JP2008161778A - Soil purifying method - Google Patents

Soil purifying method Download PDF

Info

Publication number
JP2008161778A
JP2008161778A JP2006352236A JP2006352236A JP2008161778A JP 2008161778 A JP2008161778 A JP 2008161778A JP 2006352236 A JP2006352236 A JP 2006352236A JP 2006352236 A JP2006352236 A JP 2006352236A JP 2008161778 A JP2008161778 A JP 2008161778A
Authority
JP
Japan
Prior art keywords
ground
microorganisms
carbon dioxide
silica
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006352236A
Other languages
Japanese (ja)
Inventor
Shunsuke Shimada
俊介 島田
Tadao Koyama
忠雄 小山
Rei Terajima
麗 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP2006352236A priority Critical patent/JP2008161778A/en
Publication of JP2008161778A publication Critical patent/JP2008161778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil purifying method which utilizes carbon dioxide produced by metabolism of microorganisms, less influences the environment by the use of naturally existing substances and produces no harmful substances even in the circumference of improved ground and after ground improvement. <P>SOLUTION: A silica compound and microorganisms are injected into ground 6 containing a harmful substance 20, and carbon dioxide produced through the metabolism of the microorganisms is used to solidify the silica compound and decompose the harmful substance with the microorganisms at the same time. If necessary, carbon dioxide or its aqueous solution is used together to promote the degree of initial improvement. A composition containing nutrient sources for microorganisms as effective ingredients, a polyvalent metal compound or a gelling adjusting agent may be used together. The harmful substance 20 in the ground 6 is contained in the solidified product 21 of the injected solution injected through an injection channel 19. The silica compound in the injected solution is solidified by the microorganisms and made harmless through reaction with an agent purifying the harmful substance in the injected solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は地盤を改良し、あるいは排出土等を固結する土の固結方法に関し、改良後も周囲の環境に影響の少ない方法に関する。また、建造物躯体の処理方法或いは地盤土の有害物の固定と有害物の浄化方法に関する。   The present invention relates to a soil consolidation method that improves the ground or consolidates discharged soil and the like, and relates to a method that has little influence on the surrounding environment even after the improvement. In addition, the present invention relates to a method for treating a building frame or a method for fixing harmful substances in soil and purifying harmful substances.

従来、地盤を改良するにあたり、水ガラスや、セメントを使用してきた。これらの注入材は強アルカリ又は強酸を使用することから、取り扱いに注意が必要であり、また、使用できる地盤が限定された。   Conventionally, water glass and cement have been used to improve the ground. Since these injection materials use strong alkalis or strong acids, handling is necessary, and the ground that can be used is limited.

本発明者らは活性シリカや、水ガラスや、水ガラスをコロイド状にしたものを用いることで酸やアルカリの量を少なくしても長いゲル化時間と安定したゲルを得ることができるようになり、環境への影響が少ないグラウトを開発した(例えば、特許文献1:特開2005−075899号公報参照)。   The present inventors can obtain a long gelation time and a stable gel even if the amount of acid or alkali is reduced by using activated silica, water glass, or colloidal water glass. Thus, a grout having a small influence on the environment has been developed (for example, see Patent Document 1: Japanese Patent Application Laid-Open No. 2005-075899).

また、本出願人による特許文献2(特公平7−57870号公報)が既に公知となっている。特許文献2記載の発明は、水ガラスと炭酸ガスとを一定比率にて加圧供給し、炭酸ガスの吸収された水ガラス水溶液を吐出して地盤注入薬液を得るようにしたものである。   Further, Patent Document 2 (Japanese Patent Publication No. 7-57870) by the present applicant is already known. In the invention described in Patent Document 2, water glass and carbon dioxide are pressurized and supplied at a constant ratio, and a water glass aqueous solution in which carbon dioxide is absorbed is discharged to obtain a ground injecting chemical solution.

本発明は微生物による代謝によって二酸化炭素を発生させることにより、不溶性シリカを生成することを目的としたものである。また、浄化対象地盤において、地盤改良剤を注入する際、地盤中の地下水により拡散し目的の地盤に注入できず、汚染物質と分解微生物が接触しにくいという問題点があった。   An object of the present invention is to produce insoluble silica by generating carbon dioxide through metabolism by microorganisms. In addition, in the ground to be purified, there has been a problem that when the ground improver is injected, it is diffused by the groundwater in the ground and cannot be injected into the target ground, and the contaminants and the decomposing microorganisms are difficult to contact.

特開2005−075899号公報Japanese Patent Laying-Open No. 2005-075899 特公平07−057870号公報Japanese Patent Publication No. 07-057870 特開平07−289290号公報JP 07-289290 A

本発明の目的は、環境への影響の低減を追及し、自然の状態で存在する物質だけを使用し、改良地盤周辺や、地盤改良後においても有害な物質を発生させない地盤改良方法を開発することにある。そこで、シリカ化合物に強酸や、強アルカリを添加することなく固結し、地盤を改良することを課題とした。   The object of the present invention is to pursue a reduction in environmental impact, and to develop a ground improvement method that uses only substances that exist in the natural state and does not generate harmful substances around the improved ground and after ground improvement. There is. Then, it set as the subject to solidify without adding a strong acid or a strong alkali to a silica compound, and to improve the ground.

本発明はこの問題を解決するために微生物代謝によって生ずる炭酸ガスを利用する方法を提供し、更にシリカを加えて固結性を高め、或いはまた微生物代謝によって有害物を含む土や廃棄物を固化し、かつ微生物代謝によって土や廃棄物中の有害物を分解する方法を提供するものである。   In order to solve this problem, the present invention provides a method of utilizing carbon dioxide gas generated by microbial metabolism, and further solidifies by adding silica, or solidifies soil and waste containing harmful substances by microbial metabolism. In addition, the present invention provides a method for decomposing harmful substances in soil and waste by microbial metabolism.

そこで本研究者らは、二酸化炭素が水に溶解してpHを下げることから、シリカ化合物を硬化しゲル化させる方法において、微生物の代謝により栄養源がエタノールと二酸化炭素に分解することにより二酸化炭素を発生させることで、大掛かりな装置や、薬品を使うことなく地盤を改良することができ、また地盤改良領域周辺の環境への影響も少ないことを見出した。
6126 → 2C25OH+2CO2
Therefore, since the carbon dioxide dissolves in water and lowers the pH, the present researchers have determined that the nutrient source is decomposed into ethanol and carbon dioxide by microbial metabolism in the method of curing and gelling the silica compound. It has been found that the ground can be improved without using a large-scale device or chemicals, and that there is little impact on the environment around the ground improvement area.
C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2

すなわち、地盤中にシリカ化合物と微生物を注入すると、微生物が代謝を行い二酸化炭素を放出することにより、シリカ化合物は炭酸ガスと反応しゲル化することから、土粒子間で固結し地盤を改良する。また、アルコール類も水ガラス等のシリカ溶液をゲル化させる機能を持つ。   In other words, when silica compounds and microorganisms are injected into the ground, the microorganisms metabolize and release carbon dioxide, which causes the silica compounds to react with carbon dioxide and gel, thereby solidifying the soil particles and improving the ground. To do. Alcohols also have a function of gelling a silica solution such as water glass.

このとき、シリカ化合物として水ガラスが挙げられるが、その他に活性シリカやコロイダルシリカ等のシリカ化合物を使用することで、確実にゲル化させることができる。また、水ガラスに微量の酸を加え、コロイド化させたものを用いることで、ゲルタイムを早めることもできる。   At this time, although water glass is mentioned as a silica compound, it can be made to gelatinize reliably by using silica compounds, such as active silica and colloidal silica, in addition. Moreover, gel time can also be accelerated | stimulated by using the thing which added the trace amount acid to water glass and made it colloid.

さらに、微生物と有機物を同時に注入することで、あるいは微生物を多く含む地盤においては有機物を地盤中に注入することで、微生物の呼吸を調節し、二酸化炭素の発生量を調節し、シリカ化合物のゲル化を促進或いは調節する。   Furthermore, by injecting microorganisms and organic substances simultaneously, or in the ground containing many microorganisms, injecting organic substances into the ground regulates the respiration of microorganisms, regulates the amount of carbon dioxide generated, and gels of silica compounds Promote or regulate crystallization.

また、二酸化炭素や、酸素等の気体を同時に注入することで代謝を調整し、ゲル化を促進或いは調節することが可能である。   Further, by simultaneously injecting gas such as carbon dioxide and oxygen, it is possible to adjust metabolism and promote or regulate gelation.

シリカ化合物のゲル化促進或いは調整剤として、微生物に影響の少ないものを添加することでゲル化時間を調節することもできる。例としては、塩化カリウム、塩化ナトリウム等の無機塩や微量の酸、有機塩が挙げられる。また、カルシウム化合物やマグネシウム化合物を添加することで、微生物の代謝で放出した炭酸ガスと多価金属化合物が反応して不溶性の多価金属炭酸塩を形成し、ゲル化時間を調整できるのみならず、注入材の強度を上げることもできる。   The gelation time can also be adjusted by adding a gel compound that has little influence on microorganisms as a gelation accelerator or regulator for the silica compound. Examples include inorganic salts such as potassium chloride and sodium chloride, trace amounts of acids, and organic salts. In addition, by adding calcium compounds and magnesium compounds, carbon dioxide released by the metabolism of microorganisms reacts with polyvalent metal compounds to form insoluble polyvalent metal carbonates, and not only the gelation time can be adjusted. It is also possible to increase the strength of the injection material.

上記により、本発明により使用される物質は自然界に一般的に存在するものであり、地盤改良後も周辺の地盤に影響を与え難く、地下水や土壌を汚染することも少ないため、従来の地盤改良方法では未反応生成物が拡散し難い場所や、環境保全上デリケートな場所において有効に地盤改良し、改良後も環境汚染の恐れがない。   Due to the above, the substances used according to the present invention are generally present in nature, hardly affect the surrounding ground even after ground improvement, and rarely contaminate groundwater and soil, so conventional ground improvement In the method, the ground is effectively improved in a place where unreacted products are difficult to diffuse and a place where the environment is delicate, and there is no fear of environmental pollution after the improvement.

大掛かりな装置や、有害な薬品を使う必要がないため、地盤改良の工事現場にて容易に設置できる。特に液状化対策工等、構造物基礎下のガス、電気、水道管等の地下埋設が多い条件の耐震補強にも適している。   Since there is no need to use large-scale equipment or harmful chemicals, it can be easily installed at construction sites for ground improvement. In particular, it is also suitable for seismic reinforcement in conditions where there are many underground burials such as gas, electricity, and water pipes under the foundation of structures, such as liquefaction countermeasures.

さらに、カルシウム化合物、栄養分、二酸化炭素、ゲル化調整剤の一種又は複数を注入することで、ゲル化時間を調整したり、改良地盤の強度を増加することができる。   Furthermore, the gelation time can be adjusted or the strength of the improved ground can be increased by injecting one or a plurality of calcium compounds, nutrients, carbon dioxide, and gelation regulators.

さらにまた、微生物代謝を応用した有害物を含む土や産廃物の固化による有害物の固定と有害物の分解に着目した浄化処理方法である。   Furthermore, it is a purification treatment method that focuses on fixing of harmful substances and decomposition of harmful substances by solidifying soil and industrial waste containing harmful substances by applying microbial metabolism.

本発明の具体的な実施の方法を示す。   The method of concrete implementation of the present invention will be described.

本発明で使用されるシリカ化合物は、水ガラス、活性シリカ、シリカコロイド等のいかなるものでも良い。また、併用する微生物が活性化するpHに調整する必要があるため、少量のpH調整材を用いても良い。シリカコロイドはコロイド化しており、Na含有量が少ないことより中性付近のpHで長時間安定し、また少ない硬化剤によってゲル化することから(特許文献1等参照)、本発明に適している。   The silica compound used in the present invention may be any one of water glass, activated silica, silica colloid and the like. In addition, since it is necessary to adjust the pH to activate the combined microorganism, a small amount of pH adjusting material may be used. Silica colloid is colloidal and is stable for a long time at a neutral pH due to its low Na content, and it is gelled with a small curing agent (see Patent Document 1, etc.), which is suitable for the present invention. .

また、シリカ化合物に微量の酸を加えコロイド化したものを使用することで、ゲル化時間を調整することもできる。   In addition, the gelation time can be adjusted by using a colloid obtained by adding a small amount of acid to a silica compound.

本発明におけるシリカはゲル化を伴うことより、止水性の付与、急速な固結効果、ゲル化時間の調節機能のため所定の範囲の固結が可能になる。   Since the silica in the present invention is accompanied by gelation, it can be consolidated within a predetermined range due to the provision of water-stopping property, a rapid consolidation effect, and a gelling time adjusting function.

本発明に用いられる微生物は人体や環境に影響を与え難いものならば、使用可能である。特に、乳酸菌や納豆菌、パン酵母やビール酵母等の従来食品に利用されているものや、一般の地盤中に多く存在するものも利用できる。例えば圃場の土砂を採取してその混合液或いはその上澄液を用いても良い。乳酸菌による代謝では乳酸を生成することにより、pHを下げゲル化を促進或いは調節する。   The microorganism used in the present invention can be used as long as it hardly affects the human body and the environment. In particular, those used in conventional foods such as lactic acid bacteria, natto bacteria, baker's yeast and brewer's yeast, and those existing in large amounts in general ground can be used. For example, soil and sand from the field may be collected and the mixed solution or the supernatant thereof may be used. In metabolism by lactic acid bacteria, lactic acid is produced to lower pH and promote or regulate gelation.

現在、現地汚染地盤において栄養源を注入し、その土壌の微生物を増殖させ、汚染物質を分解させる方法が利用されていることより、現地より採取した微生物から、目的の分解能を持つ微生物を単離培養し、利用することもできる。   Currently, a method of injecting nutrient sources in the contaminated soil, growing the microorganisms in the soil, and decomposing the pollutants is used, so that microorganisms with the desired resolution are isolated from the microorganisms collected from the field. It can also be cultured and used.

また、本発明により析出するカルシウム塩とは、炭酸カルシウム、水酸化カルシウム、塩化カルシウム、硝酸カルシウム、二酸化アルミニウム等で、注入する微生物や地盤に生息する微生物に影響される。   The calcium salt precipitated according to the present invention is calcium carbonate, calcium hydroxide, calcium chloride, calcium nitrate, aluminum dioxide or the like, and is influenced by microorganisms to be injected or microorganisms that inhabit the ground.

微生物栄養源とは、微生物の栄養源となるものであり、好ましくは土壌中の微生物によって代謝分解される糖類である。例えば、グルコースやフラクトースなどの単糖類、スクロース、マルトースあるいはガラクトースなどの2糖類、その他のオリゴ糖、デンプンやマルトデキストリンなどの多糖類、その他糖類を例示することができる。   The microbial nutrient source is a microbial nutrient source, and is preferably a saccharide that is metabolized and decomposed by microorganisms in the soil. Examples include monosaccharides such as glucose and fructose, disaccharides such as sucrose, maltose and galactose, other oligosaccharides, polysaccharides such as starch and maltodextrin, and other saccharides.

また、栄養分としてグリオキザールや炭酸や酢酸等の有機酸エステル等、水ガラスの反応剤を用いることで水ガラスのゲル化後の反応生成物を微生物の栄養源に利用すれば強度増加と反応性生物の分解に役立つことができる。   In addition, by using a reaction product of water glass such as glyoxal or organic acid esters such as carbonic acid and acetic acid as nutrients, the reaction product after gelation of water glass can be used as a nutrient source for microorganisms. Can help to break down.

微生物によって、あるいは有機栄養源によって代謝速度が変化するため、施工時地盤によって選択する必要がある。   Since the metabolic rate varies depending on the microorganism or organic nutrient source, it is necessary to select the soil according to the construction site.

本発明における多価金属化合物とは、塩化カルシウム等のカルシウム塩や塩化マグネシウム等の多価金属塩、カルシウム水酸化物等として微粒子石灰や、微粒子セメント、微粒子スラグ、石膏、炭酸カルシウム等が挙げられる。また、地盤中に含まれる貝殻等のカルシウムや、石灰等も反応に影響する。本発明においてシリカとカルシウムの併用は珪酸カルシウムの生成による強度増加をもたらす。   Examples of the polyvalent metal compound in the present invention include calcium salts such as calcium chloride, polyvalent metal salts such as magnesium chloride, calcium hydroxide, and the like, fine particle lime, fine particle cement, fine particle slag, gypsum, calcium carbonate and the like. . In addition, calcium such as shells contained in the ground, lime, etc. also affect the reaction. In the present invention, the combined use of silica and calcium brings about an increase in strength due to the formation of calcium silicate.

本発明において、有害物を含む土又は廃棄物中に本発明の注入液を浸透、又は混合、被覆することにより有害物や廃棄物からの汚染領域の拡散を防ぐとともに、注入液中の微生物、或いは更に微生物、又は土壌浄化材を注入することにより、地盤を限定して浄化することができ効果的である。   In the present invention, the infusion solution of the present invention is infiltrated, mixed, or coated in soil or waste containing harmful substances to prevent diffusion of contaminated areas from harmful substances and waste, and microorganisms in the infused liquid, Alternatively, by injecting microorganisms or soil purification materials, the ground can be limited and purified, which is effective.

また、シリカを使用しない場合は土粒子間に炭酸カルシウムが沈積して水密性を付与することにより透水性が低下するが、ゲル化を伴わないため、何回も繰り返して注入することによって止水性を向上させることができる。しかし、シリカを併用するとゲル化を伴うために1回の注入でも透水性の低下と固結が可能になる。勿論、何回も注入を繰り返せばその改良効果は更に向上する。   In addition, when silica is not used, water permeability is reduced by depositing calcium carbonate between the soil particles to give water tightness, but since it does not involve gelation, it can be stopped by repeatedly injecting it. Can be improved. However, when silica is used in combination, gelation occurs, so that water permeability can be lowered and consolidated even with a single injection. Of course, if the injection is repeated many times, the improvement effect is further improved.

また浄化後地盤が固結していることから、注入した微生物や、無害化した汚染物質を封じ込め、浄化後回収することができる。また土壌浄化に伴い地盤中で増殖した微生物も、周囲の地盤に拡散し難く、浄化後回収することができ、微生物が過剰に増殖し、地下水を汚染する等の二次汚染を回避することができる。   Moreover, since the ground after purification is solidified, it is possible to contain injected microorganisms and detoxified pollutants and collect them after purification. Microorganisms that have grown in the ground due to soil purification are also difficult to diffuse into the surrounding ground and can be recovered after purification, avoiding secondary contamination such as excessive growth of microorganisms and contamination of groundwater. it can.

本発明における有害物とは、6価クロム、水銀、鉛、カドミウム等の重金属、土木工事等によって発生する廃泥土、焼却灰、汚泥、産業廃棄物、環境ホルモン、農薬残留物、有機溶剤、有機洗剤等の有機化合物、ダイオキシン等人体や環境に悪影響を及ぼす有害物を含む地盤であり、例として、アルキル水銀、総水銀、カドミウム、鉛、有機リン、六価クロム、ヒ素、シアン、PCB、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,3ジクロロプロペン、チウラム、シマジン、チオベンカルブ、ベンゼン、セレン等が挙げられる。   The hazardous substances in the present invention are heavy metals such as hexavalent chromium, mercury, lead and cadmium, waste mud generated by civil engineering, incinerated ash, sludge, industrial waste, environmental hormones, agricultural chemical residues, organic solvents, organic Organic compounds such as detergents, dioxins and other soils that contain harmful substances that adversely affect the human body and the environment. Examples include alkyl mercury, total mercury, cadmium, lead, organic phosphorus, hexavalent chromium, arsenic, cyanide, PCB, and trichlorethylene. , Tetrachloroethylene, dichloromethane, carbon tetrachloride, 1,2-dichloroethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,3 dichloropropene , Thiuram, simazine, thiobencarb, benzene, selenium and the like.

本発明における土壌浄化剤としては、具体的には無機系還元剤、例えば、硫酸第一鉄、塩化第一鉄、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸ナトリウム、亜硫酸カリウム等が挙げられ、さらにキレート剤や有機物分解微生物も用いられる。   Specific examples of the soil purification agent in the present invention include inorganic reducing agents such as ferrous sulfate, ferrous chloride, sodium hydrogen sulfite, potassium hydrogen sulfite, sodium sulfite, and potassium sulfite. Agents and organic matter degrading microorganisms are also used.

キレート剤としては、例えば、ピロリジン系の骨格をもつ液体キレート化合物、具体的にはピロリジン系イオウ化合物

Figure 2008161778
が挙げられる。 As the chelating agent, for example, a liquid chelate compound having a pyrrolidine skeleton, specifically, a pyrrolidine sulfur compound
Figure 2008161778
Is mentioned.

これら重金属と非常に結合しやすく、瞬時に結合して水に不溶性の金属キレート化合物を作る。この金属キレート化合物は結合力が強く、一旦結合した化合物は水に溶解せず、非常に安定したキレート化合物となる。したがって、重金属イオンと結合した化合物は埋め立て処分しても、雨水や酸性雨、あるいは有機物腐廃による有機酸、アルカリ物質等に再溶解することなく、二次公害の恐れが全く生じない安定な重金属固定剤である。   It is very easy to bind to these heavy metals and instantly binds to form a metal chelate compound that is insoluble in water. This metal chelate compound has a strong binding force, and once bonded, the compound does not dissolve in water and becomes a very stable chelate compound. Therefore, even if a compound combined with heavy metal ions is disposed of in landfills, it does not re-dissolve in rainwater, acid rain, or organic acids or alkaline substances caused by organic matter decay, and does not cause any secondary pollution. It is a fixative.

その他に、イミン系イオウ化合物、例えば、

Figure 2008161778
In addition, imine sulfur compounds such as
Figure 2008161778

カルバミン酸系イオウ化合物、例えば、

Figure 2008161778
等が挙げられる。 Carbamate-based sulfur compounds, such as
Figure 2008161778
Etc.

微生物による分解例としては、一例を示すと次のとおりである。   An example of decomposition by microorganisms is as follows.

産業廃棄物中の有機物は細菌や糸状金菌等の微生物によって分解される。発ガン物質であるトリハロメタンの生成に関与するアンモニアは硝化菌により、工業用溶剤トリクロロエチレンはアンモニア酸化菌により分解される。また、農薬は土壌中の糸状菌、細菌、放射菌によって分解される。   Organic matter in industrial waste is decomposed by microorganisms such as bacteria and filamentous gold fungi. Ammonia involved in the production of trihalomethane, which is a carcinogen, is decomposed by nitrifying bacteria, and industrial solvent trichlorethylene is decomposed by ammonia oxidizing bacteria. In addition, agricultural chemicals are decomposed by filamentous fungi, bacteria, and radioactive bacteria in the soil.

例えば、パラチオンはPseudomonas stuzeri とPseudomonas aeruginosaの共同により分解される。また、カーバメイト系殺虫剤はPenicillium 、Trichoderma によって分解される。さらに、PCBはPseudomonas 、Alcaligenes によって分解され、クロロベンゼンもPseudomonas によって分解される。   For example, parathion is degraded by the collaboration of Pseudomonas stuzeri and Pseudomonas aeruginosa. Carbamate insecticides are degraded by Penicillium and Trichoderma. Further, PCB is decomposed by Pseudomonas and Alcaligenes, and chlorobenzene is also decomposed by Pseudomonas.

本発明にかかる注入材はさらに、次の(1)〜(6)に示される組成物の一種又は複数種を併用することもでき、これにより強度や止水性が一層向上する。   In the injection material according to the present invention, one or more of the compositions shown in the following (1) to (6) can be used in combination, whereby the strength and water stoppage are further improved.

(1) 水ガラスを有効成分とする組成物
これは例えば、水ガラスと、硬化剤とを有効成分とする組成物である。水ガラスはSiO/NaO=1〜6のモル比を呈し、工業的に製造されているもの、粉体又は液体であり、あるいはこれに苛性アルカリを添加したものである。使用に際しては水で稀釈される。
(1) Composition containing water glass as an active ingredient This is, for example, a composition containing water glass and a curing agent as active ingredients. Water glass exhibits a molar ratio of SiO 2 / Na 2 O = 1 to 6 and is industrially produced, powder or liquid, or is obtained by adding caustic alkali thereto. When used, it is diluted with water.

硬化剤としては、重炭酸塩、塩化カルシウム、重硫酸ソーダ、アルミン酸ソーダ、硫酸バンド、みょうばん等の無機塩、炭酸、炭酸ガス、炭酸水、硫酸、燐酸、塩酸等の無機酸類、酢酸等の有機酸類、ジアセチン、トリアセチン、エチレンカーボネート等のエステル類、グリオキザール、微粒子セメント等のセメント類、微粒子スラグ等のスラグ類、消石灰や苛性アルカリ等のアルカリ剤等が挙げられる。   Hardeners include inorganic salts such as bicarbonate, calcium chloride, sodium bisulfate, sodium aluminate, sulfate band, and alum, carbonic acid, carbon dioxide, carbonated water, sulfuric acid, phosphoric acid, hydrochloric acid and other inorganic acids, acetic acid, etc. Organic acids, esters such as diacetin, triacetin and ethylene carbonate, cements such as glyoxal and fine particle cement, slags such as fine particle slag, and alkaline agents such as slaked lime and caustic alkali.

この組成物の併用方法としては、いかなる方法でもよいが、本発明にかかる注入液を注入する前後に浸透させて併用する。   Any method may be used as a method of using the composition, but the method is used by infiltrating the injection solution according to the present invention before and after injection.

(2) 水ガラス以外の硬化性組成物
具体的には、エポキシ樹脂、ポリエステル樹脂等の硬化性樹脂組成物が挙げられる。
(2) Curable compositions other than water glass Specific examples include curable resin compositions such as epoxy resins and polyester resins.

(3) 難溶性カルシウム化合物を有効成分とする組成物
本発明において、難溶性カルシウム化合物とは、水に対する溶解度(20℃)が5重量%以下のカルシウム化合物が好ましく、具体的には炭酸カルシウム、セメント類、スラグ類、石灰類等が挙げられる。この併用方法としては、地盤が不均一のために本発明にかかる注入液が逸脱するような場合に、この逸脱を防止することを主目的として併用することが好ましい。具体的には、本発明にかかる注入液を注入する前後に併用することもできるが一次注入材として使用する事もできる。また、前述したように難溶性カルシウム化合物の上澄液により生成したカルシウム含有液を本発明に用いることができる。
(3) Composition comprising a hardly soluble calcium compound as an active ingredient In the present invention, the hardly soluble calcium compound is preferably a calcium compound having a solubility in water (20 ° C.) of 5% by weight or less, specifically, calcium carbonate, Cements, slags, limes and the like can be mentioned. As this combination method, it is preferable to use the combination mainly for the purpose of preventing the deviation when the injection liquid according to the present invention deviates due to uneven ground. Specifically, it can be used together before and after injecting the injection solution according to the present invention, but it can also be used as a primary injection material. Moreover, the calcium containing liquid produced | generated with the supernatant liquid of the hardly soluble calcium compound as mentioned above can be used for this invention.

(4) 微粒子スラグ又は微粒子セメントを有効成分とする組成物
これら微粒子スラグや微粒子セメントとしては平均粒径が10μm以下、比表面積が5000cm/g以上のものが用いられる。この場合も(3)の場合と同じく本発明に用いることができる。
(4) Composition containing fine particle slag or fine particle cement as an active ingredient As these fine particle slag and fine particle cement, those having an average particle diameter of 10 μm or less and a specific surface area of 5000 cm 2 / g or more are used. This case can also be used in the present invention as in the case of (3).

(5) アルカリ剤を有効成分とする組成物
アルカリ剤としては、消石灰、苛性アルカリ等が用いられる。
(5) Composition containing alkali agent as active ingredient As the alkali agent, slaked lime, caustic alkali or the like is used.

(6) 活性シリカ又はコロイダルシリカを有効成分とする組成物
水ガラスをイオン交換樹脂又はイオン交換膜を用いて、水ガラス中のアルカリ分を除去して得られる活性シリカ、酸性水ガラスの酸根やアルカリ金属をイオン交換樹脂、イオン交換膜で除去して得られる活性シリカ、活性シリカを濃縮して造粒したコロイダルシリカ等が挙げられる。或いはこれらに水ガラスを混合したシリカ溶液でもよい。硬化剤としては、塩化ナトリウム、塩化カリウム等の無機塩及び硬化速度やpHの調整のために酸類あるいはアルカリ類が使用され、アルカリ〜酸性領域で用いることができる。
(6) Composition containing active silica or colloidal silica as an active ingredient Active silica obtained by removing alkali from water glass using an ion exchange resin or ion exchange membrane, acid radicals of acidic water glass, Examples include activated silica obtained by removing an alkali metal with an ion exchange resin and an ion exchange membrane, colloidal silica obtained by concentrating and granulating active silica. Or the silica solution which mixed water glass with these may be sufficient. As the curing agent, inorganic salts such as sodium chloride and potassium chloride, and acids or alkalis are used for adjusting the curing rate and pH, and they can be used in the alkali to acidic region.

(7) 炭酸ガス又は炭酸ガスを圧力下で水に溶解させた炭酸水
炭酸ガスを多価金属化合物と微生物及び/又は栄養源に吹き込んで注入しても良いし、また、炭酸ガスをあとから地盤中に注入して初期におけるシリカゲル或いは炭酸カルシウムの析出による固結を加速して、長期的には微生物代謝による炭酸ガスの反応によりシリカゲルや炭酸カルシウムを形成しても良い。
(7) Carbon dioxide gas or carbonated water in which carbon dioxide gas is dissolved in water Carbon dioxide gas may be injected by injecting into the polyvalent metal compound and microorganisms and / or nutrient sources, and carbon dioxide gas may be injected later. It may be injected into the ground to accelerate solidification by precipitation of silica gel or calcium carbonate in the initial stage, and in the long term, silica gel or calcium carbonate may be formed by reaction of carbon dioxide gas due to microbial metabolism.

地盤中に炭酸ガス或いは炭酸ガスと水ガラスの混合液を吹き込む方法や装置は本出願人によって既に開発されている(例えば、特許文献2:特公平7−57870号公報等参照)。   A method and apparatus for blowing carbon dioxide or a mixture of carbon dioxide and water glass into the ground has already been developed by the present applicant (see, for example, Patent Document 2: Japanese Patent Publication No. 7-57870).

以下、本発明を実施例によって説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.

〔炭酸ガスとシリカ化合物の反応実験〕
試験管にシリカ化合物として、コロイダルシリカ、活性シリカ、水ガラスをそれぞれ10mlとり、炭酸ガスをホースにて送った。炭酸ガスはドライアイスを気化させたものを用い、それぞれ室温、大気下で24時間静置した。24時間後、すべてのシリカ化合物にゲル化が見られた。
[Reaction experiment between carbon dioxide and silica compound]
10 ml each of colloidal silica, activated silica and water glass as silica compounds were put into a test tube, and carbon dioxide gas was sent with a hose. Carbon dioxide gas was obtained by vaporizing dry ice and allowed to stand at room temperature for 24 hours. After 24 hours, all silica compounds were gelled.

水ガラス:5号水ガラス
コロイダルシリカ:市販コロイダルシリカ(SiO2濃度30.0wt%、pH10付近、粒径10〜20nm)を用いた。活性シリカを水ガラス又は苛性ソーダで安定化させ、一週間放置熟成し、コロイドとしたものを用いても良い。
活性シリカ:3号水ガラスを水で希釈した液を陽イオン交換樹脂に通過して処理し、得られるpH2.7、比重1.03、SiO2濃度4wt%の活性シリカ。
Water glass: No. 5 water glass Colloidal silica: Commercially available colloidal silica (SiO 2 concentration: 30.0 wt%, pH around 10; particle size: 10 to 20 nm) was used. The active silica may be stabilized with water glass or caustic soda and aged for one week to form a colloid.
Active silica: An active silica having a pH of 2.7, a specific gravity of 1.03, and an SiO 2 concentration of 4 wt% obtained by treating a solution obtained by diluting No. 3 water glass with water through a cation exchange resin.

〔イースト菌とシリカコロイドのゲル化〕
実施例1にて使用したシリカコロイドに微生物を加えた時のゲル化の有無を調べた。
[Gelification of yeast and colloidal silica]
The presence or absence of gelation was examined when microorganisms were added to the silica colloid used in Example 1.

シリカコロイド10mlに微生物としてイースト菌(日清フーズ株式会社製、日清スーパーカメリヤ)0.6g、栄養源としてグルコースC6126 0.3gを表1の配合にて、ねじ口試験管に加え、よく混合し、室温、大気下で24時間静置した。24時間後に試験管を上下倒置してゲル化の有無を確認した。 Yeast as the microorganism in colloidal silica 10 ml (Nisshin Foods Corporation, Nisshin super Camellia) 0.6 g, glucose C 6 H 12 O 6 0.3g as a nutrient source in the formulation of Table 1 was added to screw-cap test tube, The mixture was mixed well and allowed to stand at room temperature in the atmosphere for 24 hours. After 24 hours, the test tube was turned upside down to check for gelation.

Figure 2008161778
Figure 2008161778

イースト菌無添加の比較例1,2ではゲル生成物は認められなかったが、イースト菌を含む本発明1,2では試験管を倒置しても内容物が落下せず微生物によるシリカコロイドのゲル化が確認された。   In Comparative Examples 1 and 2 to which no yeast was added, no gel product was observed, but in the present invention 1 and 2 containing yeast, the contents did not fall even when the test tube was inverted, and the silica colloid gelled by microorganisms. confirmed.

また、本発明2のコロイダルシリカに微生物のみを加えた試験管では一部にゲル化が見られたのに対し、本発明1のコロイダルシリカに微生物と栄養源を加えた試験管ではコロイダルシリカ溶液全体がゲル化したことから、微生物の代謝によって放出した炭酸ガスがゲル化にあずかり、特に「栄養源によってゲル化を促進できる」ことがわかった。   In addition, in the test tube in which only microorganisms were added to the colloidal silica of the present invention 2, gelation was partially observed, whereas in the test tube in which microorganisms and nutrients were added to the colloidal silica of the present invention 1, the colloidal silica solution From the fact that the whole gelled, it was found that carbon dioxide released by the metabolism of microorganisms was involved in gelling, and in particular, “gelling can be promoted by a nutrient source”.

シリカ化合物に微生物、カルシウム化合物、ゲル化調整剤を反応させる実験を行った。   Experiments were conducted in which microorganisms, calcium compounds, and gelation modifiers were reacted with silica compounds.

(1) 使用材料
水ガラス:JIS5号水ガラス:比重(20℃)1.32、SiO2 25.5%、Na2 O7.03%、モル比3.75。
コロイダルシリカ:市販コロイダルシリカ(SiO2濃度30.0wt%、pH10付近、粒径10〜20nm)を用いた。活性シリカを水ガラス又は苛性ソーダで安定化させ、一週間放置熟成し、コロイドとしたものを用いても良い。
微生物:イースト菌(日清フーズ株式会社製、日清スーパーカメリヤ)
栄養分:グルコース
4%AS:JIS5号水ガラスに少量の75%燐酸を加えてシリカ濃度4%に調節したもの。
8%AS:JIS5号水ガラスに少量の75%燐酸を加えてシリカ濃度8%に調節したもの。
(1) Materials used Water glass: JIS No. 5 water glass: specific gravity (20 ° C.) 1.32, SiO 2 25.5%, Na 2 O 7.03%, molar ratio 3.75.
Colloidal silica: Commercially available colloidal silica (SiO 2 concentration 30.0 wt%, pH around 10; particle size 10-20 nm) was used. The active silica may be stabilized with water glass or caustic soda and aged for one week to form a colloid.
Microorganisms: Yeast (Nisshin Foods Co., Ltd., Nissin Super Camellia)
Nutrients: glucose
4% AS: Silica concentration adjusted to 4% by adding a small amount of 75% phosphoric acid to JIS No. 5 water glass.
8% AS: Silica concentration adjusted to 8% by adding a small amount of 75% phosphoric acid to JIS No. 5 water glass.

表2に示す配合にて24時間後のゲル化の有無の観察を行った。   With the formulation shown in Table 2, the presence or absence of gelation after 24 hours was observed.

Figure 2008161778
Figure 2008161778

1.コロイダルシリカにイースト菌を加えたもの(No.1)は、1000分以内にゲル化が見られた。また、グルコースの量を増やした配合(No.2)は、1000分以内もゲル化がみられた。
2.水ガラスにイースト菌を加えたもの(No.3)は、イースト菌が溶解せずゲル化しなかった。イースト菌を水で希釈し水ガラスに加えた配合(No.4)は、1000分以内にゲル化せず、約4000分でゲル化した。
3.シリカ濃度4%、8%に希釈した水ガラスに少量の75%燐酸を加えた配合(比較1,2)は1000分後にはゲル化しないが、イースト菌を加えると約200分でゲル化した(No.5,6)。
1. In the case where yeast was added to colloidal silica (No. 1), gelation was observed within 1000 minutes. In addition, the formulation (No. 2) with an increased amount of glucose showed gelation within 1000 minutes.
2. In the case where yeast was added to water glass (No. 3), yeast did not dissolve and gelled. The formulation (No. 4) in which yeast was diluted with water and added to water glass did not gel within 1000 minutes, but gelled in about 4000 minutes.
3. The formulation (Comparison 1 and 2) in which a small amount of 75% phosphoric acid was added to water glass diluted to a silica concentration of 4% and 8% (Comparative 1 and 2) did not gel after 1000 minutes, but gelled in about 200 minutes when yeast was added ( No. 5, 6).

以上より、本発明における次のことが検証された。   From the above, the following in the present invention was verified.

1.コロイダルシリカにイースト菌を加えると、配合後、微生物の代謝により二酸化炭素が発生し、薬液中のpHが低くなるためゲル化する
2.水ガラスそのものにはイースト菌が溶解し難いためゲル化し難い。
3.希釈した水ガラスはイースト菌を加えてもゲル化するが、ゲル化時間が長くなる。
4.希釈した水ガラスに少量の硬化剤を加えイースト菌を加えると、イースト菌を加えないときと比べ、あるいは希釈した水ガラスにイースト菌を加えた時と比べ、ゲル化時間を短くすることができる。
1. When yeast is added to colloidal silica, carbon dioxide is generated due to the metabolism of microorganisms after compounding, and gelation occurs because the pH in the chemical solution is lowered. The water glass itself is difficult to gel because yeast does not dissolve easily.
3. The diluted water glass gels even when yeast is added, but the gelation time becomes longer.
4). When a small amount of a curing agent is added to diluted water glass and yeast is added, gelation time can be shortened compared to when yeast is not added or when yeast is added to diluted water glass.

図1は本発明において、実際の地盤において炭酸ガスを混合する方法を説明したフローシートであって、主にA、B液送液管路5、複数系統(図1では2系統)の炭酸ガス圧送管路、すなわち、高圧炭酸ガス圧送管路12及び低圧炭酸ガス圧送管路14、及び地盤6中に挿入された注入管7を含んで構成される。   FIG. 1 is a flow sheet for explaining a method of mixing carbon dioxide gas in the actual ground in the present invention. Mainly, A and B liquid feed pipe lines 5 and a plurality of systems (two systems in FIG. 1) carbon dioxide gas. It is configured to include a pressure feeding line, that is, a high-pressure carbon dioxide pressure feeding line 12 and a low-pressure carbon dioxide pressure feeding line 14, and an injection pipe 7 inserted into the ground 6.

A、B液送液管路5は、水ガラス水溶液貯槽1から地盤6中に挿入された注入管7に配管され、図1に示されるように上流側からそれぞれ、気液混合装置2、注入ポンプ3及び流量計4が管路5に配置される。   The A and B liquid feed pipe lines 5 are piped from the water glass aqueous solution storage tank 1 to the injection pipe 7 inserted into the ground 6 and, as shown in FIG. A pump 3 and a flow meter 4 are arranged in the pipeline 5.

高圧炭酸ガス圧送管路12は高圧炭酸ガス容器8−1と連結管9−1を介して連結され、注入管7まで配管される。管路12内には電磁弁10−1、減圧弁11−1及び炭酸ガス吹き出しノズル13がそれぞれ配置される。この炭酸ガス吹き出しノズル13は図示しないが注入管7に備えることもできる。   The high-pressure carbon dioxide pressure feeding line 12 is connected to the high-pressure carbon dioxide container 8-1 through the connection pipe 9-1 and is connected to the injection pipe 7. An electromagnetic valve 10-1, a pressure reducing valve 11-1, and a carbon dioxide blowing nozzle 13 are disposed in the pipe 12 respectively. Although not shown, the carbon dioxide blowing nozzle 13 can be provided in the injection pipe 7.

低圧炭酸ガス圧送管路14は、上述の高圧炭酸ガス圧送管路12と同様、圧力の低下された高圧炭酸ガス容器8−1と連結管9−2を介して連結され、水ガラス水溶液貯槽1、又は水ガラス水溶液送液管路5の気液混合装置2よりも上流側aまで配管される。管路14内には上述と同様、電磁弁10−2、減圧弁11−2及び上記と同様な炭酸ガス吹き出しノズル15がそれぞれ配置される。   The low-pressure carbon dioxide gas feed line 14 is connected to the reduced-pressure high-pressure carbon dioxide container 8-1 and the connection pipe 9-2 in the same manner as the high-pressure carbon dioxide pressure feed line 12, and the water glass aqueous solution storage tank 1 Alternatively, the water glass aqueous solution feeding pipe 5 is piped to the upstream side a of the gas-liquid mixing device 2. Similarly to the above, an electromagnetic valve 10-2, a pressure reducing valve 11-2, and a carbon dioxide blowing nozzle 15 similar to the above are arranged in the pipe line 14, respectively.

上述の構成からなる本発明の装置によれば、水ガラス水溶液送液管路5の上流側a、又は水ガラス水溶液貯槽1中に、低圧炭酸ガス圧送管路14を介し、低圧炭酸ガス容器8−2から電磁弁10−2、減圧弁11−2及び炭酸ガス吹き出しノズル15を経て水ガラス水溶液に炭酸ガスを噴射し、次いで、気液混合装置2で水ガラス水溶液と炭酸ガスを充分混合して炭酸ガスの水ガラス水溶液への吸収率を高め、かつ注入ポンプ3により炭酸ガスの吸収された水ガラス水溶液を水ガラス水溶液送液管路5介して注入管7に送液する。   According to the apparatus of the present invention having the above-described configuration, the low-pressure carbon dioxide container 8 is connected to the upstream side a of the water glass aqueous solution feeding pipe 5 or the water glass aqueous solution storage tank 1 via the low-pressure carbon dioxide feeding pipe 14. -2 through the electromagnetic valve 10-2, the pressure reducing valve 11-2, and the carbon dioxide blowing nozzle 15, the carbon dioxide gas is injected into the water glass aqueous solution, and then the water glass aqueous solution and the carbon dioxide gas are sufficiently mixed by the gas-liquid mixing device 2. Then, the absorption rate of carbon dioxide gas into the water glass aqueous solution is increased, and the water glass aqueous solution in which the carbon dioxide gas is absorbed by the injection pump 3 is sent to the injection pipe 7 through the water glass aqueous solution supply pipe 5.

さらに、高圧炭酸ガス圧送管路12を介し、高圧炭酸ガス容器8−1から電磁弁10−1、減圧弁11−1及び炭酸ガス吹き出しノズル13を経て注入管7中に炭酸ガスを噴射する。   Further, carbon dioxide is injected into the injection pipe 7 from the high-pressure carbon dioxide container 8-1 through the electromagnetic valve 10-1, the pressure reducing valve 11-1, and the carbon dioxide blowing nozzle 13 via the high-pressure carbon dioxide pressure feed line 12.

本発明によれば、図2(a)に示される地盤6中の有害物20は図2(b)に示されるように、注入管路19を通して注入される注入液の固化物21によって包み込まれ、注入液中のシリカ化合物が微生物により固結し、またこの中に含まれている有害物浄化剤と反応して無害化される。   According to the present invention, the harmful substance 20 in the ground 6 shown in FIG. 2 (a) is encapsulated by the solidified product 21 of the injected liquid injected through the injection line 19, as shown in FIG. 2 (b). The silica compound in the injection liquid is solidified by microorganisms and reacts with the harmful substance purifier contained therein to render it harmless.

このとき、図3(a)に示されるように、地盤6中の有害物20の周囲に注入管路5を通して固結材を注入し、前もって不透水性の遮蔽壁22を形成しておき、この状態で図3(b)に示されるように、注入管路19を通して浄化液を含む注入液を注入すれば、上述と同様、無害化処理が一層効果的である。   At this time, as shown in FIG. 3 (a), the caking material is injected through the injection pipe 5 around the harmful substance 20 in the ground 6, and an impermeable shielding wall 22 is formed in advance. In this state, as shown in FIG. 3 (b), if the injection liquid containing the purification liquid is injected through the injection pipe 19, the detoxification process is more effective as described above.

なお、本発明において、図3(a)に示されるように、まず、地盤6中の有害物20の周囲に固結材による不透水性の遮蔽壁22形成して有害物を包み込み、次いで、この遮蔽壁22によって囲まれた領域に注水し、又は有害物浄化剤又は該浄化剤を含む注入液又は固結材を注入して有害物を水中に移転し、地上に脱水して無害化処理することもできる。   In the present invention, as shown in FIG. 3 (a), first, an impervious shielding wall 22 is formed around the harmful substance 20 in the ground 6 by using a caking material to enclose the harmful substance. Water is poured into the area surrounded by the shielding wall 22, or a harmful substance purifying agent or an injection solution or a caking agent containing the purifying agent is injected to transfer the harmful substance into water, dehydrated to the ground, and detoxified. You can also

ここで有害物とは、上述と同様、人体や環境に悪影響を及ぼす6価クロム、水銀、鉛、カドミウム等の重金属、廃泥土、焼却灰、汚泥、産業廃棄物、生活廃水等であり、有害物浄化剤は、上述と同様の無機あるいは有機系還元剤やキレート剤であり、あるいはバクテリヤであり、固結材も上述と同様の物質である。   Here, as mentioned above, harmful substances are heavy metals such as hexavalent chromium, mercury, lead, cadmium, etc. that have a negative effect on the human body and the environment, waste mud, incinerated ash, sludge, industrial waste, domestic wastewater, etc. The material purification agent is the same inorganic or organic reducing agent or chelating agent as described above, or bacteria, and the caking agent is the same material as described above.

〔有機化合物により汚染された地盤の原位置浄化方法〕
トリクロロエチレン(TCE)により汚染された地盤において、本発明を用いた土壌浄化方法を示す。
[In-situ purification method for soil contaminated with organic compounds]
The soil purification method using this invention in the ground contaminated with trichlorethylene (TCE) is shown.

1.土槽
直径1m、高さ1mの簡易土槽に硅砂を詰め、間隙率40%含水比20%となるように調整した。
トリクロロエチレン(TCE)濃度0.1mg/lを、簡易土槽の中心に直径約30cm浸透させ、汚染土壌を作成した(図4参照)。
1. Earthen tank A simple earthen tank with a diameter of 1 m and a height of 1 m was filled with dredged sand and adjusted so that the porosity was 40% and the water content was 20%.
Trichlorethylene (TCE) concentration of 0.1 mg / l was infiltrated into the center of the simple soil tank by about 30 cm in diameter to create contaminated soil (see FIG. 4).

2.土壌浄化方法
以下の方法により地盤中のTCEの分解を行った。
本発明:汚染土壌周辺に表3の配合のシリカ化合物と微生物の混合液により遮断壁を作成し、汚染地盤に硫化第一鉄を注入した(図5参照)。
比較例1:汚染地盤中に硫化第一鉄を注入した(図6参照)。
2. Soil purification method TCE in the ground was decomposed by the following method.
The present invention: A barrier wall was made around the contaminated soil with a mixed solution of the silica compound and microorganisms shown in Table 3, and ferrous sulfide was injected into the contaminated ground (see FIG. 5).
Comparative Example 1: Ferrous sulfide was injected into the contaminated ground (see FIG. 6).

3.結果
土壌浄化後、改良地盤のTCE量を測定した。結果を表3に示す。
3. Results After soil purification, the amount of TCE in the improved ground was measured. The results are shown in Table 3.

Figure 2008161778
Figure 2008161778

結果より、本発明を用いた方が土壌浄化後のTCE量が少ない結果が得られた。これにより本発明を用いることにより、汚染地盤周辺を囲うことで土壌浄化剤の拡散を防ぐことができ、効率よく地盤が浄化できる。本発明の微生物含有水ガラスは微生物の代謝による二酸化炭素により硬化するため、アルカリ性であり、従来の酸性シリカゾルのように土壌浄化剤と反応し難い。   From the results, it was found that the TCE amount after soil purification was smaller when the present invention was used. Thus, by using the present invention, the soil purifier can be prevented from spreading by surrounding the contaminated ground and the ground can be purified efficiently. Since the microorganism-containing water glass of the present invention is cured by carbon dioxide due to the metabolism of microorganisms, it is alkaline and hardly reacts with a soil purifier like conventional acidic silica sols.

トリクロロエチレン(TCE)により汚染された地盤において、本発明の硬化性のある微生物を含有した水ガラス液による土壌浄化方法を示す。   The soil purification method by the water glass liquid containing the sclerosing | hardenable microorganisms of this invention in the ground contaminated with the trichlorethylene (TCE) is shown.

1.土槽
直径1m高さ1mの簡易土槽に硅砂を詰め、間隙率40%、含水比20%となるように調整した。
トリクロロエチレン(TCE)濃度0.1mg/lを簡易土槽の中心に、直径約30cm浸透させ、汚染土壌を作成した(図4参照)。
1. Earthen tank A simple earthen tank with a diameter of 1m and a height of 1m was filled with dredged sand and adjusted so that the porosity was 40% and the water content was 20%.
Contaminated soil was prepared by infiltrating a trichlorethylene (TCE) concentration of 0.1 mg / l about 30 cm in diameter into the center of a simple soil tank (see FIG. 4).

2.TCE分解菌の採取
現場採取砂からTCE100ppmを含む麦芽エキス培地で増殖したコロニーを、液体培地にて培養したものを用いた。
2. Collection of TCE-degrading bacteria Colonies grown in a malt extract medium containing 100 ppm of TCE from on-site collected sand were cultured in a liquid medium.

分解菌の採取方法は汚染地盤から砂を採取し、スクリーニングすることで得ることができる。方法はそれぞれの地盤の汚染物質によって異なる(特許文献3:特開平07−289290号公報等参照)。   Degrading bacteria can be collected by collecting sand from contaminated ground and screening. The method differs depending on the pollutants of each ground (see Patent Document 3: Japanese Patent Laid-Open No. 07-289290, etc.).

3.配合
上記2にて得られた分解菌を、グルコース10gを溶かしたイオン交換水100mlに溶解し、40℃で、水溶液がpH4.2以下になるまで静置した。その後5号水ガラス60ml、コロイダルシリカ10ml、イオン交換水30mlを混合した。同様の方法で、配合液4lを作成した。
3. Formulation The degrading bacterium obtained in 2 above was dissolved in 100 ml of ion-exchanged water in which 10 g of glucose was dissolved, and was allowed to stand at 40 ° C. until the aqueous solution became pH 4.2 or lower. Thereafter, 60 ml of No. 5 water glass, 10 ml of colloidal silica, and 30 ml of ion-exchanged water were mixed. In the same manner, 4 l of the mixed solution was prepared.

4.注入
上記1で作成したTCE汚染砂周辺に、上記3の配合液を注入し、遮断壁を作成した。
遮断壁の内側に、上記3の配合液を注入し、1ヶ月後のTCE量を測定した(図5参照)。
4). Injection The compounded liquid of the above 3 was injected around the TCE-contaminated sand prepared in 1 above to create a barrier wall.
The liquid mixture of the above 3 was injected inside the barrier wall, and the TCE amount after one month was measured (see FIG. 5).

5.結果
土壌浄化後、改良地盤のTCE量を測定した。結果を表4に示す。
表4の結果より、本発明の注入材により改良効果が得られたことが分かる。
5. Results After soil purification, the amount of TCE in the improved ground was measured. The results are shown in Table 4.
From the results of Table 4, it can be seen that the improvement effect was obtained by the injection material of the present invention.

Figure 2008161778
Figure 2008161778

本発明にかかる注入材の注入装置の一具体例の説明図である。It is explanatory drawing of one specific example of the injection apparatus of the injection material concerning this invention. 有害物を処理する説明図であって、(a)は地盤中の有害物を表し、(b)は有害物を固結材で固化し、包み込んだ状態の説明図である。It is explanatory drawing which processes a harmful | toxic substance, Comprising: (a) represents the harmful | toxic substance in the ground, (b) is explanatory drawing of the state which solidified and wrapped up the harmful | toxic substance with the caking material. 遮蔽壁を用いた処理の説明図であって、(a)は処理前、(b)は処理後を表す。It is explanatory drawing of the process using a shielding wall, Comprising: (a) represents before a process, (b) represents after a process. 簡易土槽中に作成した汚染地盤の説明図である。It is explanatory drawing of the contaminated ground created in the simple earth tank. 本発明の注入液により汚染地盤周辺を固結し、汚染地盤に土壌浄化剤を注入することで効果的に土壌浄化を行う説明図である。It is explanatory drawing which performs soil purification effectively by consolidating the contaminated ground periphery with the injection liquid of this invention, and inject | pouring a soil purification agent into a contaminated ground. 本発明の注入液を汚染地盤周辺、及び汚染地盤に注入し、土壌浄化を行う説明図である。It is explanatory drawing which inject | pours the injection liquid of this invention into the contaminated ground periphery and the contaminated ground, and performs soil purification.

符号の説明Explanation of symbols

1 水溶液貯槽
2 混合槽
3 注入ポンプ
4 流量計
5 水溶液送液管路
6 地盤
7 注入管
8 炭酸ガス容器
9 連結管
10 電磁弁
11 減圧弁
12 高圧炭酸ガス圧送管路
19 注入管路
20 有害物
21 固化物
22 遮蔽壁
DESCRIPTION OF SYMBOLS 1 Aqueous solution storage tank 2 Mixing tank 3 Injection pump 4 Flowmeter 5 Aqueous solution liquid supply line 6 Ground 7 Injection pipe 8 Carbon dioxide container 9 Connecting pipe
10 Solenoid valve
11 Pressure reducing valve
12 High-pressure carbon dioxide gas supply line
19 Injection line
20 Toxic substances
21 Solidified material
22 Shielding wall

Claims (4)

有害物を含む地盤の土壌浄化方法であって、該地盤に固結剤を注入し地盤中の有害物を分解することを特徴とする土壌浄化方法において、以下のいずれかによる土壌浄化方法。
(1)前記固結剤として、シリカ化合物と微生物、又はシリカ化合物と微生物と栄養源を注入して、微生物代謝により固結させる方法と共に、土壌浄化剤で有害物を分解する方法。
(2)前記固結剤として、シリカ化合物と微生物、あるいはシリカ化合物と微生物と栄養源を注入して地盤を固結すると共に有害物を分解する方法。
A soil purification method for ground containing harmful substances, wherein the soil purification method is characterized by injecting a caking agent into the ground to decompose harmful substances in the ground.
(1) A method of decomposing harmful substances with a soil purification agent together with a method of injecting a silica compound and a microorganism, or a silica compound and a microorganism and a nutrient source as the caking agent, and solidifying by microbial metabolism.
(2) A method of injecting a silica compound and a microorganism or a silica compound, a microorganism and a nutrient source as the caking agent to solidify the ground and decompose harmful substances.
請求項1において、地盤中の有害物の周りを取り囲み、あるいは有害物を包み込んで固結し、次いでその内側に土壌浄化剤を注入して有害物を分解する土壌浄化方法。   2. The soil remediation method according to claim 1, wherein the soil surrounds the harmful substances in the ground or encloses and solidifies the harmful substances, and then injects a soil purification agent into the inside thereof to decompose the harmful substances. 請求項1又は2において、炭酸ガス又は炭酸水を併用して、初期の改良度を促進することを特徴とする土壌浄化方法。   The soil purification method according to claim 1 or 2, wherein the initial improvement degree is promoted by using carbon dioxide gas or carbonated water together. 請求項1、2又は3の何れかにおいて、さらに多価金属化合物、又は、ゲル化調整剤を併用することを特徴とする土壌浄化方法。
The soil purification method according to any one of claims 1, 2, and 3, further comprising using a polyvalent metal compound or a gelling regulator.
JP2006352236A 2006-12-27 2006-12-27 Soil purifying method Pending JP2008161778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352236A JP2008161778A (en) 2006-12-27 2006-12-27 Soil purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352236A JP2008161778A (en) 2006-12-27 2006-12-27 Soil purifying method

Publications (1)

Publication Number Publication Date
JP2008161778A true JP2008161778A (en) 2008-07-17

Family

ID=39691955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352236A Pending JP2008161778A (en) 2006-12-27 2006-12-27 Soil purifying method

Country Status (1)

Country Link
JP (1) JP2008161778A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249466A (en) * 2008-04-03 2009-10-29 Adeka Corp Heavy metal insolubilizing agent and soil decontamination method using it
JP2011080224A (en) * 2009-10-06 2011-04-21 Kyokado Kk Grouting method
JP2011178947A (en) * 2010-03-03 2011-09-15 Daiwa House Industry Co Ltd Soil conditioning composition and soil conditioning method using the same
JP2011245458A (en) * 2010-05-31 2011-12-08 Adeka Corp Method for decomposition of organic substance, and decomposition agent kit for organic substance
CN104741367A (en) * 2013-12-30 2015-07-01 北京有色金属研究总院 Method for removing arsenic in soil by combining microorganisms with electric repairing
JP2016525879A (en) * 2013-05-17 2016-09-01 テクニシュ ユニベルシテイト デルフトTechnische Universiteit Delft Concrete bio repair method
JP2020002216A (en) * 2018-06-26 2020-01-09 株式会社熊谷組 Liquid medicine for soil conditioning, soil conditioning method using liquid medicine for soil conditioning, and handling method of liquid medicine for soil conditioning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311138A (en) * 2000-05-01 2001-11-09 Sanshin Corp Injection device into ground and production method of ground injection chemical
JP2004195407A (en) * 2002-12-20 2004-07-15 Kyokado Eng Co Ltd Method for making ground containing hazardous substance harmless

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311138A (en) * 2000-05-01 2001-11-09 Sanshin Corp Injection device into ground and production method of ground injection chemical
JP2004195407A (en) * 2002-12-20 2004-07-15 Kyokado Eng Co Ltd Method for making ground containing hazardous substance harmless

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249466A (en) * 2008-04-03 2009-10-29 Adeka Corp Heavy metal insolubilizing agent and soil decontamination method using it
JP2011080224A (en) * 2009-10-06 2011-04-21 Kyokado Kk Grouting method
JP2011178947A (en) * 2010-03-03 2011-09-15 Daiwa House Industry Co Ltd Soil conditioning composition and soil conditioning method using the same
JP2011245458A (en) * 2010-05-31 2011-12-08 Adeka Corp Method for decomposition of organic substance, and decomposition agent kit for organic substance
JP2016525879A (en) * 2013-05-17 2016-09-01 テクニシュ ユニベルシテイト デルフトTechnische Universiteit Delft Concrete bio repair method
CN104741367A (en) * 2013-12-30 2015-07-01 北京有色金属研究总院 Method for removing arsenic in soil by combining microorganisms with electric repairing
CN104741367B (en) * 2013-12-30 2017-05-17 北京有色金属研究总院 Method for removing arsenic in soil by combining microorganisms with electric repairing
JP2020002216A (en) * 2018-06-26 2020-01-09 株式会社熊谷組 Liquid medicine for soil conditioning, soil conditioning method using liquid medicine for soil conditioning, and handling method of liquid medicine for soil conditioning
JP7260968B2 (en) 2018-06-26 2023-04-19 株式会社熊谷組 Soil conditioning liquid, soil conditioning method using soil conditioning liquid, and handling method of soil conditioning liquid

Similar Documents

Publication Publication Date Title
JP2008161778A (en) Soil purifying method
JP5599032B2 (en) Ground improvement method
CN104560046B (en) A kind of contaminated soil passivator and preparation method and application
CN100554186C (en) Biological fixation formula permeating reaction wall system and weighting material that polluted underground water is repaired
JP5360578B2 (en) Ground injection method
JP4599611B2 (en) Ground improvement method and grout used in the method
JP2008008023A (en) Method of consolidating ground containing calcium, by using microorganisms
CN101829673A (en) Soil remediation method
JP6531902B2 (en) Heavy metal insolubilizing composition and method for repairing heavy metal contaminated soil
JP5205844B2 (en) Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method
JP2007332617A (en) Soil improving method
JP4517050B2 (en) Ground improvement method and apparatus
CA2359947C (en) Purification method and purification apparatus for contaminated object containing halogenated organic compounds
CA2415822A1 (en) Method for purifying a layer of contaminated soil and apparatus
CN106734144A (en) A kind of method of contaminated soil containing cyanogen and underground water in-situ immobilization
CN106391694A (en) Solidification and stabilization method for mercury in mercury contaminants
CN103537481A (en) Preparation method of curing isolation impervious body for organic pollutants
CN101502840B (en) Harmless treatment technique of solid dangerous waste
JP2008063794A (en) Method of treating soil or building skeleton
JP2008138069A (en) Method for treating soil or construction skeleton
JP2008063495A (en) Method for treating soil or building skeleton
JP3455952B2 (en) How to fix harmful substances
CN104907329A (en) Mining heavy metal polluted soil solidifying/stabilizing method
JP5209128B2 (en) Injection chemical solution for preventing arsenic diffusion, method for preventing arsenic diffusion in arsenic-contaminated soil, and liquid feeding device used in this method
CN110373202A (en) A kind of agent of efficient stable chemical drug and method of arsenic and manganese combined contamination soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100927

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101015