JP2008008706A - Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method - Google Patents

Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method Download PDF

Info

Publication number
JP2008008706A
JP2008008706A JP2006177999A JP2006177999A JP2008008706A JP 2008008706 A JP2008008706 A JP 2008008706A JP 2006177999 A JP2006177999 A JP 2006177999A JP 2006177999 A JP2006177999 A JP 2006177999A JP 2008008706 A JP2008008706 A JP 2008008706A
Authority
JP
Japan
Prior art keywords
diaphragm
chemical solution
pressure sensor
pressure
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006177999A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Aizawa
満芳 相澤
Hidekazu Murakami
英一 村上
Junichi Kamijo
純一 上條
Masamori Tsukada
真盛 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATSUDEN CORP
ATSUDEN KK
TEM TECH KENKYUSHO KK
TEM-TECH KENKYUSHO KK
Original Assignee
ATSUDEN CORP
ATSUDEN KK
TEM TECH KENKYUSHO KK
TEM-TECH KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATSUDEN CORP, ATSUDEN KK, TEM TECH KENKYUSHO KK, TEM-TECH KENKYUSHO KK filed Critical ATSUDEN CORP
Priority to JP2006177999A priority Critical patent/JP2008008706A/en
Publication of JP2008008706A publication Critical patent/JP2008008706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter equipped with a diaphragm pressure sensor suitable to be installed in an ultrasonic propagation passage of the ultrasonic flowmeter, having corrosion resistance by using a fluororesin, and its manufacturing method. <P>SOLUTION: In this ultrasonic flowmeter equipped with the diaphragm pressure sensor 42 for measuring the pressure of chemical solution supplied into a chemical solution supply pipe 51 made of a fluororesin, a flow rate of the chemical solution is measured by an ultrasonic oscillation/reception parts 52A, 52B provided on both ends of the ultrasonic propagation passage 51A constituting a part of the chemical solution supply pipe under control of the pressure measured by the sensor 42. The diaphragm pressure sensor includes a diaphragm 43 formed by scraping thinly a part of a pipe wall of the chemical solution supply pipe constituting the ultrasonic propagation passage in order to form a pressure sensitive part in contact with the chemical solution, a reinforcing member 44 formed for the diaphragm, and a pressure/electricity conversion element formed for the reinforcing member. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ダイヤフラム圧力センサを備えた超音波流量計およびその製造方法に関し、特に、例えば半導体製造装置において使用されるフッ素樹脂製の薬液供給配管に取り付けられ、この薬液供給配管に供給される薬液の流量を計測する、ダイヤフラム圧力センサを備えた超音波流量計およびその製造方法に関するものである。   The present invention relates to an ultrasonic flowmeter equipped with a diaphragm pressure sensor and a method for manufacturing the same, and in particular, a chemical solution that is attached to a chemical solution supply pipe made of fluororesin, for example, used in a semiconductor manufacturing apparatus, and supplied to the chemical solution supply pipe. The present invention relates to an ultrasonic flowmeter equipped with a diaphragm pressure sensor and a method for manufacturing the same.

図1は、筒型フッ素樹脂管に流体を流すことによって流量を計測する流量計の原理を示している。
超音波流量計10は、薬液供給配管11の一部を構成する超音波伝搬流路11Aの両端に、薬液供給配管11内を流れる流体の流速を計測するために、圧電素子PZTによって形成される超音波発振/受信部12Aおよび超音波発振/受信部12Bを有している。流体が薬液供給配管11の一端INから他端OUTに抜けていくとすると、超音波発振/受信部12Aから発振された超音波振動は、超音波伝搬流路11A内の流体を伝搬して超音波発振/受信部12Bに到達し、同時に超音波発振/受信部12Bから発振された超音波振動は、流れに逆らって超音波伝搬流路11Aに到達する。超音波伝搬流路11Aと超音波発振/受信部12Bとの間隔をLとし、超音波が超音波伝搬流路11Aから超音波発振/受信部12Bに到達する時間をTDとし、逆に超音波が超音波伝搬流路11Bから超音波発振/受信部12Aに到達する時間をTUとすると、TDおよびTUは次式で与えられる。
FIG. 1 shows the principle of a flow meter that measures a flow rate by flowing a fluid through a cylindrical fluororesin tube.
The ultrasonic flowmeter 10 is formed by piezoelectric elements PZT in order to measure the flow velocity of the fluid flowing in the chemical liquid supply pipe 11 at both ends of the ultrasonic wave propagation channel 11A constituting a part of the chemical liquid supply pipe 11. It has an ultrasonic oscillation / reception unit 12A and an ultrasonic oscillation / reception unit 12B. Assuming that the fluid passes from one end IN to the other end OUT of the chemical solution supply pipe 11, the ultrasonic vibration oscillated from the ultrasonic oscillation / reception unit 12A propagates through the fluid in the ultrasonic propagation channel 11A and becomes super. The ultrasonic vibration that reaches the sound wave oscillating / receiving unit 12B and simultaneously oscillated from the ultrasonic wave oscillating / receiving unit 12B reaches the ultrasonic wave propagation channel 11A against the flow. The interval between the ultrasonic wave propagation channel 11A and the ultrasonic wave oscillating / receiving unit 12B is L, and the time for the ultrasonic wave to reach the ultrasonic wave oscillating / receiving unit 12B from the ultrasonic wave propagation channel 11A is TD. When TU is the time required to reach the ultrasonic wave oscillating / receiving unit 12A from the ultrasonic wave propagation channel 11B, TD and TU are given by the following equations.

Figure 2008008706
Figure 2008008706

但し、Cは流体の音速とする。
従って、流速Vは次式で与えられる。
Where C is the speed of sound of the fluid.
Therefore, the flow velocity V is given by the following equation.

Figure 2008008706
Figure 2008008706

このように、薬液供給配管11内を流れる流体の流速が得られると、薬液供給配管11の直径が予め決定されていれば、単位時間当たりの流量が計測される。 Thus, when the flow velocity of the fluid flowing in the chemical solution supply pipe 11 is obtained, the flow rate per unit time is measured if the diameter of the chemical solution supply pipe 11 is determined in advance.

図2は、図1に示された超音波流量計10を使用する、具体的な超音波流量計量装置20を示しており、超音波流量計量装置20は、特に半導体製造装置において、流体を一定の流量で且つ安定して吐出し又は滴下することが要求される半導体製造に関わる薬液の流量を計測するのに適している。   FIG. 2 shows a specific ultrasonic flow meter 20 using the ultrasonic flow meter 10 shown in FIG. 1, and the ultrasonic flow meter 20 has a constant fluid flow particularly in a semiconductor manufacturing apparatus. It is suitable for measuring the flow rate of a chemical solution related to semiconductor manufacturing that is required to be stably discharged or dropped.

超音波流量計量装置20は、圧力センサ21、圧力調節計22、圧力調節弁23、流量計測調節計24、流量調節弁25を備えている。
入力端INから流入された薬液は圧力センサ21によって検知され、検知された圧力は、圧力調節計22および圧力調節弁23を介して、予め設定された任意の圧力値になるように制御される。この圧力調整により、超音波流量計10は、脈動圧の少ない安定した薬液の流量を計測することができる。超音波流量計10によって計測された薬液の流量は、流量計測調節計24および流量調節弁25を介して、予め設定された任意の流量値になるように制御される。
The ultrasonic flow meter 20 includes a pressure sensor 21, a pressure controller 22, a pressure control valve 23, a flow measurement controller 24, and a flow control valve 25.
The chemical liquid flowing in from the input terminal IN is detected by the pressure sensor 21, and the detected pressure is controlled through the pressure regulator 22 and the pressure regulating valve 23 so as to have an arbitrary pressure value set in advance. . By this pressure adjustment, the ultrasonic flowmeter 10 can measure a stable flow rate of the chemical solution with a small pulsation pressure. The flow rate of the chemical solution measured by the ultrasonic flow meter 10 is controlled to be an arbitrary flow rate value set in advance via the flow rate measurement controller 24 and the flow rate control valve 25.

このような超音波流量計量装置は、例えば半導体製造装置において使用されると、半導体製造に関わる薬液に対して配管系での圧力損失或いは液溜まりのない構造が求められ、同時に配管系を可能な限り短くして小型且つコンタミネーションの発生しない構造が求められ、さらに流量を正確に計測するために圧力変動の少ない一定圧力下での計測が求められる。   When such an ultrasonic flow metering device is used in, for example, a semiconductor manufacturing apparatus, a structure without pressure loss or liquid pool in the piping system is required for chemicals involved in semiconductor manufacturing, and the piping system can be used at the same time. A structure that is as short as possible and that is compact and free from contamination is required. Further, in order to accurately measure the flow rate, measurement under a constant pressure with little pressure fluctuation is required.

従来のこのような超音波流量計量装置において、通常、圧力センサとして、フッ素樹脂、例えばPFA(登録商標:Tetrafluoroehylene Perflouroalkoxy vinyl ether copolymer)製の圧力センサが使用されている。   In such a conventional ultrasonic flow meter, a pressure sensor made of fluororesin, for example, PFA (registered trademark: Tetrafluoroehylene Perflouroalkoxy vinyl ether copolymer) is usually used as a pressure sensor.

図3は、薬液供給配管における液圧を検出する典型的なPFAダイヤフラム圧力センサ30の構造を示している。このような圧力センサは、圧力感知部として円形のフッ素樹脂ダイヤフラムを更にセラミック板で補強したセラミックダイヤフラム31を備え、そのセラミック板に歪み抵抗素子をホイーストンブリッジ回路として貼着し、加えられた圧力(矢印方向)によるフッ素樹脂ダイヤフラムの歪みをセラミックダイヤフラム31に伝達し、この歪みを圧力/電気変換素子として機能する歪み抵抗素子の抵抗値変化として電気信号に変換し、これにより圧力を検出するように構成されている。具体的に、圧力感知部は、ダイヤフラムの面積を大きくし且つその歪みを効率よく検出するように、圧力(薬液)導入口32とセラミックダイヤフラム31との間に液溜まり33を備えている。   FIG. 3 shows the structure of a typical PFA diaphragm pressure sensor 30 for detecting the liquid pressure in the chemical liquid supply pipe. Such a pressure sensor includes a ceramic diaphragm 31 in which a circular fluororesin diaphragm is further reinforced with a ceramic plate as a pressure sensing unit, and a strain resistance element is attached to the ceramic plate as a Wheatstone bridge circuit, and an applied pressure is applied. The distortion of the fluororesin diaphragm due to (in the direction of the arrow) is transmitted to the ceramic diaphragm 31, and this distortion is converted into an electric signal as a resistance value change of the strain resistance element functioning as a pressure / electric conversion element, thereby detecting the pressure. It is configured. Specifically, the pressure sensing unit includes a liquid reservoir 33 between the pressure (chemical solution) inlet 32 and the ceramic diaphragm 31 so as to increase the area of the diaphragm and efficiently detect the distortion.

このようなPFAダイヤフラム圧力センサは、単に流体圧力を測定するには、構造上なんら問題はないが、超音波流量計量装置において、圧力の計測と流量の計測とを効率よく且つ正確に行うために、超音波流量計の超音波伝搬流路内に圧力センサを設置する場合には、特に液溜まりのような凹凸のある構造では通過する超音波が乱反射してしまい、正確な計測は望めない。   Such a PFA diaphragm pressure sensor has no structural problem in measuring fluid pressure, but in order to efficiently and accurately measure pressure and flow rate in an ultrasonic flow meter. When a pressure sensor is installed in the ultrasonic wave propagation channel of the ultrasonic flow meter, the ultrasonic wave passing through is irregularly reflected particularly in a structure having irregularities such as a liquid reservoir, and accurate measurement cannot be expected.

本発明の課題は、フッ素樹脂の使用により、強酸性、強アルカリ性の液体に対して優れた耐腐食性を有すると共に、超音波流量計の超音波伝搬流路内に設置するのに適したダイヤフラム圧力センサを備えた超音波流量計およびその製造方法を提供することである。   An object of the present invention is to provide a diaphragm that has excellent corrosion resistance against strongly acidic and strongly alkaline liquids by using a fluororesin, and is suitable for installation in an ultrasonic wave propagation channel of an ultrasonic flowmeter. An ultrasonic flow meter including a pressure sensor and a method for manufacturing the ultrasonic flow meter are provided.

本発明において、超音波流量計は、フッ素樹脂製の薬液供給配管に供給される薬液の圧力を計測するダイヤフラム圧力センサを備え、ダイヤフラム圧力センサによって計測された圧力の制御のもとで、薬液供給配管の一部を構成する超音波伝搬流路の両端に設けられた超音波発振/受信部により薬液の流量を計測する。ダイヤフラム圧力センサは、薬液に接して圧力感知部を形成するために、超音波伝搬流路を構成する薬液供給配管の管壁の一部を薄く削って形成されたダイヤフラムと、ダイヤフラムに対して形成された補強部材と、補強部材に対して形成された圧力/電気変換素子とを含む。   In the present invention, the ultrasonic flowmeter includes a diaphragm pressure sensor that measures the pressure of the chemical liquid supplied to the chemical liquid supply pipe made of fluororesin, and supplies the chemical liquid under the control of the pressure measured by the diaphragm pressure sensor. The flow rate of the chemical solution is measured by ultrasonic wave oscillating / receiving units provided at both ends of the ultrasonic wave propagation channel constituting a part of the pipe. Diaphragm pressure sensor is formed with respect to the diaphragm formed by thinly cutting a part of the pipe wall of the chemical solution supply pipe constituting the ultrasonic wave propagation path to form a pressure sensing part in contact with the chemical solution And a pressure / electrical conversion element formed on the reinforcing member.

また、本発明において、フッ素樹脂製の薬液供給配管に供給される薬液の圧力を計測するダイヤフラム圧力センサを備え、ダイヤフラム圧力センサによって計測された圧力の制御のもとで、薬液供給配管の一部を構成する超音波伝搬流路の両端に設けられた超音波発振/受信部により薬液の流量を計測する、ダイヤフラム圧力センサを備えた超音波流量計の製造方法は、薬液に接して圧力感知部を形成するために、超音波伝搬流路を構成する薬液供給配管の管壁の一部を薄く削ってダイヤフラムを形成する工程と、ダイヤフラムに対して補強部材を形成する工程と、補強部材に対して圧力/電気変換素子を形成する工程とを含む。ダイヤフラムと補強部材と圧力/電気変換素子とによって、ダイヤフラム圧力センサが構成される。   Further, in the present invention, a diaphragm pressure sensor for measuring the pressure of the chemical liquid supplied to the chemical liquid supply pipe made of fluororesin is provided, and a part of the chemical liquid supply pipe is controlled under the control of the pressure measured by the diaphragm pressure sensor. The method of manufacturing an ultrasonic flowmeter equipped with a diaphragm pressure sensor that measures the flow rate of a chemical solution by ultrasonic oscillation / reception units provided at both ends of an ultrasonic propagation channel that constitutes the pressure sensing unit in contact with the chemical solution Forming a diaphragm by thinly cutting a part of the wall of the chemical solution supply pipe constituting the ultrasonic wave propagation path, forming a reinforcing member on the diaphragm, and Forming a pressure / electrical conversion element. A diaphragm pressure sensor is constituted by the diaphragm, the reinforcing member, and the pressure / electrical conversion element.

本発明によれば、PFAのようなフッ素樹脂で製造されている超音波流量計の超音波伝搬流路の一部に、供給される薬液の流路を妨げることなく、また液溜まりを生じることなくダイヤフラム圧力センサを組み込み、超音波伝搬流路と一体化構造としている。これにより、超音波流量計の外部に圧力センサを取り付ける必要がないために、超音波流量計の配管スペースを小さくすることができる。   According to the present invention, a liquid pool is generated in a part of an ultrasonic wave propagation channel of an ultrasonic flowmeter made of a fluororesin such as PFA without interfering with a flow path of a supplied chemical solution. Instead, it incorporates a diaphragm pressure sensor and has an integrated structure with the ultrasonic wave propagation channel. Thereby, since it is not necessary to attach a pressure sensor outside the ultrasonic flowmeter, the piping space of the ultrasonic flowmeter can be reduced.

また、本願発明によれば、圧力センサを超音波伝搬流路と一体化構造としているために、超音波伝搬流路内の圧力脈動を極力抑えることができるので、正確な圧力測定ができる。   Further, according to the present invention, since the pressure sensor has an integrated structure with the ultrasonic wave propagation channel, pressure pulsation in the ultrasonic wave propagation channel can be suppressed as much as possible, so that accurate pressure measurement can be performed.

また、本発明によれば、圧力センサを超音波伝搬流路と一体化構造としているために、超音波信号の伝搬を妨げることがないので、正確な流量測定ができる。   Further, according to the present invention, since the pressure sensor has an integrated structure with the ultrasonic wave propagation channel, propagation of the ultrasonic signal is not hindered, so that accurate flow rate measurement can be performed.

図4は、PFAのようなフッ素樹脂で製造されている超音波流量計において、フッ素樹脂の薬液供給配管41の一部を構成する超音波伝搬流路に一体化構造として組み込まれたダイヤフラム圧力センサ42を示している。図4Aは、ダイヤフラム圧力センサ42が組み込まれた薬液供給配管41の一部断面図であり、図4Bは、ダイヤフラム圧力センサ42が組み込まれた薬液供給配管41の一部側面図である。   FIG. 4 shows a diaphragm pressure sensor incorporated as an integrated structure in an ultrasonic wave propagation flow path constituting a part of a fluororesin chemical supply pipe 41 in an ultrasonic flowmeter manufactured of a fluororesin such as PFA. 42 is shown. 4A is a partial cross-sectional view of the chemical liquid supply pipe 41 in which the diaphragm pressure sensor 42 is incorporated, and FIG. 4B is a partial side view of the chemical liquid supply pipe 41 in which the diaphragm pressure sensor 42 is incorporated.

図4Aおよび図4Bに示されたように、ダイヤフラム圧力センサ42の圧力感知部を形成するために、超音波伝搬流路であるフッ素樹脂の薬液供給配管41の中央部における管壁の一部を薄く削り、ダイヤフラム43とする。圧力感知部として機能するダイヤフラム43には、補強のために、例えばセラミック板44を設け、セラミック板44には歪み抵抗素子をホイーストンブリッジ回路(図示せず)として貼着し、薬液供給配管41を流れる薬液により加えられた圧力は、ダイヤフラム43の歪みを介してセラミック板44に伝達される。このセラミック板44の歪みは、歪み抵抗素子の抵抗値変化として電気信号に変換され、これにより圧力が検出される。薬液供給配管41の管壁の一部を薄く削って構成されるダイヤフラム43は、セラミック板44と共に、薬液供給配管41を流れる薬液の圧力に対して、十分な機械的強度が保証されている。   As shown in FIGS. 4A and 4B, in order to form the pressure sensing part of the diaphragm pressure sensor 42, a part of the tube wall in the central part of the fluororesin chemical liquid supply pipe 41 which is an ultrasonic wave propagation channel is formed. Thinly, the diaphragm 43 is obtained. For example, a ceramic plate 44 is provided on the diaphragm 43 functioning as a pressure sensing unit, and a strain resistance element is attached to the ceramic plate 44 as a Wheatstone bridge circuit (not shown) to reinforce the chemical solution supply pipe 41. The pressure applied by the chemical solution flowing through is transmitted to the ceramic plate 44 via the distortion of the diaphragm 43. The distortion of the ceramic plate 44 is converted into an electric signal as a change in the resistance value of the strain resistance element, whereby the pressure is detected. The diaphragm 43 formed by thinly cutting a part of the pipe wall of the chemical liquid supply pipe 41 is guaranteed sufficient mechanical strength against the pressure of the chemical liquid flowing through the chemical liquid supply pipe 41 together with the ceramic plate 44.

薬液供給配管41の超音波伝搬流路に一体化構造として薬液接液部のダイヤフラム43を形成するために、即ち、薬液供給配管41の超音波伝搬流路の中央部における管壁の一部を薄く削って平面平滑なダイヤフラム43を形成するために、薬液供給配管41の圧力センサ42の取り付け部における断面方向の対向位置に、予めダイヤフラム43の平面加工用の空孔45を切開し、空孔45から加工用バイトを挿入して、ダイヤフラム43として機能する部分を薄く削る。この加工により所定の厚さが得られたのち、空孔45は、溶接機により溶接され、薬液の漏れが内容に完全に埋められる。   In order to form the diaphragm 43 of the chemical liquid contact part as an integrated structure in the ultrasonic wave propagation channel of the chemical liquid supply pipe 41, that is, a part of the tube wall at the center of the ultrasonic wave propagation channel of the chemical liquid supply pipe 41 is formed. In order to form a diaphragm 43 that is thinly cut and smooth, a hole 45 for planar processing of the diaphragm 43 is cut in advance at a position facing the cross-sectional direction in the attachment portion of the pressure sensor 42 of the chemical solution supply pipe 41. A processing tool is inserted from 45, and a portion functioning as the diaphragm 43 is thinly cut. After a predetermined thickness is obtained by this processing, the holes 45 are welded by a welding machine, and the leakage of the chemical solution is completely filled in the contents.

図5は、本発明によるダイヤフラム圧力センサ42を備えた超音波流量計50を示している。
超音波流量計50は、薬液供給配管51の一部を構成する超音波伝搬流路51Aの両端に、薬液供給配管11内を流れる流体の流速を計測するために、圧電素子PZTによって形成される超音波発振/受信部52Aおよび超音波発振/受信部52Bを有している。流体が薬液供給配管51の一端INから他端OUTに抜けていくとすると、超音波発振/受信部52Aから発振された超音波振動は、超音波伝搬流路51A内の流体を伝搬して超音波発振/受信部52Bに到達し、同時に超音波発振/受信部52Bから発振された超音波振動は、流れに逆らって超音波伝搬流路51Aに到達する。これにより、図1に関して説明したように、薬液供給配管51内を流れる流体の流速が得られ、単位時間当たりの流量が計測される。図4Aおよび図4Bに示された圧力センサ42は、保護用のユニットケース53の収納される。
FIG. 5 shows an ultrasonic flow meter 50 with a diaphragm pressure sensor 42 according to the present invention.
The ultrasonic flowmeter 50 is formed by piezoelectric elements PZT at both ends of an ultrasonic wave propagation channel 51 </ b> A constituting a part of the chemical liquid supply pipe 51 in order to measure the flow velocity of the fluid flowing in the chemical liquid supply pipe 11. An ultrasonic oscillation / reception unit 52A and an ultrasonic oscillation / reception unit 52B are provided. Assuming that the fluid passes from one end IN to the other end OUT of the chemical solution supply pipe 51, the ultrasonic vibration oscillated from the ultrasonic oscillation / reception unit 52A propagates the fluid in the ultrasonic propagation channel 51A and becomes super. The ultrasonic vibration that has reached the sound wave oscillating / receiving unit 52B and simultaneously oscillated from the ultrasonic wave oscillating / receiving unit 52B reaches the ultrasonic wave propagation channel 51A against the flow. Thereby, as described with reference to FIG. 1, the flow velocity of the fluid flowing in the chemical solution supply pipe 51 is obtained, and the flow rate per unit time is measured. The pressure sensor 42 shown in FIGS. 4A and 4B is housed in a protective unit case 53.

図6は、図5に示された超音波流量計50を使用する、具体的な超音波流量計量装置60を示しており、超音波流量計量装置60は、特に半導体製造装置において、流体を一定の流量で且つ安定して吐出し又は滴下することが要求される半導体製造に関わる薬液の流量を計測するのに適している。   FIG. 6 shows a specific ultrasonic flow metering device 60 that uses the ultrasonic flowmeter 50 shown in FIG. 5, and the ultrasonic flow metering device 60 is used to maintain a constant fluid, particularly in a semiconductor manufacturing device. It is suitable for measuring the flow rate of a chemical solution related to semiconductor manufacturing that is required to be stably discharged or dropped.

超音波流量計量装置60は、圧力センサ42(図4、図5)、圧力調節計62、圧力調節弁63、流量計測調節計64、流量調節弁65を備えている。
入力端INから流入された薬液は圧力センサ42によって検知され、検知された圧力は、圧力調節計62および圧力調節弁63を介して、予め設定された任意の圧力値になるように制御される。この圧力調整により、超音波流量計50は、従来装置に比べて更に脈動圧の少ない安定した薬液の流量を計測することができる。超音波流量計50によって計測された薬液の流量は、流量計測調節計64および流量調節弁65を介して、予め設定された任意の流量値になるように制御される。
The ultrasonic flow meter 60 includes a pressure sensor 42 (FIGS. 4 and 5), a pressure controller 62, a pressure control valve 63, a flow measurement controller 64, and a flow control valve 65.
The chemical liquid flowing in from the input terminal IN is detected by the pressure sensor 42, and the detected pressure is controlled to be an arbitrary preset pressure value via the pressure regulator 62 and the pressure regulating valve 63. . By this pressure adjustment, the ultrasonic flowmeter 50 can measure a stable flow rate of the chemical solution with a smaller pulsation pressure than the conventional apparatus. The flow rate of the chemical solution measured by the ultrasonic flow meter 50 is controlled to be an arbitrary flow rate value set in advance via the flow rate measurement controller 64 and the flow rate control valve 65.

筒型フッ素樹脂管に流体を流すことによって流量を計測する流量計の原理を示す。The principle of a flowmeter that measures the flow rate by flowing a fluid through a tubular fluororesin tube will be described. 図1に示された超音波流量計を使用する、具体的な超音波流量計量装置を示す。2 shows a specific ultrasonic flow metering device using the ultrasonic flow meter shown in FIG. 薬液供給配管における液圧を検出する、従来の典型的なPFAダイヤフラム圧力センサの構造を示している。The structure of the conventional typical PFA diaphragm pressure sensor which detects the hydraulic pressure in a chemical | medical solution supply piping is shown. 図4Aは、本発明によるダイヤフラム圧力センサが組み込まれた薬液供給配管の一部断面図であり、図4Bは、本発明によるダイヤフラム圧力センサが組み込まれた薬液供給配管の一部側面図である。4A is a partial cross-sectional view of a chemical liquid supply pipe in which a diaphragm pressure sensor according to the present invention is incorporated, and FIG. 4B is a partial side view of the chemical liquid supply pipe in which a diaphragm pressure sensor according to the present invention is incorporated. 図5は、図4に示されたダイヤフラム圧力センサを備えた超音波流量計を示す。FIG. 5 shows an ultrasonic flowmeter equipped with the diaphragm pressure sensor shown in FIG. 図6は、図5に示された超音波流量計を使用する、具体的な超音波流量計量装置を示す。FIG. 6 shows a specific ultrasonic flow metering device using the ultrasonic flow meter shown in FIG.

符号の説明Explanation of symbols

10、50 超音波流量計
11、41、51 薬液供給配管
11A、51A 超音波伝搬流路
12A、12B、52A、52B 超音波発振/受信部および超音波発振/受信部
20、60 超音波流量計量装置
22、62 圧力調節計
23、63 圧力調節弁
24、64 流量計測調節計
25、65 流量調節弁
30、42 ダイヤフラム圧力センサ
31 セラミックダイヤフラム
32 圧力(薬液)導入口
33 液溜まり
43 ダイヤフラム
44 セラミック板
45 空孔
53 ユニットケース
10, 50 Ultrasonic flow meter 11, 41, 51 Chemical solution supply pipe 11A, 51A Ultrasonic propagation channel 12A, 12B, 52A, 52B Ultrasonic oscillation / reception unit and ultrasonic oscillation / reception unit 20, 60 Ultrasonic flow metering Apparatus 22, 62 Pressure controller 23, 63 Pressure control valve 24, 64 Flow rate measurement controller 25, 65 Flow control valve 30, 42 Diaphragm pressure sensor 31 Ceramic diaphragm 32 Pressure (chemical solution) inlet 33 Liquid reservoir 43 Diaphragm 44 Ceramic plate 45 Hole 53 Unit case

Claims (3)

フッ素樹脂製の薬液供給配管に供給される薬液の圧力を計測するダイヤフラム圧力センサを備え、前記ダイヤフラム圧力センサによって計測された圧力の制御のもとで、前記薬液供給配管の一部を構成する超音波伝搬流路の両端に設けられた超音波発振/受信部により前記薬液の流量を計測する、ダイヤフラム圧力センサを備えた超音波流量計において、前記ダイヤフラム圧力センサが、
前記薬液に接して圧力感知部を形成するために、前記超音波伝搬流路を構成する前記薬液供給配管の管壁の一部を薄く削って形成されたダイヤフラムと、
前記ダイヤフラムに対して形成された補強部材と、
前記補給部材に対して形成された圧力/電気変換素子と、
を含むことを特徴とする、ダイヤフラム圧力センサを備えた超音波流量計。
A diaphragm pressure sensor that measures the pressure of the chemical solution supplied to the fluororesin chemical solution supply pipe, and is an ultrathin that forms part of the chemical solution supply pipe under the control of the pressure measured by the diaphragm pressure sensor. In the ultrasonic flowmeter equipped with a diaphragm pressure sensor for measuring the flow rate of the chemical solution by ultrasonic wave oscillating / receiving units provided at both ends of the sound wave propagation channel, the diaphragm pressure sensor includes:
In order to form a pressure sensing part in contact with the chemical solution, a diaphragm formed by thinly cutting a part of a tube wall of the chemical solution supply pipe constituting the ultrasonic wave propagation channel;
A reinforcing member formed for the diaphragm;
A pressure / electrical conversion element formed on the supply member;
An ultrasonic flowmeter equipped with a diaphragm pressure sensor.
フッ素樹脂製の薬液供給配管に供給される薬液の圧力を計測するダイヤフラム圧力センサを備え、前記ダイヤフラム圧力センサによって計測された圧力の制御のもとで、前記薬液供給配管の一部を構成する超音波伝搬流路の両端に設けられた超音波発振/受信部により前記薬液の流量を計測する、ダイヤフラム圧力センサを備えた超音波流量計の製造方法において、
前記薬液に接して圧力感知部を形成するために、前記超音波伝搬流路を構成する前記薬液供給配管の管壁の一部を薄く削ってダイヤフラムを形成する工程と、
前記ダイヤフラムに対して、補強部材を形成する工程と、
前記補強部材に対して、圧力/電気変換素子を形成する工程と、
を含み、前記ダイヤフラムと前記補強部材と前記圧力/電気変換素子とによってダイヤフラム圧力センサが構成されることを特徴とするダイヤフラム圧力センサを備えた超音波流量計の製造方法。
A diaphragm pressure sensor that measures the pressure of the chemical solution supplied to the fluororesin chemical solution supply pipe, and is an ultrathin that forms part of the chemical solution supply pipe under the control of the pressure measured by the diaphragm pressure sensor. In the method of manufacturing an ultrasonic flowmeter equipped with a diaphragm pressure sensor, the flow rate of the chemical solution is measured by ultrasonic oscillation / reception units provided at both ends of the sound wave propagation channel.
In order to form a pressure sensing part in contact with the chemical solution, a step of forming a diaphragm by thinly cutting a part of a tube wall of the chemical solution supply pipe constituting the ultrasonic wave propagation channel;
Forming a reinforcing member for the diaphragm;
Forming a pressure / electrical conversion element on the reinforcing member;
And a diaphragm pressure sensor is constituted by the diaphragm, the reinforcing member, and the pressure / electrical conversion element. A method of manufacturing an ultrasonic flowmeter equipped with a diaphragm pressure sensor.
ダイヤフラムを形成する工程が、
前記薬液供給配管の断面方向における前記ダイヤフラムの対向位置に空孔を切開する工程と、
前記ダイヤフラムを形成するために、前記空孔から加工用バイトを挿入して、前記薬液供給配管の管壁の一部を、所定の厚さになるまで薄く削る工程と、
前記所定の厚さが得られたのち、前記空孔を埋める工程と、
を含むことを特徴とする請求項1に記載の製造方法。
The process of forming the diaphragm
Cutting a hole in the opposite position of the diaphragm in the cross-sectional direction of the chemical solution supply pipe;
In order to form the diaphragm, a step of inserting a working bite from the hole, and thinly cutting a part of the wall of the chemical solution supply pipe to a predetermined thickness;
Filling the voids after the predetermined thickness is obtained;
The manufacturing method of Claim 1 characterized by the above-mentioned.
JP2006177999A 2006-06-28 2006-06-28 Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method Pending JP2008008706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177999A JP2008008706A (en) 2006-06-28 2006-06-28 Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177999A JP2008008706A (en) 2006-06-28 2006-06-28 Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008008706A true JP2008008706A (en) 2008-01-17

Family

ID=39067057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177999A Pending JP2008008706A (en) 2006-06-28 2006-06-28 Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008008706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549346B2 (en) * 2006-09-20 2009-06-23 Denso Corporation Flowmeter element, mass flowmeter and mass flow measurement system
JP2010243245A (en) * 2009-04-02 2010-10-28 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP2017138202A (en) * 2016-02-03 2017-08-10 サーパス工業株式会社 Pressure detector
CN108287570A (en) * 2017-12-29 2018-07-17 苏州浙远自动化工程技术有限公司 Device and method for controlling liquid level of macroporous resin by automatic instrument
JP7255943B1 (en) * 2022-12-02 2023-04-11 コフロック株式会社 Semiconductor pressure chip sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549346B2 (en) * 2006-09-20 2009-06-23 Denso Corporation Flowmeter element, mass flowmeter and mass flow measurement system
JP2010243245A (en) * 2009-04-02 2010-10-28 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP2017138202A (en) * 2016-02-03 2017-08-10 サーパス工業株式会社 Pressure detector
KR20170092460A (en) * 2016-02-03 2017-08-11 사파스고교 가부시키가이샤 Pressure detection device
KR102604020B1 (en) * 2016-02-03 2023-11-20 사파스고교 가부시키가이샤 Pressure detection device
CN108287570A (en) * 2017-12-29 2018-07-17 苏州浙远自动化工程技术有限公司 Device and method for controlling liquid level of macroporous resin by automatic instrument
CN108287570B (en) * 2017-12-29 2023-12-22 苏州浙远自动化工程技术有限公司 Device and method for controlling macroporous resin liquid level by automatic instrument
JP7255943B1 (en) * 2022-12-02 2023-04-11 コフロック株式会社 Semiconductor pressure chip sensor

Similar Documents

Publication Publication Date Title
JP3583123B1 (en) Flow control valve and flow control device
US9557200B2 (en) Disposable flow tube
EP2920556B1 (en) System and method for ultrasonic metering using an orifice meter fitting
JP5874514B2 (en) Liquid processing apparatus, liquid processing method, and storage medium
US20160313160A1 (en) Apparatus and method for determining concentrations of components of a gas mixture
JP2002520584A (en) Induction mode flow measurement system
JP2010528319A (en) Vibrating flow meter and method for correcting entrained gas in a flowing material
EP2673598A2 (en) Determining delay times for ultrasonic flow meters
JP2008008706A (en) Ultrasonic flowmeter equipped with diaphragm pressure sensor, and its manufacturing method
US20200264087A1 (en) Vibronic Sensor and Measuring Assembly for Monitoring a Flowable Medium
JP6582855B2 (en) Flow rate measuring device and flow rate measuring method
JP4535065B2 (en) Doppler ultrasonic flow meter
JP5608884B2 (en) Ultrasonic flow meter and fluid supply system
US11543337B2 (en) Method for signaling a standard frequency of a density meter which has at least one vibratable measurement tube for conducting a medium
CN110506198B (en) Ultrasonic flow rate measuring device
CN114878018A (en) Method for calibrating an apparatus for ultrasonic measurement, method and apparatus for measuring the temperature of a medium
JP2020071191A (en) Dispenser
JP2011058883A (en) Ultrasonic flowmeter
KR101173372B1 (en) Ultrasonic transmitting/receiving device
JP2002277300A (en) Flow rate measuring apparatus
JP2021169943A (en) Ultrasonic sensor
KR102063539B1 (en) A System for Detecting a Fluid Situation with a Ultrasonic Sensor and a Method for the Same
JP2005106594A (en) Ultrasonic flowmeter
JP2006125861A (en) Fluid detector, and fluid detecting method using the same
RU2592045C1 (en) Ultrasonic waveguide liquid level indicator