JP2008007924A - 伸縮性不織布 - Google Patents

伸縮性不織布 Download PDF

Info

Publication number
JP2008007924A
JP2008007924A JP2007132044A JP2007132044A JP2008007924A JP 2008007924 A JP2008007924 A JP 2008007924A JP 2007132044 A JP2007132044 A JP 2007132044A JP 2007132044 A JP2007132044 A JP 2007132044A JP 2008007924 A JP2008007924 A JP 2008007924A
Authority
JP
Japan
Prior art keywords
fiber
elastic
nonwoven fabric
fibers
elastic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007132044A
Other languages
English (en)
Other versions
JP5230123B2 (ja
Inventor
Takeshi Miyamura
猛史 宮村
Manabu Matsui
学 松井
Tetsuya Masuki
哲也 舛木
Hideyuki Kobayashi
秀行 小林
Koji Kanazawa
幸二 金澤
Hiroshi Kodaira
博志 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007132044A priority Critical patent/JP5230123B2/ja
Publication of JP2008007924A publication Critical patent/JP2008007924A/ja
Application granted granted Critical
Publication of JP5230123B2 publication Critical patent/JP5230123B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高伸縮及び高強度を有する伸縮性不織布を提供すること。
【解決手段】伸縮性不織布10は、弾性繊維及び長手方向に沿う太さが一様になっていない非弾性繊維を含む。好ましくは弾性繊維層1の少なくとも一面に、実質的に非弾性の非弾性繊維層2が配されてなる。非弾性繊維層2に、長手方向に沿う太さが一様になっていない繊維が含まれている。不織布10は、(a)弾性繊維を含むウエブの少なくとも一面に、伸度が80〜800%である低延伸の非弾性繊維を含むウエブを配し、(b)これらのウエブに対して、それらが一体化していない状態下に、エアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ、これらのウエブが一体化してなる繊維シートを得、(c)前記繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後前記繊維シートの延伸を解放することで好適に製造される。
【選択図】図1

Description

本発明は伸縮性不織布に関する。
弾性伸縮性のフィルム又は弾性伸縮性の連続繊維からなる弾性シートと、非弾性的な伸長性を有する繊維集合体とを積層してなる弾性伸縮性複合シートが提案されている(特許文献1参照)。弾性シートと繊維集合体とは間欠的に配置された接合部で接合されている。繊維集合体の構成繊維は、接合部間で連続する長繊維である。この長繊維は接合部間において溶着も融着もしておらず、繊維が互いに分離独立している。また、この長繊維は接合部間において不規則な曲線を描いている。
特許文献1によれば、この弾性伸縮性複合シートにおいては、繊維集合体の長繊維が接合部間において不規則な曲線を描いているので、該シートを伸長させたとき、その伸長が該繊維集合体によって妨げられることがないとされている。しかし、繊維集合体の長繊維が接合部間において互いに分離独立しているので、この弾性伸縮性複合シートは引っ張りに対する強度が低い。また、繊維集合体と弾性シートとの間の剥離強度も低い。更に、接合部間において長繊維の浮きが生じやすく、それによってシートが毛羽立ち様の外観を呈し、見た目の印象が良好でない。
上述の弾性伸縮性複合シートとは別に、エラストマー樹脂からなる弾性繊維を含む伸縮性不織布が種々知られている。例えば特許文献2には、少なくとも約10重量%のA−B−Aブロック共重合体及びポリオレフィンを含む押出成形可能なエラストメリック組成物からなるミクロファイバを含むエラストメトリック不織布が記載されている。しかし、このミクロファイバは、その構成樹脂としてポリオレフィンを含んでいるので、それに起因して伸縮特性が十分なものとはならない。
特許文献3には、エラストマーメルトブローン繊維層及びエラストマーフィラメント層を有する異方性弾性繊維ウエブと、該ウエブに結合したギャザー可能な層とを有する複合弾性材料が記載されている。エラストマーフィラメントを構成する材料は、40〜80重量%のエラストマーポリマーと、5〜40重量%の樹脂粘着剤である。このように、エラストマーフィラメントは、エラストマー樹脂以外の樹脂を含んでいるので、それに起因して伸縮特性が十分なものとはならない。
特許文献4には、スチレン含有量が10〜40重量%であり、数平均分子量が70000〜150000のスチレン系エラストマーを60〜98重量%含む繊維又はフィルムからなる弾性シートを有する伸縮性複合シートが記載されている。この繊維又はフィルムには、スチレン系エラストマーに加えて、エラストマー以外の材料、例えばオレフィン系レジンやオイル成分が含まれている。これらの材料が含まれていることに起因して、この伸縮性複合シートは、その伸縮特性が十分なものとはならない。
特許文献5には、スチレンを主体とする重合体ブロックAと、イソプレンを主体とする重合体ブロックBとからなるブロック共重合体の、イソプレンに基づく二重結合に水素を添加することによって得られるスチレン系エラストマーの繊維からなる伸縮性不織布が記載されている。しかし、この不織布は低いモジュラスであり、また伸縮のヒステリシスが十分なものとは言えない。
特開2001−79972号公報 特開昭62−84143号公報 特開平5−272043号公報 特開2002−361766号公報 特開平4−11059号公報
従って本発明の目的は、前述した従来技術が有する欠点を解消し得る伸縮性不織布を提供することにある。
本発明は、弾性繊維及び長手方向に沿う太さが一様になっていない非弾性繊維を含む伸縮性不織布を提供するものである。
また本発明は、弾性繊維を含むウエブの少なくとも一面に、伸度が80〜800%である低延伸の非弾性繊維を含むウエブを配し、
これらのウエブに対して、それらが一体化していない状態下に、エアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ、これらのウエブが一体化してなる繊維シートを得、
前記繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後前記繊維シートの延伸を解放する、伸縮性不織布の製造方法を提供するものである。
更に本発明は、弾性繊維及び伸度が80〜800%である低延伸の非弾性繊維を含むウエブに対してエアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ繊維シートを得、
前記繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後前記繊維シートの延伸を解放する、伸縮性不織布の製造方法を提供するものである。
本発明の伸縮性不織布によれば、高伸度と高強度とが両立したものとなる。従って本発明の伸縮性不織布は、これを引き伸ばしても破断しにくいものである。また本発明の伸縮性不織布は、太さが一様になっていない非弾性繊維に起因して肌触りが良好なものである。
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の伸縮性不織布の一実施形態における断面構造の模式図が示されている。本実施形態の伸縮性不織布10は、弾性繊維層1の両面に、同一の又は異なる、実質的に非弾性の非弾性繊維層2,3が積層されて構成されている。弾性繊維層1の両面に非弾性繊維層を積層することは、一面のみに積層する場合と比較して、ブロッキング防止やハンドリングの面で好ましい。
弾性繊維層1の構成繊維としては、例えば熱可塑性エラストマー、ゴムなどを原料とする繊維を用いることができる。特に、本実施形態の伸縮性不織布をエアスルー法によって製造する場合には、熱可塑性エラストマーを原料とする繊維を用いることが好ましい。この理由は、熱可塑性エラストマーを原料とする繊維は、通常の熱可塑性樹脂と同様に押出機を用いた溶融紡糸が可能であり、またそのようにして得られた繊維は熱融着させやすいからである。熱可塑性エラストマーとしては、SBS、SIS、SEBS、SEPS等のスチレン系エラストマー、オレフィン系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマーを挙げることができる。これらは一種を単独で又は二種以上を組み合わせて用いることができる。またこれらの樹脂からなる芯鞘型又はサイド・バイ・サイド型の複合繊維を用いることもできる。特にスチレン系エラストマー、オレフィン系エラストマー、又はそれらを組み合わせて用いることが、弾性繊維の成形性、伸縮特性、コストの面で好ましい。
特に、弾性繊維層1に含まれる弾性繊維の構成樹脂として、特定のブロック共重合体からなる熱可塑性エラストマーを含むものを用いることが好ましい。このブロック共重合体を用いた伸縮性不織布は、従来の伸縮性不織布と比較して高モジュラスで、伸縮のヒステリシスが良好となる。従ってこのブロック共重合体を用いた伸縮性不織布は、弾性繊維の使用量を少なくしても良好な伸縮特性が発現するので、薄手で通気性や肌触りが良好であり、延びやすく、適度な収縮力を有している。このブロック共重合体は、以下に述べる構造及び動的粘弾性特性を有していることによって特徴付けられる。
ブロック共重合体は、芳香族ビニル化合物を主体とする重合体ブロックAを含んでいる。芳香族ビニル化合物としては、例えばスチレン、p−メチルスチレン、m−メチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、クロロメチルスチレン、p−tert−ブトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ビニルトルエン等が挙げられる。これらの芳香族化合物のうち、工業的観点からスチレンを用いることが好ましい。
重合体ブロックAは、ブロック共重合体中に好ましくは10〜50重量%含まれ、更に好ましくは15〜30重量%含まれる。ブロック共重合体における重合体ブロックの量を10〜50重量%とすることで、ブロック共重合体の成形性や耐熱性が満足すべきものとなり、またブロック共重合体の伸縮特性や柔軟性が良好になる。
重合体ブロックAに加えて、ブロック共重合体は、以下の式(1)で表される繰り返し単位を主体とする重合体ブロックBを含んでいる。ブロック共重合体中における重合体ブロックBの量は、ブロック共重合体中における重合体ブロックAの量の残部である。即ち、ブロック共重合体中における重合体ブロックBの量は、好ましくは50〜90重量%、更に好ましくは70〜85重量%である。
Figure 2008007924
重合体ブロックBは、式(1)で表される繰り返し単位に加えて、以下の式(2)で表される繰り返し単位を更に含んでいてもよい。式(2)で表される繰り返し単位は、重合体ブロックB中に20モル%以下、特に10モル%以下の量で含まれ得る。勿論、重合体ブロックBは、式(2)で表される繰り返し単位を含んでいなくてもよい。
Figure 2008007924
ブロック共重合体における重合体ブロックAと重合体ブロックBとの配列様式としては種々のものがある。好ましくは線状の配列様式、特に基本型がA−B−A型であるトリブロックであることが、ブロック共重合体の伸縮特性が良好になる点から好ましい。
ブロック共重合体は、上述の構造を有するものであることに加えて、以下に述べる動的粘弾性特性を有していることが好ましい。これによって、このブロック共重合体から構成される弾性繊維を含む伸縮性不織布は、従来の伸縮性不織布と比較して高モジュラスで、伸縮のヒステリシスが良好なものとなる。高モジュラスであることは、通気性や肌触りを高める目的で伸縮性不織布の坪量を低くして、該不織布を薄手のものにした場合や、弾性繊維の繊維径を小さくした場合であっても、良好な伸縮特性が発揮されることになるので有利である。つまり、伸縮性不織布が伸ばしやすくなり、且つ伸ばされた状態から収縮するときの強度が高くなる。従って、このブロック共重合体から構成される弾性繊維を含む伸縮性不織布は、例えばパンツ型使い捨ておむつにおける外装面全面を構成するシートとして特に好適なものである。
また、ブロック共重合体から構成される弾性繊維は、他の一般的なエラストマー繊維に比べ、べたつき性ないしタック性が小さいという利点も有する。これによっても、ブロック共重合体から構成される弾性繊維を含む伸縮性不織布は、肌触りが良好なものとなる。
ブロック共重合体は、20℃、周波数2Hzで測定された動的粘弾性の貯蔵弾性率G'が好ましくは1×104〜8×106Pa、更に好ましくは5×104〜5×106Pa、一層好ましくは1×105〜1×106Paになっている。これに加えてブロック共重合体は、20℃、周波数2Hzで測定された動的粘弾性の動的損失正接tanδ値が好ましくは0.2以下、更に好ましくは0.1以下、一層好ましくは0.05以下になっている。tanδ値の下限に特に制限はなく、小さければ小さいほど好ましいが、現在の工業的技術で達成可能な下限値は0.005程度である。
前記の貯蔵弾性率G'は、ブロック共重合体の動的粘弾性測定における弾性成分を表す指標、すなわち硬さを表す指標である。一方動的損失正接tanδ値は、貯蔵弾性率G'と損失弾性率G"との比G"/G'で表され、ブロック共重合体が変形する際にどのくらいエネルギーを吸収するかを表す指標である。ブロック共重合体の貯蔵弾性率G'の値を前記の範囲内とすることで、モジュラスを適切な値とすることが可能となり、伸縮のヒステリシスが良好になり、また大きな力を加えなくても不織布が伸長する。それによって不織布の感触が良好になる。更に、残留歪みを小さくすることができる。一方、ブロック共重合体の動的損失正接tanδ値を、前記の上限値以下とすることで、不織布が伸長したときの残留歪みを小さくすることができ、伸縮特性を十分なものとすることができる。
ブロック共重合体の動的粘弾性測定は、上述の通り、20℃、周波数2Hz、引張モードで行われる。与える歪みは0.1%である。本実施形態における具体的な測定は、Anton Paar社製のPhysica MCR500を用いて行った。なお試料は、長さ30mm、幅10mm、厚さ0.8mmの板状のものとした。
ブロック共重合体は例えば次の工程で合成できる。先ず、シクロヘキサン等の炭化水素溶媒に、芳香族ビニル化合物及び共役ジエン化合物を適宜の順序で添加し、有機リチウム化合物や金属ナトリウム等を開始剤としてアニオン重合を行い共役ジエンに基づく二重結合を有する共重合体を得る。共役ジエン化合物としては、例えば1,3−ブタジエン、イソプレン、ペンタジエン、ヘキサジエン等が用いられる。特にイソプレンを用いることが好ましい。
次に、この共重合体の共役ジエンに基づく二重結合に水素を添加して、目的とするブロック共重合体を得る。共役ジエンに基づく二重結合の水素添加率は、80%以上、特に90%以上であることが、耐熱性・耐候性の点から好ましい。水素添加反応は、白金、パラジウム等の貴金属系触媒や、有機ニッケル化合物、有機コバルト化合物又はこれらの化合物と他の有機金属化合物との複合触媒を用いて行うことができる。水素添加率は、ヨウ素価測定法によって算出される。
ブロック共重合体として市販品を用いることもできる。そのような市販品としては例えば株式会社クラレから入手可能なスチレン−エチレン−プロピレン−スチレンブロック共重合体であるSEPTON(登録商標)2004やSEPTON(登録商標)2002が挙げられる。
弾性繊維層1に含まれる弾性繊維の樹脂成分として前記のブロック共重合体を用いる場合、該弾性繊維は、前記のブロック共重合体のみから構成されていてもよく、或いは前記のブロック共重合体及び他の樹脂を含んで構成されていてもよい。弾性繊維が前記のブロック共重合体及び他の樹脂を含む場合、弾性繊維におけるブロック共重合体の含有量は20〜80重量%、特に40〜60重量%であることが好ましい。
弾性繊維が前記のブロック共重合体及び他の樹脂を含む場合、当該他の樹脂としては、例えばポリエチレン、ポリプロピレン、プロピレンとエチレン等の共重合体などからなるポリオレフィン系樹脂、ポリエチレンテレフタレートなどからなるポリエステル系樹脂、ポリアミド樹脂等の溶融紡糸可能な樹脂を用いることができる。
弾性繊維が前記のブロック共重合体を含む場合、該弾性繊維の繊維形態としては、(イ)前記のブロック共重合体単独、又は該ブロック共重合体と、他の樹脂とのブレンドからなる単独繊維、(ロ)前記のブロック共重合体と他の樹脂とを構成樹脂とする芯鞘型又はサイド・バイ・サイド型の複合繊維などが挙げられる。特に、前記のブロック共重合体単独からなる単独繊維を用いることが好ましい。
弾性繊維の樹脂成分としてどのようなものを用いる場合であっても、該弾性繊維は連続繊維及び短繊維の何れの形態であってもよい。好ましくは連続繊維の形態である。弾性繊維が連続繊維であると、ノズルリップからの熱風によって連続して伸長されるので、繊維径が細くなるばかりでなく、繊維径のバラツキが少なくなるという利点があるからである。また、冷風にて延伸する場合も同様の傾向となる。これによって、不織布を透かして見たときの地合いが良好となり、また、不織布の伸縮特性のバラツキが小さくなる。繊維径の細いものが得られるということは、熱風及び冷風の容量を小さくでき、製造コストの点でもメリットがある。
弾性繊維層1の構成繊維は、通気性及び伸縮特性の観点から、その繊維径が5μm以上、特に10μm以上が好ましく、100μm以下、特に40μm以下であることが好ましい。
弾性繊維層1は、伸ばすことができ且つ伸ばした力から解放したときに収縮する性質を有するものである。弾性繊維層1は、不織布の表面と平行な少なくとも一方向において、100%伸長後に収縮させたときの残留歪みが20%以下、特に10%以下であることが好ましい。この値は、少なくとも、MD方向及びCD方向の何れか一方において満足することが好ましく、両方向において満足することがより好ましい。
弾性繊維層1は、弾性を有する繊維を含む集合体である。弾性繊維層1には、その弾性を損なわない範囲において、非弾性の繊維を好ましくは30重量%以下、更に好ましくは20重量%以下、一層好ましくは10重量%以下の範囲で配合してもよい。弾性を有する繊維の成形方法には、例えば溶融した樹脂をノズル孔より押出し、この押出された溶融状態の樹脂を熱風により伸長させることによって繊維を細くするメルトブローン方法と半溶融状態の樹脂を冷風や機械的ドロー比によって延伸するスパンボンド法がある。また、溶融紡糸法の一種であるスピニングブローン法によって弾性繊維を製造することもできる。
また、弾性繊維層1は、弾性を有する繊維を含むウエブや不織布の形態であり得る。例えば、スピニングブローン法、スパンボンド法、メルトブローン法等によって形成されたウエブや不織布であり得る。特に好ましくは、スピニングブローン法で得られたウエブである。
スピニングブローン法においては、溶融ポリマーの吐出ノズルの先端近辺に、一対の熱風吐出部を、前記ノズルを中心に対向配置し、その下流に一対の冷風吐出部を、前記ノズルを中心に対向配置した紡糸ダイを用いる。スピニングブローン法によれば、溶融繊維の熱風による伸長と、冷風による冷延伸とが連続的に行われるので、伸縮性繊維の成形を容易に行えるという利点がある。また、繊維が緻密になりすぎず、短繊維に類した太さの伸縮性繊維を成形できるので、通気性の高い不織布が得られるという利点もある。更にスピニングブローン法によれば、連続フィラメントのウエブを得ることができる。連続フィラメントのウエブは、短繊維のウエブに比較して高伸張時の破断が起こりにくく、弾性を発現させやすいことから、本実施形態において極めて有利である。
スピニングブローン法に用いられる紡糸ダイとしては、例えば特公昭43−30017号公報の図1に記載されているもの、特開昭62−90361公報の図2に記載されているもの、特開平3−174008号公報の図2に記載されているものを用いることができる。更に、特許第3335949号公報の図1ないし図3に示されるものを用いることができる。紡糸ダイより紡出された繊維は捕集ネットコンベア上に堆積される。
非弾性繊維層2,3は、伸長性を有するが、実質的に非弾性の層である。ここでいう、伸長性は、構成繊維自体が伸長する場合と、構成繊維自体は伸長しなくても、繊維どうしの交点において熱融着していた両繊維どうしが離れたり、繊維どうしの熱融着等により複数本の繊維で形成された立体構造が構造的に変化したり、構成繊維がちぎれたりして、繊維層全体として伸長する場合の何れであっても良い。
非弾性繊維層2,3には、実質的に非弾性の繊維が含まれている。この繊維は、その長さ方向において繊維の太さが一様になっていないことによって特徴付けられる(以下、この繊維を不定径繊維という)。つまり不定径繊維は、その長さ方向に沿ってみたときに、繊維断面積(直径)が大きい部分もあれば、小さい部分もある。不定径繊維においては、その太さが最も細い部分から最も太い部分まで連続的に太さが変化していてもよい。或いは、未延伸糸の延伸工程で観察されるネッキング現象のように、繊維の太さが略ステップ状に変化していてもよい。
不定径繊維は、一定の繊維径を有する低延伸の非弾性繊維を原料とすることが好ましい。低延伸の繊維を原料として、後述する製造方法に従い本実施形態の伸縮性不織布を製造すると、その製造過程において低延伸の繊維が引き伸ばされることで、繊維に細い部分が生じて前記の不定径繊維が形成される。その結果、本実施形態の伸縮性不織布の製造過程において、繊維間の接合点や、非弾性繊維層と弾性繊維層との接合点が破壊されにくくなるので、伸縮性能を維持しつつ伸縮性不織布の強度を高くすることができ、高伸度と高強度とが両立した伸縮性不織布が得られる。また、本実施形態の伸縮性不織布の製造過程において、不定径繊維間の接合も破壊されにくくなるので、非弾性繊維層が毛羽立ち様になりにくくなる。このことは、本実施形態の伸縮性不織布の外観を向上させる点から有利である。これに対して、背景技術の項で述べた特許文献1に記載の弾性伸縮性複合シートにおいては、延伸工程において繊維どうしの溶着や機械的な絡み合いが外れることから、シートの強度が低下してしまい、高伸度と高強度を両立させることができない。
更に、前記の低延伸の繊維を原料とすることで、繊維の引き伸ばしの前に比較して、細い繊維の本数(長さ)が実質的に増加する。それによって本実施形態の伸縮性不織布の隠蔽性が向上する。不織布の隠蔽性が向上することは、例えば該不織布を生理用ナプキンや使い捨ておむつなどの吸収性物品の表面シートとして用いた場合、吸収体に吸収された体液が表面シート越しに見えづらくなるという点から有利である。
その上、不定径繊維の太さが周期的に変化していると、非弾性繊維層の表面が細かに波打った状態になり、その肌触りが良好になるという付加的な効果もある。この場合、変化の周期、つまり最も太い部分とそれに隣り合う最も太い部分までの距離は、0.5〜2.5mm、特に0.8〜1.5mmであることが好ましい。この周期は、非弾性繊維層の顕微鏡観察から測定できる。
以上の各効果を一層顕著なものとする観点から、不定径繊維はその太さが、最も細い部分において好ましくは2〜15μm、更に好ましくは5〜12μmであり、最も太い部分において好ましくは10〜30μm、更に好ましくは12〜25μmである。不定径繊維の太さは、非弾性繊維層の顕微鏡観察から測定できる。
不定径繊維の原料である、延伸加工前の非弾性繊維はその繊維間融着点強度が、該非弾性繊維の100%伸長時強度よりも高いものであることが好ましい。これによって伸縮性不織布を引き伸ばしたときに、繊維間の融着点の破壊が起こりにくくなり、該不織布の強度が低下しづらくなる点から好ましい。融着点強度は、本出願人の先の出願に係る特開2004−218183号公報の段落〔0040〕の記載に従い測定される。100%伸長時強度は、引張試験機を用い、チャック間距離20mm、引張速度20mm/minの条件で測定される。
先に述べた通り、不定径繊維は、一定の繊維径を有する低延伸の非弾性繊維を原料とすることが好ましい。この場合、低延伸の繊維は、単一の原料からなる繊維でもよく、或いは2種以上の原料を用いた複合繊維、例えば芯鞘型複合繊維やサイド・バイ・サイド型複合繊維であってもよい。不定径繊維どうしの接合のさせやすさや、非弾性繊維層と弾性繊維層との接合のさせやすさを考慮すると、複合繊維を用いることが好ましい。芯鞘型の複合繊維の場合、芯がポリエステル(PETやPBT)、ポリプロピレン(PP)、鞘が低融点ポリエステル(PETやPBT)、ポリプロピレン(PP)、ポリエチレン(PE)が好ましい。特にこれらの複合繊維を用いると、ポリオレフィン系エラストマーを含む弾性繊維層の構成繊維との熱融着が強くなり、層剥離が起こりにくい点で好ましい。
不定径繊維は、ステープルファイバのような短繊維でもよく、或いは連続フィラメントのような長繊維でもよい。後述する伸縮性不織布の製造方法に鑑みると、短繊維を用いることが好ましい。また、不定径繊維は親水性でも撥水性でも良い。
非弾性繊維層2,3は、不定径繊維のみから構成されていてもよく、或いは不定径繊維に加えて、他の一定径の非弾性繊維が含まれていてもよい。他の非弾性繊維としては、PE、PP、PET、PBT、ポリアミド等からなる繊維等が挙げられる。他の非弾性繊維は、短繊維でも長繊維でも良く、親水性でも撥水性でも良い。また、芯鞘型又はサイド・バイ・サイドの複合繊維、分割繊維、異形断面繊維、捲縮繊維、熱収縮繊維等を用いることもできる。これらの繊維は一種を単独で又は二種以上を組み合わせて用いることができる。非弾性繊維層2,3に、不定径繊維に加えて他の一定径の非弾性繊維が含まれている場合、他の非弾性繊維の配合量は1〜30重量%、特に5〜20重量%であることが好ましい。
非弾性繊維層2,3は、連続フィラメント又は短繊維のウエブ又は不織布であり得る。特に、短繊維のウエブであることが、厚みのある嵩高な非弾性繊維層2,3を形成し得る点から好ましい。2つの非弾性繊維層2,3は、構成繊維の材料、坪量、厚み等に関して同じであっても良く、或いは異なっていてもよい。また、2つの非弾性繊維層2,3のうち、一方の非弾性繊維層にのみ不定径繊維が含まれていてもよい。
2つの非弾性繊維層2,3のうち少なくとも一方は、その厚みが弾性繊維層1の厚みの1.2〜20倍、特に1.5〜5倍になっていることが好ましい。一方、坪量に関しては、2つの非弾性繊維層2,3のうち少なくとも一方は、その坪量よりも弾性繊維層の坪量の方が高くなっていることが好ましい。換言すれば、非弾性繊維層は、弾性繊維層よりも厚く且つ坪量が小さいことが好ましい。厚みと坪量とがこのような関係になっていることで、非弾性繊維層は、弾性繊維層に比較して厚みのある嵩高なものとなる。その結果、伸縮性不織布10は柔らかで風合いの良好なものとなる。
非弾性繊維層2,3の厚みそのものに関しては、0.05〜5mm、特に0.1〜1mmであることが好ましい。一方、弾性繊維層1の厚みそのものに関しては、非弾性繊維層2,3の厚みよりも小さいことが好ましく、具体的には0.01〜2mm、特に0.1〜0.5mmであることが好ましい。厚みは、伸縮性不織布を20±2℃、65±2%RHの環境下に無荷重下にて2日以上放置した後、次の方法にて求める。先ず、伸縮性不織布を0.5cN/cm2の荷重にて平板間に挟む。その状態下にて、マイクロスコープにより50〜200倍の倍率で観察し、各視野において平均厚みをそれぞれ求め、3視野の厚みの平均値として求めることができる。
非弾性繊維層2,3の坪量そのものに関しては、弾性繊維層の表面を均一に覆う観点及び残留歪みの観点から、それぞれ1〜60g/m2、特に5〜15g/m2であることが好ましい。一方、弾性繊維層1の坪量そのものに関しては、伸縮特性及び残留歪みの観点から、非弾性繊維層2,3の坪量よりも大きいことが好ましい。具体的には5〜80g/m2、特に10〜40g/m2であることが好ましい。
図1に示すように、本実施形態においては、弾性繊維層1と、非弾性繊維層2,3とは、弾性繊維層1の構成繊維が繊維形態を保った状態で、繊維交点の熱融着によって全面で接合されている。つまり、部分接合されている従来の伸縮性不織布とは、接合状態が異なっている。弾性繊維層1と、非弾性繊維層2,3とが全面接合されている本実施形態の伸縮性不織布10においては、弾性繊維層1と、非弾性繊維層2,3との界面及びその近傍において、弾性繊維層1の構成繊維と、非弾性繊維層2,3の構成繊維との交点が熱融着しており、実質的に全面で均一に接合されている。全面で接合されていることによって、弾性繊維層1と、非弾性繊維層2,3との間に浮きが生じること、つまり、両層が離間して空間が形成されることが防止される。両層間に浮きが生じると、弾性繊維層と非弾性繊維層との一体感がなくなり伸縮性不織布10の風合いが低下する傾向にある。本発明によれば、あたかも一層の不織布ごとき一体感のある多層構造の伸縮性不織布が提供される。
「弾性繊維層1の構成繊維が繊維形態を保った状態」とは、弾性繊維層1の構成繊維のほとんどが、熱や圧力等を付与された場合であっても、フィルム状、又はフィルム−繊維構造に変形していない状態をいう。弾性繊維層1の構成繊維が繊維形態を保った状態にあることで、本実施形態の伸縮性不織布10には十分な通気性が付与されるという利点がある。
弾性繊維層1は、その層内において、構成繊維の交点が熱融着している。同様に、非弾性繊維層2,3も、その層内において、構成繊維の交点が熱融着している。
2つの非弾性繊維層2,3のうちの少なくとも一方においては、その構成繊維の一部が弾性繊維層1に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が少なくとも一方の非弾性繊維層2,3に入り込んだ状態になっている。このような状態になっていることで、弾性繊維層1と、非弾性繊維層2,3との一体化が促進され、両層間に浮きが生じることが一層効果的に防止される。結果としてそれぞれの層の表面に追従した形で層と層が組み合わさっている状態となる。非弾性繊維層の構成繊維は、その一部が弾性繊維層1に入り込み、そこにとどまっているか、或いは弾性繊維層1を突き抜けて、他方の非弾性繊維層にまで到達している。それぞれの各層において表面繊維間を結ぶ面をマクロ的に想定したとき、この面から層の内側に形成される繊維空間に、他の層の構成繊維の一部が前記層の断面厚み方向へ入り込んでいる。非弾性繊維層の構成繊維が弾性繊維層1に入り込み、そこにとどまっている場合、該構成繊維は、更に弾性繊維層1の構成繊維と交絡していることが好ましい。同様に、非弾性繊維層の構成繊維が弾性繊維層1を突き抜けて、他方の非弾性繊維層にまで到達している場合には、該構成繊維は、他方の非弾性繊維層の構成繊維と交絡していることが好ましい。これは伸縮性不織布の厚み方向断面をSEMやマイクロスコープなどで観察した際に、層間において実質的に空間が形成されていないことで確認される。また、ここで言う「交絡」とは、繊維どうしが十分に絡み合っている状態を意味し、繊維層を単に重ね合わせただけの状態は交絡に含まれない。交絡しているか否かは、例えば、繊維層を単に重ね合わせた状態から、繊維層を剥離するときに要する力と、繊維層を重ね合わせ、それに熱融着を伴わないエアスルー法を適用した後に、繊維層を剥離する力とを比較して、両者間に実質的に差異が認められる場合には、交絡していると判断できる。
非弾性繊維層の構成繊維を、弾性繊維層に入り込ませる、及び/又は、弾性繊維層の構成繊維を非弾性繊維層に入り込ませるには、非弾性繊維層の構成繊維と非弾性繊維層の構成繊維を熱融着させる処理前において非弾性繊維または弾性繊維の少なくともどちらかがウエブ状態(熱融着していない状態)であることが好ましい。構成繊維を他の層に入り込ませる観点から、ウエブ状態である繊維層は、短繊維の方が長繊維に比べ自由度が高いことから好ましい。
また、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませる、及び/又は、弾性繊維層の構成繊維を非弾性繊維層に入り込ませるには、エアスルー法を用いることが好ましい。エアスルー法を用いることで、相対する繊維層に構成繊維を入り込ませ、また、相対する繊維層から構成繊維を入り込ませることが容易となる。またエアスルー法を用いることで、非弾性繊維層の嵩高さを維持しつつ、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませることが容易となる。非弾性繊維層の構成繊維を、弾性繊維層1を突き抜けさせて他方の非弾性繊維層にまで到達させる場合にも、同様にエアスルー法を用いることが好ましい。特に、ウエブ状態の非弾性繊維層を、弾性繊維層と積層して、エアスルー法を用いることが好ましい。この場合、弾性繊維層はその構成繊維同士が熱融着をしていてもよい。更に、後述する製造方法において説明するように、特定の条件下でエアスルー法を行うことで、また、熱風の通りをよくするため伸縮性不織布の通気性、特に弾性繊維層の通気度を高いものとすることで、繊維をより均一に入り込ませることができる。エアスルー法以外の方法、例えばスチームを吹きかける方法も使用することができる。また、スパンレース法、ニードルパンチ法などを用いることも可能であるが、その場合には非弾性繊維層の嵩高さが損なわれたり、表面に弾性繊維層の構成繊維が表面にでてきてしまい、得られる伸縮性不織布の風合いが低下したりする傾向にある。
特に、非弾性繊維層の構成繊維が、弾性繊維層1の構成繊維と交絡している場合には、エアスルー法のみによって交絡していることが好ましい。
エアスルー法によって繊維を交絡させるためには、気体の吹きつけ圧、吹きつけ速度、繊維層の坪量や厚み、繊維層の搬送速度等を適切に調整すればよい。通常のエアスルー不織布を製造するための条件を採用しただけでは、非弾性繊維層の構成繊維と弾性繊維層1の構成繊維とを交絡させることはできない。後述する製造方法において説明するように、特定の条件下でエアスルー法を行うことによって、本発明において目的とする伸縮性不織布が得られる。
エアスルー法では一般に、所定温度に加熱された気体を、繊維層の厚み方向に貫通させている。その場合には、繊維の交絡及び繊維交点の融着が同時に起こる。しかし本実施形態においては、エアスルー法によって各層内の構成繊維間で繊維交点を融着させることは必須ではない。換言すれば、エアスルー法は、非弾性繊維層の構成繊維を、弾性繊維層1に入り込ませるために、或いは、該構成繊維を弾性繊維層1の構成繊維と交絡させ、そして、非弾性繊維層の構成繊維と弾性繊維層の構成繊維とを熱融着させるために必要な操作である。また、繊維が入り込む方向は、加熱された気体の通過方向と非弾性繊維層と弾性繊維層との位置関係によって変わる。非弾性繊維層は、エアスルー法によって、その構成繊維内で繊維交点が融着されたエアスルー不織布となることが好ましい。
以上の説明から明らかなように、本実施形態の伸縮性不織布の好ましい形態においては、実質的に非弾性の非弾性エアスルー不織布の厚み方向内部に、構成繊維が繊維形態を保った状態の弾性繊維層1が含まれており、該エアスルー不織布の構成繊維の一部が弾性繊維層1に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が非弾性繊維層に入り込んだ状態になっている。更に好ましい形態においては、エアスルー不織布の構成繊維の一部が弾性繊維層1の構成繊維とエアスルー法によってのみ交絡している。弾性繊維層1がエアスルー不織布の内部に含まれていることによって、弾性繊維層1の構成繊維は、実質的に伸縮性不織布の表面には存在しないことになる。このことは、弾性繊維に特有のべたつき感が生じない点から好ましいものである。
本実施形態の伸縮性不織布10には、図1に示すように、非弾性繊維層2,3に、微小な凹部が形成されている。これによって、伸縮性不織布10は、その断面が、微視的には波形形状になっている。この波形形状は、後述する製造方法において説明するように、伸縮性不織布の10の延伸加工によって生じるものである。この波形形状は、伸縮性不織布10に伸縮性を付与した結果生じるものであり、不織布10の風合いそのものに大きな影響を及ぼすものではない。むしろ、より柔らかで良好な不織布が得られる点から有利である。
図1には示していないが、本実施形態の伸縮性不織布10にはエンボス加工が施されていてもよい。エンボス加工は、弾性繊維層1と非弾性繊維層2,3との接合強度を一層高める目的で行われる。従って、エアスルー法によって弾性繊維層1と非弾性繊維層2,3とを十分に接合できれば、エンボス加工を行う必要はない。なお、エンボス加工は、構成繊維どうしを接合させるが、エアスルー法と異なり、エンボス加工によっては、構成繊維どうしは交絡しない。
本実施形態の伸縮性不織布10は、その面内方向の少なくとも一方向に伸縮性を有する。面内のすべての方向に伸縮性を有していてもよい。その場合には、方向によって伸縮性の程度が異なることは妨げられない。最も伸縮する方向に関し、伸縮性の程度は、100%伸長時の荷重が20〜500cN/25mm、特に40〜150cN/25mmであることが、伸ばしやすさと強度の両立の面で好ましい。本実施形態の伸縮性不織布10の伸縮性に関し特に重要な性質は残留歪みである。後述する実施例から明らかなように、本実施形態の伸縮性不織布10によれば、残留歪みの値を小さくすることができる。具体的には、100%伸長状態から収縮させたときの残留歪みが好ましくは15%以下、更に好ましくは10%以下という小さな値になる。
本実施形態の伸縮性不織布10は、その良好な風合いや、毛羽立ち防止性、伸縮性、通気性の点から、外科用衣類や清掃シート等の各種の用途に用いることができる。特に生理用ナプキンや使い捨ておむつなどの吸収性物品の構成材料として好ましく用いられる。例えば、使い捨ておむつの外面を構成するシート、胴回り部やウエスト部、脚周り部等に弾性伸縮性を付与するためのシート等として用いることができる。また、ナプキンの伸縮性ウイングを形成するシート等として用いることができる。また、それ以外の部位であっても、伸縮性を付与したい部位等に用いることができる。伸縮性不織布の坪量や厚みは、その具体的な用途に応じて適切に調整できる。例えば吸収性物品の構成材料として用いる場合には、坪量20〜160g/m2程度、厚み0.1〜5mm程度とすることが望ましい。また、本発明の伸縮性不織布は、弾性繊維層の構成繊維が繊維形態を保っていることに起因して、柔軟であり、また通気性が高くなっている。柔軟性の尺度である曲げ剛性に関し、本発明の伸縮性不織布は、曲げ剛性値が10cN/30mm以下と低いものとなっていることが好ましい。通気性に関しては、通気度が16m/(kPa・s)以上となっていることが好ましい。伸縮方向の最大強度は200cN/25mm以上となっていることが好ましい。また、伸縮方向の最大伸度は100%以上であることが望ましい。
曲げ剛性は、JIS L−1096に準拠して測定され、ハンドルオメーターによる押し込み量8mm、スリット幅10mmの条件において、それぞれ流れ方向とそれに対して直角方向に曲げた際の平均値として得られる。通気度は、カトーテック製AUTOMATIC AIR−PERMEABILITY TESTER KES-F8-AP1により通気抵抗を測定し、その逆数として求められる。
次に、本実施形態の伸縮性不織布10の好ましい製造方法を、図2を参照しながら説明する。図2には、本実施形態の伸縮性不織布10の製造方法に用いられる好ましい製造装置が模式的に示されている。図2に示す装置は、製造工程の上流側から下流側に向けて、ウエブ形成部100、熱風処理部200及び延伸部300をこの順で備えている。
ウエブ形成部100には、第1ウエブ形成装置21、第2ウエブ形成装置22及び第3ウエブの形成装置23が備えられている。第1ウエブの形成装置21及び第3ウエブの形成装置23としては、カード機が用いられている。カード機としては、当該技術分野において通常用いられているものと同様のものを特に制限なく用いることができる。一方、第2ウエブ形成装置22としては、スピニングブローン紡糸装置が用いられている。スピニングブローン紡糸装置においては、溶融ポリマーの吐出ノズルの先端近辺に、一対の熱風吐出部が、前記ノズルを中心に対向配置されており、その下流に一対の冷風吐出部が、前記ノズルを中心に対向配置された紡糸ダイが備えられている。紡糸ダイより紡出した繊維は、捕集ネットコンベア上に堆積される。
熱風処理部200は熱風炉24を備えている。熱風炉24内では、所定温度に加熱された加熱ガス、特に加熱空気が吹き出すようになっている。互いに重ね合わされた3層のウエブが熱風炉内に導入されると、該ウエブの上方から下方に向けて、若しくはその逆方向に、又は両方向に加熱ガスが強制的に貫通する。
延伸部300は、弱接合装置25及び延伸装置30を備えている。弱接合装置25は、一対のエンボスロール26,27を備えている。弱接合装置25は、熱風処理部200によって形成された繊維シートにおける各層のウエブの接合を確実にするためのものである。弱接合装置25の下流には、これに隣接して延伸装置30が配置されている。延伸装置30は、大径部31,32と小径部(図示せず)とが軸線方向に交互に形成されてなり、互いに噛み合いが可能になっている一対の凹凸ロール33,34を備えている。両凹凸ロール33,34間に繊維シートが噛み込まれることで該繊維シートがロールの軸線方向(即ちシートの幅方向)へ延伸される。
以上の構成を有する装置を用いた伸縮性不織布の製造方法について説明すると、先ず、弾性繊維からなるウエブの各面に、同一の又は異なる非弾性繊維からなる一対のウエブを配する。なお「弾性繊維からなるウエブ」とは、弾性繊維のみからなるウエブだけでなく、該ウエブから形成される弾性繊維層(図1符号1で示される層)の伸縮弾性を損なわない範囲において、弾性繊維に加えて少量の非弾性繊維が含まれているウエブも包含する。
図2に示すように、ウエブ形成部100においては、非弾性の短繊維を原料として用い、第1ウエブ形成装置21であるカード機によって非弾性繊維ウエブ3'を製造する。この非弾性繊維ウエブ3’においては、必要に応じ、その構成繊維を仮接合してもよい。仮接合の手段としては、例えばエアスルー方式の熱風の吹き付けやヒートロールなどによる熱融着が挙げられる。非弾性繊維ウエブ3’の原料繊維としては、低延伸の非弾性繊維が用いられる。ここで言う低延伸の繊維とは、紡糸後に低延伸倍率で延伸された繊維及び延伸されていない繊維、即ち未延伸繊維の両方を包含する。低延伸の繊維としてはその伸度が80〜800%、特に120〜650%のものを用いることが好ましい。この範囲の伸度を有する低延伸の繊維を用いることで、該繊維が延伸装置30で首尾良く引き伸ばされて、先に述べた不定径繊維が容易に形成される。低延伸の繊維の繊維径は10〜35μm、特に12〜30μmであることが好ましい。
低延伸の繊維の伸度はJIS L−1015に準拠し、測定環境温湿度20±2℃、65±2%RH、引張試験機のつかみ間隔20mm、引張速度20mm/minの条件での測定を基準とした。なお、既に製造された不織布から繊維を採取して伸度を測定するときを始めとして、つかみ間隔を20mmにできない場合、つまり測定する繊維の長さが20mmに満たない場合には、つかみ間隔を10mm又は5mmに設定して測定する。
一方向に連続搬送される非弾性繊維ウエブ3'上には、第2ウエブ形成装置22であるスピニングブローン紡糸装置によって製造された弾性繊維の連続フィラメントからなる弾性繊維ウエブ1'が、捕集ネットコンベア上に一旦堆積された後に積層される。
弾性繊維ウエブ1'上には、第3ウエブ形成装置23であるカード機によって製造された非弾性繊維ウエブ2'が積層される。非弾性繊維ウエブ2'の詳細は、上述した非弾性繊維ウエブ3'と同様であり、非弾性繊維ウエブ3'に関する説明が適宜適用される。非弾性繊維ウエブ2'は、非弾性繊維ウエブ3'と、構成繊維、坪量、厚み等に関して同じであっても良く、或いは異なっていてもよい。
弾性繊維ウエブ1'の形成にスピニングブローン法を用いると、溶融繊維の熱風による伸長と、冷風による冷延伸とが連続的に行われるので、伸縮性繊維の成形を容易に行えるという利点がある。また、繊維が緻密になりすぎず、短繊維に類した太さの伸縮性繊維を成形できるので、通気性の高い不織布が得られるという利点もある。更にスピニングブローン法によれば、連続フィラメントのウエブを得ることができる。連続フィラメントのウエブは、短繊維のウエブに比較して高伸張時の破断が起こりにくく、弾性を発現させやすいことから、本実施形態において極めて有利である。
3つのウエブの積層体は、エアスルー方式の熱風炉24に送られ、そこで熱風処理が施される。熱風処理によって、繊維どうしの交点が熱融着し、弾性繊維ウエブ1'はその全面において非弾性繊維ウエブ2',3'と接合する。熱風処理に際しては、各層のウエブが一体化していないことが好ましい。これによって各ウエブが有する嵩高で厚みのある状態が熱風処理後も維持されて、風合いの良好な伸縮性不織布が得られる。
熱風処理によって、繊維どうしの交点を熱融着させ、各層のウエブを全面接合することに加えて、主として熱風の吹き付け面側に位置する非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませることが好ましい。また、熱風処理の条件を制御することによって、非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませ、更に、該ウエブ1'の構成繊維と交絡させることが好ましい。或いは、非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'を突き抜けさせて、非弾性繊維ウエブ3'にまで到達させ、該ウエブ3'の構成繊維と交絡させることが好ましい。
非弾性繊維ウエブ2'の構成繊維の一部を、弾性繊維ウエブ1'に入り込ませる、及び/又は、弾性繊維ウエブ1'の構成繊維の一部を非弾性繊維ウエブ2'に入り込ませるための条件は、熱風風量0.4〜3m/秒、熱処理時間0.5〜10秒、温度80〜160℃、搬送速度5〜200m/分であることが好ましい。特に好ましくは熱風風量1〜2m/秒である。エアスルー熱処理に用いるネットに通気度の高いものを用いると、エアの通りによって繊維が一層入り込みやすくなる。同様に非弾性繊維ウエブ3'上に弾性繊維ウエブ1'を直接紡糸する場合も、紡糸時の風によって弾性繊維ウエブ1'の構成繊維が非弾性繊維ウエブ3'に入り込み易くなる。熱風処理に用いるネット、及び弾性繊維の直接紡糸に用いるネットは、それらの通気度が250〜800cm3/(cm2・s)、特に400〜750cm3/(cm2・s)であることが好ましい。上記条件は繊維を軟化させて均一に入り込ませる点と繊維を融着させる点においても好ましい。更に、繊維を交絡させるためには、熱風風量を3〜5m/秒とし、吹きつけ圧を0.1〜0.3kPaとすることで可能となる。弾性繊維ウエブ1'の通気度が8m/(kPa・s)以上、更に好ましくは24m/(kPa・s)以上であると、熱風の通りがよくなり、繊維をより均一に入り込ませることができるので好ましい。また、繊維の融着が良好で最大強度が高くなる。更に毛羽立ちも防止される。
熱風処理においては、非弾性繊維ウエブ2'の構成繊維の一部が、弾性繊維ウエブ1'に入り込むのと同時に、非弾性繊維ウエブ2'の構成繊維及び/又は非弾性繊維ウエブ3'の構成繊維と、弾性繊維ウエブ1'の構成繊維とが、それらの交点で熱融着することが好ましい。この場合、熱風処理を、該熱風処理後の弾性繊維が繊維形態を維持するような条件下に行うことが好ましい。即ち、熱風処理によって弾性繊維ウエブ1'の構成繊維がフィルム状、或いはフィルム−繊維構造にならないようにすることが好ましい。そして、熱風処理においては、非弾性繊維ウエブ2'の構成繊維どうしが交点において熱融着し、同様に弾性繊維ウエブ1'の構成繊維どうし、及び非弾性繊維ウエブ3'の構成繊維どうしが交点において熱融着する。
エアスルー方式の熱風処理によって、3つのウエブが一体化された繊維シート10Bが得られる。繊維シート10Bは、一定幅を有して一方向に延びる長尺帯状のものである。繊維シート10Bは、次いで延伸部300へ搬送される。延伸部300においては、繊維シート10Bは先ず弱接合装置25に搬送される。弱接合装置25は、周面にエンボス用凸部が規則的に配置された金属製のエンボスロール26及びそれに対向配置された金属製又は樹脂製の受けロール27を備えたエンボス装置からなる。弱接合装置25によって繊維シート10Bには熱エンボス加工が施される。これによって、エンボス加工が施された繊維シート10Aが得られる。なお弱接合装置25による熱エンボス加工に先立って熱風処理部200により行われる熱融着によって、各層のウエブは互いに接合して一体化しているので、弱接合装置25による熱エンボス加工は、本発明において必須のものではない。各層のウエブの接合一体化を確実にしたい場合は、弱接合装置25による熱エンボス加工は有効である。また、弱接合装置25によれば、各層のウエブの接合一体化に加えて、繊維シート10Aの毛羽立ちが抑えられるという利点がある。
弱接合装置25による熱エンボス加工は、熱風処理部200によって行われる熱融着に対して補助的に行われるものであるから、その加工条件は比較的穏やかでよい。逆に、熱エンボス加工の条件を過酷にすると、繊維シート10Aの嵩高さが損なわれ、また繊維のフィルム化が起こり、最終的に得られる伸縮性不織布の風合いや通気性にマイナスに作用する。このような観点から熱エンボス加工の線圧及びエンボスロールの加熱温度を設定する。
熱エンボス加工によって得られた繊維シート10Aは、図3に示すように、個々独立した散点状の接合部4を多数有する。接合部4は規則的な配置パターンで形成されている。接合部4は、例えば、繊維シート10Aの流れ方向(MD)及びその直交方向(CD)の両方向に不連続に形成されていることが好ましい。
弱接合装置25において熱エンボス加工が施された繊維シート10Aは、引き続き延伸装置30へ送られる。図2ないし図4に示すように、繊維シート10Aは、大径部31,32と小径部(図示せず)が軸長方向に交互に形成された一対の凹凸ロール33,34を備えた延伸装置30によって、搬送方向(MD)と直交する方向(CD)へ延伸される。
延伸装置30は、一方又は双方の凹凸ロール33,34の軸部を公知の昇降機構により上下に変位させ、両者の間隔が調節可能に構成されている。図1並びに図4(b)及び(d)に示されるように、各凹凸ロール33,34は、一方の凹凸ロール33の大径部31が、他方の凹凸ロール34の大径部32間に遊挿され、他方の凹凸ロール34の大径部32が一方の凹凸ロール33の大径部31間に遊挿されるように組み合わされる。この状態の両ロール33,34間に、繊維シート10Aを噛み込ませて、繊維シート10Aを延伸させる。
この延伸工程においては、図3及び図4に示すように、繊維シート10Aの幅方向における、接合部4の位置と、凹凸ロール33,34の大径部31,32の位置とを一致させることが好ましい。具体的には、図3に示すように、繊維シート10Aには、MDに沿って接合部4が一直線状に複数個並んで形成されている接合部列が、複数列形成されており(図3では10列図示)、図3において、最も左側に位置する接合部列R1を始めとして、そこから一つ置きの接合部列R1のそれぞれに含まれる接合部4については、一方の凹凸ロール33の大径部31の位置が一致し、左から2つ目の接合部列R2を始めとして、そこから一つ置きの接合部列R2のそれぞれに含まれる接合部については、他方の凹凸ロール34の大径部32の位置が一致するようにしてある。図3中、符号31,32で示す範囲は、繊維シート10Aが、両凹凸ロール33,34間に噛み込まれている状態の一時点において、各ロールの大径部31,32の周面と重なる範囲を示したものである。
繊維シート10Aが、凹凸ロール33,34間に噛み込まれた状態で両ロール33,34間を通過する際には、図4(b)及び(d)に示すように、接合部4と、何れかの凹凸ロールの大径部31,32とが重なる一方、大径部31,32と重ならない大径部同士間の領域、即ち上述した接合部列間の領域が幅方向へ積極的に引き伸ばされる。特に、非弾性繊維層2,3に含まれる低延伸の繊維が接合部4間において引き伸ばされて細くなり不定径繊維が形成される。つまり、凹凸ロール33,34による引き伸ばし力が低延伸の繊維の引き伸ばしに主として作用し、接合部4には過度の力が加わらなくなる。その結果、接合部4の破壊や各層のウエブ間の剥離が生じるのを防止しつつ、繊維シート10Aの接合部以外の部分を効率的に延伸させることができる。また、この延伸により、図5に示すように、繊維間の接合が破壊されずに非弾性繊維層2,3が十分に伸長され、それによって非弾性繊維層2,3が、弾性繊維層1の自由な伸縮を阻害する程度が大きく低下する。その結果、本製造方法によれば、高強度・高伸縮性であり、また、破れや毛羽立ちの少ない外観の良好な伸縮性不織布を効率的に製造することができる。なお図5においては、非弾性繊維の太さは便宜的に一様に表されている。
上述の通り、本製造方法によれば、非弾性繊維が首尾良く延伸されて、それらの繊維間の接合が延伸によって破壊されないので、延伸によるシート強度の低下が極力抑えられる。具体的には、延伸前の繊維シートAの引張強度、即ち目的とする伸縮性不織布の原反の引張強度に対する延伸後の繊維シートAの引張強度、即ち目的とする伸縮性不織布の引張強度の比は0.3〜0.99、特に0.5〜0.99、更には0.7〜0.99という1に近い値となる。ここでいう引張強度は、後述する実施例で述べる最大強度の測定法に従い測定される。
前記の延伸加工によって、繊維シート10Aの厚みは、延伸加工前後で1.1倍〜4倍、特に1.3倍〜3倍に増すことが好ましい。これによって、非弾性繊維層2,3の繊維が塑性変形して伸びることで繊維が細くなる。これと同時に、非弾性繊維層2,3が一層嵩高となり肌触りが良くクッション性が良好になる。
延伸加工される前の繊維シート10Aの厚みが薄いと、繊維シート10Aのロール原反を運搬及び保管するスペースを小さくできるメリットがある。
更に、前記の延伸加工によって、繊維シート10Aの曲げ剛性は、延伸加工前に比較して30〜80%、特に40〜70%に変化することが好ましい。これによって、ドレープ性が良く柔らかな不織布が得られる。また、延伸加工される前の繊維シート10Aの曲げ剛性が高いことで、搬送ラインで繊維シート10Aに皺が入りにくくなるので好ましい。その上、延伸加工時にも繊維シート10Aに皺が入らず加工しやすいものとなるので好ましい。
延伸加工前後での繊維シート10Aの厚みや曲げ剛性は、非弾性繊維層2,3に用いられる繊維の伸度、エンボスロールのエンボスパターン、凹凸ロール33,34のピッチや先端部の厚み、かみ合わせ量によって制御することができる。
厚みは、伸縮性不織布を20±2℃、65±2%RHの環境下に無荷重にて、2日以上放置した後、下記方法にて求めた。伸縮性不織布を0.5cN/cm2の荷重にて平板間に挟み、その状態下にマイクロスコープにて断面を25倍から200倍の倍率で観察し、各層の平均厚みを求めた。また平板間の距離から全体の厚みを求めた。繊維の入り込みについては相互の入り込みの中間点を厚みとした。
凹凸ロール33,34の大径部31,32の周面は、繊維シート10Aに損傷を与えないようにするために、先鋭でないことが好ましい。例えば図4(b)及び(d)に示すように、所定幅の平坦面となっていることが好ましい。大径部31,32の先端面の幅W〔図4(b)参照〕は、0.3〜1mmであることが好ましく、接合部4のCD方向の寸法の0.7〜2倍、特に0.9〜1.3倍であることが好ましい。これにより、非弾性繊維の繊維形態が破壊されにくくなり、高強度の伸縮性不織布が得られる。
大径部間のピッチP〔図4(b)参照〕は、0.7〜2.5mmであることが好ましい。このピッチPは、接合部4のCD方向の寸法の1.2〜5倍、特に2〜3倍であることが好ましい。これによって布様の外観を呈し、肌触りの良い伸縮性不織布が得られる。また、接合部4のCD方向のピッチ(隣合う接合部列R1の間隔)は、大径部間のピッチPに対し、位置関係を一致させるため基本的には2倍であるが、繊維シート10AのCD方向の伸びやネックインのため1.6倍〜2.4倍の範囲内であれば位置を一致させることが可能である。
凹凸ロール33,34による噛み合いで非弾性繊維層2,3に含まれる低延伸の繊維が引き伸ばされて細くなり不定径繊維が形成されることは先に述べた通りであるが、この噛み合いを利用することで、不定径繊維はその太さが周期的に変化したものとなる。詳細には、低延伸の繊維は隣り合う大径部の間において引き伸ばされる。低延伸の繊維の引き伸ばしは、大径部間のピッチPに応じて変化する。従って、ピッチPを調整することで不定径繊維の太さの変化の周期をコントロールすることができる。
延伸装置30から送り出された繊維シート10Aは、その幅方向への延伸状態が解放される。即ち伸長が緩和される。その結果、繊維シート10Aに伸縮性が発現し、該シート10Aはその幅方向へ収縮する。この収縮によって、図5に示すように繊維間の接合点間において非弾性繊維にたるみが生じる。このようにして目的とする伸縮性不織布10が得られる。なお、延伸状態を解放する場合、延伸状態が完全に解放されるようにしてもよく、或いは伸縮性が発現する限度において、延伸状態が或る程度維持された状態で延伸状態を解放してもよい。
次に本発明の別の実施形態について説明する。本実施形態に関して特に説明しない点については、先に述べた実施形態に関する説明が適宜適用される。
先に述べた実施形態においては、非弾性繊維層に不定径繊維が含まれていたが、本実施形態においては、弾性繊維層に非弾性の不定径繊維が含まれている。本実施形態の伸縮性不織布は、例えば弾性繊維及び非弾性の不定径繊維を含む弾性繊維層から構成された単層構造であってもよく、或いは、弾性繊維及び非弾性の不定径繊維を含む弾性繊維層の少なくとも一面に、非弾性性繊維層が配された多層構造であってもよい。
本実施形態の伸縮性不織布が単層構造である場合、該不織布は弾性繊維及び非弾性の不定径繊維を含み、更に一定径の非弾性繊維を含んでいてもよい。一方、本実施形態の伸縮性不織布が多層構造である場合、非弾性繊維層には不定径繊維が含まれていてもよく、或いは含まれていなくてもよい。
本実施形態の伸縮性不織布が単層構造であると多層構造であるとを問わず、弾性繊維層においては、弾性繊維と非弾性繊維との重量比(前者/後者)は、20/80〜80/20、特に30/70〜70/30であることが、良好な伸縮特性及び高い強度が発現し、肌触りが良好で、風合いが向上する点から好ましい。ここでいう非弾性繊維とは、非弾性の不定径繊維及び一定径の非弾性繊維の双方を包含する。
本実施形態の伸縮性不織布は、先に述べた実施形態の伸縮性不織布の製造方法に従い製造することができる。具体的には、先ず弾性繊維及び伸度が80〜800%である低延伸の非弾性繊維を含むウエブを形成する。該ウエブの形成には、例えば、先に述べた通りスピニングブローン法を用いることができる。この場合スピニングブローン紡糸装置の紡糸ダイとして、図6に示すものを用いることができる。図6に示す紡糸ダイは、紡糸ノズルAと、紡糸ノズルBとが交互に配列された構造になっている。紡糸ノズルAからは弾性繊維の原料となる樹脂が吐出される。一方、紡糸ノズルBからは、非弾性繊維の原料となる樹脂が吐出される。
目的とする伸縮性不織布が単層構造の場合には、得られたウエブに対してエアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ繊維シートを得る。目的とする伸縮性不織布が多層構造の場合には、別途製造された非弾性繊維ウエブを積層した後に、エアスルー方式の熱風処理を施して繊維シートを得る。
このようにして得られた繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後該繊維シートの延伸を解放することで目的とする伸縮性不織布が得られる。
本発明は、前記実施形態に制限されない。例えば前記実施形態の伸縮性不織布10は、弾性繊維層1の両面に、同一の又は異なる、実質的に非弾性の非弾性繊維層2,3が積層された形態のものであったが、これに代えて、弾性繊維層の一面に非弾性繊維層が積層された2層構造の形態であってもよい。2層構造の伸縮性不織布を、吸収性物品の構成材料として用いる場合、特に使用者の肌に触れる箇所に使用する場合には、非弾性繊維層を着用者の肌側に向くように使用することが、肌触りやべたつき防止等の観点から好ましい。
また図4に示す方法においては、一方の凹凸ロールの大径部と他方の凹凸ロールの小径部とによって繊維シート10Aが挟まれていない状態で延伸が行われたが、両者間の間隔を狭くして、両者間に繊維シート10Aを挟んだ状態で延伸を行うこともできる。つまり、繊維シートを介して底つきした状態で延伸することもできる。また、延伸工程は、特開平6−133998号公報に記載の方法を用いることもできる。
また前記の製造方法においては、繊維シート10AをCD方向に延伸させたが、これに代えて又はこれに加えてMD方向に延伸させることもできる。
更に、前記の実施形態においては、非弾性繊維層の構成繊維の一部が弾性繊維層に入り込んだ状態、及び/又は、弾性繊維層の構成繊維の一部が非弾性繊維層に入り込んだ状態になっていたが、本発明の伸縮性不織布の構造はこれに限られない。
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されない。
〔実施例1〕
図1に示す伸縮性不織布を、図2示す装置を用いて製造した。先ず直径17μm、繊維長44mm、伸度150%の低延伸の非弾性短繊維(芯がPETで鞘がPEの芯鞘型複合繊維)をカード機に供給し、カードウエブからなる非弾性繊維ウエブ3'を形成した。ウエブ3'の坪量は10g/m2であった。この非弾性繊維ウエブ3'上に、弾性繊維ウエブ1'を積層した。
弾性繊維ウエブ1'は次の方法で形成した。弾性樹脂として重量平均分子量50,000、MFR15(230℃、2.16kg)、貯蔵弾性率G’2×106Pa、tanδ0.06のSEBS樹脂を用いた。このブロック共重合体は、重合ブロックAとしてスチレンを20重量%、重合ブロックBとしてエチレン−ブチレンを80重量%含むものである。押出機を用い、溶融した樹脂をダイス温度310℃で紡糸ノズルから押し出し、スピニングブローン法によってネット上に弾性繊維ウエブを1'成形した。弾性繊維の直径は32μmであった。ウエブ1'の坪量は40g/m2であった。
弾性繊維ウエブ1'上に、前述と同様の非弾性短繊維からなる非弾性繊維ウエブ2'を積層した。ウエブ2'の坪量は10g/m2であった。
これら3層のウエブの積層体を熱処理機に導入し、エアスルー方式で熱風を吹き付け、熱処理を行った。熱処理の条件は、ネット上温度140℃、熱風風量2m/秒、吹き付け圧0.1kg/cm2、吹き付け時間15秒間であった。この熱処理によって3層のウエブが一体化された繊維シート10Bが得られた。
次いで繊維シート10Bに熱エンボス加工を施した。熱エンボス加工は、エンボス凸ロールとフラット金属ロールとを備えたエンボス装置を用いて行った。エンボス凸ロールとして、CD方向のピッチ(隣合う接合部列R1の間隔)が2.0mmである多数の凸部をするドット状凸ロールを用いた。各ロールの温度は110℃に設定した。この熱エンボス加工によって接合部が規則的なパターンで形成された繊維シート10Aを得た。
繊維シート10Aに対して延伸加工を施した。延伸加工は、大径部と小径部が軸長方向に交互に形成された一対の凹凸ロールを備えた延伸装置を用いて行った。片方の凹凸ロールの大径部間及び小径部間のピッチはそれぞれ2.0mmであった。延伸処理によって繊維シート10AをCD方向に延伸させた。これによりCD方向に伸縮する坪量60g/m2の不織布が得られた。なお、以上の各工程の搬送速度は何れも10m/分であった。
〔実施例2ないし4〕
図1に示す伸縮性不織布10を製造した。表1に示す繊維径及び伸度を有し、繊維長が44mmである低延伸の非弾性短繊維(芯がPETで鞘がPEの芯鞘型複合繊維)をカード機に供給し、カードウエブを形成した。このカードウエブを熱処理機に導入し、エアスルー方式で熱風を吹き付け熱処理を行い構成繊維を仮融着した。熱処理の条件は、ネット上温度137℃であった。この熱処理によって、構成繊維が仮融着された坪量10g/m2の非弾性繊維ウエブ3'を得た。この非弾性繊維ウエブ3'上に、連続繊維からなる弾性繊維ウエブ1'を直接積層した。
弾性繊維ウエブ1'は実施例1と同様にして製造した。弾性繊維の直径は32μmで、ウエブ1'の坪量は40g/m2であった。
弾性繊維ウエブ1'上に、前述と同様の非弾性短繊維からなる非弾性繊維ウエブ2'を積層した。ウエブ2'の坪量は10g/m2であった。ウエブ2'の構成繊維は仮融着されていない。
これら3層のウエブの積層体を熱処理機に導入し、エアスルー方式で熱風を吹き付け熱処理を行った。熱処理の条件は、ネット上温度140℃、熱風風量2m/秒、吹き付け圧0.1kPa、吹き付け時間15秒間であった。また、ネットの通気度は500cm3/(cm2・s)であった。この熱処理によって3層のウエブが一体化された繊維シート10Bが得られた。
次いで繊維シート10Bに熱エンボス加工を施した。熱エンボス加工は、エンボス凸ロールとフラット金属ロールとを備えたエンボス装置を用いて行った。エンボス凸ロールとして、CD方向、MD方向ともピッチが2.0mmである多数の凸部を有するドット状凸ロールを用いた。各ロールの温度は120℃に設定した。この熱エンボス加工によって接合部が規則的なパターンで形成された繊維シート10Aを得た。この繊維シート10Aを巻き取り、不織布原反とした。
繊維シート10Aをその原反から繰り出し、延伸加工を施した。延伸加工は、歯と歯底が軸長方向に交互に形成された一対の歯溝ロールを備えた延伸装置を用いて行った。歯間及び歯底間のピッチはそれぞれ2.0mmであった(噛み合った状態での歯間のピッチPは1.0mmとなる)。上下の歯溝ロールの押し込み量を調整し、延伸倍率3.0倍にて繊維シート10Aを、MD方向に延伸させた。これによりMD方向に伸縮する坪量60g/m2の伸縮性不織布10が得られた。
〔実施例5〕
図1に示す伸縮性不織布10を製造した。弾性繊維ウエブ1’を次の方法で形成した。ブロック共重合体として、スチレン−エチレン−プロピレン−スチレンブロック共重合体であるSEPS樹脂(重量平均分子量50000、MFR60g/分(230℃、2.16kg)、貯蔵弾性率G’5×105Pa、tanδ0.045)からなるエラストマーを用いた。このブロック共重合体は、重合ブロックAとしてスチレンを30重量%、重合ブロックBとしてエチレン−プロピレンを70重量%含むものである。押出機を用い、溶融したブロック共重合体をダイス温度290℃で紡糸ノズルから押し出し、スピニングブローン法によってネット上に連続繊維からなる弾性繊維ウエブ1’を形成した。弾性繊維の直径は20μmであった。弾性繊維ウエブ1’は地合いの点で良好なものが得られた。ウエブ1’の坪量は15g/m2であった。これ以外は実施例2と同様にして、MD方向に伸縮する坪量35g/m2の伸縮性不織布10を得た。
〔比較例1〕
非弾性繊維ウエブの構成繊維として、低延伸の非弾性短繊維に代えて、伸度40%の非弾性短繊維を使用した以外は実施例1と同様にして伸縮性不織布を作製した。
〔比較例2〕
ブロック共重合体として、株式会社クラレ製のスチレン−ビニルイソプレンブロック共重合体であるHYBRAR(登録商標)7311を用いた。このブロック共重合体は、スチレンを12重量%、ビニルイソプレンを88重量%含むものである。このブロック共重合体は貯蔵弾性率G’が1.0×106、tanδが0.3であった。これ以外は比較例1と同様にして伸縮性不織布を得た。
〔比較例3〕
ブロック共重合体として、旭化成ケミカルズ株式会社製のスチレン−エチレン−ブチレン−スチレンブロック共重合体であるTUFTEC(登録商標)H1031を用いた。このブロック共重合体は、スチレンを30重量%、エチレン−ブチレンを70重量%含むものである。このブロック共重合体は貯蔵弾性率G’が1.0×107、tanδが0.03であった。これ以外は比較例1と同様にして伸縮性不織布を得た。
〔評価〕
実施例及び比較例で得られた伸縮性不織布の特性を以下の表1に示す。表中の各項目の測定方法は次の通りである。
<非弾性繊維の最大繊維径、最小繊維径>
走査型電子顕微鏡(SEM)により伸縮性不織布の表面(5mm×5mm)を観察し、繊維径の太い部分5点の平均値を最大繊維径、繊維径の細い部分5点の平均値を最小繊維径とした。
<延伸前の非弾性繊維の融着点強度、100%伸長時強度及び繊維の伸度>
前述した測定方法に従い測定した。
<厚み>
伸縮性不織布を23±2℃、60%RHの環境下に無荷重にて、2日以上放置した後、厚みを下記方法にて求めた。伸縮性不織布を0.5cN/cm2の荷重にて平板間に挟み、その状態下にマイクロスコープにて断面を25倍から200倍の倍率で観察し、各層の平均厚みを求めた。また平板間の距離から全体の厚みを求めた。繊維の入り込みについては相互の入り込みの中間点を厚みとした。
<曲げ剛性>
大栄科学精機製作所製HOM−3を用いて前述した方法に従い測定した。
<最大強度、最大伸度、100%伸長時強度、50%戻り強度、残留歪み>
伸縮性不織布の伸縮方向へ50mm、それと直交する方向へ25mmの大きさで矩形の試験片を切り出した。オリエンテック製テンシロンRTC1210Aに試験片を装着した。チャック間距離は25mmであった。試験片を不織布の伸縮方向へ300mm/分の速度で伸長させ、そのときの荷重を測定した。そのときの最大点の荷重を最大強度とした。またそのときの試験片の長さをBとし、もとの試験片の長さをAとしたとき、{(B−A)/A}×100を最大伸度(%)とした。また、100%伸長サイクル試験を行い、100%伸長時強度を100%伸長時の荷重から求めた。次いで戻り方向(収縮方向)へ同速度で収縮させ、50%伸長させた状態とした。その時点の荷重を記録し、50%戻り強度とした。更に、100%伸長後、同速にて原点に戻して行ったときの戻らない長さ割合を測定し、その値を残留歪みとした。同様の方法によって伸縮性不織布の原反である繊維シートAについても最大強度を測定した。
<肌触り>
伸縮性不織布の表面を手のひらで直接触れ、その感触を以下の基準に沿って判定した。抵抗感(ざらざらした感じ)がある:×、抵抗感が少しある:△、抵抗感はなく、滑らかな感じが少しある:○、抵抗感はなく、滑らかな感じがある:◎。判定は3人で行い、2人以上同じ意見であればその意見を、3人がそれぞれ別の意見であれば真ん中の意見を、判定結果とした。
Figure 2008007924
表1に示す結果から明らかなように、実施例の不織布は、100%伸長時強度及び残留歪みが比較例の不織布と同程度に高いレベルを維持した上で、比較例の不織布よりも更に高強度、高伸度のものであることが判る。実施例の不織布を外装に用いて使い捨ておむつを作製したところ、このおむつは肌触りがやわらかくて通気性が高く、十分伸びるためはかせやすく、全面で締めつけるためゴム跡がつきにくいといった特徴を有していた。
なお、実施例及び比較例の不織布の断面をSEM観察したところ、何れの不織布においても弾性繊維層の構成繊維と非弾性繊維層の構成繊維とが熱融着しており、これらの繊維層は全面接合されていた。また、非弾性繊維層の構成繊維の一部が弾性繊維層の厚み方向に入り込んでいることが確認された。弾性繊維層の構成繊維は繊維形態を保っていた。更に、実施例の不織布においては、非弾性繊維はその太さが周期的に変化していた。これに対して比較例の不織布においては、非弾性繊維の融着点の破壊が多数観察された。
図1は、本発明の伸縮性不織布の一実施形態の断面構造を示す模式図である。 図2は、図1に示す伸縮性不織布の製造に用いられる好ましい装置を示す模式図である。 図3は、延伸加工を施す繊維シートの一例を示す平面図である。 図4(a)は、図3に示す繊維シートのCD方向のa−a線に沿う断面図、図4(b)は、凹凸ロール間で変形した状態(延伸させている状態)の図4(a)に対応する断面図、図4(c)は、図3に示す繊維シートのCD方向のc−c線に沿う断面図、図4(d)は、凹凸ロール間で変形した状態(延伸させている状態)の図4(c)に相当する断面図である。 図5は、非弾性繊維が延伸される状態を示す模式図である。 図6は、紡糸ダイの構造の一例を示す模式図である。
符号の説明
1 弾性繊維層
2 非弾性繊維層
3 非弾性繊維層
4 接合部
10A 繊維シート
10 伸縮性不織布

Claims (16)

  1. 弾性繊維及び長手方向に沿う太さが一様になっていない非弾性繊維を含む伸縮性不織布。
  2. 前記弾性繊維を含む弾性繊維層の少なくとも一面に、前記非弾性繊維を含む非弾性繊維層が配されてなる請求項1記載の伸縮性不織布。
  3. 前記弾性繊維及び前記非弾性繊維を含む弾性繊維層を備えた請求項1記載の伸縮性不織布。
  4. 前記非弾性繊維はその太さが周期的に変化している請求項1ないし3の何れかに記載の伸縮性不織布。
  5. 前記非弾性繊維はその太さが、最も細い部分において2〜15μmであり、最も太い部分において10〜30μmである請求項1ないし4の何れかに記載の伸縮性不織布。
  6. 前記非弾性繊維が複合繊維からなる短繊維である請求項1ないし5の何れかに記載の伸縮性不織布。
  7. 前記非弾性繊維の原料繊維の伸度が80〜800%である請求項1ないし6の何れかに記載の伸縮性不織布。
  8. 前記非弾性繊維はその繊維間融着点強度が、該非弾性繊維の100%伸長時強度よりも高いものである請求項1ないし7の何れかに記載の伸縮性不織布。
  9. エアスルー法によって繊維どうしが熱融着されている請求項1ないし8の何れかに記載の伸縮性不織布。
  10. 前記伸縮性不織布の原反を延伸加工することによって前記非弾性繊維の原料繊維が引き伸ばされて該非弾性繊維が形成されており、
    前記伸縮性不織布の原反の引張強度に対する該伸縮性不織布の引張強度の比が0.3〜0.99である請求項1ないし9の何れかに記載の伸縮性不織布。
  11. 前記弾性繊維層と、その少なくとも一面に配された前記非弾性繊維層とを有し、
    該弾性繊維層に含まれる弾性繊維が、10〜50重量%の芳香族ビニル化合物を主体とする重合体ブロックAと、下記式(1)で表される繰り返し単位を主体とする重合体ブロックBとからなるブロック共重合体から構成され、
    該ブロック共重合体は、20℃、周波数2Hzで測定された動的粘弾性の貯蔵弾性率G'が1×104〜8×106Paであり、且つ同温度及び同周波数で測定された動的粘弾性の動的損失正接tanδ値が0.2以下である請求項2記載の伸縮性不織布。
    Figure 2008007924
  12. 重合体ブロックBが、更に下記式(2)で表される繰り返し単位を20モル%以下含んでいる請求項11記載の伸縮性不織布。
    Figure 2008007924
  13. ブロック共重合体の基本型がA−B−Aである請求項11又は12記載の伸縮性不織布。
  14. 前記弾性繊維が連続繊維からなる請求項11ないし13の何れかに記載の伸縮性不織布。
  15. 弾性繊維を含むウエブの少なくとも一面に、伸度が80〜800%である低延伸の非弾性繊維を含むウエブを配し、
    これらのウエブに対して、それらが一体化していない状態下に、エアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ、これらのウエブが一体化してなる繊維シートを得、
    前記繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後前記繊維シートの延伸を解放する、伸縮性不織布の製造方法。
  16. 弾性繊維及び伸度が80〜800%である低延伸の非弾性繊維を含むウエブに対してエアスルー方式の熱風処理を施して繊維どうしの交点を熱融着させ繊維シートを得、
    前記繊維シートを少なくとも一方向に延伸させて前記低延伸の非弾性繊維を引き伸ばし、その後前記繊維シートの延伸を解放する、伸縮性不織布の製造方法。
JP2007132044A 2006-05-31 2007-05-17 伸縮性不織布 Active JP5230123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007132044A JP5230123B2 (ja) 2006-05-31 2007-05-17 伸縮性不織布

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006152848 2006-05-31
JP2006152848 2006-05-31
JP2007132044A JP5230123B2 (ja) 2006-05-31 2007-05-17 伸縮性不織布

Publications (2)

Publication Number Publication Date
JP2008007924A true JP2008007924A (ja) 2008-01-17
JP5230123B2 JP5230123B2 (ja) 2013-07-10

Family

ID=39066376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132044A Active JP5230123B2 (ja) 2006-05-31 2007-05-17 伸縮性不織布

Country Status (1)

Country Link
JP (1) JP5230123B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106377A (ja) * 2006-10-23 2008-05-08 Kao Corp 伸縮性不織布
JP2012087452A (ja) * 2012-01-27 2012-05-10 Kao Corp 伸縮性不織布

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411059A (ja) * 1990-04-23 1992-01-16 Kuraray Co Ltd 伸縮性不織布
JP2004244791A (ja) * 2003-01-24 2004-09-02 Mitsui Chemicals Inc 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法
JP2005089870A (ja) * 2002-08-08 2005-04-07 Chisso Corp 弾性不織布及びこれを用いた繊維製品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411059A (ja) * 1990-04-23 1992-01-16 Kuraray Co Ltd 伸縮性不織布
JP2005089870A (ja) * 2002-08-08 2005-04-07 Chisso Corp 弾性不織布及びこれを用いた繊維製品
JP2004244791A (ja) * 2003-01-24 2004-09-02 Mitsui Chemicals Inc 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106377A (ja) * 2006-10-23 2008-05-08 Kao Corp 伸縮性不織布
JP2012087452A (ja) * 2012-01-27 2012-05-10 Kao Corp 伸縮性不織布

Also Published As

Publication number Publication date
JP5230123B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
TWI386529B (zh) Stretchable nonwoven and its manufacturing method
JP4753852B2 (ja) 伸縮性不織布
KR101321837B1 (ko) 신축성부직포 및 그 제조방법
JP4845587B2 (ja) 伸縮性不織布
JP4969157B2 (ja) 伸縮性不織布の製造方法
JP4762053B2 (ja) 伸縮性不織布
JP4646878B2 (ja) 伸縮性不織布の製造方法
JP5511860B2 (ja) 伸縮性不織布
JP4865635B2 (ja) 伸縮性積層シート及びその製造方法
TWI357451B (ja)
JP4969158B2 (ja) 伸縮性不織布の製造方法
JP4651573B2 (ja) 伸縮性不織布
JP2008106375A (ja) 伸縮性不織布
JP5159082B2 (ja) 伸縮性不織布
JP5230123B2 (ja) 伸縮性不織布
JP4753838B2 (ja) 伸縮性不織布
JP4936732B2 (ja) 伸縮性不織布の製造方法
TWI417432B (zh) Scalable nonwoven
JP5036221B2 (ja) 伸縮性不織布の製造方法
JP4845573B2 (ja) 伸縮性不織布
JP2007321290A (ja) 伸縮性不織布
JP5055054B2 (ja) 弾性不織布及びこれを用いた伸縮性不織布
JP4889302B2 (ja) 伸縮性不織布
JP5643633B2 (ja) 不織布
JP2007321291A (ja) 伸縮性不織布

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5230123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250