JP2002277300A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JP2002277300A
JP2002277300A JP2001073721A JP2001073721A JP2002277300A JP 2002277300 A JP2002277300 A JP 2002277300A JP 2001073721 A JP2001073721 A JP 2001073721A JP 2001073721 A JP2001073721 A JP 2001073721A JP 2002277300 A JP2002277300 A JP 2002277300A
Authority
JP
Japan
Prior art keywords
flow path
flow
measurement
downstream
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073721A
Other languages
Japanese (ja)
Other versions
JP4984348B2 (en
Inventor
Yukinori Ozaki
行則 尾崎
Yasuhiro Umekage
康裕 梅景
Bunichi Shiba
文一 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001073721A priority Critical patent/JP4984348B2/en
Publication of JP2002277300A publication Critical patent/JP2002277300A/en
Application granted granted Critical
Publication of JP4984348B2 publication Critical patent/JP4984348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measuring apparatus which is not influenced by flowing air bubbles when a flow rate is measured. SOLUTION: At least one from among an entrance flow channel 8 and an exit flow channel 9 is installed in the direction of a cross section perpendicular to the axis of a flow advancing to the downstream from the upstream of a measuring flow channel, in which a fluid to be detected flows at an upward grade toward the downstream from the upstream. Consequently, even when the air bubbles mixed into the fluid flow, the air bubbles are moved by the upward grade so as to flow out to the outside of the measuring flow channel, and the flow rate can be measured with satisfactory accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を計測
する流量計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a fluid.

【0002】[0002]

【従来の技術】従来この種の給水装置は、特開平8−2
85647号公報のようなものが知られていた。以下、
その構成について図5を参照しながら説明する。
2. Description of the Related Art Conventionally, this type of water supply apparatus is disclosed in
A publication such as Japanese Patent No. 85647 is known. Less than,
The configuration will be described with reference to FIG.

【0003】図5に示すように、測定管1へは流入管2
が配管され、測定管からは流出管3が配管されている。
これら流入管2、測定管1、流出管3の各軸線は同一立
面状に位置すると共に、流入管2と流出管3の軸心は同
一の水平な基軸線上に位置している。測定管1は下流に
向かって下り勾配の傾斜を有している。また測定管1の
両端には超音波送受波器4、5が設けられている。上記
構成において、流入管2から流入した流れは、測定管1
を通過するとき超音波送受波器4、5により流速が計測
され、その値を元に流量を計測することができるもので
ある。
As shown in FIG. 5, an inflow pipe 2 is connected to a measurement pipe 1.
And an outflow pipe 3 is connected from the measurement pipe.
The axes of the inflow pipe 2, the measurement pipe 1, and the outflow pipe 3 are located on the same elevation, and the axes of the inflow pipe 2 and the outflow pipe 3 are located on the same horizontal base axis. The measuring tube 1 has a downward slope toward the downstream. Ultrasonic transducers 4 and 5 are provided at both ends of the measuring tube 1. In the above configuration, the flow flowing from the inflow pipe 2 is
The flow rate is measured by the ultrasonic transducers 4 and 5 when passing through, and the flow rate can be measured based on the value.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来の構成では、測定管1内部で超音波送受波器4の近傍
の測定管1の内部6に気泡が溜まり、計測が不安定にな
りやすく、また、超音波により計測する時に気泡が存在
すると、超音波が乱反射され受信感度が低下してしまっ
たり、特に底流量時に流体に、気泡が混入した状態で流
体が測定管1に流入すると、測定管1内の流速が遅い上
に気泡の浮力が作用し気泡が内部6に溜まりその発生確
立が大きくなるという課題があった。
However, in the conventional configuration, air bubbles accumulate inside the measuring tube 1 near the ultrasonic transducer 4 inside the measuring tube 1 and the measurement tends to be unstable. In addition, if bubbles are present when measuring with ultrasonic waves, the ultrasonic waves are irregularly reflected and the receiving sensitivity is reduced. In particular, when the fluid flows into the measuring pipe 1 with bubbles mixed into the fluid at the bottom flow rate, the measurement is performed. There is a problem that the flow velocity in the tube 1 is low and the buoyancy of the bubbles acts, so that the bubbles are accumulated in the interior 6 and the probability of occurrence of the bubbles increases.

【0005】[0005]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の流量計測装置は、計測流路内の気泡
が、計測流路に停滞するのを防止することにより、気泡
に強い流量計測装置を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, a flow rate measuring apparatus according to the present invention prevents bubbles in a measurement flow path from stagnating in the measurement flow path. A strong flow measurement device is provided.

【0006】[0006]

【発明の実施の形態】請求項1に記載の発明は、被検出
流体と、上流から下流に向かって上り勾配で前記被検出
流体が流れる計測流路と、計測流路を上流から下流に向
う流れの軸に対して垂直断面方向へ計測流路内の気泡が
排出可能な位置に計測流路への入口流路および出口流路
の少なくとも一方を設けたものである。これにより流体
中に混入した気泡が流入しても上り勾配により気泡が計
測流路内に停滞することがなく、精度良く流量計測がで
きるものである。
According to the first aspect of the present invention, a fluid to be detected, a measurement flow path through which the fluid to be detected flows with an upward gradient from upstream to downstream, and a measurement flow path from upstream to downstream. At least one of an inlet flow path and an outlet flow path to the measurement flow path is provided at a position where bubbles in the measurement flow path can be discharged in a cross-sectional direction perpendicular to the flow axis. As a result, even if bubbles mixed in the fluid flow in, the bubbles do not stay in the measurement channel due to the upward gradient, and the flow rate can be measured accurately.

【0007】請求項2に記載の発明は、出口流路は、計
測流路を上流から下流に向う流れの軸に対して垂直断面
の下方向以外の位置に設けたものであり、気泡が計測流
路内に停滞するのを防止することができ、精度良く流量
計測ができるものである。
According to a second aspect of the present invention, the outlet flow path is provided at a position other than the downward direction perpendicular to the axis of the flow from the upstream to the downstream of the measurement flow path. It is possible to prevent stagnation in the flow path and measure the flow rate with high accuracy.

【0008】請求項3に記載の発明は、入口流路の内
径、出口流路の内径、計測流路の内径を同一径で構成し
たものであり、気泡が計測流路内に流入しても下流側へ
すばやく排出され気泡が停滞するのを防止することがで
き、精度良く流量計測ができるものである。
According to a third aspect of the present invention, the inner diameter of the inlet flow path, the inner diameter of the outlet flow path, and the inner diameter of the measurement flow path have the same diameter, and even if air bubbles flow into the measurement flow path. It is possible to prevent the bubbles from being discharged quickly to the downstream side and to prevent the air bubbles from stagnating, and to accurately measure the flow rate.

【0009】請求項4に記載の発明は、入口流路は、計
測流路を上流から下流に向う流れの軸に対して垂直断面
の下方向の位置に、出口流路は、計測流路を上流から下
流に向う流れの軸に対して垂直断面の上方向の位置に設
けたもので、気泡が計測流路内に流入しても垂直断面の
上方向の位置に設けた出口流路からすばやく排出され気
泡が停滞するのを防止することができ、精度良く流量計
測ができるものである。
According to a fourth aspect of the present invention, the inlet flow path is located at a position below the measurement flow path in a section perpendicular to the axis of the flow going from upstream to downstream, and the outlet flow path is located at the measurement flow path. It is provided at the upper position of the cross section perpendicular to the axis of the flow from the upstream to the downstream.Even if air bubbles flow into the measurement flow path, it quickly moves from the outlet flow path provided at the upper position of the vertical cross section. It is possible to prevent the discharged air bubbles from stagnating and to accurately measure the flow rate.

【0010】請求項5に記載の発明は、入口流路および
出口流路を、計測流路を上流から下流に向う流れの軸に
対して垂直円形断面の接線方向に構成したもので、入口
流路および出口流路近傍に計測流路内壁に沿った旋回流
を形成することにより、計測流路内の気泡が排出され気
泡が停滞するのを防止することができ、精度良く流量計
測ができるものである。
According to a fifth aspect of the present invention, the inlet flow path and the outlet flow path are formed in a tangential direction having a circular cross section perpendicular to the flow axis from the upstream to the downstream of the measurement flow path. By forming a swirling flow along the inner wall of the measurement flow path near the flow path and the outlet flow path, it is possible to prevent the bubbles in the measurement flow path from being discharged and stagnant, and to accurately measure the flow rate It is.

【0011】請求項6に記載の発明は、入口流路の内径
および出口流路の内径は、計測流路の内径に比べ小径と
することにより、入口流路から流出される流速が速くな
る。また計測流路から出口流路へ流出する位置の流速も
速くなり、計測流路内の気泡が排出されやすくなり、気
泡が停滞するのを防止することができるため、精度良く
流量計測ができるものである。
According to the invention described in claim 6, the inner diameter of the inlet flow path and the inner diameter of the outlet flow path are made smaller than the inner diameter of the measurement flow path, so that the flow velocity flowing out of the inlet flow path becomes faster. In addition, the flow velocity at the position where it flows from the measurement flow path to the outlet flow path is increased, and the bubbles in the measurement flow path are easily discharged, and the bubbles can be prevented from stagnating, so that the flow rate can be accurately measured. It is.

【0012】請求項7に記載の発明は、計測流路の上流
から下流に向う流れの軸に対して垂直断面の最上部の位
置と、出口流路の上流から下流に向う流れの軸に対して
垂直断面の上方向の最上部の位置とを、同一面に構成し
たもので、計測流路内の最上部に流れた気泡は同一面に
構成された出口流路からすべて排出され、気泡が停滞す
るのを防止することができるため、精度良く流量計測が
できるものである。
According to a seventh aspect of the present invention, the uppermost position of the cross section perpendicular to the axis of the flow going from the upstream to the downstream of the measurement flow path and the axis of the flow going from the upstream to the downstream of the outlet flow path are determined. The uppermost position of the vertical section in the upward direction is configured on the same plane, and all the bubbles flowing to the uppermost part in the measurement flow path are discharged from the outlet flow path configured on the same plane, and the bubbles are removed. Since the stagnation can be prevented, the flow rate can be accurately measured.

【0013】請求項8に記載の発明は、計測流路の流れ
方向の同軸上で互いに対向して超音波センサを設けた構
成により、超音波センサの距離が長くなり、伝播時間も
長くなるため低流量域まで精度良く計測することができ
る。
According to the eighth aspect of the present invention, since the ultrasonic sensors are provided so as to face each other coaxially in the flow direction of the measurement flow path, the distance between the ultrasonic sensors becomes longer and the propagation time becomes longer. Measurement can be performed accurately even in the low flow rate range.

【0014】請求項9に載の発明は、複数の超音波セン
サ間に計測流路への入口流路および出口流路を設けた構
成により、流量計測装置を小型に構成することができ
る。
According to the ninth aspect of the present invention, the flow rate measuring device can be miniaturized by providing the inlet flow path and the outlet flow path to the measurement flow path between the plurality of ultrasonic sensors.

【0015】[0015]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1)図1は本発明の実施例1の流
量計測装置の断面図である。図1において、7は計測流
路であり、この計測流路7は上流から下流に向かって上
り勾配に設けられている。また計測流路7には入口流路
8および出口流路9が構成されている。出口流路9は計
測流路7を上流から下流に向かう流れの軸に対して垂直
断面の下方向以外の位置である計測流路7の側面に設け
られている。また入口流路8の内径、出口流路9の内
径、計測流路7の内径は同一径で構成されている。そし
て計測流路7の流れ方向の同軸上で互いに対向した位置
には超音波センサ10、11が設けられている。入口流
路8および出口流路9は超音波センサ10、11の間に
設けられている。
(Embodiment 1) FIG. 1 is a sectional view of a flow rate measuring apparatus according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 7 denotes a measurement channel, and the measurement channel 7 is provided with an upward gradient from upstream to downstream. The measurement channel 7 has an inlet channel 8 and an outlet channel 9. The outlet flow path 9 is provided on a side surface of the measurement flow path 7 at a position other than the downward direction of a cross section perpendicular to the axis of the flow flowing from the upstream to the downstream of the measurement flow path 7. The inner diameter of the inlet channel 8, the inner diameter of the outlet channel 9, and the inner diameter of the measurement channel 7 are the same. Ultrasonic sensors 10 and 11 are provided at positions facing each other coaxially in the flow direction of the measurement flow path 7. The inlet channel 8 and the outlet channel 9 are provided between the ultrasonic sensors 10 and 11.

【0017】次に動作、作用について図1を用いて説明
する。図1において入口流路8から被検出流体は、計測
流路7を通過して出口流路9から流出する。計測流路7
を通過する被検出流体は、超音波センサ10,11から
の信号で流量が計測される。計測の方法としては、超音
波センサ10、11が計測流路7の流れ方向の同軸上で
互いに対向した位置に設けられており、超音波センサ1
0から超音波センサ11へ超音波を送信した時の到達時
間と、超音波センサ11から超音波センサ10へ超音波
を送信した時の到達時間の時間差を計測し演算制御部
(図示せず)で演算することにより流量を計測するもの
である。
Next, the operation and operation will be described with reference to FIG. In FIG. 1, the fluid to be detected passes through the measurement flow path 7 from the inlet flow path 8 and flows out of the outlet flow path 9. Measurement channel 7
The flow rate of the fluid to be detected passing through is measured by signals from the ultrasonic sensors 10 and 11. As a measuring method, the ultrasonic sensors 10 and 11 are provided at positions opposed to each other on the same axis in the flow direction of the measurement flow path 7.
An arithmetic control unit (not shown) measures the time difference between the arrival time when the ultrasonic wave is transmitted from 0 to the ultrasonic sensor 11 and the arrival time when the ultrasonic wave is transmitted from the ultrasonic sensor 11 to the ultrasonic sensor 10. Is used to measure the flow rate.

【0018】本実施例においては流体中に混入した気泡
が流入しても上り勾配により気泡が出口流路9へと上昇
し、計測流路内に停滞することがなく、精度良く流量計
測ができるものである。また出口流路9は、計測流路7
を上流から下流に向う流れの軸に対して垂直断面の下方
向以外の位置に設けたものであり、被検出流体が低流量
であっても気泡が計測流路内に停滞するのを防止するこ
とができ、精度良く流量計測ができるものである。さら
に入口流路8の内径、出口流路9の内径、計測流路7の
内径を同一径で構成したものであり、各流路間で気泡が
停滞することなく気泡を下流側へ排出することができ
る。また計測流路7の流れ方向の同軸上で互いに対向し
て超音波センサ10、11を設けた構成により、超音波
センサの距離が長くなり、伝播時間も長くなるため低流
量域まで精度良く計測することができる。また超音波セ
ンサ10、11間に計測流路7への入口流路8および出
口流路9を設けた構成により、流量計測装置を小型に構
成することができる。
In this embodiment, even if bubbles mixed into the fluid flow in, the bubbles rise to the outlet channel 9 due to the upward gradient, so that the flow rate can be measured accurately without stagnation in the measurement channel. Things. In addition, the outlet flow path 9 is connected to the measurement flow path 7
Is provided at a position other than the downward direction perpendicular to the axis of the flow from the upstream to the downstream, and prevents bubbles from stagnating in the measurement flow path even when the detected fluid has a low flow rate. The flow rate can be measured with high accuracy. Furthermore, the inner diameter of the inlet flow path 8, the inner diameter of the outlet flow path 9, and the inner diameter of the measurement flow path 7 are configured to have the same diameter, and the air bubbles are discharged to the downstream side without stagnation between the flow paths. Can be. In addition, since the ultrasonic sensors 10 and 11 are provided so as to face each other on the same axis in the flow direction of the measurement flow path 7, the distance between the ultrasonic sensors is increased, and the propagation time is also increased. can do. In addition, the configuration in which the inlet flow path 8 and the outlet flow path 9 to the measurement flow path 7 are provided between the ultrasonic sensors 10 and 11 enables the flow rate measurement device to be made compact.

【0019】(実施例2)図2は本発明の実施例2の流
量計測装置の断面図である。図2において、入口流路1
2は、計測流路13を上流から下流に向う流れの軸に対
して垂直断面の下方向位置14に、出口流路15は、計
測流路を上流から下流に向う流れの軸に対して垂直断面
の上方向位置16に設けたものである。その他は図1と
同様であり説明は省略する。
(Embodiment 2) FIG. 2 is a sectional view of a flow rate measuring apparatus according to Embodiment 2 of the present invention. In FIG. 2, the inlet channel 1
2 is at a downward position 14 in a cross section perpendicular to the axis of the flow from the upstream to the downstream of the measurement flow path 13, and the outlet flow path 15 is perpendicular to the axis of the flow from the upstream to the downstream of the measurement flow path. It is provided at the upward position 16 of the cross section. Others are the same as those in FIG. 1 and the description is omitted.

【0020】次に動作、作用について図2を用いて説明
する。図2において入口流路12から気泡が計測流路1
3内に流入しても、気泡は傾斜を有する計測流路13を
上昇し垂直断面の上方向位置16に設けた出口流路15
からすばやく排出されるため、気泡が計測流路13に停
滞するのを防止することができ、精度良く流量計測がで
きるものである。
Next, the operation and operation will be described with reference to FIG. In FIG. 2, bubbles are measured from the inlet channel 12 by the measurement channel 1.
3, the bubbles rise in the measuring flow path 13 having an inclination, and the outlet flow path 15 provided at the upper position 16 in the vertical section.
, The bubbles can be prevented from stagnating in the measurement flow path 13 and the flow rate can be measured accurately.

【0021】(実施例3)図3は本発明の実施例3の流
量計測装置の断面図である。図3において、入口流路1
7から計測流路18への入口19の端面20は、計測流
路18の壁面21と同じ面で構成されている。すなわ
ち、計測流路18を上流から下流に向かう流れの軸に対
して垂直円形断面の接線方向に被検出流体が流れるよう
に入口19が構成されている。出口流路22も同様に構
成されているので説明は省略する。23は流れを示す矢
印である。その他は図1と同様であり説明は省略する。
(Embodiment 3) FIG. 3 is a sectional view of a flow rate measuring apparatus according to Embodiment 3 of the present invention. In FIG. 3, the inlet channel 1
The end face 20 of the entrance 19 from the 7 to the measurement flow channel 18 is formed of the same surface as the wall surface 21 of the measurement flow channel 18. That is, the inlet 19 is configured so that the fluid to be detected flows in a tangential direction of a circular cross section perpendicular to the axis of the flow flowing from the upstream to the downstream in the measurement flow path 18. The outlet channel 22 is configured in the same manner, and a description thereof will be omitted. 23 is an arrow indicating a flow. Others are the same as those in FIG. 1 and the description is omitted.

【0022】次に動作、作用について図3を用いて説明
する。図3において入口流路17を介し入口19から気
泡が計測流路18に流入しても、計測流路18の垂直円
形断面の接線方向に被検出流体が流れる結果、被検出流
体は入口19付近全体を流路とし旋回流として流れる。
その結果、入口19付近にある気泡は効率よく下流へと
流される。また入口流路17の内径および出口流路22
の内径は、計測流路18の内径に比べ小径とすることに
より、入口流路17から流出される流速が速くなり、ま
た計測流路18から出口流路22へ流出する位置の流速
も速くなり、計測流路内の気泡がさらに排出されやすく
なり、気泡が停滞するのを防止することができるため、
精度良く流量計測ができるものである。
Next, the operation and operation will be described with reference to FIG. In FIG. 3, even if bubbles flow into the measurement channel 18 from the inlet 19 via the inlet channel 17, the fluid to be detected flows in the tangential direction of the vertical circular cross section of the measurement channel 18, so that the detected fluid is near the inlet 19. The whole flows as a flow path and flows as a swirling flow.
As a result, bubbles near the inlet 19 are efficiently flowed downstream. The inner diameter of the inlet channel 17 and the outlet channel 22
Is smaller than the inner diameter of the measurement flow path 18, the flow velocity flowing out of the inlet flow path 17 is increased, and the flow velocity at the position flowing out of the measurement flow path 18 to the outlet flow path 22 is also increased. Since the bubbles in the measurement flow path are more easily discharged and the bubbles can be prevented from stagnating,
It can measure the flow rate with high accuracy.

【0023】(実施例4)図4は本発明の実施例4の流
量計測装置の断面図である。図4において、計測流路2
4の上流から下流に向う流れの軸に対して垂直断面の最
上部位置25と、出口流路26の上流から下流に向う流
れの軸に対して垂直断面の上方向の最上部位置27と
を、同一面に構成したものである。その他は図1と同様
であり説明は省略する。
(Embodiment 4) FIG. 4 is a sectional view of a flow rate measuring apparatus according to Embodiment 4 of the present invention. In FIG.
The uppermost position 25 of the cross section perpendicular to the axis of the flow from upstream to downstream of the outlet 4 and the uppermost position 27 of the cross section perpendicular to the axis of the flow from the upstream to the downstream of the outlet flow path 26. , On the same surface. Others are the same as those in FIG. 1 and the description is omitted.

【0024】次に動作、作用について図4を用いて説明
する。図4において入口流路28から流入した気泡は計
測流路内の最上部に流れ、計測流路24の最上部位置2
5と同一面に構成された出口流路26の最上部位置から
すべて排出され、気泡が停滞するのを防止することがで
きるため、精度良く流量計測ができるものである。
Next, the operation and operation will be described with reference to FIG. In FIG. 4, the bubbles flowing from the inlet channel 28 flow to the uppermost part in the measurement channel, and the uppermost position 2 of the measurement channel 24
5 is discharged from the uppermost position of the outlet flow path 26 formed on the same surface as that of 5, so that the stagnation of bubbles can be prevented, so that the flow rate can be measured accurately.

【0025】なお本実施例は、超音波を用いた流量計測
手段を例に説明したが、本発明は計測流路の気泡に計測
制度が影響される電磁流量計に用いても同様の効果を有
するものである。
Although the present embodiment has been described by taking the flow rate measuring means using ultrasonic waves as an example, the present invention can be applied to an electromagnetic flow meter whose measurement accuracy is affected by bubbles in the measurement flow path. Have

【0026】[0026]

【発明の効果】以上のように、請求項1〜9に記載の発
明によれば、流体中に混入した気泡が流入しても上り勾
配により気泡が計測流路内に停滞することがなく出口流
路から排出され、気泡の影響を受けることなく精度良く
流量計測ができるものである。
As described above, according to the first to ninth aspects of the present invention, even if bubbles mixed in the fluid flow in, the bubbles do not stagnate in the measurement flow path due to the upward gradient and the outlet. It is discharged from the flow path and can accurately measure the flow rate without being affected by bubbles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の流量計測装置を示す断面図FIG. 1 is a cross-sectional view illustrating a flow measurement device according to a first embodiment of the present invention.

【図2】本発明の実施例2の流量計測装置を示す断面図FIG. 2 is a sectional view showing a flow rate measuring device according to a second embodiment of the present invention.

【図3】本発明の実施例3の流量計測装置を示す断面図FIG. 3 is a sectional view showing a flow rate measuring device according to a third embodiment of the present invention.

【図4】本発明の実施例4の流量計測装置を示す断面図FIG. 4 is a sectional view showing a flow rate measuring device according to a fourth embodiment of the present invention.

【図5】従来の流量計測装置を示す断面図FIG. 5 is a sectional view showing a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

7 計測流路 8 入口流路 9 出口流路 7 Measurement channel 8 Inlet channel 9 Outlet channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芝 文一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2F035 DA07 DA14 DA22  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Bunichi Shiba 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 2F035 DA07 DA14 DA22

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 上流から下流に向かって上り勾配で被検
出流体が流れる計測流路と、前記計測流路を上流から下
流に向う流れの軸に対して垂直断面方向へ前記計測流路
内の気泡が排出可能な位置に前記計測流路への入口流路
および出口流路の少なくとも一方を設けた流量計測装
置。
1. A measurement flow path through which a fluid to be detected flows with an upward gradient from upstream to downstream, and a flow path in the measurement flow path in a direction perpendicular to an axis of a flow from upstream to downstream. A flow measurement device provided with at least one of an inlet channel and an outlet channel to the measurement channel at a position where bubbles can be discharged.
【請求項2】 出口流路は、計測流路を上流から下流に
向う流れの軸に対して垂直断面の下方向以外の位置に設
けた請求項1記載の流量計測装置。
2. The flow rate measuring device according to claim 1, wherein the outlet flow path is provided at a position other than a downward direction of a cross section perpendicular to an axis of the flow from the upstream to the downstream.
【請求項3】 入口流路の内径、出口流路の内径、計測
流路の内径を同一径で構成した請求項1または2に記載
の流量計測装置。
3. The flow rate measuring device according to claim 1, wherein the inner diameter of the inlet flow path, the inner diameter of the outlet flow path, and the inner diameter of the measurement flow path have the same diameter.
【請求項4】 入口流路は、計測流路を上流から下流に
向う流れの軸に対して垂直断面の下方向の位置に、出口
流路は、計測流路を上流から下流に向う流れの軸に対し
て垂直断面の上方向の位置に設けた請求項1、2又は3
記載の流量計測装置。
4. An inlet channel is provided at a position in a downward direction perpendicular to an axis of a flow flowing from the upstream to the downstream of the measurement channel, and an outlet channel is provided for a flow of the flow flowing from the upstream to the downstream of the measurement channel. 4. The method according to claim 1, wherein the section is provided in an upward direction in a cross section perpendicular to the axis.
The flow measurement device as described.
【請求項5】 入口流路および出口流路は、計測流路を
上流から下流に向う流れの軸に対して垂直円形断面の接
線方向に構成した流量計測装置。
5. The flow rate measuring device according to claim 5, wherein the inlet flow path and the outlet flow path are configured such that the measurement flow path is tangential to a circular section perpendicular to the flow axis from the upstream to the downstream.
【請求項6】 入口流路の内径および出口流路の内径
は、計測流路の内径に比べ小径とした請求項5に記載の
流量計測装置。
6. The flow measuring device according to claim 5, wherein the inner diameter of the inlet flow path and the inner diameter of the outlet flow path are smaller than the inner diameter of the measurement flow path.
【請求項7】 計測流路の上流から下流に向う流れの軸
に対して垂直断面の最上部の位置と、出口流路の上流か
ら下流に向う流れの軸に対して垂直断面の上方向の最上
部の位置とを、同一面に構成した請求項1、2、3、5
または6に記載の流量計測装置。
7. An uppermost position of a cross section perpendicular to an axis of a flow flowing from upstream to downstream of the measurement flow path, and an upper position of a cross section perpendicular to an axis of a flow flowing from upstream to downstream of the outlet flow path. The uppermost position is formed on the same plane.
Or the flow rate measuring device according to 6.
【請求項8】 計測流路の流れ方向の同軸上で互いに対
向して超音波センサを設けた請求項1、4、5、6又は
7に記載の流量計測装置。
8. The flow measuring device according to claim 1, wherein ultrasonic sensors are provided so as to face each other coaxially in the flow direction of the measurement flow path.
【請求項9】 複数の超音波センサ間に計測流路への入
口流路および出口流路を設けた請求項1、4、5、6又
は7に記載の流量計測装置。
9. The flow rate measuring apparatus according to claim 1, wherein an inlet flow path and an outlet flow path to the measurement flow path are provided between the plurality of ultrasonic sensors.
JP2001073721A 2001-03-15 2001-03-15 Flow measuring device Expired - Fee Related JP4984348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073721A JP4984348B2 (en) 2001-03-15 2001-03-15 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073721A JP4984348B2 (en) 2001-03-15 2001-03-15 Flow measuring device

Publications (2)

Publication Number Publication Date
JP2002277300A true JP2002277300A (en) 2002-09-25
JP4984348B2 JP4984348B2 (en) 2012-07-25

Family

ID=18931101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073721A Expired - Fee Related JP4984348B2 (en) 2001-03-15 2001-03-15 Flow measuring device

Country Status (1)

Country Link
JP (1) JP4984348B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263796A (en) * 2006-03-29 2007-10-11 Smc Corp Flow measuring device
KR101066597B1 (en) 2010-01-05 2011-09-22 세메스 주식회사 Ultrasonic flow meter and substrate processing apparatus having the same
JP4991963B1 (en) * 2011-11-16 2012-08-08 株式会社アツデン Ultrasonic flow measuring device and method of using the same
WO2018110631A1 (en) * 2016-12-16 2018-06-21 株式会社荏原製作所 Cleaning chemical liquid supply device, cleaning unit, and recording medium having program stored therein
JP2019106424A (en) * 2017-12-11 2019-06-27 株式会社荏原製作所 Cleaning solution supply apparatus, cleaning unit, and storage medium storing program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130224A (en) * 1990-09-20 1992-05-01 Tokico Ltd Mass flowmeter
JPH07311062A (en) * 1994-05-20 1995-11-28 Tokico Ltd Ultrasonic flowmeter
JPH08285647A (en) * 1995-04-10 1996-11-01 Tokyo Keiso Co Ltd Detector for ultrasonic flowmeter
JP2000321100A (en) * 1999-05-14 2000-11-24 Yamatake Sangyo Systems Co Ltd Flow-rate measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130224A (en) * 1990-09-20 1992-05-01 Tokico Ltd Mass flowmeter
JPH07311062A (en) * 1994-05-20 1995-11-28 Tokico Ltd Ultrasonic flowmeter
JPH08285647A (en) * 1995-04-10 1996-11-01 Tokyo Keiso Co Ltd Detector for ultrasonic flowmeter
JP2000321100A (en) * 1999-05-14 2000-11-24 Yamatake Sangyo Systems Co Ltd Flow-rate measuring apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263796A (en) * 2006-03-29 2007-10-11 Smc Corp Flow measuring device
JP4702668B2 (en) * 2006-03-29 2011-06-15 Smc株式会社 Flow measuring device
KR101066597B1 (en) 2010-01-05 2011-09-22 세메스 주식회사 Ultrasonic flow meter and substrate processing apparatus having the same
JP4991963B1 (en) * 2011-11-16 2012-08-08 株式会社アツデン Ultrasonic flow measuring device and method of using the same
US9588934B2 (en) 2011-11-16 2017-03-07 Atsuden Co., Ltd. Ultrasonic type flowmeter apparatus and method of using the same
KR20220018074A (en) * 2016-12-16 2022-02-14 가부시키가이샤 에바라 세이사꾸쇼 Cleaning chemical liquid supply device, and cleaning unit
CN110073471A (en) * 2016-12-16 2019-07-30 株式会社荏原制作所 Clean chemicals feeder, cleaning unit and the storaging medium for storing program
TWI753066B (en) * 2016-12-16 2022-01-21 日商荏原製作所股份有限公司 Cleaning chemical solution supply device, cleaning unit, and memory medium storing programs
WO2018110631A1 (en) * 2016-12-16 2018-06-21 株式会社荏原製作所 Cleaning chemical liquid supply device, cleaning unit, and recording medium having program stored therein
US11358253B2 (en) 2016-12-16 2022-06-14 Ebara Corporation Cleaning liquid supply device, cleaning unit, and storage medium storing program
KR102452928B1 (en) * 2016-12-16 2022-10-11 가부시키가이샤 에바라 세이사꾸쇼 Cleaning chemical liquid supply device, and cleaning unit
CN110073471B (en) * 2016-12-16 2023-06-09 株式会社荏原制作所 Cleaning unit
JP2019106424A (en) * 2017-12-11 2019-06-27 株式会社荏原製作所 Cleaning solution supply apparatus, cleaning unit, and storage medium storing program

Also Published As

Publication number Publication date
JP4984348B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
US8136413B2 (en) Bi-directional oscillating jet flowmeter
EP1816442A3 (en) Ultrasonic flow meter
JP2004271496A (en) Ultrasonic flow measuring method
US20100024570A1 (en) Device for Determining or Monitoring a Medium Volume or Mass Flow Rate in a Conduit
RU2612727C2 (en) Ultrasonic signal coupler
US7412902B2 (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium and having coupling element including two element portions
JP4535065B2 (en) Doppler ultrasonic flow meter
JPH06249690A (en) Ultrasonic flowmeter
JP4936856B2 (en) Flowmeter
JP2002277300A (en) Flow rate measuring apparatus
US11815381B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
US11885654B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP2004317288A (en) Ultrasonic acoustic velocity measuring device
JP2941255B1 (en) Flow measurement device
RU2672815C1 (en) Measuring flow in ultrasound
JP7373772B2 (en) Physical quantity measuring device
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP3398251B2 (en) Flowmeter
JP3355130B2 (en) Pulsation absorption structure of flow meter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JPH11258020A (en) Flowmeter
JP2004045425A (en) Flow rate measuring device
EP0093505A1 (en) Method of measuring fluid oscillation amplitude
JP3500516B2 (en) Vortex flow meter
JPH06180243A (en) Vortex flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees