JPS5817516B2 - Doshitsu Antei Kahou - Google Patents

Doshitsu Antei Kahou

Info

Publication number
JPS5817516B2
JPS5817516B2 JP50074349A JP7434975A JPS5817516B2 JP S5817516 B2 JPS5817516 B2 JP S5817516B2 JP 50074349 A JP50074349 A JP 50074349A JP 7434975 A JP7434975 A JP 7434975A JP S5817516 B2 JPS5817516 B2 JP S5817516B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
grout
tank
sodium silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50074349A
Other languages
Japanese (ja)
Other versions
JPS51150818A (en
Inventor
岡島要一
山口靖正
田沢俊介
武内健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Chemical Industry Co Ltd
Original Assignee
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Chemical Industry Co Ltd filed Critical Nitto Chemical Industry Co Ltd
Priority to JP50074349A priority Critical patent/JPS5817516B2/en
Publication of JPS51150818A publication Critical patent/JPS51150818A/en
Publication of JPS5817516B2 publication Critical patent/JPS5817516B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 本発明は炭酸ガスを硬化剤とする珪酸塩系グラウトによ
り土質を安定化させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stabilizing soil quality using a silicate grout using carbon dioxide gas as a hardening agent.

従来、軟弱地盤を強化したり、漏水地盤を止水するため
に種々の薬液を土壌に注入し、土壌中でゲル化させるグ
ラウト工法が知られているが、最近は珪酸ソーダ水溶液
(水ガラス)を主剤とし、これと硬化剤を絹み合せた、
いわゆる珪酸塩系グラウトは安価なこと、他の化学グラ
ウトにくらべて公害を起す恐れが少ないことなどの特長
があって、広く実用化されている。
Conventionally, grouting methods have been known in which various chemical solutions are injected into the soil and gelled in the soil in order to strengthen soft ground or stop leaking ground. is the main ingredient, and this and a hardening agent are combined.
So-called silicate-based grouts have the advantage of being inexpensive and less likely to cause pollution than other chemical grouts, so they are widely put into practical use.

珪酸塩系グラウトの硬化剤として、従来、酸、酸性塩あ
るいは水溶性多価金属塩に属する種々の物質が提案され
ているが、従来の硬化剤は酸性が強くて取り扱い難いと
か、高価であるとか欠点のあるものが多い。
Various substances belonging to acids, acid salts, or water-soluble polyvalent metal salts have been proposed as hardening agents for silicate grout, but conventional hardening agents are difficult to handle due to strong acidity or are expensive. There are many things that have shortcomings.

本発明は珪酸塩系グラウト(こより土質を安定化させる
にあたり、従来とは異なった硬化剤を用いて、種々有利
に土質を安定化しようとするものである。
The present invention attempts to stabilize the soil quality using a silicate grout using a hardening agent different from the conventional one.

珪酸ソーダ水溶液を炭酸ガスによってゲル化させる技術
は金属鋳造用の型砂を製造する分野においては公知であ
って、この技術は型砂へ珪酸ソーダ水溶液を混合して成
型したのち炭酸ガスを吹込んで次の反応により Na2SIO3+XH2O+C02→Na2CO3+5
102・XF■20珪酸を遊離させ、これと炭酸ソーダ
で砂の粒子を結合させて硬化させるものであり、これは
簡便な型砂の製造法として広く実用化されているが、こ
の方法は炭酸ガスの逃散損失が多くて経済的な炭酸ガス
の利用法とは云えない。
The technology of gelling a sodium silicate aqueous solution with carbon dioxide gas is well known in the field of manufacturing molding sand for metal casting, and this technology involves mixing a sodium silicate aqueous solution with molding sand, molding it, and then blowing carbon dioxide gas into it. By reaction, Na2SIO3+XH2O+C02→Na2CO3+5
102. This is not an economical way to use carbon dioxide as there is a lot of escape loss.

本発明者らは炭酸ガスは無害であって、従来の珪酸系ク
ラウドの硬化剤にくらべると安価であり、しかも上記技
術におけるように珪酸ソーダ水溶液と砂の成型体に単に
これを吹付けただけでも金属溶湯の重さに充分耐えられ
る強度の型砂が得られて硬化剤としての効力も大きいこ
とから、珪酸塩系グラウトの硬化剤として適したもので
あることを知り、その実用化について種々検討したが、
炭酸ガスは気体であり、かつ水に対する溶解度が小さい
ため、これを珪酸塩系グラウトの硬化剤として使用した
場合は、従来におけるようζこ主剤と硬化剤を常圧下で
混合してグラウトを調合する方法は不適当であることを
知った。
The present inventors believe that carbon dioxide gas is harmless and cheaper than conventional silicate-based cloud curing agents, and that carbon dioxide gas is simply sprayed onto a molded body made of sodium silicate aqueous solution and sand as in the above technology. However, since mold sand is strong enough to withstand the weight of molten metal and has great effectiveness as a hardening agent, it was discovered that it is suitable as a hardening agent for silicate grout, and various studies are being conducted on its practical application. However,
Carbon dioxide gas is a gas and has low solubility in water, so when it is used as a hardening agent for silicate grout, the grout is prepared by mixing the main agent and hardening agent under normal pressure as in the past. I realized that this method was inappropriate.

すなわち、従来Oこおける珪酸塩系グラウトの施工法と
しては、いわゆる二液−系統式薬液注入法と称し、主剤
と硬化剤を施工前Gこそれぞれ別々の調合槽(常圧開放
槽)で施工に適した適宜の濃度の水溶液(こ調合し、施
工時に両者をY字管を用いて混合し、ポンプで土壌中に
圧入する方法が最も多く採られているが、炭酸ガスを硬
化剤とした場合は、炭酸ガスの水に対する溶解度が小さ
く、(0,145、F CO2/100 gH20、常
圧、25℃)、実用的な濃度の硬化剤水溶液をつくるこ
とができないことからこの方法を適用することができな
い。
In other words, the conventional method for applying silicate grout in O-hole is the so-called two-component system chemical injection method, in which the main agent and hardening agent are mixed in separate mixing tanks (normal pressure open tanks) before construction. The most common method is to prepare an aqueous solution with an appropriate concentration suitable for In this case, this method is applied because the solubility of carbon dioxide gas in water is small (0,145, F CO2/100 gH20, normal pressure, 25°C), and it is not possible to create an aqueous hardening agent solution with a practical concentration. I can't.

他の施工法としては、主剤と硬化剤を同一槽(常圧開放
槽)で水溶液にしたのち直ちに土壌中ζこ注入する、い
わゆる−液一系統式薬液注入法と云われる方法があって
、この方法によれは炭酸ガスを硬化剤とした場合も実用
的なグラウトが得られるが、この方法にしたがい、常温
、常圧下で珪酸ソータ水溶液中ζこ炭酸ガスを吹込んだ
場合は、炭酸ガスの珪酸ソーダ水溶液中への溶解が遅く
て、炭酸ガスを多く必要とするゲルタイムの短い(数分
)グラウトを調合するには長時間を要する。
Another construction method is the so-called one-liquid chemical injection method, in which the base agent and curing agent are made into an aqueous solution in the same tank (normal pressure open tank) and then immediately injected into the soil. According to this method, a practical grout can be obtained even when carbon dioxide gas is used as a curing agent, but if carbon dioxide gas is blown into a silicate sorter aqueous solution at room temperature and pressure, carbon dioxide gas It takes a long time to prepare a grout with a short gel time (several minutes), which is slow to dissolve in an aqueous sodium silicate solution and requires a large amount of carbon dioxide gas.

なお、ゲルタイムとは炭酸ガスの吹込みが終ってからグ
ラウトがゲル化するまでの時間を云う。
Note that the gel time refers to the time from the end of blowing carbon dioxide gas until the grout gels.

たとえは、J T S 3号珪酸ソーダ:水=1:3(
容量)の割合の通常の土質安定化用珪酸ソータ水溶液に
常温、常圧下で炭酸ガスを吹込んだ場合、ゲルタイムが
数分のグラウトを得るには炭酸ガスの大気中への連敗損
失が全くないよう徐々に吹込むと60分以上もの時間を
要する。
For example, JTS No. 3 Sodium silicate: Water = 1:3 (
When carbon dioxide gas is blown into a normal silicate sorter aqueous solution for soil stabilization at a ratio of 100% by volume at room temperature and under normal pressure, there is no continuous loss of carbon dioxide gas into the atmosphere in order to obtain grout with a gel time of several minutes. It takes more than 60 minutes to slowly blow in the water.

この場合、炭酸ガスの吹込量を多くするとより短時間で
目的とするグラウトが得られるが、かかる場合は炭酸ガ
スの大気中への逃散損失か多くて不経済である。
In this case, if the amount of carbon dioxide gas blown is increased, the desired grout can be obtained in a shorter time, but in such a case, the loss of carbon dioxide gas escaping into the atmosphere is large, which is uneconomical.

たとえば、前記と同様の珪酸ソーダ水溶0.ζこ炭酸カ
スを数分間吹込んだだけでゲルタイムが数分のグラウト
を得ようとすると、吹込んだ炭酸カスの大部分(80%
以上)が液に未溶解のまま大気中に逃散してしまう。
For example, the same aqueous sodium silicate solution as above. If you try to obtain a grout with a gel time of several minutes by injecting carbonate scum for a few minutes, most of the carbonate scum (80%)
(above) will escape into the atmosphere without being dissolved in the liquid.

このようなことから、本発明者らは炭酸ガスの損失がな
くて、しかも短時間でゲルタイムの短いグラウトが得ら
れるような方法を見出すべく種々研究した結果、密閉耐
圧構造の槽内に珪酸ソータ水溶液および炭酸ガスを供給
し、槽内を供給炭酸ガスQこより加圧状態ζこしながら
液相を攪拌した場合は、炭酸ガスが液相の珪酸ソーダ水
溶液中ζこ速やかに溶解して、短時間のうちにゲルタイ
ムの短いグラウトが得られること、そしてかかる調合法
にしたがえは、所望のゲルタイムに調節したグラウトを
土壌ζこ注入するときは槽内の高められた圧力を利用す
るこさができて、従来ζこおけるような注入用ポンプを
要せず、有利に土質を安定化することができることを見
出し、本発明に到った。
In view of this, the present inventors conducted various research in order to find a method to obtain grout with a short gel time without loss of carbon dioxide gas in a short period of time. When an aqueous solution and carbon dioxide gas are supplied and the liquid phase is stirred while the tank is being pressurized from the supplied carbon dioxide gas Q, the carbon dioxide gas quickly dissolves in the liquid phase of the sodium silicate aqueous solution, and for a short period of time. It is possible to obtain a grout with a short gel time in a short period of time, and by following this formulation method, it is possible to utilize the increased pressure in the tank when injecting the grout adjusted to the desired gel time into the soil. We have discovered that soil quality can be advantageously stabilized without the need for an injection pump as in the conventional method, leading to the present invention.

すなわち、本発明は[攪拌機を設けた密閉耐圧構造の槽
内に、珪酸ソーダ水溶液および炭酸ガスを供給し、槽内
を供給炭酸ガスにより力ロ圧状態に保つと共に液相を攪
拌して、液相の珪酸ソーダ水溶液中に炭酸ガスを溶解さ
せてグラウトを調合し、次いで得られたグラウトを槽内
の高められた圧力により、槽外ζこ排出して土壌中に注
入し、土壌中でゲル化させることを特徴とする炭酸ガス
を硬化剤とする珪酸塩系グラウトによる土質安定化法」
を要旨とするものである。
That is, the present invention provides an aqueous solution of sodium silicate and carbon dioxide gas in a sealed pressure-resistant tank equipped with a stirrer, and maintains the inside of the tank in a low pressure state with the supplied carbon dioxide gas and stirs the liquid phase. A grout is prepared by dissolving carbon dioxide gas in an aqueous solution of sodium silicate as a phase, and then the resulting grout is discharged from the tank using increased pressure inside the tank and injected into the soil, where it forms a gel. Soil stabilization method using silicate grout using carbon dioxide as a hardening agent
The main points are as follows.

図面は本発明の実施態様をあられすフローシートであっ
て、以下、図面を参照しつつ本発明を説明する。
The drawings are flow sheets showing embodiments of the present invention, and the present invention will be described below with reference to the drawings.

まづ、珪酸ソーダ水溶液(水ガラス)および必要(こ応
じてこれを更に希釈するための水をそれぞれ専用のポン
プ1′および2′によりグラウト調合槽3(以下、調合
槽3と略す)Qこ供給する。
First, a sodium silicate aqueous solution (water glass) and water for further diluting it (accordingly) are pumped into grout mixing tank 3 (hereinafter abbreviated as mixing tank 3) Q using dedicated pumps 1' and 2', respectively. supply

水は施工条件に応じて適宜用いられるものであって、通
常の施工(こおいては、たとえは珪酸ソーダ水溶液とし
てJ T83号珪酸ソーダが用いられた場合は、J T
S 3号珪酸ソーダは2〜3容量倍の水で希釈される
が、施工によっては希釈しない場合もある。
Water is used as appropriate depending on the construction conditions, and water is used in normal construction (for example, if JT83 sodium silicate is used as an aqueous solution of sodium silicate, JT
S No. 3 sodium silicate is diluted with 2 to 3 times the volume of water, but depending on the construction, it may not be diluted.

珪酸ソーダおよび水の仕込量は任意でよいが、通常、調
合槽3の実効内容量の50〜80%仕込むのが好ましい
The amount of sodium silicate and water to be charged may be arbitrary, but it is usually preferable to charge 50 to 80% of the effective internal capacity of the mixing tank 3.

調合槽3は、攪拌機、圧力計、原料供給孔、製品(グラ
ウト)排出孔、その他必要に応じて原料の供給、グラウ
トの調合、製品の排出などの操作を容易にするための自
動制御装置が付された密閉耐圧構造の槽であって、付属
の攪拌機は変速可能であることが好ましく、また攪拌翼
は槽内の各原料(珪酸ソーダ水溶液および炭酸ガス)が
良く混合されるかきり任意の形状でよいが、たとえは1
段またはそれ以上の櫂型翼、45度ひねり3校プロペラ
翼などが適当である。
The mixing tank 3 is equipped with an agitator, a pressure gauge, a raw material supply hole, a product (grout) discharge hole, and other automatic control devices to facilitate operations such as supplying raw materials, mixing grout, and discharging products as necessary. It is preferable that the tank has a sealed pressure-resistant structure and that the speed of the attached stirrer can be changed, and that the stirring blades can be any type of stirrer that allows the raw materials (sodium silicate aqueous solution and carbon dioxide gas) in the tank to be well mixed. Any shape is fine, but for example 1
A paddle-shaped blade with tiers or more, a 45-degree twisted three-way propeller blade, etc. are suitable.

珪酸ソーダ水溶液(および水)を調合槽3ζこ仕込んだ
のち、(或は仕込と同時でもよい)炭酸ガスを炭酸ガス
貯槽4(通常、液化炭酸ガスボンベか用いられる)より
調合槽3に供給する。
After charging the aqueous sodium silicate solution (and water) into the mixing tank 3ζ, carbon dioxide gas is supplied to the mixing tank 3 from the carbon dioxide gas storage tank 4 (usually a liquefied carbon dioxide cylinder) (or at the same time as the charging).

炭酸ガスの流量は流量(圧力)調節弁4′により調節さ
れる。
The flow rate of carbon dioxide gas is regulated by a flow rate (pressure) control valve 4'.

通常、気体と液体を混合するときは適当な吹込管を用い
て液体中に気体を吹込む方法が採られているが、本発明
Oこおける炭酸ガス−珪酸ソーダ水溶液混合系において
は、殊更に珪酸ソーダ水溶液中に炭酸ガスを吹込む必要
はなく、調合槽3内の液相を良く攪拌しながら気相ζこ
炭酸ガスを供給するだけでも充分目的が達成される。
Usually, when mixing gas and liquid, a method is adopted in which gas is blown into the liquid using a suitable blowing pipe, but in the carbon dioxide gas-sodium silicate aqueous solution mixing system in the present invention, especially It is not necessary to blow carbon dioxide gas into the aqueous sodium silicate solution, and simply supplying carbon dioxide gas to the gaseous phase while stirring the liquid phase in the mixing tank 3 is sufficient to achieve the purpose.

%に、後者の場合は前者の場合ζこみられるように吹込
管内でグラウトがゲル化して詰りか生じるような恐れが
なくて作業上有利である。
%, the latter case is advantageous in terms of operation because there is no risk of grout gelling and clogging in the blowing pipe, as occurs in the former case.

気体の液体に対する溶解度は圧力が高くなるに゛つれて
大きくなることから明らかなように、炭酸ガスの供給量
を多くして調合槽3内の圧力を高くするにしたがい、炭
酸ガスの珪酸ソーダ水溶液中への溶解が速められる。
As is clear from the fact that the solubility of gas in liquid increases as the pressure increases, as the amount of carbon dioxide gas supplied increases and the pressure within the mixing tank 3 increases, the solubility of carbon dioxide gas in the sodium silicate aqueous solution increases. Dissolution into the medium is accelerated.

また、調合槽3内の攪拌状態を炭酸ガスと珪酸ソーダ水
溶液がより良く混合されるような状態、たとえば攪拌機
の回転数を増加させた場合にも炭酸ガスの珪酸ソーダ水
溶液中への溶解が速められる。
Furthermore, the dissolution of carbon dioxide into the sodium silicate aqueous solution may be accelerated even if the stirring state in the mixing tank 3 is set such that the carbon dioxide gas and the sodium silicate aqueous solution are mixed better, for example, when the rotational speed of the stirrer is increased. It will be done.

このようなことから、グラウトのゲルタイムの調節は、
通常、炭酸ガスの供給量(槽の内圧)および攪拌回転数
を種々変化させて行なうのが適当である。
For this reason, adjusting the grout gel time is
Usually, it is appropriate to carry out the reaction by varying the amount of carbon dioxide gas supplied (the internal pressure of the tank) and the stirring rotation speed.

たとえは、攪拌機を設けた内容量21のオートクレーブ
にJT83号珪酸ソータ七水=1:3(容量)の割合の
珪酸ソーダ水溶液11を仕込み、液相を攪拌しつつ、気
相に炭酸ガスを2分間供給してグラウトを調合した際、
槽の内圧および攪拌回転数を種々変化させた場合の結果
を第1表に示す。
For example, an autoclave with a capacity of 21 and equipped with a stirrer is charged with 11 of a sodium silicate aqueous solution at a ratio of 1:3 (volume) using a JT83 silicate sorter, and while the liquid phase is stirred, 22 carbon dioxide gas is added to the gas phase. When mixing the grout by supplying it for a minute,
Table 1 shows the results when the internal pressure of the tank and the stirring rotation speed were varied.

第1表にみられるように、調合槽内の内圧、および攪拌
回転数を適宜選択して組み合せることζこより、長短任
意のゲルタイムのグラウトを短時間で調合することかで
きる。
As shown in Table 1, grout with any long or short gel time can be prepared in a short time by appropriately selecting and combining the internal pressure in the mixing tank and the stirring rotation speed.

調合槽3への炭酸ガスの供給時間(珪酸ソーダ水溶液と
炭酸ガスの混合時間)は、通常、1〜2分で充分である
The time for supplying carbon dioxide gas to the mixing tank 3 (time for mixing the sodium silicate aqueous solution and carbon dioxide gas) is usually 1 to 2 minutes.

所望のゲルタイムに調節したグラウトはゲル化しないう
ちに槽内の高められた圧力により槽外に排出して土壌中
に注入する。
The grout, which has been adjusted to the desired gel time, is discharged from the tank by the increased pressure within the tank and injected into the soil before it gels.

なお、グラウトの排出にはその速度にもよるが、多少な
りさも時間がかかるので、排出中にグラウトが槽内およ
び注入管内でゲル化しないようゲルタイムより短かい時
間でグラウトの土壌注入を終らせるこ吉が必要である。
Note that it takes some time to drain the grout, depending on the speed, so the grout injection into the soil should be completed in a time shorter than the gel time so that the grout does not gel in the tank and injection pipe during draining. Kokichi is necessary.

土壌に注入されたグラウトは土壌中でゲル化して土壌を
安定させる。
Grout injected into the soil gels in the soil and stabilizes the soil.

本発明は斜上の回分方式たけではなく、連続で行なうこ
ともできる。
The present invention can be carried out not only in a diagonal batch mode but also in a continuous manner.

すなわち、珪酸ソーダ水溶液)および炭酸ガスの各原料
をそれぞれの貯槽より連続的(こ調合槽に供給し、槽内
に適宜の時間滞留させて所望のゲルタイムのグラウトζ
こ調合したのち、槽外に連続的に排出して土壌に注入す
る。
In other words, the raw materials (sodium silicate aqueous solution) and carbon dioxide gas are continuously supplied from their respective storage tanks to the mixing tank, and are allowed to remain in the tank for an appropriate time to form a grout with the desired gel time.
After this is mixed, it is continuously discharged outside the tank and injected into the soil.

その際の各原料の供給量、滞留時間などは目的とするゲ
ルタイムのグラウトが得られるような適宜のものにする
ことは云う迄もない。
Needless to say, the amount of each raw material supplied, residence time, etc. at this time should be set appropriately so that a grout with the desired gel time can be obtained.

この連続方式によれは、大規模工事における多量のグラ
ウトも小容量の調合槽で調合して土壌に注入することが
できる。
This continuous method allows large amounts of grout for large-scale construction work to be mixed in a small-capacity mixing tank and then injected into the soil.

なお、実施工ζこおいては調合槽3は内容量50〜10
0 l、耐圧50kg/i(ゲージ圧)以内のものが通
常用いられる。
In addition, in the implementation work ζ, the mixing tank 3 has an internal capacity of 50 to 10
0 l, pressure resistant within 50 kg/i (gauge pressure) is usually used.

本発明の利点としては種々あるが、たとえば、リン酸、
アルミン酸ソーダなど従来の硬化剤(こくらべて安価な
炭酸ガスを硬化剤として使用するため従来よりも安価に
グラウトを提供することができる点が挙げられる。
There are various advantages of the present invention, such as phosphoric acid,
One point is that grout can be provided at a lower cost than conventional methods because carbon dioxide gas, which is cheaper than conventional hardening agents such as sodium aluminate, is used as a hardening agent.

また、本発明によれば、グラウトのゲルタイムの調節が
きわめて容易であって、たとえば連続操作中ζこ何等か
の都合でグラウトのゲルタイムを変更するようなときは
、炭酸ガスの流量を弁操作により適宜加減するだけで容
易に所望のゲルタイムのグラウトに変更できる。
Further, according to the present invention, it is extremely easy to adjust the gel time of the grout. For example, when changing the gel time of the grout for some reason during continuous operation, the flow rate of carbon dioxide gas can be controlled by valve operation. You can easily change the grout to the desired gel time by adjusting the amount as appropriate.

さらに、従来の注入においては、多くの場合、主剤と硬
化剤を別々の槽で水溶液に調合するため、2個以上の調
合槽およびグラウトを土壌に注入するためのポンプを要
するが、本発明においては調合槽は1個であり、グラウ
ト注入用ポンプは不要である。
Furthermore, in conventional grouting, the base agent and curing agent are often mixed into an aqueous solution in separate tanks, requiring two or more mixing tanks and a pump to inject the grout into the soil. There is only one mixing tank and no grout injection pump is required.

その他、本発明にしたがえば種々のメリットを期待する
ことができる。
In addition, various advantages can be expected according to the present invention.

次に、本発明を実施例Qこより説明する。Next, the present invention will be explained from Example Q.

実施例 攪拌機(巾20rnrrt1長さ60mmのステンレス
製の翼が取付けられた耀型攪拌機)が設けられた内径1
00mm、長さ170朋の円筒形のステンレス製オート
クレーブにJISB号珪酸ソーダ250m1゜水750
m1を仕込んだ。
Example: Inner diameter 1 equipped with a stirrer (a star-shaped stirrer equipped with stainless steel blades with a width of 20 rnrrt and a length of 60 mm)
In a cylindrical stainless steel autoclave with a diameter of 0.00 mm and a length of 170 mm, JISB No. 250 ml of sodium silicate and 750 ml of water.
I prepared m1.

次いで、液相を攪拌しながら、室温下に、液化炭酸ガス
ボンベより炭酸ガスをオートクレーブの気相部に供給し
た。
Next, while stirring the liquid phase, carbon dioxide gas was supplied from a liquefied carbon dioxide gas cylinder to the gas phase portion of the autoclave at room temperature.

なお、オートクレーブの内圧は供給炭酸ガスにより第4
表(こ記載したような圧力に保ち、炭酸ガスは2分間供
給した。
Note that the internal pressure of the autoclave is increased to the fourth level by the supplied carbon dioxide gas.
The pressure was maintained as shown in the table below, and carbon dioxide gas was supplied for 2 minutes.

次いで得られたグラウトをオートクレーブ内の圧力を利
用して槽下部より排出して豊浦標準砂中に注入し、ゲル
化させたのち、その一軸圧縮強度を測定した。
Next, the obtained grout was discharged from the bottom of the tank using the pressure inside the autoclave, poured into Toyoura standard sand, gelled, and then its unconfined compressive strength was measured.

実験条件および得られた結果を第2表に示す。The experimental conditions and the results obtained are shown in Table 2.

参考例 実施例で用いたオートクレーブに炭酸ガス吹込管を設け
、かつ上部(こ抜き穴を設けて開放構造の槽にした。
Reference Example The autoclave used in the example was equipped with a carbon dioxide gas blowing pipe and a cutout hole was provided in the upper part to form an open tank.

次いでこの槽に実施例の場合と同様の珪酸ソーダおよび
水を仕込み、液相を攪拌しながら、常温、常圧下に炭酸
ガスを珪酸ソーダ水溶液中に吹込んだ。
Next, this tank was charged with the same sodium silicate and water as in the example, and while stirring the liquid phase, carbon dioxide gas was blown into the aqueous sodium silicate solution at room temperature and pressure.

炭酸ガスの吹込量を種々変化させて、吹込終了後、液が
ゲル化する迄の時間(ゲルタイム)が数分のグラウトを
調合した場合の結果を第3表に示す。
Table 3 shows the results when grouts were prepared in which the amount of carbon dioxide gas blown was varied and the time required for the liquid to gel (gel time) after the end of the blown carbon dioxide gas was several minutes.

第5表にみられるように、常圧下に珪酸ソーダ水溶液中
Oこ炭酸ガスを吹込んだ場合は、炭酸ガスの吹込量を多
くすると短時間で目的とするグラウトが得られるが、吹
込んだ炭酸ガスの大部分が損失する。
As shown in Table 5, when carbon dioxide gas is blown into a sodium silicate aqueous solution under normal pressure, the desired grout can be obtained in a short time by increasing the amount of carbon dioxide gas blown into the solution. Most of the carbon dioxide gas is lost.

(第3表、嵐1の例)一方、炭酸ガス損失がないよう徐
々に吹込むと、グラウトの調合Qこ長時間かかる。
(Table 3, example of Storm 1) On the other hand, if the grout is gradually blown in so as not to cause loss of carbon dioxide, it will take a long time to prepare the grout.

(第3表、扁2の例)しかも、この場合は炭酸ガスの吹
込時間が長くなるζこつれて液の粘性が高くなり、条件
(温度、吹込量の変動など)ζこよっては容易にゲル化
する不安定な状態になる。
(Example of Table 3, Flat 2) Moreover, in this case, the carbon dioxide gas blowing time becomes longer and the viscosity of the liquid becomes higher. It becomes unstable and becomes a gel.

したがって、この方法により、炭酸ガスの吹込時間か長
くて、吹込終了後、短時間でゲル化するようなグラウト
を調合しようとすると炭酸ガスの吹込中にグラウトがケ
ル化する恐れがあり、実用的でない。
Therefore, if you use this method to prepare a grout that gels in a short time after the carbon dioxide gas is blown for a long time, there is a risk that the grout will gel during the carbon dioxide gas injection, making it impractical. Not.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施態様を示すフローシートである
。 1・・・・・・珪酸ソーダ水溶液(水ガラス)貯槽、1
′・・・・・・珪酸ソーダ水溶液用ポンプ、2・・・・
・・水貯槽、2′・・・・・・水用ポンプ、3・・・・
・・グラウト調合槽、3′・・・・・・攪拌機、4・・
・・・炭酸ガス貯槽、4′・・・・・・流量(圧力)調
節弁、5・・・・・・グラウト流量調節弁。
The drawing is a flow sheet illustrating one embodiment of the invention. 1... Sodium silicate aqueous solution (water glass) storage tank, 1
'・・・Pump for sodium silicate aqueous solution, 2...
...Water storage tank, 2'...Water pump, 3...
...Grout mixing tank, 3'...Agitator, 4...
... Carbon dioxide storage tank, 4' ... Flow rate (pressure) control valve, 5 ... Grout flow control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 攪拌機を設けた密閉耐圧構造の槽内に、珪酸ソーダ
水溶液および炭酸ガスを供給し、槽内を供給炭酸ガスに
より加圧状態に保つと共に液相を攪拌して、液相の珪酸
ソーダ水溶液中に炭酸ガスを溶解させてグラウトを調合
し、次いで得られたグラウトを槽内の高められた圧力に
より槽外に排出して土壌中に注入し、土壌中でゲル化さ
せることを特徴とする炭酸ガスを硬化剤とする珪酸系ク
ラウドによる土質安定化法。
1. A sodium silicate aqueous solution and carbon dioxide gas are supplied into a tank with a sealed pressure-resistant structure equipped with a stirrer, and the inside of the tank is kept under pressure by the supplied carbon dioxide gas, and the liquid phase is stirred to dissolve the liquid phase in the sodium silicate aqueous solution. Carbon dioxide is characterized in that grout is prepared by dissolving carbon dioxide gas in water, and then the resulting grout is discharged outside the tank by increased pressure inside the tank and injected into the soil, where it gels in the soil. Soil stabilization method using silicic acid cloud using gas as a hardening agent.
JP50074349A 1975-06-20 1975-06-20 Doshitsu Antei Kahou Expired JPS5817516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50074349A JPS5817516B2 (en) 1975-06-20 1975-06-20 Doshitsu Antei Kahou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50074349A JPS5817516B2 (en) 1975-06-20 1975-06-20 Doshitsu Antei Kahou

Publications (2)

Publication Number Publication Date
JPS51150818A JPS51150818A (en) 1976-12-24
JPS5817516B2 true JPS5817516B2 (en) 1983-04-07

Family

ID=13544544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50074349A Expired JPS5817516B2 (en) 1975-06-20 1975-06-20 Doshitsu Antei Kahou

Country Status (1)

Country Link
JP (1) JPS5817516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832190B2 (en) * 1977-03-03 1983-07-11 三信建設工業株式会社 Chemical injection manufacturing equipment
JPS6069186A (en) * 1984-05-21 1985-04-19 Kyokado Eng Co Ltd Treatment for stabilization of ground
JPH0757870B2 (en) * 1991-03-22 1995-06-21 強化土エンジニヤリング株式会社 Method and apparatus for manufacturing ground injection chemicals

Also Published As

Publication number Publication date
JPS51150818A (en) 1976-12-24

Similar Documents

Publication Publication Date Title
CN107311550B (en) A kind of cellular concrete mixing method
JPS5817516B2 (en) Doshitsu Antei Kahou
JPS6314758B2 (en)
JPS5853678B2 (en) Soil stabilization method
JPS598382B2 (en) Soil stabilization method
JP2001214163A (en) Cave back-filling filler material for repair, filling process using the same and its cured product
CN207522848U (en) A kind of concrete central mix plant based on compound stirring technique
JPH0360968B2 (en)
JPS59122579A (en) Ground-impregnating agent and ground stabilization
JP2774821B2 (en) Preparation method of chemical solution for soil stabilization
JPS5844103B2 (en) Soil stabilization method
JPH0234999B2 (en)
JPS6312514B2 (en)
JPH0575692B2 (en)
FR2363668A1 (en) SOIL STABILIZATION METHOD USING A CONSOLIDATION SUSPENSION CONTAINING AIR BUBBLES
JPS587763B2 (en) Ground injection method of silicate grout
RU2132314C1 (en) Method of manufacturing cellular concrete, raw mixture for manufacturing cellular concrete, and method of manufacturing structures
JPH0128075B2 (en)
CN108058271B (en) A kind of concrete central mix plant based on compound stirring technique
JPH0525272B2 (en)
JPS62172088A (en) Ground grouting process
JPS6249911B2 (en)
JPS6128607B2 (en)
JPH083090B2 (en) Mixing device for ground injection chemicals
JPH0554519B2 (en)