JP2004317288A - Ultrasonic acoustic velocity measuring device - Google Patents

Ultrasonic acoustic velocity measuring device Download PDF

Info

Publication number
JP2004317288A
JP2004317288A JP2003111309A JP2003111309A JP2004317288A JP 2004317288 A JP2004317288 A JP 2004317288A JP 2003111309 A JP2003111309 A JP 2003111309A JP 2003111309 A JP2003111309 A JP 2003111309A JP 2004317288 A JP2004317288 A JP 2004317288A
Authority
JP
Japan
Prior art keywords
sample
ultrasonic wave
ultrasonic
bubbles
wave propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003111309A
Other languages
Japanese (ja)
Inventor
Koji Kamimura
幸次 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2003111309A priority Critical patent/JP2004317288A/en
Publication of JP2004317288A publication Critical patent/JP2004317288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic acoustic velocity measuring device capable of highly accurate measurement in a short time, even if fine bubbles are included in a sample. <P>SOLUTION: This ultrasonic acoustic velocity measuring device for determining the acoustic velocity of the ultrasonic wave propagating in the sample flowing in the prescribed direction has a constitution equipped with an interception means for intercepting direct inflow of the sample into an ultrasonic wave propagation region on the upstream side of the flow of the ultrasonic wave propagation region. The device may have a constitution equipped with a water-passing material for separating bubbles from the sample on the downstream side of the interception means, or may have a constitution equipped in the interception means with a bubble adjusting means for accelerating mutual combination of the bubbles existing in the sample. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波音速測定装置に関し、特に、気泡が存在する試料中を伝播する超音波の音速を測定する装置に関するものである。
【0002】
【従来の技術】
図8は、超音波音速測定装置が備えたセンサ50を示す外観図である。超音波送受信部2aより所定距離の位置に反射板2bが設けられており、上記超音波送受信部2aと反射板2bとの間に試料が充填されるようになっている。この構造で上記超音波送受信部2aに設けられた発振素子2dより送出された超音波が、反射板2bで反射され上記超音波送受信部2aに設けられた受信素子2d(発振素子と同一)に受信されて電気信号に変換されるようになっている。
【0003】
上記超音波音速測定装置において試料中に超音波を伝播させると、その伝播周期Tと伝播距離Lとからc=L/Tとして音速を求めることができる。したがって、伝播周期Tを精度良く測定することで、音速を求めることが可能となる。この伝播周期Tを精度よく測定する方法としては、ここでは詳述しないが、オーバラップ法やシングアラウンド法が広く知られている。
【0004】
以上のようにして測定した音速に基づいて、試料の物理量、例えば密度や濃度を求めることができる。このため、上記超音波測定装置は、化学プラントや半導体工場等において、製品の合成や洗浄に用いられる薬品の濃度を測定するときに利用される。この場合、上記センサは薬品が流れる配管内に設置され、上記超音波送受信部2aと反射板2bの間を流れる薬品を伝播する超音波の音速を常時測定して、薬品濃度の経時変化を観測する。
【0005】
上記のような状態で音速を測定する場合、薬品を供給するポンプ、圧力変動による薬品中に溶解していた成分のガス化、薬液の反応によるガスの発生、および、配管系継手部のリーク等の要因で、多量の気泡が試料中に含まれることがある。試料中に気泡が含まれると、伝播する超音波がこの気泡により反射されて伝播距離が短くなる、あるいは、気泡に吸収されて減衰する等の要因により、音速を精度良く測定することが困難となる。
【0006】
この対応策として、超音波伝播領域を囲むように金網を設置して超音波伝播領域への気泡の進入を防止する等の方法が用いられている。
【0007】
なお、上記先行技術は文献公知発明に係るものではないため記載すべき先行技術文献情報はない。
【0008】
【発明が解決しようとする課題】
上記の金網を設置する方法では、金網のメッシュサイズにより、超音波伝播領域への進入を防止できる気泡のサイズが決定される。例えば、線径0.1mmの線材を使用した100メッシュ(100本/1インチ)の金網を使用した場合、線材の間隔は約0.15mmであるため、例えば、直径が0.1mmの気泡はこの金網を通過して超音波伝播領域に進入する。したがって、細かな気泡の進入を防止するためには、よりメッシュ数の大きい(目の細かい)の金網を設置する必要がある。
【0009】
しかしながら、細かな気泡の進入を防止するためにメッシュ数の大きい金網を使用した場合、金網の空間の割合が減少するため、試料の透過が阻害されてしまう。このため、超音波伝播領域に存在する試料と流れてくる試料との置換に長時間を要することになり、例えば、試料の濃度が変化した場合、この濃度変化を迅速に検出できないという問題が生じる。
【0010】
本発明は上記従来の事情に鑑みて提案されたものであって、試料中に細かな気泡が含まれていても高精度な測定を行うことができる超音波音速測定装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するために以下の手段を採用している。すなわち、本発明は、所定の方向に流れる試料中を伝播する超音波の音速を求める超音波音速測定装置において、超音波伝播領域の前記流れの上流側に、当該超音波伝播領域に前記試料が直接流入するのを妨げる妨害手段を備えた構成としている。
【0012】
この構成により、気泡が超音波伝播領域に直接進入することを防止できるため、超音波伝播領域に進入する気泡を減少させることができる。この結果、試料中の音速を精度良く求めることが可能となる。
【0013】
また、この上記妨害手段の下流側では、導入する際には、試料中から気泡を分離する通水材を介して上記超音波伝播領域に上記試料を導入することが好ましい。
【0014】
上記通水材を介して試料を導入することで、超音波伝播領域への気泡の進入をより確実に減少させることができ、より高精度な音速の測定が可能となる。
【0015】
本発明では、上記妨害手段は、妨害手段に衝突する試料中の気泡を相互に接触させて結合し、より大きな気泡を生成する。このため、上記通水材は、このサイズの大きくなった気泡を分離できればよく、従来に比べて試料が透過しやすい構成とすることができる。したがって、超音波伝播領域の試料の置換を短時間で行うことができ、試料の濃度の変化等にともなう音速の変化を迅速に検出することができる。
【0016】
加えて、上記妨害手段に、例えば、試料が衝突する面に設けた凹凸等、試料中に含まれる気泡の相互の結合を促進する気泡調整手段を備えれば、気泡の分離が更に容易となる。
【0017】
なお、本願明細書において、超音波伝播領域とは、発振素子から送出された超音波のうち、受信素子に受信される超音波が伝播する領域を指すものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面にしたがって詳細に説明する。
【0019】
各実施の形態に例示する超音波音速測定装置の概略機能ブロック図を図1に示す。
【0020】
送信手段10が駆動信号を送信すると、超音波は配管等の内部に設置されたセンサ50の発振素子と受信素子の間で多重反射するとともに、受信素子で受信信号として受信される。この受信信号は受信手段20に入力されここで増幅等の処理がなされて受信処理手段30に入力される。ここで、上記超音波の送信時刻から受信時刻に渡る周期に相当する連続波を形成し、演算手段40ではその連続波の周期を計測して超音波の音速を求めるようになっている。また、センサ50には温度センサが設けられており、この温度センサの出力は温度測定手段60に入力されて温度情報に変換され、演算手段40に入力される。この温度情報により、演算手段40で求めた音速に温度補正を行うことが可能となっている。
【0021】
なお、上記では、伝播周期Tを求める方法として、オーバラップ法を適用した構成を例示しているが、本発明はこれに限るものではなく、任意の方法を選択することが可能である。測定精度の観点では、本願出願人が特開2001−56320で開示している方法を用いることが好ましい。
【0022】
(第1の実施の形態)
本発明の第1の実施の形態を図2に基づいて説明する。図2は、試料100が所定の方向に流れる配管200(一部のみ図示)内に設置されているセンサ50を示す外観図である。また、図2において、試料100は下方から上方の方向に流れており、センサ50は配管に設けたセンサ設置口201を介して配管200内に設置されている。
【0023】
センサ50は、図8に示す従来のセンサと同様に、超音波送受信部2aより所定距離の位置に反射板2bを備えており、超音波送受信部2aと反射板2bとの間に充填される試料100を伝播する超音波の音速を求めるものである。また、この超音波送受信部2aは、温度センサ2cを備えており、試料100の温度を測定できるようになっている。
【0024】
図2の例において、上記センサ50の超音波伝播領域1は、上流側半面を非通水性の妨害手段3、下流側半面を通水材4で囲まれており、全体として略円筒形の外形をなしている。この構造では、配管内を流れる試料100は上記通水材4を介して超音波伝播領域1に導入される。また、妨害手段3及び通水材4の材質は任意に選択することが可能であるが、本実施の形態では、上記妨害手段3を樹脂からなる板材とし、上記通水材4を0.1mmのステンレス線材からなる100メッシュの網体としている。
【0025】
上記の状態において、配管内を流れる試料100は、まず、妨害手段3に衝突する。このとき、試料100中に含まれる気泡は相互に接触して結合し、より大きな気泡を形成する。そして、この拡大した気泡は、妨害手段3の表面に沿って下流側に流れていく。
【0026】
一方、通水材4の部分では、試料100が超音波伝播領域1に進入する流れを生じている(図中では、試料の流れ7として示す。)。この超音波伝播領域1に進入する試料100の流れは、配管内の試料100の流れに比べて弱い流れである。この状態では、拡大して流れにより移動しやすくなった気泡は、試料100に比べて密度が小さいことも作用して、強い流れに伴って下流へ流されることになる(図中では、気泡の流れ8として示す。)。仮に、一部の気泡が超音波伝播領域1に進入しようとしても、通水材4である網体の隙間を通過することができず、超音波伝播領域1に進入することはない。
【0027】
このように、上記の構造とすることにより、超音波伝播領域1に進入する気泡の量を減少させることができ、音速を精度良く測定することが可能となる。また、本実施の形態では、妨害手段3の作用により気泡のサイズが拡大しているので、通水材4である網体のメッシュは拡大した気泡が超音波伝播領域1に進入する恐れのないサイズを選択すれば足りる。このため、超音波伝播領域1にある試料の置換に時間を要することがなく、試料100の濃度変化等を迅速に観測することができる。
【0028】
なお、本実施の形態では上流側半面を妨害手段3とし、下流側半面を通水材4としたが、本発明はこれに限られるものではなく、試料100が超音波伝播領域1に直接流入しない構成であれば、妨害手段3と通水材4の比率は任意に設計すればよい。超音波伝播領域1に存在する試料の置換を短時間とするには、妨害手段3は最小限の面積であることが好ましい。
【0029】
図3は、15分毎(初期状態を除く)に気泡流量を変化させて水中を伝播する超音波の音速を本発明と従来例とによって測定した結果を示す図である。気泡は、チューブノズルにて空気をバブリングし通気した。
【0030】
ここで使用したセンサ50は、通水材4を、線径0.1mmのステンレス材からなる100メッシュの網体で構成し、妨害手段3を、上流側半面ではなく、外周の1/4にあたる面を非通水性として構成している。また、従来例は、通水材4のみでセンサを囲む構成としている。
【0031】
本発明に基づく測定結果Aは、気泡の進入がなく安定した測定ができているのに対し、従来例に基づく測定結果Bは、気泡の進入により測定値が大きく乱れていることが理解できる。この結果から、妨害手段3を設けることで、細かな気泡の進入を防止できていることがわかる。
【0032】
なお、本実施の形態では通水材4により超音波伝播領域1を囲む構成としたが、これに限るものではなく、超音波伝播領域1への気泡の進入を防止できる構成であればよい。例えば、図4に示すように、妨害手段3の両下流端にフランジ状に広がる網体を設け、超音波伝播領域1への試料の流れを遮るようにしてもよい。
【0033】
(第2の実施の形態)
上記第1の実施の形態では、妨害手段3と通水材4を一体にした構成としていたが、妨害手段3と通水材4が一体である必要はなく、通水材4の上流側に妨害手段3があればよい。そこで、本発明の第2の実施の形態では、妨害手段3と通水材4を分離して配置している。第2の実施の形態の外観図を図5に示す。図5においても、図2の例と同様に試料100は下方から上方に流れているものとする(配管200は図示せず。)。
【0034】
図5に示すように、第2の実施の形態では、センサ50の超音波伝播領域1を通水材4のみで囲む構成としている。なお、センサ50の構成は、図8に示す従来のセンサと同じである。また、センサ50から上流側に所定距離だけ離れた位置に断面が略半円をなす妨害手段3を配置している。
【0035】
上記構成によれば、第1の実施の形態と同様に、超音波伝播領域1への気泡の進入を防止することができ、試料中の音速を精度良く測定することができる。
【0036】
(第3の実施の形態)
上記各実施の形態において、妨害手段3の下流側に配置している通水材4は超音波伝播領域1への気泡の進入を直接的に防止する手段である。したがって、超音波伝播領域1へ試料100を導入する構造を気泡の進入を妨げる構造とすれば、通水材4を設ける必要はない。そこで、第3の実施の形態では、通水材4を設けない構成としている。以下では、図6に基づいて、第3の実施の形態を説明する。
【0037】
本実施の形態では、センサ50の超音波伝播領域1を妨害手段3のみで囲む構成とし、この妨害手段3上の下流側の位置に、超音波伝播領域1に試料100を導入するための試料導入口5を設けている。図6の例では、試料導入口5を超音波の伝播方向と平行なスリット状の開口としている。また、センサ50の構成は、上記従来のセンサの構成と同一である。
【0038】
上記構成によれば、上記妨害手段3の作用により結合して拡大した気泡は、下流方向に流されて試料導入口5に到達する。試料導入口5では、超音波伝播領域1にある試料と配管内を流れる試料100とが置換される流れが発生しているが、その流れは、配管内を流れる試料100の流れに比べて弱いため、拡大した気泡は、試料導入口5から超音波伝播領域1へ進入することなく下流に流されていくことになる。
【0039】
本実施の形態では、試料導入口5をスリットとしたがこれに限るものではなく、例えば、スリットに代えて複数の開口としてもよい。また、図7に示すように、スリットの内側に邪魔板6を配してもよい。
【0040】
なお、上記各実施の形態において、妨害手段3の試料が衝突する面に、凹凸等の気泡調整手段を設けておくことで、より気泡の相互結合を促進してより大きな気泡とすることができるため、超音波伝播領域1への気泡の進入を防ぐことが容易となる。
【0041】
また、上記各実施の形態では、妨害手段3及び通水材4の形状を、試料100の流れに対して抵抗が少ない形状としているが、本発明はこれに限定されるものではなく、任意に設計することが可能である。加えて、上記実施の形態1及び2では、通水材4を金網で構成したが、例えば、気泡の直径より狭い間隔で配置した線材などで構成してもよく、試料中の気泡を分離することができるものであればその構成は任意である。
【0042】
さらに、上記各実施の形態では、試料中に所定距離をおいて超音波送受信部2aと反射板2bとを設置した構成を例示しているが、本発明はこれに限定されるものではない。すなわち、超音波送信部と超音波受信部とを設置した構成であってもよい。
【0043】
【発明の効果】
以上のように、本発明では、超音波伝播領域の上流側に超音波伝播領域に前記試料が直接流入するのを妨げる妨害手段を備えたことにより、気泡が超音波伝播領域に直接進入することを防止できるため、試料中の音速を精度良く求めることが可能となる。
【0044】
また、この妨害手段の下流側で試料中から気泡を分離する通水材を介して試料を超音波伝播領域に導入する構成とすることで、超音波伝播領域への気泡の進入をより確実に減少させることができ、より高精度な音速の測定が可能となる。加えて、上記妨害手段に気泡調整手段を備えることにより、気泡の分離を更に容易とすることができる。
【0045】
さらに、上記通水材は、妨害手段あるいは気泡調整手段の作用によりサイズが拡大した気泡を分離できれば良いため、試料の透過を阻害しない構成とすることができる。したがって、超音波伝播領域の試料の置換を短時間で行うことができ、試料の濃度の変化等にともなう音速の変化を迅速に検出することができる。
【図面の簡単な説明】
【図1】本発明の超音波音速測定装置を示す概略機能ブロック図
【図2】本発明の第1の実施の形態を示す外観図
【図3】本発明と従来法とによる測定結果を示す図
【図4】本発明の第1の実施の形態の変形例を示す断面図
【図5】本発明の第2の実施の形態を示す外観図
【図6】本発明の第3の実施の形態を示す外観図
【図7】本発明の第3の実施の形態の変形例示す断面図
【図8】従来の超音波音速測定装置のセンサを示す外観図
【符号の説明】
1 超音波伝播領域
2a 超音波送受信部
2b 反射板
2c 温度センサ
2d 発振素子及び受信素子
3 妨害手段
4 通水材
5 試料導入口
6 邪魔板
7 試料の流れ
8 気泡の流れ
10 送受信手段
20 受信手段
30 受信処理手段
40 演算手段
50 センサ
60 温度測定手段
100 試料
200 配管
201 センサ設置口
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic sound velocity measuring apparatus, and more particularly, to an apparatus for measuring a sound velocity of an ultrasonic wave propagating in a sample in which bubbles exist.
[0002]
[Prior art]
FIG. 8 is an external view showing a sensor 50 provided in the ultrasonic sound velocity measuring device. A reflection plate 2b is provided at a position at a predetermined distance from the ultrasonic transmission / reception unit 2a, and a sample is filled between the ultrasonic transmission / reception unit 2a and the reflection plate 2b. With this structure, the ultrasonic wave transmitted from the oscillation element 2d provided in the ultrasonic transmission / reception section 2a is reflected by the reflection plate 2b and is transmitted to the reception element 2d (same as the oscillation element) provided in the ultrasonic transmission / reception section 2a. It is designed to be received and converted into an electric signal.
[0003]
When an ultrasonic wave is propagated through a sample in the ultrasonic sound velocity measuring device, the sound velocity can be obtained as c = L / T from the propagation period T and the propagation distance L. Therefore, the sound velocity can be obtained by measuring the propagation period T with high accuracy. As a method of measuring the propagation period T with high accuracy, an overlap method and a sing-around method are widely known, though not described in detail here.
[0004]
Based on the sound velocity measured as described above, the physical quantity of the sample, for example, the density and the concentration can be obtained. For this reason, the ultrasonic measuring apparatus is used when measuring the concentration of a chemical used for synthesizing or cleaning a product in a chemical plant or a semiconductor factory. In this case, the sensor is installed in a pipe through which the medicine flows, and constantly measures the sound speed of the ultrasonic wave propagating through the medicine flowing between the ultrasonic transmission / reception unit 2a and the reflection plate 2b, and observes the change over time in the concentration of the medicine. I do.
[0005]
When measuring the speed of sound in the above conditions, a pump that supplies a chemical, gasification of components dissolved in the chemical due to pressure fluctuation, generation of gas due to reaction of a chemical solution, and leakage of a pipe joint, etc. Due to the above factors, a large amount of air bubbles may be included in the sample. If air bubbles are included in the sample, it is difficult to accurately measure the sound speed due to factors such as the propagating ultrasonic waves being reflected by the air bubbles and shortening the propagation distance, or being absorbed and attenuated by the air bubbles. Become.
[0006]
As a countermeasure, a method has been used in which a wire mesh is placed so as to surround the ultrasonic wave propagation region to prevent air bubbles from entering the ultrasonic wave propagation region.
[0007]
Since the above prior art is not related to the invention known in the literature, there is no prior art literature information to be described.
[0008]
[Problems to be solved by the invention]
In the above-described method of installing the wire mesh, the size of the bubble that can prevent entry into the ultrasonic wave propagation region is determined by the mesh size of the wire mesh. For example, when a wire mesh of 100 mesh (100 wires / 1 inch) using a wire having a wire diameter of 0.1 mm is used, the interval between the wires is about 0.15 mm. After passing through the wire mesh, it enters the ultrasonic wave propagation region. Therefore, in order to prevent fine bubbles from entering, it is necessary to install a wire mesh having a larger mesh number (finer mesh).
[0009]
However, when a wire mesh having a large number of meshes is used in order to prevent fine bubbles from entering, the ratio of the space of the wire mesh is reduced, so that the penetration of the sample is hindered. For this reason, it takes a long time to replace the sample existing in the ultrasonic wave propagation region with the flowing sample. For example, when the concentration of the sample changes, there is a problem that the change in the concentration cannot be detected quickly. .
[0010]
The present invention has been proposed in view of the above-mentioned conventional circumstances, and has as its object to provide an ultrasonic sound velocity measuring device capable of performing high-accuracy measurement even when fine bubbles are contained in a sample. It is assumed that.
[0011]
[Means for Solving the Problems]
The present invention employs the following means to achieve the above object. That is, the present invention provides an ultrasonic sound velocity measuring device for determining the sound velocity of an ultrasonic wave propagating in a sample flowing in a predetermined direction, wherein the sample is located in the ultrasonic wave propagation region on the upstream side of the flow in the ultrasonic wave propagation region. The structure is provided with obstruction means for preventing direct inflow.
[0012]
With this configuration, it is possible to prevent bubbles from directly entering the ultrasonic wave propagation region, and it is possible to reduce the number of bubbles entering the ultrasonic wave propagation region. As a result, the speed of sound in the sample can be accurately determined.
[0013]
Further, on the downstream side of the obstructing means, when introducing the sample, it is preferable to introduce the sample into the ultrasonic wave propagation region via a water-permeable material that separates bubbles from the sample.
[0014]
By introducing the sample through the water-permeable material, the intrusion of bubbles into the ultrasonic wave propagation region can be more reliably reduced, and more accurate measurement of the speed of sound can be performed.
[0015]
In the present invention, the obstruction means causes bubbles in the sample that collide with the obstruction means to come into contact with each other and combine to generate larger bubbles. For this reason, the water-permeable material only needs to be able to separate the bubbles having the increased size, and can have a configuration in which the sample can be easily transmitted as compared with the related art. Therefore, the replacement of the sample in the ultrasonic wave propagation region can be performed in a short time, and a change in the speed of sound due to a change in the concentration of the sample can be quickly detected.
[0016]
In addition, if the obstructing means is provided with bubble adjusting means for promoting mutual coupling of bubbles contained in the sample, for example, irregularities provided on the surface against which the sample collides, the separation of bubbles is further facilitated. .
[0017]
Note that, in the specification of the present application, the ultrasonic wave propagation region refers to a region of the ultrasonic wave transmitted from the oscillation element in which the ultrasonic wave received by the reception element propagates.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
FIG. 1 shows a schematic functional block diagram of the ultrasonic sound velocity measuring device exemplified in each embodiment.
[0020]
When the transmitting means 10 transmits the driving signal, the ultrasonic wave is reflected multiple times between the oscillating element and the receiving element of the sensor 50 installed inside the pipe or the like, and is received by the receiving element as a received signal. The received signal is input to the receiving means 20, where it is subjected to processing such as amplification, and then input to the receiving processing means 30. Here, a continuous wave corresponding to a period from the transmission time to the reception time of the ultrasonic wave is formed, and the calculating means 40 measures the period of the continuous wave to determine the sound speed of the ultrasonic wave. The sensor 50 is provided with a temperature sensor. The output of the temperature sensor is input to the temperature measuring means 60, converted into temperature information, and input to the calculating means 40. Based on this temperature information, it is possible to perform temperature correction on the sound speed obtained by the calculating means 40.
[0021]
In the above description, a configuration to which the overlap method is applied is described as an example of a method of obtaining the propagation period T. However, the present invention is not limited to this, and an arbitrary method can be selected. From the viewpoint of measurement accuracy, it is preferable to use the method disclosed by the present applicant in JP-A-2001-56320.
[0022]
(First Embodiment)
A first embodiment of the present invention will be described with reference to FIG. FIG. 2 is an external view showing the sensor 50 installed in a pipe 200 (only a part is shown) through which the sample 100 flows in a predetermined direction. In FIG. 2, the sample 100 flows upward from below, and the sensor 50 is installed in the pipe 200 through a sensor installation port 201 provided in the pipe.
[0023]
Like the conventional sensor shown in FIG. 8, the sensor 50 includes a reflector 2b at a position at a predetermined distance from the ultrasonic transceiver 2a, and is filled between the ultrasonic transceiver 2a and the reflector 2b. The sound speed of the ultrasonic wave propagating through the sample 100 is determined. The ultrasonic transmission / reception unit 2a includes a temperature sensor 2c so that the temperature of the sample 100 can be measured.
[0024]
In the example of FIG. 2, the ultrasonic wave propagation region 1 of the sensor 50 has the upstream half surface surrounded by the non-water-permeable obstruction means 3 and the downstream half surface having the water-permeable material 4, and has a substantially cylindrical outer shape as a whole. Has made. In this structure, the sample 100 flowing in the pipe is introduced into the ultrasonic wave propagation region 1 via the water passage material 4. Further, the materials of the obstructing means 3 and the water-permeable material 4 can be arbitrarily selected, but in the present embodiment, the obstructing means 3 is a plate made of resin, and the water-permeable material 4 is 0.1 mm. 100 mesh net made of stainless steel wire.
[0025]
In the above state, the sample 100 flowing in the pipe first collides with the obstruction means 3. At this time, the bubbles contained in the sample 100 come into contact with each other and combine to form larger bubbles. Then, the expanded bubble flows downstream along the surface of the obstruction means 3.
[0026]
On the other hand, the flow of the sample 100 enters the ultrasonic wave propagation region 1 in the portion of the water-permeable material 4 (shown as a sample flow 7 in the figure). The flow of the sample 100 entering the ultrasonic wave propagation region 1 is weaker than the flow of the sample 100 in the pipe. In this state, the bubbles that have expanded and become easier to move due to the flow also flow downstream due to the strong flow due to the lower density compared to the sample 100 (in FIG. Shown as stream 8.). Even if some of the bubbles try to enter the ultrasonic wave propagation region 1, they cannot pass through the gaps of the net, which is the water-permeable material 4, and do not enter the ultrasonic wave propagation region 1.
[0027]
Thus, by adopting the above-described structure, the amount of bubbles entering the ultrasonic wave propagation region 1 can be reduced, and the speed of sound can be accurately measured. Further, in the present embodiment, since the size of the bubbles is increased by the action of the obstruction means 3, the mesh of the net, which is the water-permeable material 4, does not cause the expanded bubbles to enter the ultrasonic wave propagation region 1. You just need to choose the size. For this reason, it does not take time to replace the sample in the ultrasonic wave propagation region 1, and it is possible to quickly observe a change in the concentration of the sample 100 and the like.
[0028]
In the present embodiment, the upstream half surface is the obstruction means 3 and the downstream half surface is the water-permeable material 4. However, the present invention is not limited to this, and the sample 100 directly flows into the ultrasonic wave propagation region 1. If not, the ratio between the obstruction means 3 and the water-permeable material 4 may be arbitrarily designed. In order to replace the sample existing in the ultrasonic wave propagation region 1 in a short time, it is preferable that the obstructing means 3 has a minimum area.
[0029]
FIG. 3 is a diagram showing the results of measuring the sound speed of ultrasonic waves propagating in water by changing the flow rate of bubbles every 15 minutes (excluding the initial state) according to the present invention and the conventional example. Air bubbles were bubbled with a tube nozzle and aerated.
[0030]
In the sensor 50 used here, the water-permeable material 4 is formed of a 100-mesh net made of stainless steel having a wire diameter of 0.1 mm, and the obstructing means 3 corresponds to 上流 of the outer periphery, not the upstream half surface. The surface is configured to be impermeable. Further, the conventional example has a configuration in which the sensor is surrounded only by the water passing material 4.
[0031]
It can be understood that the measurement result A based on the present invention has a stable measurement without bubbles entering, while the measurement result B based on the conventional example has a significantly disturbed measured value due to the bubbles entering. From this result, it can be seen that the provision of the obstruction means 3 can prevent the entry of fine bubbles.
[0032]
In the present embodiment, the configuration is such that the ultrasonic wave propagation region 1 is surrounded by the water-permeable material 4. However, the present invention is not limited to this, and any configuration may be used as long as air bubbles can be prevented from entering the ultrasonic wave propagation region 1. For example, as shown in FIG. 4, flanges may be provided at both downstream ends of the obstruction means 3 so as to spread in a flange shape, so that the flow of the sample to the ultrasonic wave propagation region 1 is blocked.
[0033]
(Second embodiment)
In the first embodiment, the obstruction means 3 and the water-permeable material 4 are integrated, but the obstruction means 3 and the water-permeable material 4 do not need to be integrated. What is necessary is just to have the obstruction means 3. Therefore, in the second embodiment of the present invention, the obstructing means 3 and the water-permeable material 4 are arranged separately. FIG. 5 shows an external view of the second embodiment. Also in FIG. 5, it is assumed that the sample 100 flows upward from below, as in the example of FIG. 2 (the piping 200 is not shown).
[0034]
As shown in FIG. 5, in the second embodiment, the ultrasonic wave propagation region 1 of the sensor 50 is configured to be surrounded by only the water material 4. The configuration of the sensor 50 is the same as that of the conventional sensor shown in FIG. The obstructing means 3 having a substantially semicircular cross section is disposed at a position away from the sensor 50 by a predetermined distance on the upstream side.
[0035]
According to the above configuration, similarly to the first embodiment, it is possible to prevent air bubbles from entering the ultrasonic wave propagation region 1, and it is possible to accurately measure the speed of sound in a sample.
[0036]
(Third embodiment)
In each of the above embodiments, the water-passing material 4 disposed downstream of the obstruction means 3 is a means for directly preventing air bubbles from entering the ultrasonic wave propagation region 1. Therefore, if the structure for introducing the sample 100 into the ultrasonic wave propagation region 1 is configured to prevent the entry of air bubbles, it is not necessary to provide the water-permeable material 4. Therefore, in the third embodiment, the configuration is such that the water-permeable material 4 is not provided. Hereinafter, a third embodiment will be described with reference to FIG.
[0037]
In the present embodiment, the ultrasonic wave propagation region 1 of the sensor 50 is configured to be surrounded by only the obstruction means 3, and a sample for introducing the sample 100 into the ultrasonic wave propagation region 1 is provided at a position on the downstream side on the interference means 3. An inlet 5 is provided. In the example of FIG. 6, the sample introduction port 5 is a slit-shaped opening parallel to the ultrasonic wave propagation direction. The configuration of the sensor 50 is the same as the configuration of the above-described conventional sensor.
[0038]
According to the above configuration, the bubbles that have been combined and expanded by the action of the obstruction means 3 are caused to flow downstream and reach the sample introduction port 5. At the sample inlet 5, a flow occurs in which the sample in the ultrasonic wave propagation region 1 and the sample 100 flowing in the pipe are replaced, but the flow is weaker than the flow of the sample 100 flowing in the pipe. Therefore, the expanded bubbles flow downstream without entering the ultrasonic wave propagation region 1 from the sample introduction port 5.
[0039]
In the present embodiment, the sample introduction port 5 is a slit, but is not limited to this. For example, a plurality of openings may be used instead of the slit. Further, as shown in FIG. 7, a baffle plate 6 may be arranged inside the slit.
[0040]
In each of the above-described embodiments, by providing bubble adjusting means such as unevenness on the surface of the interference means 3 on which the sample collides, the mutual coupling of bubbles can be further promoted and larger bubbles can be obtained. Therefore, it is easy to prevent air bubbles from entering the ultrasonic wave propagation region 1.
[0041]
Further, in each of the above embodiments, the shape of the obstruction means 3 and the water-permeable material 4 is a shape having a small resistance to the flow of the sample 100. However, the present invention is not limited to this, and it is optional. It is possible to design. In addition, in Embodiments 1 and 2 described above, the water-permeable material 4 is formed of a wire mesh. However, for example, the water-permeable material 4 may be formed of a wire that is disposed at a smaller interval than the diameter of the bubbles, and separates the bubbles in the sample. The configuration is arbitrary as long as it can be performed.
[0042]
Furthermore, in each of the above embodiments, the configuration in which the ultrasonic transmitting and receiving unit 2a and the reflecting plate 2b are installed at a predetermined distance in the sample is illustrated, but the present invention is not limited to this. That is, a configuration in which an ultrasonic transmission unit and an ultrasonic reception unit are installed may be used.
[0043]
【The invention's effect】
As described above, in the present invention, the obstruction means for preventing the sample from directly flowing into the ultrasonic wave propagation region is provided on the upstream side of the ultrasonic wave propagation region, so that the bubbles directly enter the ultrasonic wave propagation region. Therefore, it is possible to accurately determine the sound speed in the sample.
[0044]
In addition, by introducing the sample into the ultrasonic wave propagation region via a water-permeable material that separates air bubbles from the sample on the downstream side of the obstruction means, it is possible to more reliably prevent air bubbles from entering the ultrasonic wave propagation region. The sound velocity can be reduced, and more accurate measurement of the speed of sound can be performed. In addition, the provision of the bubble adjusting means in the obstructing means makes it easier to separate the bubbles.
[0045]
Furthermore, since the water-permeable material only needs to be able to separate bubbles whose size has been increased by the action of the obstructing means or the bubble adjusting means, it is possible to adopt a configuration which does not hinder the permeation of the sample. Therefore, the replacement of the sample in the ultrasonic wave propagation region can be performed in a short time, and a change in the speed of sound due to a change in the concentration of the sample can be quickly detected.
[Brief description of the drawings]
FIG. 1 is a schematic functional block diagram showing an ultrasonic sound velocity measuring apparatus of the present invention; FIG. 2 is an external view showing a first embodiment of the present invention; FIG. 3 shows measurement results obtained by the present invention and a conventional method; FIG. 4 is a sectional view showing a modification of the first embodiment of the present invention. FIG. 5 is an external view showing a second embodiment of the present invention. FIG. 6 is a third embodiment of the present invention. FIG. 7 is a cross-sectional view showing a modification of the third embodiment of the present invention. FIG. 8 is an external view showing a sensor of a conventional ultrasonic sound velocity measuring device.
DESCRIPTION OF SYMBOLS 1 Ultrasonic wave propagation area 2a Ultrasonic transmitting / receiving part 2b Reflecting plate 2c Temperature sensor 2d Oscillating element and receiving element 3 Obstructing means 4 Water passing material 5 Sample introduction port 6 Baffle plate 7 Sample flow 8 Bubbles flow 10 Transmitting / receiving means 20 Receiving means Reference Signs List 30 reception processing means 40 calculation means 50 sensor 60 temperature measurement means 100 sample 200 piping 201 sensor installation port

Claims (3)

所定の方向に流れる試料中を伝播する超音波の音速を求める超音波音速測定装置において、
超音波伝播領域の前記流れの上流側に、当該超音波伝播領域に前記試料が直接流入するのを妨げる妨害手段を備えたことを特徴とする超音波音速測定装置。
In an ultrasonic sound velocity measuring device for determining the sound velocity of ultrasonic waves propagating in a sample flowing in a predetermined direction,
An ultrasonic sound velocity measuring device, further comprising an obstruction means for preventing the sample from directly flowing into the ultrasonic wave propagation area, on the upstream side of the flow in the ultrasonic wave propagation area.
上記妨害手段の上記流れの下流側に、試料中から気泡を分離する通水材を備えた請求項1に記載の超音波音速測定装置。The ultrasonic sound velocity measuring device according to claim 1, further comprising a water-permeable material that separates bubbles from a sample, on a downstream side of the flow of the obstruction unit. 上記妨害手段が試料中に含まれる気泡の相互の結合を促進する気泡調整手段を備えた請求項1または請求項2に記載の超音波音速測定装置。3. The ultrasonic sound velocity measuring device according to claim 1, wherein said obstructing means includes a bubble adjusting means for promoting mutual coupling of bubbles contained in the sample.
JP2003111309A 2003-04-16 2003-04-16 Ultrasonic acoustic velocity measuring device Pending JP2004317288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111309A JP2004317288A (en) 2003-04-16 2003-04-16 Ultrasonic acoustic velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111309A JP2004317288A (en) 2003-04-16 2003-04-16 Ultrasonic acoustic velocity measuring device

Publications (1)

Publication Number Publication Date
JP2004317288A true JP2004317288A (en) 2004-11-11

Family

ID=33471898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111309A Pending JP2004317288A (en) 2003-04-16 2003-04-16 Ultrasonic acoustic velocity measuring device

Country Status (1)

Country Link
JP (1) JP2004317288A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026067A (en) * 2006-07-19 2008-02-07 Fuji Kogyo Kk Ultrasonic acoustic velocity measuring instrument
KR101596410B1 (en) * 2014-08-19 2016-02-23 주식회사 화영 Urea water sender including urea concentration measuring device and urea water tank including the same
WO2016027941A1 (en) * 2014-08-19 2016-02-25 주식회사 화영 Device for measuring urea concentration and urea water sender and urea water tank having same
WO2016085307A1 (en) * 2014-11-27 2016-06-02 두산인프라코어 주식회사 Urea concentration measurement device, and urea water sender and urea water tank having same
KR20170062337A (en) * 2015-11-27 2017-06-07 두산인프라코어 주식회사 Urea concentration measuring device and urea water sender and urea water tank including the same
CN109541020A (en) * 2019-01-18 2019-03-29 凯泰(滁州)流体控制有限公司 Media defect detection method and device suitable for various media Containers
CN112539098A (en) * 2019-09-20 2021-03-23 福爱电子(贵州)有限公司 Urea concentration sensor device
DE112014004566B4 (en) 2013-10-02 2022-09-15 Ssi Technologies, Llc Reducing aeration-induced noise in an ultrasonic fluid detection system
DE112015002353B4 (en) 2014-05-20 2023-12-28 Ssi Technologies, Llc Reduction of ventilation-related disturbances through winding routing and sensor casing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523126U (en) * 1991-08-02 1993-03-26 三菱マテリアル株式会社 Ultrasonic concentration measuring device
JPH08201357A (en) * 1995-01-27 1996-08-09 Nippon Seiki Co Ltd Ultrasonic concentration meter
JP2604742B2 (en) * 1987-04-07 1997-04-30 オムロン株式会社 Ultrasonic solution concentration measurement device
JPH11118774A (en) * 1997-10-14 1999-04-30 Toyota Motor Corp Oil deterioration sensor
JP2002131298A (en) * 2000-10-23 2002-05-09 Ngk Spark Plug Co Ltd Liquid level deterioration detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2604742B2 (en) * 1987-04-07 1997-04-30 オムロン株式会社 Ultrasonic solution concentration measurement device
JPH0523126U (en) * 1991-08-02 1993-03-26 三菱マテリアル株式会社 Ultrasonic concentration measuring device
JPH08201357A (en) * 1995-01-27 1996-08-09 Nippon Seiki Co Ltd Ultrasonic concentration meter
JPH11118774A (en) * 1997-10-14 1999-04-30 Toyota Motor Corp Oil deterioration sensor
JP2002131298A (en) * 2000-10-23 2002-05-09 Ngk Spark Plug Co Ltd Liquid level deterioration detection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026067A (en) * 2006-07-19 2008-02-07 Fuji Kogyo Kk Ultrasonic acoustic velocity measuring instrument
DE112014004566B4 (en) 2013-10-02 2022-09-15 Ssi Technologies, Llc Reducing aeration-induced noise in an ultrasonic fluid detection system
DE112015002353B4 (en) 2014-05-20 2023-12-28 Ssi Technologies, Llc Reduction of ventilation-related disturbances through winding routing and sensor casing
KR101596410B1 (en) * 2014-08-19 2016-02-23 주식회사 화영 Urea water sender including urea concentration measuring device and urea water tank including the same
WO2016027941A1 (en) * 2014-08-19 2016-02-25 주식회사 화영 Device for measuring urea concentration and urea water sender and urea water tank having same
WO2016085307A1 (en) * 2014-11-27 2016-06-02 두산인프라코어 주식회사 Urea concentration measurement device, and urea water sender and urea water tank having same
KR20170062337A (en) * 2015-11-27 2017-06-07 두산인프라코어 주식회사 Urea concentration measuring device and urea water sender and urea water tank including the same
KR102483383B1 (en) 2015-11-27 2022-12-30 현대두산인프라코어(주) Urea concentration measuring device and urea water sender and urea water tank including the same
CN109541020A (en) * 2019-01-18 2019-03-29 凯泰(滁州)流体控制有限公司 Media defect detection method and device suitable for various media Containers
CN112539098A (en) * 2019-09-20 2021-03-23 福爱电子(贵州)有限公司 Urea concentration sensor device
CN112539098B (en) * 2019-09-20 2024-03-12 福爱电子(贵州)有限公司 Urea concentration sensor device

Similar Documents

Publication Publication Date Title
KR100550737B1 (en) Doppler ultrasonic flowmeter
NO20022700D0 (en) Simultaneous determination of multiphase flow rates and concentrations
JP2004271496A (en) Ultrasonic flow measuring method
JPH0760160B2 (en) Fluid velocity measuring device
JP2007529725A (en) Ultrasonic flow rate flow sensor with transducer array and reflective surface
JP2004317288A (en) Ultrasonic acoustic velocity measuring device
CN109813381B (en) Measuring device for determining pressure in a measurement volume
CN105209865B (en) Ultrasonic flowmeter and fluid velocity measuring method
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2006292381A (en) Ultrasonic flowmeter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP2008014829A (en) Ultrasonic flowmeter
JP4984348B2 (en) Flow measuring device
JP2005091332A (en) Ultrasonic flowmeter
JP3355130B2 (en) Pulsation absorption structure of flow meter
JP2010210548A (en) Ultrasonic flowmeter for gas
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP4842728B2 (en) Ultrasonic sound velocity measuring device
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP3368305B2 (en) Ultrasonic flow meter
KR101820050B1 (en) Flow rate measuring apparatus in drainpipe using temperature diference
JP2009216496A (en) Ultrasonic flowmeter
JP2008256383A (en) Ultrasonic flowmeter
WO2017078559A1 (en) Ultrasonic flow meter sensor
JP2006226693A (en) Flow-measuring device for fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080404