JP2008008023A - Method of consolidating ground containing calcium, by using microorganisms - Google Patents

Method of consolidating ground containing calcium, by using microorganisms Download PDF

Info

Publication number
JP2008008023A
JP2008008023A JP2006179162A JP2006179162A JP2008008023A JP 2008008023 A JP2008008023 A JP 2008008023A JP 2006179162 A JP2006179162 A JP 2006179162A JP 2006179162 A JP2006179162 A JP 2006179162A JP 2008008023 A JP2008008023 A JP 2008008023A
Authority
JP
Japan
Prior art keywords
ground
microorganisms
calcium
carbon dioxide
containing calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006179162A
Other languages
Japanese (ja)
Other versions
JP4621634B2 (en
Inventor
Satoru Kawasaki
了 川崎
Naoki Hiroyoshi
直樹 広吉
Shunsuke Shimada
俊介 島田
Tadao Koyama
忠雄 小山
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Hokkaido University NUC
Original Assignee
Kyokado Engineering Co Ltd
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd, Hokkaido University NUC filed Critical Kyokado Engineering Co Ltd
Priority to JP2006179162A priority Critical patent/JP4621634B2/en
Priority to TW96147038A priority patent/TWI414664B/en
Publication of JP2008008023A publication Critical patent/JP2008008023A/en
Application granted granted Critical
Publication of JP4621634B2 publication Critical patent/JP4621634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0067Function or property of ingredients for mortars, concrete or artificial stone the ingredients being formed in situ by chemical reactions or conversion of one or more of the compounds of the composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of consolidating ground containing calcium, by using microorganisms, which does not produce toxic substances in the course of consolidation of the ground, does not adversely affect the environment, dispenses with large-scale devices and toxic chemicals, and is applicable to countermeasure work against liquefaction, seismic strengthening of a structure foundation, etc. <P>SOLUTION: According to the method, microorganisms are charged into the ground containing calcium, and by virtue of reaction of carbon dioxide gas generated by metabolic actions of the microorganisms, and the calcium, the ground is consolidated. Further an alkaline-earth metal compound and microorganisms are charged into the ground, and by virtue of reaction of carbon dioxide gas generated by metabolic actions of the microorganisms, and the calcium, the ground is consolidated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は海岸沿いの貝殻等、カルシウムを含む地盤中に微生物を投入し、微生物による代謝作用によって二酸化炭素を発生させ、この二酸化炭素とカルシウムが反応して地盤を固結する地盤改良方法に係り、特に、地盤の固結に際して有害物を発生せず、このため環境への悪影響を与えることがなく、しかも大掛かりな装置や有害な薬品を必要とせず、液状化対策工事、構造物基礎下の耐震補強等に適した地盤改良方法に関する。   The present invention relates to a ground improvement method in which microorganisms are introduced into ground containing calcium, such as shells along the coast, and carbon dioxide is generated by metabolic action of the microorganisms, and the carbon dioxide and calcium react to solidify the ground. In particular, no harmful substances are generated during consolidation of the ground, so there is no negative impact on the environment, and no large equipment or harmful chemicals are required. The present invention relates to a ground improvement method suitable for seismic reinforcement.

注入材により地盤を固結して地盤改良を図る方法として、従来、地盤中に注入材として水ガラスや、セメントを注入して地盤を固結する方法が採用されていた。   As a method of solidifying the ground with an injection material to improve the ground, conventionally, a method of solidifying the ground by injecting water glass or cement as an injection material into the ground has been adopted.

しかし、この方法では注入材が強アルカリであったり、あるいは強酸を使用したり等、環境への悪影響を与える恐れがあり、さらには取り扱いに注意が必要であり、また、使用
できる地盤が限定されている。
However, in this method, there is a risk of adverse effects on the environment, such as the use of strong alkalis or strong acids, and further care is required, and the ground that can be used is limited. ing.

地盤の液状化が発生する可能性のある地盤には、海岸沿いの貝殻等のカルシウムを含む地盤が多い。しかし、地盤改良の際、周辺環境への影響のない地盤改良方法が求められる場合、従来のシリカ化合物等の強アルカリや、反応材として酸では地盤改良後に未反応物質が溶解してしまう可能性があった。また、水ガラスとカルシウムを用いる注入材ではゲル化時間が短いことから地盤中に浸透せず広範囲の地盤改良が困難であった。   In the ground where liquefaction of the ground may occur, there are many grounds containing calcium such as shells along the coast. However, when a ground improvement method that does not affect the surrounding environment is required during ground improvement, there is a possibility that unreacted substances will dissolve after the ground improvement with a strong alkali such as a conventional silica compound or an acid as a reaction material. was there. Moreover, in the injection material using water glass and calcium, since the gelation time is short, it does not penetrate into the ground and it is difficult to improve the ground in a wide range.

また、本出願人によるアルカリ土金属化合物を有効成分とするA液と、炭酸、重炭酸、硫酸、燐酸およびこれらのアルカリ金属塩の群から選択される一種または複数種を有効成分とするB液とを土中に浸透または注入し、または土と混合し、不溶性塩を形成させることにより、アルカリ汚染が少なく、またはシリカ分が溶出しないため水質汚染が生じることのない発明が、すでに公知となっている。(特開2004−67819号公報)   In addition, the A liquid containing an alkaline earth metal compound as an active ingredient by the present applicant, and the B liquid containing one or more kinds selected from the group consisting of carbonic acid, bicarbonate, sulfuric acid, phosphoric acid and alkali metal salts thereof. An invention has been already known in which water is not contaminated by infiltrating or injecting into the soil, or mixing with the soil to form an insoluble salt so that there is little alkali contamination or silica content does not elute. ing. (Japanese Patent Laid-Open No. 2004-67819)

本発明者らはさらに上記方法を改良し、微生物による代謝作用によって二酸化炭素を発生させることにより、酸やアルカリの使用量を少なくしても、ゲル化時間の長い、安定したゲルを得ることを見出し、環境に悪影響を与えないグラウトを開発して本発明を完成するに至った。
特開2004−67819
The present inventors have further improved the above-described method, and by generating carbon dioxide through metabolic action by microorganisms, it is possible to obtain a stable gel having a long gelation time even if the amount of acid or alkali used is reduced. The present invention was completed by developing a grout that does not adversely affect the headline and the environment.
JP 2004-67819 A

そこで、本発明の課題はさらに環境の影響を低減を追求し、自然の状態で存在する物質だけを使用して改良地盤周辺や、地盤改良後においても有害な物質を発生させず、上述の公知技術に存する欠点を改良した広範囲の地盤を改良する方法を開発することにある。   Therefore, the object of the present invention is to further reduce the influence of the environment, and by using only substances that exist in the natural state, no harmful substances are generated around the improved ground or after the ground improvement. The aim is to develop a method for improving a wide range of grounds which has improved the shortcomings of the technology.

上述の課題を解決するため、本発明によれば、カルシウムを含む地盤中に微生物を投入し、微生物の代謝作用により生成した炭酸ガスとカルシウムが反応して地盤を固結することを特徴とする。   In order to solve the above-mentioned problems, according to the present invention, a microorganism is introduced into a ground containing calcium, and carbon dioxide generated by metabolic action of the microorganism reacts with calcium to solidify the ground. .

さらに、上述の課題を解決するため、本発明によれば、カルシウムを含む地盤中に微生物、微生物の栄養源としての有機物およびアルカリ土金属化合物を投入し、地盤中のアルカリ土金属が反応して地盤を固結することを特徴とする。   Furthermore, in order to solve the above-described problems, according to the present invention, microorganisms, organic substances as nutrient sources for microorganisms and alkaline earth metal compounds are introduced into the ground containing calcium, and the alkaline earth metal in the ground reacts. It is characterized by consolidating the ground.

上述の本発明は海岸沿いの貝殻等、カルシウムを含む地盤中に微生物を投入し、微生物による代謝作用によって二酸化炭素を発生させ、この二酸化炭素とカルシウムが反応して地盤を固結するようにしたことから、地盤の固結に際して有害物質を発生せず、このため環境への悪影響を与えることがなく、しかも大掛かりな装置や有害な薬品を必要とせず、液状化対策工事、構造物基礎下の耐震補強等に適した地盤改良方法である。   In the present invention described above, microorganisms are introduced into ground containing calcium, such as shells along the coast, and carbon dioxide is generated by metabolic action of the microorganisms, and the carbon dioxide and calcium react to solidify the ground. Therefore, no harmful substances are generated during consolidation of the ground, so there is no negative impact on the environment, and no large equipment or harmful chemicals are required. This ground improvement method is suitable for seismic reinforcement.

微生物は次式に示されるとおり、代謝活動において有機栄養源から二酸化炭素を生じる。
12+6O→6CO+6HO(好気性条件)
12→2CO+2COH(嫌気性条件)
このとき土壌中に溶解しているカルシウム、あるいは地盤中に注入したカルシウムと微生物の発生した二酸化炭素が反応し、次式のとおり、土粒子間に炭酸カルシウムを析出・沈澱し、地盤を硬化する。
Ca2++CO→HO→CaCO+2H
Microorganisms produce carbon dioxide from organic nutrient sources in metabolic activity, as shown in the following formula.
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O ( aerobic conditions)
C 6 H 12 O 6 → 2CO 2 + 2C 2 H 5 OH (anaerobic condition)
At this time, calcium dissolved in the soil or calcium injected into the ground reacts with carbon dioxide generated by microorganisms, and calcium carbonate precipitates and settles between the soil particles as shown in the following formula, hardening the ground. .
Ca 2+ + CO 2 → H 2 O → CaCO 3 + 2H +

そこで、カルシウムを含む地盤においては、地盤中に微生物を注入することで、微生物の排出する二酸化炭素により、地盤中のカルシウムが析出し地盤を固結することができる。   Therefore, in the ground containing calcium, by injecting microorganisms into the ground, calcium in the ground can be precipitated and solidified by the carbon dioxide discharged by the microorganisms.

さらに有機栄養源を注入することで有機栄養源の種類や量により微生物の代謝速度が変化し、二酸化炭素の排出量の変化に伴いカルシウム塩の析出量が変化することから、地盤の硬化時間および、強度を調整できる。地盤においてカルシウム溶解量が少ない場合や、地盤を高強度に改良する場合においてはさらにアルカリ土金属化合物を地盤中に注入しカルシウム塩の析出量を多くすることもできる。   Furthermore, by injecting organic nutrient sources, the metabolic rate of microorganisms changes depending on the type and amount of organic nutrient sources, and the precipitation amount of calcium salts changes with changes in carbon dioxide emissions. , The intensity can be adjusted. When the amount of calcium dissolved in the ground is small or when the ground is improved with high strength, an alkaline earth metal compound can be further injected into the ground to increase the amount of precipitated calcium salt.

また、微生物の多く存在する地盤においては、有機栄養源により地盤中の微生物の代謝を調整することにより、地盤中のカルシウムや注入したカルシウムと反応し、カルシウム塩を析出させることができる。   Moreover, in the ground where many microorganisms exist, by adjusting the metabolism of microorganisms in the ground with organic nutrient sources, it can react with calcium in the ground or injected calcium to precipitate calcium salts.

本発明の地盤改良方法はカルシウムを含む地盤中に微生物を投入し、微生物の代謝作用により生成した炭酸ガスとカルシウムが反応して地盤を固結することに存する。   The ground improvement method of the present invention consists in putting microorganisms into ground containing calcium and solidifying the ground by reacting carbon dioxide and calcium produced by the metabolic action of the microorganisms.

さらに、本発明の地盤改良方法はカルシウムを含む地盤中に微生物、微生物の栄養源としての有機物およびアルカリ土金属化合物を投入し、地盤中のアルカリ土金属が反応して地盤を固結することに存する。   Furthermore, the ground improvement method of the present invention is to put microorganisms, organic matter and alkaline earth metal compounds as nutrient sources of microorganisms into the ground containing calcium, and the alkaline earth metals in the ground react to solidify the ground. Exist.

本発明におけるカルシウムを地盤とは、貝殻や石灰等が地盤中に存在し、あるいは溶解してカルシウムイオンとして地盤中に存在しているものである。また、本発明におけるアルカリ土金属化合物とはアルカリ土金属の塩化物、微粒子石灰、および微粒子セメント群の中から選択される一種または複数種であり、好ましくは水溶性化合物である。また、炭酸カルシウムには3つの異なった結晶形(カルサイト、アラゴナイト、バテライト)があり、常温・常圧のカルシウム溶液中からは通常カルサイトが析出するが、Mg2+やある種の有機成分を溶液中に少量添加すると、アラゴナイトやバテライトが析出する。アラゴナイトやバテライトは結晶が成長する際に顕著な方向性を有しているため、炭酸カルシウムの結晶形態を制御することができれば地盤の力学特性や水理学特性の異方性を比較的自由に制御できる可能性がある。 The term “calcium ground” in the present invention means that shells, lime, etc. are present in the ground or dissolved to be present as calcium ions in the ground. Further, the alkaline earth metal compound in the present invention is one or a plurality selected from the group of alkaline earth metal chloride, fine lime, and fine particle cement, and is preferably a water-soluble compound. Calcium carbonate has three different crystal forms (calcite, aragonite, and vaterite), and calcite usually precipitates from calcium solutions at room temperature and pressure, but Mg 2+ and certain organic components When a small amount is added to the solution, aragonite and vaterite are precipitated. Aragonite and vaterite have a remarkable direction during crystal growth, so if the crystal morphology of calcium carbonate can be controlled, the anisotropy of the mechanical and hydraulic properties of the ground can be controlled relatively freely. There is a possibility.

本発明に用いられる微生物は人体や環境に影響を与えにくいものならば、使用可能である。特に、乳酸菌やイースト菌等の従来より食品に利用されているものや、一般の地盤中に多く存在するものも利用できる。また、アンモニアからの硝化により硝酸カルシウムを析出させることもでき、施工地盤によって微生物の使い分けが可能である。
また、本発明により析出するカルシウム塩とは炭酸カルシウム、水酸化カルシウム、塩化カルシウム、硝酸カルシウム等で、注入する微生物や地盤に生息する微生物に影響される。有機栄養源とは微生物の栄養源となるものであり、好ましくは土壌中の微生物によって代謝分解される糖類である。例えば、グルコースやフラクトースなどの単糖類、スクロース、マルトースあるいはガラクトースなどの2糖類、その他のオリゴ糖、でんぷんやマルトデキストリンなどの多糖類、その他糖類を例示することができる。微生物によって、あるいは有機栄養源によって代謝速度が変化するため、施工時地盤によって選択する必要がある。
The microorganism used in the present invention can be used as long as it hardly affects the human body and the environment. In particular, those that have been used in foods such as lactic acid bacteria and yeasts, and those that are abundant in general ground can be used. In addition, calcium nitrate can be precipitated by nitrification from ammonia, and microorganisms can be properly used depending on the construction ground.
The calcium salt precipitated according to the present invention is calcium carbonate, calcium hydroxide, calcium chloride, calcium nitrate, etc., and is affected by microorganisms to be injected and microorganisms that inhabit the ground. An organic nutrient source is a source of microorganisms, and is preferably a saccharide that is metabolized and decomposed by microorganisms in the soil. Examples include monosaccharides such as glucose and fructose, disaccharides such as sucrose, maltose and galactose, other oligosaccharides, polysaccharides such as starch and maltodextrin, and other saccharides. Since the metabolic rate varies depending on the microorganism or organic nutrient source, it is necessary to select the soil according to the construction site.

(1)炭酸カルシウムの析出実験
微生物による炭酸カルシウムの析出実験を行った。
水溶性カルシウムとしては、石灰0.59gを25mlの蒸留水に溶解したものと、貝殻を多く含む地盤300gを採取し、500mlの蒸留水でよく攪拌後、濾過した液25mlの2種類を用意した。
(1) Precipitation experiment of calcium carbonate The precipitation experiment of calcium carbonate by microorganisms was conducted.
Two types of water-soluble calcium were prepared: 0.59 g of lime dissolved in 25 ml of distilled water and 300 g of ground containing a lot of shells, and after stirring well with 500 ml of distilled water, 25 ml of filtered liquid was prepared. .

微生物としてはイースト菌(日清フーズ株式会社製、日清スーパーカメリヤ)0.5g、栄養源としてグルコースC12を0.7gそれぞれ添加した。25℃に静置し24時間後に観察を行った。結果を表1に示す。 0.5 g of yeast (Nisshin Foods Co., Ltd., Nisshin Super Camellia) was added as a microorganism, and 0.7 g of glucose C 6 H 12 O 6 was added as a nutrient source. It left still at 25 degreeC and observed 24 hours afterward. The results are shown in Table 1.

Figure 2008008023
Figure 2008008023

微生物を添加した水溶液はPHの低下がみられ、有機栄養源を添加したものはPHの低下が促進されたのがわかった。カルシウムを含む液において微生物を添加した場合、白色のカルシウムの析出が見られた。また有機栄養源を加えることで析出量が多くなった。比較1、2に関しては、カルシウムを含むが微生物が存在しない液ではカルシウムの析出が見られなかった。また、カルシウムを含まない液においては微生物や有機栄養源を添加してもカルシウムの析出が見られなかった。   It was found that the aqueous solution to which microorganisms were added exhibited a decrease in pH, and that to which an organic nutrient source was added promoted the decrease in PH. When microorganisms were added to the liquid containing calcium, white calcium was observed to be precipitated. Moreover, the amount of precipitation increased by adding organic nutrient sources. As for comparisons 1 and 2, precipitation of calcium was not observed in the liquid containing calcium but not containing microorganisms. In addition, in the liquid not containing calcium, precipitation of calcium was not observed even when microorganisms or organic nutrient sources were added.

(2)透水試験
実施例5として1mのプラスチック製モールドに表1の実施例2で使用した貝殻を多く含む地盤を90cm充填(相対密度60%、透水係数2.02×10―2cm/s)し、蒸留水100mlあたりイースト菌2gとグルコース2.8gの割合で作成した薬液1500mlを5サイクル通液し作成した供試体を脱型し10cmに切断後、ラップで密封し28日間養生後の透水係数を測定した。透水試験は地盤工学会基準に準じた加圧透水試験を行った。
また、同様に実施例6として豊浦標準砂(相対密度60%、透水係数1.5×10―2cm/s)に実施例4で用いた石灰水100mlあたりイースト菌2gとグルコース2.8gの割合で作成した薬液1500mlを5サイクル通液し作成した供試体を脱型し10cmに切断後、ラップで密封し28日間養生後の透水係数を測定した。結果を表2に示す。
(2) Water permeability test As Example 5, a 1 m plastic mold was filled with 90 cm of ground containing a lot of shells used in Example 2 in Table 1 (relative density 60%, permeability coefficient 2.02 × 10 -2 cm / s). Measure the hydraulic conductivity after 28 days of curing after removing the sample prepared by passing 5 cycles of 1500 ml of the drug solution prepared at a ratio of 2 g yeast and 2.8 g glucose per 100 ml of distilled water, cutting into 10 cm, sealing with a wrap. did. The water permeability test was a pressurized water permeability test according to the Geotechnical Society standards.
Similarly, Example 6 was prepared at a ratio of 2 g yeast and 2.8 g glucose per 100 ml of lime water used in Example 4 on Toyoura standard sand (relative density 60%, water permeability 1.5 × 10 −2 cm / s). A specimen prepared by passing 1500 ml of chemical solution through 5 cycles was demolded, cut into 10 cm, sealed with a wrap, and measured for water permeability after curing for 28 days. The results are shown in Table 2.

Figure 2008008023
Figure 2008008023

実施例5、実施例6についてそれぞれ漏水係数の低下が見られた。特に貝殻を多く含む地盤(実施例5)での透水係数の低下がみられた。よって、本発明が地盤改良において有効であることが判った。   For Example 5 and Example 6, a decrease in the water leakage coefficient was observed. In particular, a decrease in the hydraulic conductivity was observed on the ground (Example 5) containing a lot of shells. Therefore, it turned out that this invention is effective in ground improvement.

カルシウムを含む地盤中に微生物を投入し、微生物の代謝作用により生成した炭酸ガスとカルシウムが反応して地盤を固結することにより、あるいは地盤中にアルカリ土金属化合物および微生物を投入し、微生物の代謝作用により生成した炭酸ガスとアルカリ土金属化合物が反応して地盤を固結することにより、地盤の固結に際して有害物を発生せず、このため環境への悪影響を与えることがなく、しかも大掛かりな装置や有害な薬品を必要とせず、液状化対策工事、構造物基礎下の耐震補強等の用途に適用できる。
Microorganisms are introduced into the ground containing calcium, and carbon dioxide generated by the metabolic action of the microorganisms reacts with calcium to solidify the ground, or alkaline earth metal compounds and microorganisms are introduced into the ground, Carbon dioxide gas generated by metabolic action reacts with alkaline earth metal compounds to consolidate the ground, so that no harmful substances are generated when the ground consolidates. It can be applied to liquefaction countermeasures, seismic reinforcement under the structure foundation, etc.

Claims (5)

カルシウムを含む地盤中に微生物を投入し、微生物の代謝作用により生成した炭酸ガスとカルシウムが反応して地盤を固結することを特徴とする地盤改良方法。   A ground improvement method characterized in that a microorganism is introduced into a ground containing calcium and carbon dioxide generated by the metabolic action of the microorganism reacts with calcium to solidify the ground. 地盤中にアルカリ土金属化合物および微生物を投入し、微生物の代謝作用により生成した炭酸ガスとアルカリ土金属化合物が反応して地盤を固結することを特徴とする地盤改良方法。   A ground improvement method characterized in that an alkaline earth metal compound and a microorganism are introduced into the ground, and carbon dioxide generated by metabolic action of the microorganism reacts with the alkaline earth metal compound to solidify the ground. 請求項1において、さらに、アルカリ土金属化合物を投入する請求項1の地盤改良方法。   2. The ground improvement method according to claim 1, further comprising adding an alkaline earth metal compound. 請求項1または2において、さらに微生物の栄養源として有機物を地盤中に投入し、微生物の代謝を促すことを特徴とする請求項1または2の地盤改良方法。   The ground improvement method according to claim 1 or 2, wherein an organic substance is further introduced into the ground as a nutrient source for microorganisms to promote metabolism of the microorganisms. 請求項1または2において、さらに炭酸ガスを投入する請求項1または2の地盤改良方法。
3. The ground improvement method according to claim 1 or 2, wherein carbon dioxide gas is further added.
JP2006179162A 2006-06-29 2006-06-29 Method of consolidation of ground containing calcium using microorganisms Active JP4621634B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006179162A JP4621634B2 (en) 2006-06-29 2006-06-29 Method of consolidation of ground containing calcium using microorganisms
TW96147038A TWI414664B (en) 2006-06-29 2007-12-10 An improved method of using microbiological sites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006179162A JP4621634B2 (en) 2006-06-29 2006-06-29 Method of consolidation of ground containing calcium using microorganisms

Publications (2)

Publication Number Publication Date
JP2008008023A true JP2008008023A (en) 2008-01-17
JP4621634B2 JP4621634B2 (en) 2011-01-26

Family

ID=39066470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006179162A Active JP4621634B2 (en) 2006-06-29 2006-06-29 Method of consolidation of ground containing calcium using microorganisms

Country Status (2)

Country Link
JP (1) JP4621634B2 (en)
TW (1) TWI414664B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063495A (en) * 2006-09-08 2008-03-21 Kyokado Eng Co Ltd Method for treating soil or building skeleton
JP2009263934A (en) * 2008-04-23 2009-11-12 Taisei Corp Soil improving method using microorganism
KR101030761B1 (en) 2010-11-24 2011-04-26 조선대학교산학협력단 Cememtation of soft ground using bacteria
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP5140879B1 (en) * 2012-06-22 2013-02-13 強化土株式会社 Ground improvement method
JP2015137505A (en) * 2014-01-23 2015-07-30 鹿島建設株式会社 Sand gravel solidification body formation method and land area preservation method
CN105862706A (en) * 2016-06-08 2016-08-17 东南大学 Method for treating liquefiable sandy soil foundations by aid of microbial bubble
JP2016525879A (en) * 2013-05-17 2016-09-01 テクニシュ ユニベルシテイト デルフトTechnische Universiteit Delft Concrete bio repair method
CN106284280A (en) * 2016-09-18 2017-01-04 东南大学 A kind of method utilizing microorganism to prepare calcium carbonate solidification sand
CN108824419A (en) * 2018-06-26 2018-11-16 温州大学 The method of the vacuum pre-pressed joint biomineralization reinforcing High water cut soil body
JP2019173397A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Soil solidification method
JP2019173398A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Ground improvement method
JP2020163359A (en) * 2019-03-30 2020-10-08 株式会社熊谷組 Crushed shell material solidified article, production method of crushed shell material solidified article and crushed shell material solidified article preparation
CN111893988A (en) * 2020-08-31 2020-11-06 武汉理工大学 Ecological improvement method for microorganism-induced silty-fine sand consolidated soft soil roadbed

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126909A (en) * 1976-04-16 1977-10-25 Kawai Setsukai Kougiyou Kk Method of improving poor subsoil
JPH0340977A (en) * 1989-03-17 1991-02-21 Univ Pierre & Marie Curie Method for biological treatment of artifi- cial matter surface and artificial matter treated thereby
JPH0639055A (en) * 1992-04-16 1994-02-15 Westinghouse Electric Corp <We> Method of restoring polluted soil and underground water in site by using calcium chloride
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007332617A (en) * 2006-06-14 2007-12-27 Kyokado Eng Co Ltd Soil improving method
JP2008508450A (en) * 2004-07-28 2008-03-21 コンパーニュ・デュ・ソル Soil compaction method and composition therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159484A (en) * 1984-12-31 1986-07-19 Kyokado Eng Co Ltd Grouting method
JPH0757870B2 (en) * 1991-03-22 1995-06-21 強化土エンジニヤリング株式会社 Method and apparatus for manufacturing ground injection chemicals
CN1119689A (en) * 1994-07-02 1996-04-03 梁成敖 Artificial earth crust
JP3241236B2 (en) * 1995-05-16 2001-12-25 ライト工業株式会社 How to clean contaminated soil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126909A (en) * 1976-04-16 1977-10-25 Kawai Setsukai Kougiyou Kk Method of improving poor subsoil
JPH0340977A (en) * 1989-03-17 1991-02-21 Univ Pierre & Marie Curie Method for biological treatment of artifi- cial matter surface and artificial matter treated thereby
JPH0639055A (en) * 1992-04-16 1994-02-15 Westinghouse Electric Corp <We> Method of restoring polluted soil and underground water in site by using calcium chloride
JP2004067819A (en) * 2002-08-05 2004-03-04 Kyokado Eng Co Ltd Method for consolidating soil and method for treating concrete skeleton
JP2008508450A (en) * 2004-07-28 2008-03-21 コンパーニュ・デュ・ソル Soil compaction method and composition therefor
JP2006169940A (en) * 2004-11-17 2006-06-29 Hokkaido Univ Soil improving method and grout used for soil improvement method
JP2007332617A (en) * 2006-06-14 2007-12-27 Kyokado Eng Co Ltd Soil improving method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063495A (en) * 2006-09-08 2008-03-21 Kyokado Eng Co Ltd Method for treating soil or building skeleton
JP2009263934A (en) * 2008-04-23 2009-11-12 Taisei Corp Soil improving method using microorganism
KR101030761B1 (en) 2010-11-24 2011-04-26 조선대학교산학협력단 Cememtation of soft ground using bacteria
JP4940462B1 (en) * 2011-02-10 2012-05-30 強化土エンジニヤリング株式会社 Ground improvement method
JP5140879B1 (en) * 2012-06-22 2013-02-13 強化土株式会社 Ground improvement method
JP2016525879A (en) * 2013-05-17 2016-09-01 テクニシュ ユニベルシテイト デルフトTechnische Universiteit Delft Concrete bio repair method
JP2015137505A (en) * 2014-01-23 2015-07-30 鹿島建設株式会社 Sand gravel solidification body formation method and land area preservation method
CN105862706A (en) * 2016-06-08 2016-08-17 东南大学 Method for treating liquefiable sandy soil foundations by aid of microbial bubble
CN106284280A (en) * 2016-09-18 2017-01-04 东南大学 A kind of method utilizing microorganism to prepare calcium carbonate solidification sand
JP2019173397A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Soil solidification method
JP2019173398A (en) * 2018-03-28 2019-10-10 株式会社熊谷組 Ground improvement method
JP7032199B2 (en) 2018-03-28 2022-03-08 株式会社熊谷組 Ground improvement method
JP7032198B2 (en) 2018-03-28 2022-03-08 株式会社熊谷組 Soil solidification method
CN108824419A (en) * 2018-06-26 2018-11-16 温州大学 The method of the vacuum pre-pressed joint biomineralization reinforcing High water cut soil body
JP2020163359A (en) * 2019-03-30 2020-10-08 株式会社熊谷組 Crushed shell material solidified article, production method of crushed shell material solidified article and crushed shell material solidified article preparation
CN111893988A (en) * 2020-08-31 2020-11-06 武汉理工大学 Ecological improvement method for microorganism-induced silty-fine sand consolidated soft soil roadbed

Also Published As

Publication number Publication date
TWI414664B (en) 2013-11-11
JP4621634B2 (en) 2011-01-26
TW200925357A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
JP4621634B2 (en) Method of consolidation of ground containing calcium using microorganisms
JP4599611B2 (en) Ground improvement method and grout used in the method
JP5599032B2 (en) Ground improvement method
JP4240501B2 (en) Ground improvement method
CN104818719B (en) A kind of microorganism grouting method for improving calcium carbonate early stage deposition
JP5360578B2 (en) Ground injection method
JP2020007897A (en) Ground improvement method
JP6531902B2 (en) Heavy metal insolubilizing composition and method for repairing heavy metal contaminated soil
JP4608669B2 (en) Ground improvement method containing calcium using microorganisms
KR101949655B1 (en) Composition for preventing soil loss using Microbially Induced Calcite Precipitation (MICP) and method using the same
JP4517050B2 (en) Ground improvement method and apparatus
CN110284491A (en) A kind of magnetized solution microorganism soil-fixing device and solid indigenous method
JP2008063495A (en) Method for treating soil or building skeleton
JP2008138069A (en) Method for treating soil or construction skeleton
Teng et al. STRENGTH IMPROVEMENT OF A SILTY CLAY WITH MICROBIOLOGICALLY INDUCED PROCESS AND COIR FIBER.
JP2012172060A (en) Grout and method for solidifying ground
JP5578642B2 (en) Ground injection agent and ground injection method
JP2008161778A (en) Soil purifying method
Ivanov et al. Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials
JP4955123B2 (en) Ground injection material and ground injection method
JP5015193B2 (en) Ground injection material and ground injection method
JP2009155855A (en) Soil improvement method
KR20110087141A (en) Method for improving soft ground using urease-producing microorganism
CN112122331B (en) Method for solidifying and stabilizing heavy metal polluted soil
JP4940462B1 (en) Ground improvement method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250