing is essential for dyeing, and each yarn requires a pre-dyeing process. There was a problem of being complicated.

この問題点を改善すべく、常圧染色が可能で、かつ鮮明性に優れたカチオン染料可染性ポリエステル繊維を刺繍糸、基布のすべてに使用することが試みられ、このカチオン染料常圧可染型ポリエステル繊維の導入により、刺繍工程後の一段階染色、および鮮明性に優れたエンブロイダリー製品の要求が高まっている。   In order to remedy this problem, attempts have been made to use cationic dye-dyeable polyester fibers that can be dyed at normal pressure and have excellent sharpness for all embroidery threads and base fabrics. With the introduction of dyed polyester fibers, there is an increasing demand for embroidery products that are excellent in one-step dyeing after the embroidery process and sharpness.

しかしながら、カチオン染料可染性ポリエステル繊維のように、通常のポリエステル繊維と比較して強伸度特性が低い場合に、刺繍工程時で刺繍糸の進入に対して基布が耐え切れずに破断しやすく、穴あきが多発し、工程通過性、および商品性に問題が発生した。   However, when the strength and elongation characteristics are low compared to normal polyester fibers, such as cationic dye-dyeable polyester fibers, the base fabric cannot withstand the entry of the embroidery thread during the embroidery process and breaks. It was easy to make holes and many problems occurred in process passability and merchantability.

例えば、特開平06−166910号公報(特許文献1)には、その対策として主たる繰り返し単位がポリエチレンテレフタレートから構成され、5−ナトリウムスルホイソフタル酸1.5〜3.5mol%及びアジピン酸2.0〜7.0mol%が共重合された変性ポリエステルを鞘部に、95mol%以上がポリエチレンテレフタレートである未変性ポリエステルを芯部に配し、繊維断面に占める芯部と鞘部との面積比が4/1〜1/4の範囲であり、繊度3デニール以下、破断強度(DS)が4.0g/デニール以上、破断伸度(DE)が30%以上のエンブロイダリー用ポリエステル繊維が記載されている。   For example, in JP-A-06-166910 (Patent Document 1), as a countermeasure, the main repeating unit is composed of polyethylene terephthalate, and 1.5-3.5 mol% of 5-sodium sulfoisophthalic acid and 2.0 of adipic acid are used. ~ 7.0 mol% copolymerized modified polyester is disposed in the sheath, and 95 mol% or more unmodified polyester of polyethylene terephthalate is disposed in the core, and the area ratio of the core to the sheath in the fiber cross section is 4 Polyester fiber for embroidery having a fineness of 3 denier or less, a breaking strength (DS) of 4.0 g / denier or more, and a breaking elongation (DE) of 30% or more. Yes.

しかしながら、近年のエンブロイダリーマシンの高速化が進むようになり、従来のエンブロイダリー用ポリエステル繊維を用いた場合、基布の穴あきが目立つようになり、問題であった。   However, in recent years, the speed of embroidery machines has increased, and when conventional embroidery polyester fibers are used, perforations in the base fabric have become conspicuous, which has been a problem.

また、特開平04−174748号公報(特許文献2)には、繊度が50デニール以下で、引張破断伸度が45〜75%、初期引張抵抗度が950kg/mm2 以上である刺繍レース用マルチフィラメントからなる基布が記載され、さらに特開2004−277909号公報(特許文献3)には、繊度が55dtex以下で、単糸繊度が、3.0〜7.0dtex、引張破断伸度が45〜75%、初期引張抵抗度が800kg/mm2 以上、940kg/mm2 未満で、沸水収縮率が5%以下である刺繍レース用マルチフィラメントからなる基布が記載されている。 Japanese Patent Laid-Open No. 04-174748 (Patent Document 2) discloses a multi-embroidery lace having a fineness of 50 denier or less, a tensile breaking elongation of 45 to 75%, and an initial tensile resistance of 950 kg / mm 2 or more. A base fabric made of a filament is described. Further, JP 2004-277909 A (Patent Document 3) has a fineness of 55 dtex or less, a single yarn fineness of 3.0 to 7.0 dtex, and a tensile breaking elongation of 45. A base fabric made of multifilaments for embroidery lace having an initial tensile resistance of 800 kg / mm 2 or more and less than 940 kg / mm 2 and a boiling water shrinkage of 5% or less is described.

しかしながら、これら特許文献2及び3に記載された刺繍レースは穴あきを改善できるものの、染色性が劣るため、染色に当っては、常圧染色が必須であるとともに、それぞれの糸に先染工程が必要であり、染色工程が複雑であるといった問題があった。
特開平06−166910号公報 特開平04−174748号公報 特開2004−277909号公報
However, although these embroidery laces described in Patent Documents 2 and 3 can improve perforation, they are inferior in dyeability, so that normal dyeing is essential for dyeing, and each yarn is pre-dyed. There is a problem that the dyeing process is complicated.
Japanese Patent Laid-Open No. 06-166910 Japanese Patent Laid-Open No. 04-174748 JP 2004-277909 A

本発明の目的は、確実でかつ安定した製法により、鮮明性に優れたカチオン染料可染性で、かつ常圧染色が可能であり、同時に強伸度特性に優れたカチオン可染性ポリエステル複合繊維を提供するとともに、同繊維を含む繊維製品を提供することにある。   An object of the present invention is to provide a cationic dyeable polyester composite fiber which is a cationic dye dyeable with excellent vividness and can be dyed at normal pressure by a reliable and stable production method, and at the same time has excellent high elongation properties. And providing a fiber product containing the fiber.

本件の第1発明の基本的な構成は、主たる繰り返し単位がポリエチレンテレフタレートから構成され、ジカルボン酸成分として5−ナトリウムスルホイソフタル酸が1.0〜3.0mol%、及びアジピン酸が3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63である変性ポリエステルを鞘部に配し、芯部に95mol%以上がエチレンテレフタレートの繰り返し単位から構成され、かつ固有粘度が0.73〜0.83の未変性ポリエステルを配した芯鞘型の複合紡糸繊維であって、芯部/鞘部の体積比が1/1〜4/1で、破断強度が4.0cN/dtex以上、破断伸度が40%以上を満たし、DS×(DE)1/2 が27以上であるカチオン可染性ポリエステル複合繊維である。 The basic constitution of the first invention of the present case is that the main repeating unit is composed of polyethylene terephthalate, the dicarboxylic acid component is 5-sodium sulfoisophthalic acid 1.0 to 3.0 mol%, and adipic acid 3.0 to A modified polyester copolymerized with 10.0 mol% and having an intrinsic viscosity of 0.46 to 0.63 is disposed in the sheath, and 95 mol% or more is composed of repeating units of ethylene terephthalate in the core, and the intrinsic viscosity is A core-sheath type composite spun fiber in which 0.73-0.83 unmodified polyester is arranged, the core / sheath volume ratio is 1 / 1-4 / 1, and the breaking strength is 4.0 cN / It is a cationic dyeable polyester composite fiber having a dtex or more, a breaking elongation of 40% or more, and a DS × (DE) 1/2 of 27 or more.

また、本件の第2発明の基本的な構成は、主たる繰り返し単位がポリエチレンテレフタレートから構成され、ジカルボン酸成分として5−ナトリウムスルホイソフタル酸を1.0〜3.0mol%、及びアジピン酸を3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63である変性ポリエステルを鞘部に配し、95mol%以上がエチレンテレフタレートの繰り返し単位から構成され、かつ固有粘度が0.73〜0.83の未変性ポリエステルを芯部に配し、芯部/鞘部の体積比が1/1〜4/1の芯鞘型複合紡糸の未延伸糸とした後に、次の1)〜6)を満たす条件で延伸、および緩和熱セットを施す、カチオン可染性ポリエステル複合繊維の製造方法である。   The basic constitution of the second invention of the present invention is that the main repeating unit is composed of polyethylene terephthalate, 5-sodiumsulfoisophthalic acid as a dicarboxylic acid component is 1.0 to 3.0 mol%, and adipic acid is 3. A modified polyester copolymerized with 0 to 10.0 mol% and having an intrinsic viscosity of 0.46 to 0.63 is disposed in the sheath, 95 mol% or more is composed of ethylene terephthalate repeating units, and the intrinsic viscosity is 0. After the unmodified polyester of .73 to 0.83 is arranged in the core and the core / sheath volume ratio of the core / sheath is 1/1 to 4/1, an unstretched yarn of the core-sheath composite spine is obtained. This is a method for producing a cationic dyeable polyester composite fiber, which is subjected to stretching and relaxation heat setting under the conditions satisfying) to 6).

1)1.0<DR1<1.20
2)75≦HR1≦95
3)MDR×0.60<DR2<MDR×0.80
4)100≦HR2≦170
5)150≦HP≦200
6)0.85<DR3<1.00
ここで、DR1 :第1段延伸域での延伸倍率
MDR :予熱温度80〜85℃で測定した最大延伸倍率
HR1 :第1段延伸域の引取ロ−ラ−の表面温度(℃)
DR2 :第2段延伸域での延伸倍率
HR2 :第2段延伸域の引取ロ−ラ−の表面温度(℃)
HP :第3段延伸域の熱板の表面温度(℃)
DR3 :第3段延伸域での延伸倍率
また、本件の第3発明の基本的な構成は、請求項1に記載されたポリエステル複合繊維を少なくとも一部に含んでなる繊維製品にある。
1) 1.0 <DR1 <1.20
2) 75 ≦ HR1 ≦ 95
3) MDR × 0.60 <DR2 <MDR × 0.80
4) 100 ≦ HR2 ≦ 170
5) 150 ≦ HP ≦ 200
6) 0.85 <DR3 <1.00
Here, DR1: stretching ratio in the first stage stretching area MDR: maximum stretching ratio measured at a preheating temperature of 80 to 85 ° C. HR1: surface temperature of take-up roller in the first stage stretching area (° C.)
DR2: Stretch ratio in the second stage stretch zone HR2: Surface temperature (° C.) of the take-up roller in the second stage stretch zone
HP: Surface temperature of the hot plate in the third-stage stretch zone (° C.)
DR3: Stretch ratio in the third-stage stretch zone The basic configuration of the third invention of the present invention is a fiber product comprising at least a part of the polyester conjugate fiber described in claim 1.

本発明は、カチオン染料可染性で、かつ常圧染色が可能で、かつ強伸度特性が向上したカチオン可染性ポリエステル複合繊維であり、このカチオン可染性ポリエステル複合繊維を用いた水着、スポーツインナー、ランジェリー、ファンデーション等の繊維製品は、鮮やかな染色性と良好な強伸度特性を有したものとなる。特に、該ポリエステル繊維を用いたエンブロイダリーレースは、刺繍工程での穴あきの発生がなく、かつ染め品位も良好な製品となる。さらに、刺繍糸と基布の両方をカチオン可染性とすることにより、刺繍工程後の一段階染色も可能となる。   The present invention is a cationic dyeable polyester composite fiber that is cationic dyeable and capable of normal pressure dyeing and has improved strength and elongation properties, and a swimsuit using the cationic dyeable polyester composite fiber, Textile products such as sports inners, lingeries and foundations have vivid dyeability and good strength and elongation characteristics. In particular, an embroidery lace using the polyester fiber is a product which does not have a hole in the embroidery process and has good dyeing quality. Furthermore, by making both the embroidery thread and the base fabric cationically dyeable, one-step dyeing after the embroidery process is possible.

以下、本発明の複合繊維について詳細に説明する。
本発明において鞘部に配する変性ポリエステルは、カチオン染料で染色可能であり、かつ常圧可染性を示すものであり、主たる繰り返し単位がポリエチレンテレフタレートから構成され、5−ナトリウムスルホイソフタル酸を1.0〜3.0mol%及びアジピン酸を3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63としたものである。
Hereinafter, the composite fiber of the present invention will be described in detail.
In the present invention, the modified polyester disposed in the sheath is dyeable with a cationic dye and exhibits atmospheric pressure dyeability, the main repeating unit is composed of polyethylene terephthalate, and 5-sodium sulfoisophthalic acid is 1 0.0 to 3.0 mol% and 3.0 to 10.0 mol% of adipic acid are copolymerized, and the intrinsic viscosity is 0.46 to 0.63.

5−ナトリウムスルホイソフタル酸の共重合量が1.0mol%未満であると、カチオン可染性が低下する。3.0mol%を超えると、繊維の強伸度特性が低下し、基布の穴あきが多発する。アジピン酸の共重合量が3.0mol%未満であると、常圧染色における染色性が低下する。10.0mol%を超えると、融点が低下し、加工工程での200℃程度の熱セットに耐えられなくなり、穴あきが発生する。   When the copolymerization amount of 5-sodium sulfoisophthalic acid is less than 1.0 mol%, the cation dyeability is lowered. When it exceeds 3.0 mol%, the strength and elongation characteristics of the fiber are lowered, and the base fabric is frequently perforated. When the copolymerization amount of adipic acid is less than 3.0 mol%, the dyeability in atmospheric dyeing is lowered. If it exceeds 10.0 mol%, the melting point will be lowered, and it will not be able to withstand the heat setting of about 200 ° C. in the processing step, resulting in perforation.

また、固有粘度が0.46未満での場合は、芯成分との粘度差が大きくなり過ぎ、均一な芯鞘複合断面が安定して得られ難くなる。固有粘度が0.63を超えると、5−ナトリウムスルホイソフタル酸の増粘作用により溶融粘度が高くなり過ぎて、製糸性が悪化する。   When the intrinsic viscosity is less than 0.46, the difference in viscosity from the core component becomes too large, and it is difficult to stably obtain a uniform core-sheath composite cross section. If the intrinsic viscosity exceeds 0.63, the melt viscosity becomes too high due to the thickening action of 5-sodium sulfoisophthalic acid, and the yarn-making property deteriorates.

芯部に配する未変性ポリエステル重合体としては、共重合成分が5mol%未満で、かつ固有粘度が0.73〜0.83のポリエチレンテレフタレートである。共重合成分が5mol%を超えると、充分な繊維の強伸度特性が得られ難くなる。固有粘度が0.73未満での場合も同様に繊維の強伸度特性が得られ難くなる。固有粘度が0.83を超えると、鞘成分との粘度差が大きくなり過ぎ、均一な芯鞘複合断面が安定して得られ難くなる。   The unmodified polyester polymer disposed in the core is polyethylene terephthalate having a copolymer component of less than 5 mol% and an intrinsic viscosity of 0.73 to 0.83. When the copolymerization component exceeds 5 mol%, it is difficult to obtain sufficient fiber elongation properties. Similarly, when the intrinsic viscosity is less than 0.73, it is difficult to obtain the strength and elongation characteristics of the fiber. When the intrinsic viscosity exceeds 0.83, the difference in viscosity from the sheath component becomes too large, and it becomes difficult to stably obtain a uniform core-sheath composite cross section.

芯鞘型繊維断面に対する芯/鞘の体積比は、1/1から4/1の範囲にする必要がある。芯成分の比率がこの範囲より低下すると、繊維の強伸度特性が低下し、刺繍工程での穴あきが発生する。逆に、芯成分の比率がこの範囲を超えると、均一な芯鞘複合断面を安定して得られ難くなり、また、繊維の常圧カチオン可染性が低下する。   The volume ratio of the core / sheath to the core-sheath fiber cross section needs to be in the range of 1/1 to 4/1. When the ratio of the core component is lower than this range, the strength and elongation characteristics of the fiber are lowered, and perforation occurs in the embroidery process. On the contrary, when the ratio of the core component exceeds this range, it becomes difficult to stably obtain a uniform core-sheath composite cross section, and the atmospheric pressure cationic dyeability of the fiber is lowered.

本発明のカチオン可染性ポリエステル複合繊維の強伸度特性は、破断強度が4.0cN/dtex以上、破断伸度が40%以上を満たし、DS×(DE)1/2 が27以上を満足している必要があり、破断強度が4.0cN/dtex未満である場合や、破断伸度が40%未満である場合、さらに、DS×(DE)1/2 が27未満である場合は、刺繍工程時で糸の進入に対して糸が耐え切れず、得られるエンブロイダリーレースに穴あきが発生してしまう。 The strong elongation characteristics of the cationic dyeable polyester composite fiber of the present invention are as follows: the breaking strength is 4.0 cN / dtex or more, the breaking elongation is 40% or more, and DS × (DE) 1/2 is 27 or more. If the breaking strength is less than 4.0 cN / dtex, the breaking elongation is less than 40%, and DS × (DE) 1/2 is less than 27, During the embroidery process, the thread cannot withstand the entry of the thread, and the resulting embroidery lace is perforated.

次に、本発明のポリエステル系複合繊維の製造方法について詳細に説明する。まず、紡糸については、主たる繰り返し単位がポリエチレンテレフタレートから構成され、ジカルボン酸成分として5−ナトリウムスルホイソフタール酸が1.0〜3.0mol%、及びアジピン酸が3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63である変性ポリエステルを鞘部に配し、95mol%以上がエチレンテレフタレートの繰り返し単位から構成された未変性ポリエステルを芯部に配し、芯部/鞘部の体積比が1/1から4/1の芯鞘型の複合紡糸とする。このとき、芯部のポリエステルの固有粘度は、0.73〜0.83とする必要がある。   Next, the manufacturing method of the polyester type composite fiber of this invention is demonstrated in detail. First, for spinning, the main repeating unit is composed of polyethylene terephthalate, and the dicarboxylic acid component is 1.0 to 3.0 mol% of 5-sodium sulfoisophthalic acid and 3.0 to 10.0 mol% of adipic acid. A modified polyester that is polymerized and has an intrinsic viscosity of 0.46 to 0.63 is arranged in the sheath, and an unmodified polyester in which 95 mol% or more is composed of repeating units of ethylene terephthalate is arranged in the core, and the core A core-sheath type composite spinning having a volume ratio of the sheath portion of 1/1 to 4/1. At this time, the intrinsic viscosity of the polyester in the core portion needs to be 0.73 to 0.83.

次いで、3段延撚機を用い、未延伸糸を次のように延伸することで得られる。まず、第1段延伸域での延伸倍率は、糸がたるまない程度の倍率である、1.0倍を超え、1.2倍未満の範囲とする。次に、75〜95℃に加熱した第1段延伸域の引取ローラーで加熱して第2延伸域でMDRの0.60倍を超え、0.80倍未満の範囲の倍率で延伸し、100〜170℃に加熱した第2延伸域の引取ローラーで熱セットをする。この後さらに、第3段延伸域で、0.85倍を超え、1.00倍未満の範囲で緩和しつつ、150〜200℃の熱板に接触させて熱セットを施す。   Subsequently, it is obtained by drawing an undrawn yarn as follows using a three-stage stretcher. First, the draw ratio in the first-stage draw zone is set to a range of more than 1.0 times and less than 1.2 times, which is a ratio at which the yarn does not sag. Next, the film is heated with a take-up roller in the first-stage stretching zone heated to 75 to 95 ° C., and stretched at a magnification in the second stretching zone that exceeds 0.60 times the MDR and less than 0.80 times. Heat setting is performed with a take-off roller in the second stretching zone heated to ˜170 ° C. Thereafter, in the third-stage stretching region, heat setting is performed by bringing it into contact with a hot plate at 150 to 200 ° C. while relaxing in the range of more than 0.85 times and less than 1.00 times.

第1段延伸域の延伸倍率が、1.0倍以下であると、糸弛みが発生して、ローラーへの巻き付きが発生する。また、1.2倍以上であると、延伸斑が発生して染色後の品位が低下する。   If the draw ratio of the first stage drawing region is 1.0 or less, yarn slack occurs and winding around the roller occurs. On the other hand, if it is 1.2 times or more, stretched spots are generated and the quality after dyeing is lowered.

第1段延伸域の引取ロ−ラ−の表面温度は、ポリマーのガラス転移温度が比較的高い芯成分のポリエステルのガラス転移温度〜(ガラス転移温度+20℃)までの範囲、すなわち、75℃以上、95℃以下とする。第1段延伸域の引取ロ−ラ−の表面温度がこの範囲外であると、延伸斑が発生して染色後の品位が低下する。   The surface temperature of the take-up roller in the first-stage stretching region is in the range from the glass transition temperature of the core component polyester having a relatively high glass transition temperature of the polymer to (glass transition temperature + 20 ° C.), that is, 75 ° C. or more. , 95 ° C. or less. If the surface temperature of the take-up roller in the first-stage drawing region is outside this range, drawing spots are generated and the quality after dyeing is lowered.

第2段延伸域の延伸倍率がMDRの0.60倍以下であると、繊維の破断強度が過度に低下し、DS×(DE)1/2 が27以上を維持できない。逆に、MDRの0.80倍以上であると、繊維の破断伸度が過度に低下し、DS×(DE)1/2 が27以上を維持できなくなる。 When the draw ratio in the second-stage drawing region is 0.60 or less of MDR, the breaking strength of the fiber is excessively lowered and DS × (DE) 1/2 cannot be maintained at 27 or more. On the other hand, if the MDR is 0.80 or more, the breaking elongation of the fiber is excessively lowered, and DS × (DE) 1/2 cannot be maintained at 27 or more.

第2段延伸域の引取ローラーの表面温度は、100〜170℃とする。100℃未満であると繊維の糸斑が悪くなり、染め品位も劣る。170℃を超えると、緩和領域での糸ゆれがひどくなり、糸切れが発生しやすくなる。   The surface temperature of the take-up roller in the second stage stretching region is 100 to 170 ° C. When the temperature is lower than 100 ° C., the fiber unevenness is deteriorated and the dyeing quality is also inferior. When the temperature exceeds 170 ° C., the yarn swaying in the relaxation region becomes severe and yarn breakage is likely to occur.

第3段延伸域の熱板の表面温度は、150〜200℃とする。150℃未満であると緩和領域での張力低下による糸揺れがひどくなり、糸切れが発生しやすくなる。200℃を超えると、繊維の強伸度特性が低下し、DS×(DE)1/2 が27以上を維持できなくなり、さらにケバが発生する。 The surface temperature of the hot plate in the third stage drawing zone is 150 to 200 ° C. When the temperature is lower than 150 ° C., yarn swaying due to a decrease in tension in the relaxation region becomes severe, and yarn breakage is likely to occur. When the temperature exceeds 200 ° C., the strength and elongation characteristics of the fiber are deteriorated, DS × (DE) 1/2 cannot be maintained at 27 or more, and further cracks are generated.

第3段延伸域での延伸倍率は、0.85倍を超え、1.00倍未満の範囲、すなわち緩和領域とする必要がある。この緩和状態で、熱板を用いて熱セットすることによって、繊維の破断強度を下げることなく、破断伸度を上げることができる。第3段延伸域での延伸倍率が、0.85倍以下であると、張力低下が大きくなり巻取りが不安定となる。また、1.00倍以上であると、破断強度は維持されるものの、破断伸度が低下することとなり、本発明の効果を得られない。   The draw ratio in the third stage drawing region needs to be in the range of more than 0.85 times and less than 1.00 times, that is, the relaxation region. In this relaxed state, the elongation at break can be increased without lowering the breaking strength of the fiber by heat setting using a hot plate. When the draw ratio in the third stage drawing region is 0.85 times or less, the tension drop is increased and the winding becomes unstable. On the other hand, if it is 1.00 times or more, the breaking strength is maintained, but the breaking elongation is lowered, and the effect of the present invention cannot be obtained.

また、本発明のカチオン可染性ポリエステル系複合繊維を含む水着、スポーツインナー、ランジェリー、ファンデーション、エンブロイダリーレース等の繊維製品は、本発明のポリエステル系複合繊維を単独で用いても、また他繊維を含んでいても良いが、基布の穴あきを少なく、染め品位を良好にするためには、エンブロイダリーレースを構成する基布中に本発明のポリエステル系複合繊維を、50質量%以上含んでいることが好ましい。   In addition, textile products such as swimwear, sports inners, lingerie, foundations and embroidery laces containing the cationic dyeable polyester composite fiber of the present invention may be used alone or in combination with the polyester composite fiber of the present invention. Although it may contain fibers, in order to reduce the perforation of the base fabric and improve the dyeing quality, the polyester-based composite fiber of the present invention is contained in 50% by mass in the base fabric constituting the embroidery lace. It is preferable to include the above.

さらに、本発明のカチオン可染性ポリエステル系複合繊維を使用した基布と、カチオン可染性ポリエステル系繊維を用いた刺繍糸との組み合わせにより、刺繍工程後の一段階染色も可能となる。   Furthermore, the combination of the base fabric using the cationic dyeable polyester composite fiber of the present invention and the embroidery thread using the cationic dyeable polyester fiber enables one-step dyeing after the embroidery process.

以下、実施例1〜5及び比較例1〜3を挙げて本発明を具体的に説明する。なお各評価は以下の方法に従った。
(ポリマーの固有粘度[η])
ポリマーをフェノールとテトラクロロエタンの1:1の混合溶媒に溶解し、ウベローデ粘度計により25℃において測定した。
Hereinafter, the present invention will be specifically described with reference to Examples 1 to 5 and Comparative Examples 1 to 3. In addition, each evaluation followed the following method.
(Intrinsic viscosity of polymer [η])
The polymer was dissolved in a 1: 1 mixed solvent of phenol and tetrachloroethane and measured at 25 ° C. with an Ubbelohde viscometer.

(ポリマーの融点、ガラス転移温度)
セイコー電子工業社製DSC220を用いて、昇温速度10℃/分で測定した。
(Polymer melting point, glass transition temperature)
Using a DSC220 manufactured by Seiko Denshi Kogyo Co., Ltd., the temperature was increased at a rate of 10 ° C./min.

(繊維の破断強度、および破断伸度)
島津製作所製オートグラフSD−100−Cを用いて、試長200mm、引張速度200mm/分で応力伸長曲線を測定し、繊維の破断点の強度および伸度を求めた。
(Fiber breaking strength and breaking elongation)
Using an autograph SD-100-C manufactured by Shimadzu Corporation, a stress elongation curve was measured at a test length of 200 mm and a tensile speed of 200 mm / min, and the strength and elongation at the breaking point of the fiber were determined.

芯部に融点256℃の未変性ポリエステルを配し、鞘部に5−ナトリウムスルホイソフタール酸を2.25mol%、及びアジピン酸5mol%を共重合した融点242℃の変性ポリエステルを配して芯部/鞘部=2/1(体積比)とし、287℃にて芯鞘型複合紡糸を行なって未延伸糸を得た。このときの未変性ポリエステルの固有粘度は0.76、変性ポリエステルの固有粘度は0.52であった。次に、該未延伸糸を図1に示すような3段延撚機を用いて、下記条件で延伸し、緩和熱セットを施し、40dtex/8f、破断強度4.25cN/dtex、破断伸度46.8%、DS×(DE)1/2 =29.1の延伸糸を得た。 An unmodified polyester having a melting point of 256 ° C. is arranged on the core, and a modified polyester having a melting point of 242 ° C. copolymerized with 2.25 mol% of 5-sodium sulfoisophthalic acid and 5 mol% of adipic acid is arranged on the sheath. Part / sheath part = 2/1 (volume ratio), core-sheath type composite spinning was performed at 287 ° C. to obtain an undrawn yarn. At this time, the intrinsic viscosity of the unmodified polyester was 0.76, and the intrinsic viscosity of the modified polyester was 0.52. Next, the undrawn yarn was stretched under the following conditions using a three-stage stretcher as shown in FIG. 1 and subjected to relaxation heat setting, 40 dtex / 8f, breaking strength 4.25 cN / dtex, breaking elongation 46. A drawn yarn of 8%, DS × (DE) 1/2 = 29.1 was obtained.

このときの、
DR1 =1.011
HR1 =82℃
DR2 =2.627(MDR×0.65)
HR2 =130℃
HP =185℃
DR3 =0.954
ただし、DR1 :第1段延伸域での延伸倍率
MDR :予熱温度80〜85℃で測定した最大延伸倍率
HR1 :第1段延伸域の引取ロ−ラ−の表面温度(℃)
DR2 :第2段延伸域での延伸倍率
HR2 :第2段延伸域の引取ロ−ラ−の表面温度(℃)
HP :第3段延伸域の熱板の表面温度(℃)
DR3 :第3段延伸域での延伸倍率
である。
At this time,
DR1 = 1.011
HR1 = 82 ° C
DR2 = 2.627 (MDR × 0.65)
HR2 = 130 ° C
HP = 185 ° C
DR3 = 0.954
However, DR1: Stretch ratio in the first stage stretch zone
MDR: Maximum draw ratio measured at a preheating temperature of 80 to 85 ° C
HR1: surface temperature (° C.) of the take-up roller in the first stage drawing zone
DR2: Stretch ratio in the second stage stretch zone
HR2: surface temperature of take-up roller in second-stage stretch zone (° C.)
HP: Surface temperature of the hot plate in the third-stage stretch zone (° C.)
DR3: Stretch ratio in the third stage stretching region.

次に、この延伸糸を用いて、経編機にてチュールレース用基布を作製し、カチオン可染性ポリエステルフィラメント(135dtex/48フィラメント)の2本合撚糸と、高速エンブロイダリーマシン(Saurar社 UNICA)を用いて刺繍を施し、長さ35cm、巾14mのチュールレースを3反作製した。得られたチュールレース3反全エリア中の穴開き数を検査しところ、穴開きは確認されなかった。   Next, using this drawn yarn, a tulle lace base fabric was produced with a warp knitting machine, and a double yarn of cationic dyeable polyester filament (135 dtex / 48 filament) and a high-speed embroidery machine (Saurar) 3 pieces of tulle lace having a length of 35 cm and a width of 14 m were produced. When the number of perforations in the entire area of the tulle race 3 obtained was inspected, no perforations were confirmed.

さらに、このチュールレースをカチオン染料(保土ケ谷化学社製AIZEN CATHILON MARINEBLUE GPLH)にて98℃×60分染色したところ、鮮明性および均染性に優れたエンブロイダリー製品が得られた。   Furthermore, when this tulle lace was dyed with a cationic dye (AIZEN CATHILON MARINEBLUE GPLH manufactured by Hodogaya Chemical Co., Ltd.) at 98 ° C. for 60 minutes, an embroidery product excellent in sharpness and leveling was obtained.

芯部と鞘部の体積比を3/1に変更した以外は、実施例1と同様のポリマーを使用して延伸糸を得た。得られた延伸糸の強伸度特性は良好であった。この延伸糸を用いてチュールレースを作製したところ、実施例1と同様に穴開きは確認されなかった。さらに、このチュールレースを実施例1と同様に染色したところ、鮮明性および均染性に優れたエンブロイダリー製品が得られた。   A drawn yarn was obtained using the same polymer as in Example 1 except that the volume ratio of the core part to the sheath part was changed to 3/1. The drawn yarn obtained had good strength and elongation characteristics. When a tulle lace was produced using this drawn yarn, no opening was confirmed as in Example 1. Furthermore, when this tulle lace was dyed in the same manner as in Example 1, an embroidery product excellent in sharpness and levelness was obtained.

芯成分である未変性ポリエステルの固有粘度を0.80に変更した以外は、実施例1と同様のポリマーを使用して延伸糸を得た。得られた延伸糸の強伸度特性は良好であった。この延伸糸を用いてチュールレースを作製したところ、実施例1と同様に穴開きは確認されなかった。さらに、このチュールレースを実施例1と同様に染色したところ、鮮明性および均染性に優れたエンブロイダリー製品が得られた。   A drawn yarn was obtained using the same polymer as in Example 1 except that the intrinsic viscosity of the unmodified polyester as the core component was changed to 0.80. The drawn yarn obtained had good strength and elongation characteristics. When a tulle lace was produced using this drawn yarn, no opening was confirmed as in Example 1. Furthermore, when this tulle lace was dyed in the same manner as in Example 1, an embroidery product excellent in sharpness and levelness was obtained.

鞘成分である変性ポリエステルに対する5−ナトリウムスルホイソフタル酸の変性量を1.5mol%に変更した以外は、実施例1と同様にして延伸糸を得た。このときの未変性ポリエステルの固有粘度は0.57であった。   A drawn yarn was obtained in the same manner as in Example 1 except that the modified amount of 5-sodium sulfoisophthalic acid relative to the modified polyester as the sheath component was changed to 1.5 mol%. The intrinsic viscosity of the unmodified polyester at this time was 0.57.

得られた延伸糸の強伸度特性は良好であった。この延伸糸を用いてチュールレースを作製したところ、実施例1と同様に穴開きは確認されなかった。さらに、このチュールレースを実施例1と同様に染色したところ、鮮明性および均染性に優れたエンブロイダリー製品が得られた。   The drawn yarn obtained had good strength and elongation characteristics. When a tulle lace was produced using this drawn yarn, no opening was confirmed as in Example 1. Furthermore, when this tulle lace was dyed in the same manner as in Example 1, an embroidery product excellent in sharpness and levelness was obtained.

鞘成分である変性ポリエステルに対するアジピン酸の変性量を10mol%に変更した以外は、実施例1と同様にして延伸糸を得た。このときの未変性ポリエステルの固有粘度は0.54であった。得られた延伸糸の強伸度特性は良好であった。この延伸糸を用いてチュールレースを作製したところ、実施例1と同様に穴開きは確認されなかった。さらに、このチュールレースを実施例1と同様に染色したところ、鮮明性および均染性に優れたエンブロイダリー製品が得られた。   A drawn yarn was obtained in the same manner as in Example 1 except that the modified amount of adipic acid relative to the modified polyester as the sheath component was changed to 10 mol%. The intrinsic viscosity of the unmodified polyester at this time was 0.54. The drawn yarn obtained had good strength and elongation characteristics. When a tulle lace was produced using this drawn yarn, no opening was confirmed as in Example 1. Furthermore, when this tulle lace was dyed in the same manner as in Example 1, an embroidery product excellent in sharpness and levelness was obtained.

[比較例1]
芯部と鞘との体積比を1/2に変更した以外は、実施例1と同様のポリマーを使用して延伸糸を得たが、延伸糸の破断強度が3.31と低く、DS×(DE)1/2 も22.5と低い値となった。この延伸糸を用いて実施例1と同様にチュールレースを作製したところ、16箇所の穴開きが確認された。
[Comparative Example 1]
A drawn yarn was obtained using the same polymer as in Example 1 except that the volume ratio between the core and the sheath was changed to ½. However, the breaking strength of the drawn yarn was as low as 3.31, and DS × (DE) 1/2 was a low value of 22.5. A tulle lace was produced using this drawn yarn in the same manner as in Example 1, and 16 holes were confirmed.

[比較例2]
芯成分の未変性ポリエステルの固有粘度を0.65に変更した以外は、実施例1と同様にして延伸糸を得たが、延伸糸の破断強度が3.72と若干低く、DS×(DE)1/2 も24.9と低い値となった。この延伸糸を用いて実施例1と同様にチュールレースを作製したところ、7箇所の穴開きが確認された。
[Comparative Example 2]
A drawn yarn was obtained in the same manner as in Example 1 except that the intrinsic viscosity of the unmodified polyester as the core component was changed to 0.65. However, the breaking strength of the drawn yarn was slightly low at 3.72, and DS × (DE ) 1/2 also became a low value of 24.9. Using this drawn yarn, a tulle lace was produced in the same manner as in Example 1, and 7 holes were confirmed.

[比較例3]
実施例1と同様にして未延伸糸を得た。次に、該未延伸糸を図2に示すような2段延撚機を用いて下記条件で延伸し、40dtex/8f、破断強度4.30cN/dtex、破断伸度35.2%、DS×(DE)1/2 =25.5の延伸糸を得たが、延伸糸の破断伸度が若干低く、DS×(DE)1/2 も低いレベルであった。この延伸糸を用いて実施例1と同様にチュールレースを作製したところ、5箇所の穴開きが確認された。
[Comparative Example 3]
An undrawn yarn was obtained in the same manner as in Example 1. Next, the undrawn yarn was drawn under the following conditions using a two-stage twisting machine as shown in FIG. 2, and it was 40 dtex / 8f, breaking strength 4.30 cN / dtex, breaking elongation 35.2%, DS × (DE ) A stretched yarn of 1/2 = 25.5 was obtained, but the elongation at break of the stretched yarn was slightly low, and DS × (DE) 1/2 was also at a low level. Using this drawn yarn, a tulle lace was produced in the same manner as in Example 1, and five holes were confirmed.

このときの、
DR1 =1.011
HR1 =82℃
DR2 =2.627(MDR×0.65)
HP =160℃
ただし、DR1 :第1段延伸域での延伸倍率
MDR :予熱温度80〜85℃で測定した最大延伸倍率
HR1 :第1段延伸域の引取ロ−ラ−の表面温度(℃)
DR2 :第2段延伸域での延伸倍率
HP :第3段延伸域の熱板の表面温度(℃)
であった。
At this time,
DR1 = 1.011
HR1 = 82 ° C
DR2 = 2.627 (MDR × 0.65)
HP = 160 ° C
However, DR1: Stretch ratio in the first stage stretch zone
MDR: Maximum draw ratio measured at a preheating temperature of 80 to 85 ° C
HR1: surface temperature (° C.) of the take-up roller in the first stage drawing zone
DR2: Stretch ratio in the second stage stretch zone
HP: Surface temperature of the hot plate in the third-stage stretch zone (° C.)
Met.

[比較例4]
5−ナトリウムスルホイソフタール酸を2.25mol%、及びアジピン酸5mol%を共重合した融点242℃のポリエステルを286℃で単独紡糸を行なって未延伸糸を得た。このときの変性ポリエステルの固有粘度は0.54であった。次に、前記未延伸糸を図1に示すような3段延撚機を用いて、下記条件で延伸し、緩和熱セットを施したが、40dtex/8f、破断強度3.68cN/dtex、破断伸度31.0%、DS×(DE)1/2 =20.5の延伸糸しか得られなかった。
[Comparative Example 4]
Polyester having a melting point of 242 ° C. copolymerized with 2.25 mol% of 5-sodium sulfoisophthalic acid and 5 mol% of adipic acid was subjected to single spinning at 286 ° C. to obtain an undrawn yarn. The intrinsic viscosity of the modified polyester at this time was 0.54. Next, the unstretched yarn was stretched under the following conditions using a three-stage stretcher as shown in FIG. 1 and subjected to relaxation heat setting, but it was 40 dtex / 8f, breaking strength 3.68 cN / dtex, breaking elongation. Only a drawn yarn of 31.0%, DS × (DE) 1/2 = 20.5 was obtained.

このときの、
DR1 =1.011
HR1 =81℃
DR2 =2.919(MDR×0.72)
HR2 =130℃
HP =185℃
DR3 =0.924
ただし、DR1 :第1段延伸域での延伸倍率
MDR :予熱温度80〜85℃で測定した最大延伸倍率
HR1 :第1段延伸域の引取ロ−ラ−の表面温度(℃)
DR2 :第2段延伸域での延伸倍率
HR2 :第2段延伸域の引取ロ−ラ−の表面温度(℃)
HP :第3段延伸域の熱板の表面温度(℃)
DR3 :第3段延伸域での延伸倍率
である。
前記延伸糸を用いて実施例1と同様にチュールレースを作製したところ、30箇所以上の穴開きが確認された。
At this time,
DR1 = 1.011
HR1 = 81 ° C
DR2 = 2.919 (MDR x 0.72)
HR2 = 130 ° C
HP = 185 ° C
DR3 = 0.924
However, DR1: Stretch ratio in the first stage stretch zone
MDR: Maximum draw ratio measured at a preheating temperature of 80 to 85 ° C
HR1: surface temperature (° C.) of the take-up roller in the first stage drawing zone
DR2: Stretch ratio in the second stage stretch zone
HR2: surface temperature of take-up roller in second-stage stretch zone (° C.)
HP: Surface temperature of the hot plate in the third-stage stretch zone (° C.)
DR3: Stretch ratio in the third stage stretching region.
A tulle lace was produced using the drawn yarn in the same manner as in Example 1. As a result, 30 or more holes were confirmed.

[比較例5]
融点256℃の未変性ポリエステルを293℃で単独紡糸を行って未延伸糸を得た。このときの未変性ポリエステルの固有粘度は0.75であった。次に、前記未延伸糸を図2に示すような2段延撚機を用いて、延伸し、40dtex/8f、破断強度4.42cN/dtex、破断伸度43.8%、DS×(DE)1/2 =29.3の延伸糸を得た。得られた延伸糸の筒編地をカチオン染料(保土ケ谷化学社製AIZEN CATHILON MARINEBLUE GPLH)にて98℃×60分染色したが、ポリマー中にカチオン染料の染着成分がないため染色されなかった。
[Comparative Example 5]
An unmodified polyester having a melting point of 256 ° C. was spun at 293 ° C. to obtain an undrawn yarn. The intrinsic viscosity of the unmodified polyester at this time was 0.75. Next, the undrawn yarn was drawn using a two-stage twisting machine as shown in FIG. 2, and it was 40 dtex / 8f, breaking strength 4.42 cN / dtex, breaking elongation 43.8%, DS × (DE) 1 / 2 = was obtained 29.3 drawn yarn of. The obtained stretched tubular knitted fabric was dyed with a cationic dye (AIZEN CATHILON MARINEBLUE GPLH manufactured by Hodogaya Chemical Co., Ltd.) at 98 ° C. for 60 minutes.

以上の結果を、表1にまとめた。実施例1〜5と比較例1〜5とを比較すると、表1からも明らかなように、チュールレースに穴開きができるか否かに関係する要因の一つとして、破断強度(DS)及び破断伸度(DE)がある。本発明のカチオン可染性ポリエステル複合繊維の強伸度特性について見たとき、破断強度が4.0cN/dtex以上、破断伸度が40%以上を満足する必要はあるが、DS×(DE)1/2 が27以上を満足しないときは、得られたエンブロイダリーレースに穴あきが発生してしまうことが理解できる。 The above results are summarized in Table 1. As is clear from Table 1, when Examples 1 to 5 and Comparative Examples 1 to 5 are compared, as one of the factors related to whether or not the tulle race can be perforated, the breaking strength (DS) and There is a breaking elongation (DE). When it sees about the strong elongation characteristic of the cationic dyeable polyester composite fiber of the present invention, it is necessary to satisfy the breaking strength of 4.0 cN / dtex or more and the breaking elongation of 40% or more. DS × (DE) When 1/2 does not satisfy 27 or more, it can be understood that perforations occur in the obtained embroidery race.

また同表1から、前記強伸度特性の他にも、例えば芯部と鞘部との体積比は1/1〜4/1の範囲内ではあるが、特に比較例同士を比較すると比較例1の芯部と鞘部との体積比は1以下であることから、穴開きの数が他の比較例2、3に比べて2〜3倍となっていることから、重要な要因であることが理解できる。   Further, from Table 1, in addition to the above-described strong elongation characteristics, for example, the volume ratio between the core and the sheath is within a range of 1/1 to 4/1. Since the volume ratio of the core part and the sheath part of 1 is 1 or less, the number of perforations is 2-3 times that of the other comparative examples 2 and 3, which is an important factor. I understand that.

Figure 2008013862
Figure 2008013862

3段延撚機の全容を示す概略図である。It is the schematic which shows the whole content of a three-stage stretcher. 2段延撚機の全容を示す概略図である。It is the schematic which shows the whole content of a two-stage stretcher.

符号の説明Explanation of symbols

1 未延伸糸
2 供給ローラー
3 第1段延伸域の引取ロ−ラ−
4 第2段延伸域の引取ロ−ラ−
4' 第2段延伸域の熱板
5 第3段延伸域の熱板
6 第3段延伸域の引取ローラー
7 延伸糸
DESCRIPTION OF SYMBOLS 1 Undrawn yarn 2 Supply roller 3 Take-up roller in the first stage drawing area
4 Take-up roller in the second stage stretch zone
4 'Hot plate 5 in the second stage drawing zone 5 Hot plate in the third stage drawing zone 6 Take-up roller 7 in the third stage drawing zone

Claims (4)

主たる繰り返し単位がポリエチレンテレフタレートから構成され、ジカルボン酸成分として5−ナトリウムスルホイソフタル酸が1.0〜3.0mol%、及びアジピン酸が3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63である変性ポリエステルを鞘部に配し、芯部に95mol%以上がエチレンテレフタレートの繰り返し単位から構成され、かつ固有粘度が0.73〜0.83の未変性ポリエステルを配した芯鞘型の複合紡糸繊維であって、
芯部/鞘部の体積比が1/1〜4/1で、破断強度(DS)が4.0cN/dtex以上、破断伸度(DE)が40%以上を満たし、かつDS×(DE)1/2が27以上であるカチオン可染性ポリエステル複合繊維。
The main repeating unit is composed of polyethylene terephthalate, and 1.0 to 3.0 mol% of 5-sodiumsulfoisophthalic acid and 3.0 to 10.0 mol% of adipic acid are copolymerized as the dicarboxylic acid component, and the intrinsic viscosity is An unmodified polyester having a modified polyester of 0.46 to 0.63 arranged in the sheath, 95 mol% or more of ethylene terephthalate repeating units in the core, and an intrinsic viscosity of 0.73 to 0.83 A core-sheath type composite spun fiber,
The volume ratio of the core part / sheath part is 1/1 to 4/1, the breaking strength (DS) is 4.0 cN / dtex or more, the breaking elongation (DE) is 40% or more, and DS × (DE) Cationic dyeable polyester composite fiber having a 1/2 of 27 or more.
主たる繰り返し単位がポリエチレンテレフタレートから構成され、ジカルボン酸成分として5−ナトリウムスルホイソフタル酸が1.0〜3.0mol%、及びアジピン酸が3.0〜10.0mol%共重合され、かつ固有粘度が0.46〜0.63である変性ポリエステルを鞘部に配し、95mol%以上がエチレンテレフタレートの繰り返し単位から構成され、かつ固有粘度が0.73〜0.83の未変性ポリエステルを芯部に配し、芯部/鞘部の体積比が1/1〜4/1の芯鞘型複合紡糸の未延伸糸とした後に、次の1)〜6)を満たす条件で延伸、および緩和熱セットを施す、カチオン可染性ポリエステル複合繊維の製造方法。
1)1.0<DR1<1.20
2)75≦HR1≦95
3)MDR×0.60<DR2<MDR×0.80
4)100≦HR2≦170
5)150≦HP≦200
6)0.85<DR3<1.00
ここで、DR1 :第1段延伸域での延伸倍率
MDR :予熱温度80〜85℃で測定した最大延伸倍率
HR1 :第1段延伸域の引取ロ−ラ−の表面温度(℃)
DR2 :第2段延伸域での延伸倍率
HR2 :第2段延伸域の引取ロ−ラ−の表面温度(℃)
HP :第3段延伸域の熱板の表面温度(℃)
DR3 :第3段延伸域での延伸倍率
The main repeating unit is composed of polyethylene terephthalate, and 1.0 to 3.0 mol% of 5-sodiumsulfoisophthalic acid and 3.0 to 10.0 mol% of adipic acid are copolymerized as the dicarboxylic acid component, and the intrinsic viscosity is A modified polyester of 0.46 to 0.63 is arranged in the sheath, and 95 mol% or more is composed of ethylene terephthalate repeating units, and an unmodified polyester having an intrinsic viscosity of 0.73 to 0.83 is used as the core. The core / sheath volume ratio of 1/1 to 4/1 is unstretched yarn and then stretched and relaxed heat set under the following conditions 1) to 6) A method for producing a cationic dyeable polyester composite fiber.
1) 1.0 <DR1 <1.20
2) 75 ≦ HR1 ≦ 95
3) MDR × 0.60 <DR2 <MDR × 0.80
4) 100 ≦ HR2 ≦ 170
5) 150 ≦ HP ≦ 200
6) 0.85 <DR3 <1.00
Here, DR1: stretching ratio in the first stage stretching area MDR: maximum stretching ratio measured at a preheating temperature of 80 to 85 ° C. HR1: surface temperature of take-up roller in the first stage stretching area (° C.)
DR2: Stretch ratio in the second stage stretch zone HR2: Surface temperature (° C.) of the take-up roller in the second stage stretch zone
HP: Surface temperature of the hot plate in the third-stage stretch zone (° C.)
DR3: Stretch ratio in the third stage stretch zone
請求項1記載のカチオン可染性ポリエステル複合繊維を少なくとも一部に含んでなる繊維製品。   A fiber product comprising at least a part of the cationic dyeable polyester composite fiber according to claim 1. 請求項1記載のカチオン可染性ポリエステル複合繊維と、カチオン可染性ポリエステル繊維とから構成される繊維製品。   A textile product comprising the cationic dyeable polyester composite fiber according to claim 1 and the cationic dyeable polyester fiber.
JP2006183641A 2006-07-03 2006-07-03 Cationic dyeable polyester composite fiber, method for producing the same, and fiber product Expired - Fee Related JP4822959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006183641A JP4822959B2 (en) 2006-07-03 2006-07-03 Cationic dyeable polyester composite fiber, method for producing the same, and fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006183641A JP4822959B2 (en) 2006-07-03 2006-07-03 Cationic dyeable polyester composite fiber, method for producing the same, and fiber product

Publications (2)

Publication Number Publication Date
JP2008013862A true JP2008013862A (en) 2008-01-24
JP4822959B2 JP4822959B2 (en) 2011-11-24

Family

ID=39071156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006183641A Expired - Fee Related JP4822959B2 (en) 2006-07-03 2006-07-03 Cationic dyeable polyester composite fiber, method for producing the same, and fiber product

Country Status (1)

Country Link
JP (1) JP4822959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012749A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2012112055A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2016151080A (en) * 2015-02-19 2016-08-22 ダイワボウホールディングス株式会社 Core-sheath type composite fiber and fiber structure using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166910A (en) * 1992-11-27 1994-06-14 Mitsubishi Rayon Co Ltd Polyester fiber for embroidery
JP2510745B2 (en) * 1990-02-02 1996-06-26 株式会社クラレ Easy dyeing high strength polyester composite fiber
JPH09132825A (en) * 1995-11-01 1997-05-20 Mitsubishi Rayon Co Ltd Polyester-based conjugate fiber for pattern discharge processing
JPH1143825A (en) * 1997-07-24 1999-02-16 Kuraray Co Ltd Conjugate fiber and its production
JP3114763B2 (en) * 1992-04-09 2000-12-04 三菱レイヨン株式会社 Polyester fiber for erosion processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510745B2 (en) * 1990-02-02 1996-06-26 株式会社クラレ Easy dyeing high strength polyester composite fiber
JP3114763B2 (en) * 1992-04-09 2000-12-04 三菱レイヨン株式会社 Polyester fiber for erosion processing
JPH06166910A (en) * 1992-11-27 1994-06-14 Mitsubishi Rayon Co Ltd Polyester fiber for embroidery
JPH09132825A (en) * 1995-11-01 1997-05-20 Mitsubishi Rayon Co Ltd Polyester-based conjugate fiber for pattern discharge processing
JPH1143825A (en) * 1997-07-24 1999-02-16 Kuraray Co Ltd Conjugate fiber and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012749A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2012112055A (en) * 2010-11-22 2012-06-14 Teijin Fibers Ltd Core-sheath type polyester conjugate fiber
JP2016151080A (en) * 2015-02-19 2016-08-22 ダイワボウホールディングス株式会社 Core-sheath type composite fiber and fiber structure using the same

Also Published As

Publication number Publication date
JP4822959B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
JP4884954B2 (en) Cationic dyeable composite fiber and fiber product containing the same
JP4822959B2 (en) Cationic dyeable polyester composite fiber, method for producing the same, and fiber product
JP5591039B2 (en) Cationic dyeable conjugate fiber, method for producing the same, and fiber product including the conjugate fiber
KR101103379B1 (en) Composite fibers of high elastic polyester with being improved dyeing and method of manufacturing the same
JPH11222745A (en) Production of polyester-based combined filament yarn and knitted fabric
JP2006200064A (en) Cation-dyeable polyester thick and thin yarn, method for producing the same and woven or knitted fabric using the same thick and thin yarn
JP4767563B2 (en) Tulle lace fabric
TW201728794A (en) Polyamide fiber capable of high-temperature dyeing
JP4562907B2 (en) Polyester composite fiber for stretch woven and knitted fabric and method for producing the same
JP2000328359A (en) Production of polyester blended yarn
JP2007231473A (en) Blended spun yarn and method for producing the same
JP3418265B2 (en) Method for producing cation-mix-like fine fiber
JP4985358B2 (en) Shrinkage difference mixed yarn
JP2009138284A (en) Interlaced textured yarn
JP4233977B2 (en) Cationic dyeable spontaneously stretchable polyester multifilament yarn, method for producing the same, and fiber product using the same
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP3459496B2 (en) Method for producing nylon multifilament yarn
JPH06166910A (en) Polyester fiber for embroidery
JPS5936722A (en) Conjugate spinning
JP2021188243A (en) Composite fiber
KR100270440B1 (en) Manufacturing method of polyether ester elastic fiber
KR20240014211A (en) Polyester complexfiber and method for manufacturing thereof
WO2007148392A1 (en) Sea-island type composite fiber and process for producing the same
JP2000136453A (en) Nylon combined filament yarn with different shrinkage and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4822959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees