JPH0757870B2 - Method and apparatus for manufacturing ground injection chemicals - Google Patents

Method and apparatus for manufacturing ground injection chemicals

Info

Publication number
JPH0757870B2
JPH0757870B2 JP3081320A JP8132091A JPH0757870B2 JP H0757870 B2 JPH0757870 B2 JP H0757870B2 JP 3081320 A JP3081320 A JP 3081320A JP 8132091 A JP8132091 A JP 8132091A JP H0757870 B2 JPH0757870 B2 JP H0757870B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
mixing tank
pressure
water glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3081320A
Other languages
Japanese (ja)
Other versions
JPH05105874A (en
Inventor
俊介 島田
健二 栢原
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP3081320A priority Critical patent/JPH0757870B2/en
Publication of JPH05105874A publication Critical patent/JPH05105874A/en
Publication of JPH0757870B2 publication Critical patent/JPH0757870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水ガラスおよび炭酸ガス
を有効成分とした軟弱あるいは漏水地盤を固結する無公
害な地盤注入薬液の製造方法および装置に係り、詳細に
は加圧炭酸ガスの絶対量の制御を簡素化し、密閉混合槽
内で水ガラス水溶液に対する炭酸ガス量を一定比率で混
合して吸収せしめ、炭酸ガスの気化がなく均一な注入薬
液を製造しうる地盤注入薬液の製造方法および装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a pollution-free ground injection chemical liquid for consolidating soft or leaking ground containing water glass and carbon dioxide gas as active ingredients, and more particularly to a method for producing pressurized carbon dioxide gas. A method of manufacturing a ground injection chemical solution that simplifies the control of the absolute amount, mixes and absorbs the amount of carbon dioxide gas relative to the water glass aqueous solution in a closed mixing tank at a fixed ratio, and can produce a uniform injection chemical solution without vaporization of carbon dioxide gas. And equipment.

【0002】[0002]

【従来の技術】近年水ガラス系注入工法の反応剤として
無害の炭酸ガスを用いる薬液注入技術が提案されている
が、実用化は困難で、特に長いゲル化時間のものは現実
に実施されていない。
2. Description of the Related Art In recent years, a chemical solution injection technique using harmless carbon dioxide gas as a reaction agent of a water glass injection method has been proposed, but it is difficult to put it into practical use, and a gelling method having a long gelation time has been actually implemented. Absent.

【0003】水ガラスグラウトにおいて炭酸ガスを反応
剤として用いようとする場合、水ガラス水溶液に炭酸ガ
スを吹き込んでから注入する方式では炭酸ガスの溶解が
遅いためほとんどの炭酸ガスを空気中に逸脱してしま
い、どれだけの濃度の水ガラスにどれだけの炭酸ガスを
吹き込んだら、どれだけのゲル化時間のグラウトが得ら
れるかを把握出来ず、注入のコントロールが不能のため
実用化されるには至っていなかった。
When carbon dioxide gas is used as a reaction agent in water glass grout, the method of blowing carbon dioxide gas into a water glass aqueous solution and then injecting it causes a slow dissolution of carbon dioxide gas, and most of carbon dioxide gas deviates into the air. It is impossible to grasp how much carbon dioxide gas should be blown into water glass of what concentration and how much gelling time of gelation should be obtained. It hasn't arrived.

【0004】すなわち、従来所定の炭酸ガスを無駄なく
水ガラス水溶液に吸収させてゲル化時間を設定する技術
が存在していなかったのである。
That is, conventionally, there has been no technique for setting a gelation time by absorbing a predetermined carbon dioxide gas in a water glass aqueous solution without waste.

【0005】このため、炭酸ガスを散逸することなく水
ガラス溶液に溶解させるために、密閉耐圧容器中に水ガ
ラスと炭酸ガスを供給して炭酸ガスを高圧に保ちながら
反応させ、この圧力を利用して注入する方法、密閉耐圧
構造のスプレー塔で反応させるもの、あるいは霧吹式の
流体ノズルを用いて反応した液を受槽に集めたものを注
入する方法等が提案されている。
Therefore, in order to dissolve the carbon dioxide gas in the water glass solution without being dissipated, the water glass and the carbon dioxide gas are supplied into the closed pressure-resistant container to cause the reaction while maintaining the carbon dioxide gas at a high pressure, and this pressure is utilized. There is proposed a method of injecting a liquid that has reacted in a spray tower having a closed pressure-resistant structure, or a method of using a mist-blown fluid nozzle to collect the reacted liquid in a receiving tank.

【0006】しかし、これらはいずれも反応を充分行な
わせることは可能であっても、これによって得られた注
入液はすぐゲル化してしまうか、ゲルが部分的に生じや
すく、したがって所定のゲル化時間でゲル化するような
均質な注入液は得られ難く、このため、これをポンプで
地盤に浸透注入させることはむづかしく、実用性は得ら
れない。
However, even though it is possible to sufficiently carry out the reaction in any of these, the injectate thus obtained is immediately gelated, or a gel is liable to be partially formed, and therefore, a predetermined gelation is caused. It is difficult to obtain a homogeneous injection liquid that gels with time, and therefore it is difficult to infiltrate the same into the ground with a pump, and it is not practical.

【0007】また、炭酸ガス貯槽から高められた圧力の
炭酸ガスを霧吹式ノズルにより高速で噴出させ、同時に
ノズルに水ガラスを供給し、これにより水ガラスを微粒
化して炭酸ガスが水ガラスに速やかに吸収されるように
して得られた液滴を受槽に集めてから地盤中に注入する
か、あるいは受槽に集めないで、ノズルからの噴出圧を
利用して地盤中に拡散させる方法等が提案されている。
(特開昭53−69409 号公報参照)。
Further, the carbon dioxide gas of the increased pressure is ejected from the carbon dioxide gas storage tank at a high speed by means of a spray nozzle, and at the same time water glass is supplied to the nozzle, whereby the water glass is atomized and the carbon dioxide gas is rapidly converted into water glass. A method is proposed in which droplets obtained by being absorbed into the ground are collected in a receiving tank and then injected into the ground, or they are not collected in the receiving tank and are diffused into the ground by using the jet pressure from a nozzle. Has been done.
(See JP-A-53-69409).

【0008】しかし、この方法は水ガラスを炭酸ガス中
で霧状にするため反応は急速に行なわれるものの、ゲル
化時間が早くなって受槽内でゲル化してしまい、したが
って、水ガラス濃度が濃く、ゲル化時間の短い、しかも
高い強度を得るグラウトを注入することはできない。
However, in this method, the reaction is carried out rapidly because the water glass is atomized in carbon dioxide gas, but the gelling time is shortened and gelation occurs in the receiving tank. It is not possible to inject a grout that is thick and has a short gelation time and high strength.

【0009】また受槽に集めないで霧吹ノズルから炭酸
ガスの噴出圧を利用して液滴を地盤中に拡散する方法を
とっても、実際問題としてゲル化時間の短い液滴が地盤
注入の目的を達し得る程の広さに拡散することは不可能
であるし、また多量の炭酸ガス中の少量の水ガラスの液
滴は地盤をポーラスにし、かつ局部的に固結するのみで
あって、均質な固結は困難である。
Further, even if the method of diffusing the liquid droplets into the ground by utilizing the jet pressure of carbon dioxide gas from the mist blowing nozzle without collecting them in the receiving tank, as a practical problem, the liquid droplets having a short gelation time reach the purpose of ground injection. It is impossible to diffuse to the extent that it can be obtained, and a small amount of water glass droplets in a large amount of carbon dioxide gas makes the ground porous and only locally consolidates, and it is homogeneous. Hardening is difficult.

【0010】以上の問題を解決するために、二重注入管
先端部に加圧室を設け、この加圧室で水ガラスと炭酸ガ
スあるいは水ガラスと炭酸水を合流すると同時に注入す
る方法が開発されている。しかし、この方法は数秒とい
う短いゲル化時間の注入には適しているが、長いゲル化
時間の注入では地盤に注入液が浸透している間に炭酸ガ
スが注入液から気化してしまい、充分な固結効果を得る
ことができない。
In order to solve the above problems, a pressure chamber is provided at the tip of the double injection pipe, and a method is developed in which water glass and carbon dioxide gas or water glass and carbonated water are joined and injected at the same time in this pressure chamber. Has been done. However, this method is suitable for injection with a short gelling time of a few seconds, but with injection with a long gelation time, carbon dioxide gas evaporates from the injection liquid while the injection liquid permeates into the ground, It is not possible to obtain a solidifying effect.

【0011】また密封高圧容器中に炭酸ガスを徐々に吹
込む方法は水ガラスと炭酸ガスの混入比率が時間の経過
と共に変化し、かつ炭酸ガスと接触している水ガラスの
反応が急に行なわれるため均質な配合が困難である。ま
た高圧容器に圧入した水ガラスと炭酸ガスを吐出した場
合炭酸ガスが気化してしまい、所定のゲル化時間を確保
できない。
In the method of gradually blowing carbon dioxide into the sealed high-pressure container, the mixing ratio of water glass and carbon dioxide changes with the passage of time, and the reaction of water glass in contact with carbon dioxide is suddenly carried out. Therefore, it is difficult to mix them uniformly. Further, when the water glass and carbon dioxide gas which have been press-fitted into the high-pressure container are discharged, the carbon dioxide gas is vaporized, and a predetermined gelling time cannot be secured.

【0012】[0012]

【発明が解決しようとする問題点】本発明の目的は加圧
炭酸ガスの絶対流量の制御を簡素化し、密閉混合槽内で
水ガラス水溶液に対する炭酸ガス量を一定比率で混合さ
せるのみならず、水ガラス水溶液に炭酸ガスを殆ど完全
に溶解吸収せしめて長いゲル化時間の注入液を得、しか
も注入後注入液の炭酸ガスが気化することなく所定のゲ
ル化時間でゲル化し、従来技術に有する欠点を改良した
地盤注入薬液の製造方法および装置を提供することにあ
る。
The object of the present invention is not only to simplify the control of the absolute flow rate of the pressurized carbon dioxide gas and to mix the carbon dioxide gas amount with respect to the aqueous solution of water glass at a constant ratio in the closed mixing tank. Carbon dioxide gas is almost completely dissolved and absorbed in a water glass aqueous solution to obtain an injectate having a long gelation time, and after injection, carbon dioxide gas in the injectate is gelated in a predetermined gelation time without vaporization, which is a conventional technique. It is an object of the present invention to provide a method and an apparatus for manufacturing a ground injection chemical solution with improved drawbacks.

【0013】[0013]

【問題点を解決するための手段】上述の目的を達成する
ため、本発明の方法によれば、内部に攪拌機および吐出
口を備えた密閉混合槽中に水ガラス水溶液と炭酸ガスを
一定比率で加圧供給し、前記攪拌機を操作しながら前記
密閉混合槽中で水ガラス水溶液中に炭酸ガスを吸収せし
め、次いで前記吸収により密閉混合槽中の圧力が所望の
値まで低下の後に前記炭酸ガスの吸収された水ガラス水
溶液を吐出口から吐出して地盤注入薬液を得ることを特
徴とし、さらに、上述の目的を達成するため、本発明装
置によれば、内部に攪拌機および吐出口を備えた密閉混
合槽と、前記密閉混合槽に連結され、水ガラス水溶液を
前記混合槽中に供給する水ガラス供給ラインと、前記密
閉混合槽に連結され、炭酸ガスを前記混合槽中に供給す
る炭酸ガス供給ラインと、前記炭酸ガス供給ラインに備
えられた炭酸ガス吹出ノズルとからなることを特徴とす
る。
In order to achieve the above object, according to the method of the present invention, a water glass aqueous solution and carbon dioxide gas are mixed in a fixed ratio in a closed mixing tank having an agitator and a discharge port inside. While supplying pressure, while operating the stirrer, the carbon dioxide gas is absorbed in the water glass aqueous solution in the closed mixing tank, and then the absorption causes the pressure in the closed mixing tank to decrease to a desired value. In order to achieve the above-mentioned object, in order to achieve the above-mentioned object, according to the device of the present invention, a closed seal equipped with a stirrer and a discharge port is provided. A water tank supply line connected to the mixing tank and the closed mixing tank to supply a water glass aqueous solution into the mixing tank, and a carbon dioxide gas supply connected to the closed mixing tank to supply carbon dioxide gas into the mixing tank. La And down, characterized in that comprising a carbon dioxide blowing nozzles provided in the carbon dioxide supply line.

【0014】以下、本発明を添付図面を用いて詳述す
る。図1は本発明方法を実施するための装置の一具体例
の説明図であって、密閉混合槽1、水ガラス供給ライン
2、炭酸ガス供給ライン3、炭酸ガス吹出ノズル4から
構成される。
The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is an explanatory view of a specific example of an apparatus for carrying out the method of the present invention, which comprises a closed mixing tank 1, a water glass supply line 2, a carbon dioxide gas supply line 3, and a carbon dioxide gas blowing nozzle 4.

【0015】密閉混合槽1はその内部に攪拌機5および
吐出口6を備える。また、水ガラス供給ライン2は配管
7aを通して密閉混合槽1に連結され、この配管7aに
はそれぞれ順次に、水ガラス水溶液貯槽8、ポンプ9、
流量計10が配置され、水ガラス水溶液は貯槽8からポン
プ9によって定められた流量で送液されて流量計10を通
して配管7aにより密閉混合槽1に加圧供給される。こ
のとき水ガラス水溶液は配管7bあるいは7cを通して
供給されてもよい。11、12および13は逆止弁、14は圧力
計である。
The closed mixing tank 1 has a stirrer 5 and a discharge port 6 inside. Further, the water glass supply line 2 is connected to the closed mixing tank 1 through a pipe 7a, and the water glass aqueous solution storage tank 8, the pump 9, and the
A flow meter 10 is arranged, and the water glass aqueous solution is sent from a storage tank 8 at a flow rate determined by a pump 9 and is pressurized and supplied to the closed mixing tank 1 through a flow meter 10 and a pipe 7a. At this time, the water glass aqueous solution may be supplied through the pipe 7b or 7c. 11, 12 and 13 are check valves and 14 is a pressure gauge.

【0016】一方、炭酸ガス供給ライン3は配管15を通
して密閉混合槽1に連結され、この配管15にはそれぞれ
順次に炭酸ガス高圧容器16、減圧弁17および炭酸ガス吹
出ノズル4が配置される。この炭酸ガス吹出ノズル4は
円板4aの中心部にノズル孔4bを穿ることにより構成
され、炭酸ガスは炭酸ガス高圧容器16から減圧弁17、炭
酸ガス吹出ノズル4を経て配管15により密閉混合槽1に
加圧供給される。
On the other hand, the carbon dioxide gas supply line 3 is connected to the closed mixing tank 1 through a pipe 15, and a high pressure carbon dioxide container 16, a pressure reducing valve 17 and a carbon dioxide blowing nozzle 4 are sequentially arranged in the pipe 15. This carbon dioxide gas blowing nozzle 4 is constructed by forming a nozzle hole 4b in the center of a disc 4a, and carbon dioxide gas is hermetically mixed by a pipe 15 from a carbon dioxide gas high pressure container 16 through a pressure reducing valve 17, a carbon dioxide gas blowing nozzle 4. It is supplied under pressure to the tank 1.

【0017】すなわち、水ガラス水溶液は水ガラス供給
ライン2により密閉混合槽1に加圧供給され、炭酸ガス
もまた、炭酸ガス供給ライン3により炭酸ガス吹出ノズ
ル4を通して密閉混合槽1に加圧供給される。18は逆止
弁である。
That is, the water glass aqueous solution is pressurized and supplied to the closed mixing tank 1 through the water glass supply line 2, and the carbon dioxide gas is also pressurized and supplied to the closed mixing tank 1 through the carbon dioxide gas blowing nozzle 4 through the carbon dioxide gas supply line 3. To be done. 18 is a check valve.

【0018】密閉混合槽1に加圧供給された水ガラス水
溶液と炭酸ガスは攪拌機5による攪拌操作により速やか
に反応して密閉混合槽1内の圧力が低下し、所望の圧
力、例えば1Kg/fcm2 以内の圧力に容易に到達する。得
られた混合液19はしぼりバルブ20を備えた吐出口6から
地盤注入薬液21として注入機構に吐出される。このため
地盤注入薬液19は所望のゲル化時間に容易に保持でき
る。
The aqueous solution of water glass and carbon dioxide gas supplied under pressure to the closed mixing tank 1 react rapidly by the stirring operation by the stirrer 5 to lower the pressure in the closed mixing tank 1 to a desired pressure, for example, 1 Kg / fcm. Easily reach pressures within 2 . The obtained mixed liquid 19 is discharged to the injection mechanism as the ground injection chemical liquid 21 from the discharge port 6 equipped with the squeezing valve 20. Therefore, the ground injection chemical solution 19 can be easily held at a desired gelation time.

【0019】本発明では前記混合に際して炭酸ガスのガ
ス圧と炭酸ガス吹出ノズル4の孔径とを任意に変更して
組み合わせることにより密閉混合槽1内の圧力に対応す
る炭酸ガス吹出量を定め、これにより前記水ガラス水溶
液と炭酸ガスとを一定の比率で混合し得る。前記炭酸ガ
スのガス圧は減圧弁17の操作により任意に変更され、ま
た前記孔径は炭酸ガス吹出ノズル4をノズル孔径の異な
ったものに取り換えることにより任意に変更される。
In the present invention, during the mixing, the carbon dioxide gas pressure and the hole diameter of the carbon dioxide gas blowing nozzle 4 are arbitrarily changed and combined to determine the carbon dioxide gas blowing amount corresponding to the pressure in the closed mixing tank 1. Thus, the aqueous solution of water glass and carbon dioxide can be mixed at a constant ratio. The gas pressure of the carbon dioxide gas is arbitrarily changed by operating the pressure reducing valve 17, and the hole diameter is arbitrarily changed by replacing the carbon dioxide gas blowing nozzle 4 with one having a different nozzle hole diameter.

【0020】[0020]

【作用】次に作用を図2乃至図5の実験結果を図表化し
た図に基づいて説明する。図2は、円板(板厚3mm)の
中心部に0.8mm のノズル孔径を穿ち、炭酸ガス圧(35、
30、25Kgf/cm2)と炭酸ガス吹出量との関係を示す図であ
り、設定炭酸ガス圧において炭酸ガス吹出量(g/min) は
ある範囲内で一定の流量となり、ある限界点で炭酸ガス
吹出量は漸次減少していくことが判る。したがって、密
閉混合槽内の圧力に対応する炭酸ガス吹出量は炭酸ガス
圧をかえることによって制御することができる。炭酸ガ
ス圧は減圧弁によって任意に変えることができる。
Next, the operation will be described with reference to the diagrams in which the experimental results shown in FIGS. Figure 2 shows a 0.8 mm nozzle hole in the center of a disk (thickness: 3 mm), and carbon dioxide pressure (35,
30, 25 Kgf / cm 2 ) and the amount of carbon dioxide gas blown out, the amount of carbon dioxide gas blown out (g / min) at a set carbon dioxide pressure is a constant flow rate within a certain range, and It can be seen that the amount of gas blowout gradually decreases. Therefore, the amount of carbon dioxide gas blown out corresponding to the pressure in the closed mixing tank can be controlled by changing the carbon dioxide gas pressure. The carbon dioxide gas pressure can be arbitrarily changed by the pressure reducing valve.

【0021】図3は、炭酸ガス圧を一定(35Kgf/cm2) に
してノズル孔径を変化した場合の炭酸ガス吹出量との関
係を示す図であって、ノズル孔径を異にした炭酸ガス吹
出ノズルを数個組み合わせることによって、密閉混合槽
内圧力に対応する炭酸ガス吹出量を任意に制御すること
が可能となる。
FIG. 3 is a diagram showing the relationship with the amount of carbon dioxide gas blown out when the nozzle hole diameter is changed while keeping the carbon dioxide gas pressure constant (35 Kgf / cm 2 ). By combining several nozzles, it becomes possible to arbitrarily control the blowing amount of carbon dioxide gas corresponding to the pressure in the closed mixing tank.

【0022】図3のI線は、ノズル孔径1mmのノズル2
個(ノズル1個の炭酸ガス吹出量450g/min) とノズル孔
径0.4mm のノズル(吹出量100g/min) 1個を同時に使用
した場合の炭酸ガス吹出量を示す。また、同図から炭酸
ガス圧を一定にした場合には、ノズル孔径を異にした炭
酸ガス吹出ノズルを密閉混合槽内圧力に対応させて取換
えて使用することもできる。
The line I in FIG. 3 is the nozzle 2 having a nozzle hole diameter of 1 mm.
The figure below shows the carbon dioxide blowing rate when using one nozzle (a carbon dioxide blowing rate of 450 g / min per nozzle) and one nozzle with a nozzle hole diameter of 0.4 mm (blowing rate of 100 g / min) at the same time. Further, when the carbon dioxide gas pressure is made constant from the figure, the carbon dioxide gas blowing nozzles having different nozzle hole diameters can be replaced and used corresponding to the pressure in the closed mixing tank.

【0023】図4は密閉混合槽内圧力と反応率の関係を
示し、このグラフから攪拌によって炭酸ガスを水ガラス
水溶液中に吸収せしめて槽内圧力が0.1kgf/cm2になるま
で圧力を低下せしめると、炭酸ガスはほぼ98%以上吸収
されていることがわかる。すなわち、図4から密閉混合
槽内の圧力を1kgf/cm2 以下に低下せしめることにより
炭酸ガスはほとんど吸収されてしまう。また水ガラス水
溶液に吸収された炭酸ガス量とゲル化時間の関係は水ガ
ラスの種類、濃度、温度により予め設定することができ
る。
FIG. 4 shows the relationship between the pressure in the closed mixing tank and the reaction rate. From this graph, carbon dioxide gas was absorbed into the aqueous solution of water glass by stirring, and the pressure was decreased until the pressure in the tank reached 0.1 kgf / cm 2. It is clear that carbon dioxide is absorbed by more than 98%. That is, from FIG. 4, the carbon dioxide gas is almost absorbed by reducing the pressure in the closed mixing tank to 1 kgf / cm 2 or less. The relationship between the amount of carbon dioxide gas absorbed in the aqueous solution of water glass and the gelation time can be set in advance depending on the type, concentration and temperature of the water glass.

【0024】一例として炭酸ガスを上記98%以上吸収さ
せた上で密閉混合槽から吐出させた場合、25容量%の3
号水ガラス水溶液1m3当りに吸収させた炭酸ガス量とゲ
ル化時間の関係を図5に示す。
As an example, when carbon dioxide gas is absorbed from the above 98% or more and then discharged from the closed mixing tank, 25% by volume of 3%
Fig. 5 shows the relationship between the amount of carbon dioxide gas absorbed per 1 m 3 of the No. water glass aqueous solution and the gelation time.

【0025】[0025]

【発明の実施例】図6はこの発明の具体的実施例を示す
図であって、水ガラス水溶液貯槽8内に貯えられた水ガ
ラス水溶液はポンプ9によってその定量が送液されて流
量計10で流量を確認し、配管7aまかは7bを通して密
閉混合槽1内に加圧供給される。ポンプ9の吸入側の配
管7aに元弁SVが設けられている。
FIG. 6 is a diagram showing a specific embodiment of the present invention, in which a fixed amount of the water glass aqueous solution stored in the water glass aqueous solution storage tank 8 is sent by a pump 9 and a flow meter 10 is provided. After confirming the flow rate, the pressure is supplied into the closed mixing tank 1 through the pipe 7a or 7b. A main valve SV is provided on the suction side pipe 7 a of the pump 9.

【0026】また、液化炭酸ガス高圧容器16、16a 、16b
の口金に炭酸ガス圧送配管15が連結され、この配管上に
元弁SV、加熱器22、減圧弁17、炭酸ガス留器23が設け
られ、液化炭酸ガスは加熱器22によって気化炭酸ガスと
なって減圧弁17で所定の圧力に減圧されて炭酸ガス留器
23内に所定の圧力で貯えられる。炭酸ガス留器23の後の
配管15に分岐管15a 、15b 、15c 、15d が並列に設けら
れ、各分岐管に元弁V、V1、V2、V3が設けられる
と共に炭酸ガス吹出ノズル4、4a、4b、4cが設け
られ、各分岐管は配管15eに連結され、この配管は炭酸
ガス圧送配管15に連結される。前記配管15の末端部は密
閉混合槽1に連結される。圧送される炭酸ガス圧は配管
15に設けた圧力計P1、P2によって確認される。さら
に、上記装置では、水ガラス水溶液、炭酸ガスの逆流を
防止するために逆止弁11、12、18を設ける。
Further, liquefied carbon dioxide gas high pressure vessels 16, 16a, 16b
A carbon dioxide gas pressure-feeding pipe 15 is connected to the base of the above, and a main valve SV, a heater 22, a pressure reducing valve 17, and a carbon dioxide gas distiller 23 are provided on this pipe, and the liquefied carbon dioxide gas is vaporized by the heater 22. The pressure reducing valve 17 reduces the pressure to a specified level,
Stored in 23 at a certain pressure. Branch pipes 15a, 15b, 15c, 15d are provided in parallel in a pipe 15 after the carbon dioxide gas distiller 23, and main valves V, V1, V2, V3 are provided in the respective branch pipes and carbon dioxide blowing nozzles 4, 4a. 4b and 4c are provided, each branch pipe is connected to a pipe 15e, and this pipe is connected to a carbon dioxide gas pressure feeding pipe 15. The end of the pipe 15 is connected to the closed mixing tank 1. The carbon dioxide pressure to be sent is piped.
It is confirmed by pressure gauges P1 and P2 provided at 15. Further, in the above device, the check valves 11, 12, and 18 are provided to prevent the reverse flow of the water glass aqueous solution and the carbon dioxide gas.

【0027】上記炭酸ガス吹出ノズル4、4a、4b、
4cはノズル孔径を異にしており、混合室内圧力に対応
する炭酸吹出量を単一の炭酸ガス吹出ノズルまたは二以
上のノズルの組み合わせによって制御して水ガラス水溶
液と炭酸ガスの流量を、攪拌器5、圧力計14、しぼりバ
ルブ20を備え吐出口6を有する密閉混合槽1内で一定比
率で加圧攪拌混合圧力をを低下させた。得られた混合液
19は吐出口6から吐出された地盤注入液21として注入機
構に導く。
The carbon dioxide gas blowing nozzles 4, 4a, 4b,
No. 4c has different nozzle hole diameters, and the carbon dioxide blowing amount corresponding to the pressure in the mixing chamber is controlled by a single carbon dioxide gas blowing nozzle or a combination of two or more nozzles to control the flow rates of the water glass aqueous solution and the carbon dioxide gas. 5, the pressure stirring and mixing pressure was reduced at a constant ratio in the closed mixing tank 1 having the pressure gauge 14, the squeezing valve 20 and the discharge port 6. The resulting mixture
19 is introduced into the injection mechanism as the ground injection liquid 21 discharged from the discharge port 6.

【0028】具体的には25容量%の3号水ガラス水溶液
と炭酸ガスを密閉混合槽内に加圧充填してのち混合攪拌
して槽内の圧力を0.02kgf/cm2 以下に低下せしめ、ゲル
化時間の長い均質の注入液がえられ、吐出口6から吐出
し注入機構へ導いた。
Specifically, 25 volume% of a No. 3 water glass aqueous solution and carbon dioxide gas are pressure-filled in a closed mixing tank, and then mixed and stirred to reduce the pressure in the tank to 0.02 kgf / cm 2 or less. A homogeneous injection liquid with a long gelation time was obtained and discharged from the discharge port 6 and led to the injection mechanism.

【0029】なお、本発明において、水ガラスと炭酸ガ
スの他に、さらに炭酸塩、塩化物等の無機反応剤、有機
反応剤等、任意の水ガラス反応剤を併用してもかまわな
い。
In the present invention, in addition to water glass and carbon dioxide gas, any water glass reaction agent such as an inorganic reaction agent such as carbonate or chloride, an organic reaction agent or the like may be used in combination.

【0030】[0030]

【発明の効果】以上説明したように、この発明は炭酸ガ
ス吹出ノズルの孔径と炭酸ガス圧を任意に変更して水ガ
ラス水溶液と炭酸ガスとを一定の比率で、攪拌機、吐出
口を有する密閉混合槽内に加圧供給して混合し、攪拌作
用により炭酸ガスを吸収させて速やかに所望の圧力に低
下せしめ、空気中に吐出しても炭酸ガスがほとんど気化
せず、ゲル化時間の正確に調整された注入薬液、特に長
いゲル化時間の注入薬液を得ることができる。
As described above, according to the present invention, the hole diameter and the carbon dioxide gas pressure of the carbon dioxide gas blowing nozzle are arbitrarily changed, and the water glass aqueous solution and the carbon dioxide gas are mixed at a constant ratio with a stirrer and a discharge port. The mixture is supplied by pressurizing it into the mixing tank, and the carbon dioxide gas is absorbed by the stirring action to quickly reduce it to the desired pressure. Even if it is discharged into the air, the carbon dioxide gas hardly vaporizes, and the gelation time is accurate. It is possible to obtain an injectable solution adjusted to, particularly an injectable solution having a long gelation time.

【0031】また、地盤中に注入しても注入圧のいかん
にかかわらず炭酸ガスの気化がほとんど起こることな
く、均質な注入薬液を注入することができるので、均質
で充分な固結機能を発揮する固結体が得られる。
Further, even if it is injected into the ground, carbon dioxide gas is hardly vaporized regardless of the injection pressure, and a homogeneous injection chemical can be injected, so that a homogeneous and sufficient consolidation function is exhibited. A solid body is obtained.

【0032】なお、炭酸ガス流量の制御は炭酸ガス吹出
ノズルによって行なうので、操作も簡単となり、薬液注
入の容易性および費用の点で大きな改善ができる。
Since the flow rate of carbon dioxide gas is controlled by the carbon dioxide gas blowing nozzle, the operation is simplified and the chemical solution can be injected easily and the cost can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施するための装置の説明図で
ある。
FIG. 1 is an explanatory view of an apparatus for carrying out the method of the present invention.

【図2】炭酸ガス圧(35、30、25Kgf/cm2)と炭酸ガス吹
出量との関係を示す図である。
FIG. 2 is a diagram showing a relationship between carbon dioxide pressure (35, 30, 25 Kgf / cm 2 ) and carbon dioxide blowing amount.

【図3】炭酸ガス圧を一定(35Kgf/cm2)にしてノズル孔
径を変化した場合の炭酸ガス吹出量との関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship with the amount of carbon dioxide gas blown out when the nozzle hole diameter is changed while keeping the carbon dioxide gas pressure constant (35 Kgf / cm 2 ).

【図4】密閉混合槽内圧力と反応率の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a pressure in a closed mixing tank and a reaction rate.

【図5】25容量%の3号水ガラス水溶液1m3当りに吸収
させた炭酸ガス量とゲル化時間の関係を示す図である。
FIG. 5 is a graph showing the relationship between the amount of carbon dioxide gas absorbed per 1 m 3 of a 25% by volume aqueous solution of No. 3 water glass and the gelation time.

【図6】この発明の具体的実施例を示す図である。FIG. 6 is a diagram showing a specific embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 密閉混合槽 2 水ガラス供給ライン 3 炭酸ガス供給ライン 4 炭酸ガス吹出ノズル 5 攪拌機 6 吐出口 19 混合液 21 地盤注入薬液 1 Closed Mixing Tank 2 Water Glass Supply Line 3 Carbon Dioxide Supply Line 4 Carbon Dioxide Blow Out Nozzle 5 Stirrer 6 Discharge Port 19 Mixed Liquid 21 Ground Injection Chemical Liquid

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内部に攪拌機および吐出口を備えた密閉
混合槽中に水ガラス水溶液と炭酸ガスを一定比率で加圧
供給し、前記攪拌機を操作しながら前記密閉混合槽中で
水ガラス水溶液中に炭酸ガスを吸収せしめ、次いで前記
吸収により密閉混合槽中の圧力が所望の値まで低下の後
に前記炭酸ガスの吸収された水ガラス水溶液を吐出口か
ら吐出して地盤注入薬液を得ることを特徴とする地盤注
入薬液の製造方法。
1. A water glass aqueous solution and carbon dioxide gas are pressurized and supplied at a fixed ratio into a closed mixing tank having an agitator and a discharge port inside, and the water glass aqueous solution is added in the closed mixing tank while operating the agitator. Carbon dioxide gas is absorbed into the water, and then the water glass aqueous solution in which the carbon dioxide gas is absorbed is discharged from the discharge port after the pressure in the closed mixing tank is lowered to the desired value by the absorption to obtain a ground injection chemical solution. And a method for producing a ground injection chemical solution.
【請求項2】 前記炭酸ガス供給炭酸ガス吹出ノズ
によって行うことを特徴とする請求項1の製造方法。
2. A process according to claim 1, the supply of the carbon dioxide and carrying out the carbon dioxide blowing nozzle.
【請求項3】 前記炭酸ガス吹出ノズルの孔径が切換自
在であることを特徴とする請求項2の製造方法。
3. The manufacturing method according to claim 2, wherein the hole diameter of the carbon dioxide gas blowing nozzle is switchable.
【請求項4】 前記密閉混合槽中の圧力がほぼ1Kgf/c
m2以内の圧力に低下することを特徴とする地盤注入薬液
の製造方法。
4. The pressure in the closed mixing tank is approximately 1 kgf / c.
A method for producing a ground injection chemical liquid, characterized in that the pressure is reduced to within m 2 .
【請求項5】 内部に攪拌機および吐出口を備えた密閉
混合槽と、前記密閉混合槽に連結され、水ガラス水溶液
を前記混合槽中に供給する水ガラス供給ラインと、前記
密閉混合槽に連結され、炭酸ガスを前記混合槽中に供給
する炭酸ガス供給ラインと、前記炭酸ガス供給ラインに
備えられた炭酸ガス吹出ノズルとからなる地盤注入薬液
の製造装置。
5. A closed mixing tank having a stirrer and a discharge port inside, a water glass supply line connected to the closed mixing tank and supplying a water glass aqueous solution into the mixing tank, and connected to the closed mixing tank. And a carbon dioxide gas supply line for supplying carbon dioxide gas into the mixing tank, and a carbon dioxide gas blowing nozzle provided in the carbon dioxide gas supply line.
【請求項6】 前記炭酸ガス吹出ノズルの孔径が切換自
在である請求項5の装置。
6. The apparatus according to claim 5, wherein the carbon dioxide blowing nozzle has a switchable hole diameter.
JP3081320A 1991-03-22 1991-03-22 Method and apparatus for manufacturing ground injection chemicals Expired - Fee Related JPH0757870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081320A JPH0757870B2 (en) 1991-03-22 1991-03-22 Method and apparatus for manufacturing ground injection chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081320A JPH0757870B2 (en) 1991-03-22 1991-03-22 Method and apparatus for manufacturing ground injection chemicals

Publications (2)

Publication Number Publication Date
JPH05105874A JPH05105874A (en) 1993-04-27
JPH0757870B2 true JPH0757870B2 (en) 1995-06-21

Family

ID=13743109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081320A Expired - Fee Related JPH0757870B2 (en) 1991-03-22 1991-03-22 Method and apparatus for manufacturing ground injection chemicals

Country Status (1)

Country Link
JP (1) JPH0757870B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621634B2 (en) * 2006-06-29 2011-01-26 国立大学法人北海道大学 Method of consolidation of ground containing calcium using microorganisms
JP4709201B2 (en) * 2007-12-26 2011-06-22 強化土エンジニヤリング株式会社 Ground improvement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817516B2 (en) * 1975-06-20 1983-04-07 日東化学工業株式会社 Doshitsu Antei Kahou

Also Published As

Publication number Publication date
JPH05105874A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
JP2009507618A5 (en)
JPH0757870B2 (en) Method and apparatus for manufacturing ground injection chemicals
JPS6221928B2 (en)
KR910009254B1 (en) Ground impregnating process
US20030164465A1 (en) Method and apparatus for producing foam
JP2588054B2 (en) Method for producing ground injection chemical liquid and method for injection into ground
JPS598382B2 (en) Soil stabilization method
JPH02225591A (en) Method and apparatus for producing grout and method for grouting
KR100242413B1 (en) Device and method for preparing ozone contained water
JPS5844103B2 (en) Soil stabilization method
JPS5814894B2 (en) Ground injection method and injection equipment
JPH0360968B2 (en)
JPS5853678B2 (en) Soil stabilization method
JPS6381191A (en) Production device for impregnating material for ground
JPS58219290A (en) Method for impregnating ground with silicate grout for stabilizing ground
KR910009251B1 (en) Ground impregnating process
JP3174659B2 (en) Carbonated water production equipment
JPH04171099A (en) Water jet aeration device
JPH0660490B2 (en) Method for manufacturing ground injection material
JPS62228516A (en) Method and apparatus for controlling concentration and level in manufacturing of hardener liquid for sodium silicate grout
JPH0128075B2 (en)
JPH04222624A (en) Apparatus for making carbonated water
JPH04174121A (en) Ground impregnation of silicate grout
JPH0516499B2 (en)
JPH0550557B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees