JP2008007834A - Manufacturing method of steel material superior in fatigue crack propagation resistance - Google Patents

Manufacturing method of steel material superior in fatigue crack propagation resistance Download PDF

Info

Publication number
JP2008007834A
JP2008007834A JP2006181297A JP2006181297A JP2008007834A JP 2008007834 A JP2008007834 A JP 2008007834A JP 2006181297 A JP2006181297 A JP 2006181297A JP 2006181297 A JP2006181297 A JP 2006181297A JP 2008007834 A JP2008007834 A JP 2008007834A
Authority
JP
Japan
Prior art keywords
less
crack propagation
ferrite
pearlite
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006181297A
Other languages
Japanese (ja)
Other versions
JP5151079B2 (en
Inventor
Satoshi Iki
聡 伊木
Teruki Sadasue
照輝 貞末
Takahiro Kubo
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006181297A priority Critical patent/JP5151079B2/en
Publication of JP2008007834A publication Critical patent/JP2008007834A/en
Application granted granted Critical
Publication of JP5151079B2 publication Critical patent/JP5151079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a steel material superior in fatigue crack propagation resistance, little in crack propagation anisotropy and suitable for welded structures such as ships, marine structures, bridges, buildings and tanks for which structural safety is strongly required. <P>SOLUTION: The steel material has a composition comprising, by mass%, 0.04-0.20% C, 0.05-0.50% Si, 0.5-1.8% Mn, 0.05% or less P, 0.02% or less S, and at needed, one or more elements selected from the group consisting of Cu, Ni, Cr, Mo, Nb, V, Ti and B, and essentially balance Fe, and a specified microstructure mainly comprising a two-phase microstructure of ferrite and perlite in which the area ratio of the ferrite is 65-85%. The steel material is obtained by heating the steel having the above-mentioned composition to a temperature of 1,000-1,300°C, rolling it with a cumulative reduction of 50% or more at a temperature of Ar<SB>3</SB>point or higher, and finishing the rolling at a temperature of Ar<SB>3</SB>point or higher, then acceleratedly cooling it from a temperature range from Ar<SB>3</SB>to Ar<SB>3</SB>-60°C to a temperature of 450-650°C at a cooling speed of 10°C/s or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、疲労亀裂伝播抵抗性に優れた鋼材の製造方法に関し、特に亀裂伝播異方性が小さく、船舶、海洋構造物、橋梁、建築物、タンクなど構造安全性が強く求められる溶接構造物に好適なものに関する。   TECHNICAL FIELD The present invention relates to a method for producing a steel material having excellent fatigue crack propagation resistance, and particularly, a welded structure having a small crack propagation anisotropy and strongly demanding structural safety such as a ship, an offshore structure, a bridge, a building, and a tank. It is related with what is suitable for.

船舶、海洋構造物、橋梁、建築物、タンクなどの構造物に使用される鋼材は、強度、靭性などの機械的性質や溶接性に優れていることに加えて、常時稼動における繰返し荷重や風、地震等による震動に起因する繰返しに対して構造物の構造安全性を担保しなければならない。   Steel materials used in structures such as ships, offshore structures, bridges, buildings, tanks, etc. have excellent mechanical properties such as strength and toughness and weldability, as well as repeated loads and winds during normal operation. In addition, the structural safety of the structure must be ensured against repeated vibration caused by earthquakes.

繰返し荷重に対しては疲労特性に優れていることが要求され、特に部材の破断といった終局的な破壊を防止するためには、鋼材の有する疲労亀裂の伝播抵抗性を向上することが効果的と考える。   It is required to have excellent fatigue characteristics for repeated loads, and in order to prevent ultimate failure such as breakage of members in particular, it is effective to improve the propagation resistance of fatigue cracks possessed by steel materials. Think.

一般的な溶接構造物の場合、溶接止端部は応力集中部になりやすく、溶接による引張残留応力も作用するため疲労亀裂の発生源となることが多く、その防止策として、止端部をなめ付け溶接したり、ショットピーニングにより圧縮残留応力を導入することが知られている。   In the case of general welded structures, the weld toe tends to be a stress concentration part, and tensile residual stress due to welding also acts and often becomes a source of fatigue cracks. It is known to introduce compressive residual stress by tanning welding or shot peening.

しかしながら、溶接構造物には多数の溶接止端部があり、またコスト的にも負担が大きいため、これらの方法は工業的規模での実施には不適当で、溶接構造物の耐疲労特性は使用される鋼材自体の疲労亀裂伝播特性の向上により図られることが多い。   However, since there are a large number of weld toes in the welded structure and the burden is high in cost, these methods are unsuitable for implementation on an industrial scale, and the fatigue resistance characteristics of the welded structure are It is often achieved by improving the fatigue crack propagation characteristics of the steel material used.

これら鋼構造物においては鋼板に対して様々な方向、例えば、圧延方向に対して様々な方向から自由に溶接施工される場合が多く、それゆえ疲労亀裂発生・伝播の方向も様々であるため、鋼板の疲労亀裂伝播抵抗性能も鋼中における方向を問わずに高い性能をもつことが望ましい。   These steel structures are often welded freely from various directions to the steel sheet, for example, from various directions with respect to the rolling direction, and therefore the direction of fatigue crack initiation and propagation is also various, It is desirable that the fatigue crack propagation resistance performance of the steel sheet is high regardless of the direction in the steel.

特許文献1はタンカー用鋼板に関し、その組織をフェライトの第一相ならびにベイナイトおよび/またはパーライトの第二相の混合組織からなり、前記フェライトの平均粒径が20μm以下とすることで湿潤硫化水素環境で耐疲労亀裂進展特性に優れることが記載されている。   Patent Document 1 relates to a steel plate for a tanker, and the structure thereof is composed of a mixed structure of a first phase of ferrite and a second phase of bainite and / or pearlite. It is described that it has excellent fatigue crack growth characteristics.

特許文献2には組織を硬質部の素地とこの素地に分散した軟質部とからなり、この2部分の硬度差がビッカース硬度で150以上であることを特徴とする疲労亀裂進展抑制効果を有する鋼板が記載されている。   Patent Document 2 discloses a steel plate having an effect of suppressing fatigue crack growth, characterized in that the structure is composed of a base of a hard part and a soft part dispersed in the base, and the difference in hardness between the two parts is 150 or more in terms of Vickers hardness. Is described.

特許文献3には断面の鋼組織がフェライトとベイナイトであって、フェライト相は面積率で38%以上52%以下で、そのフェライト相部分の硬さが80HV0.02〜150HV0.02であり、かつフェライト相とベイナイト相の境界が断面内任意の場所に引いた直線上において50〜300カ所/mmの密度で存在することを特徴とする、疲労亀裂進展抵抗性に優れた引張り強さが55kgf/mm以上のフェライト・ベイナイト二相鋼が記載されている。 In Patent Document 3, the steel structure of the cross section is ferrite and bainite, the ferrite phase has an area ratio of 38% or more and 52% or less, the hardness of the ferrite phase portion is 80HV0.02-150HV0.02, and The tensile strength with excellent fatigue crack growth resistance is 55 kgf / characteristically characterized in that the boundary between the ferrite phase and the bainite phase exists at a density of 50 to 300 locations / mm on a straight line drawn at an arbitrary location in the cross section. A ferrite-bainite duplex steel of mm 2 or more is described.

特許文献4には疲労亀裂進展方向の第二相間の界面から次の第二相への界面との間隔が25μm以下であり、板厚方向の断面組織が面積率で60〜90%のフェライト母相と第二相からなり、第二相の硬さ:Hv(SP)とフェライトの硬さ:Hv(F)がある式で示される値を満足し、かつ第二相のアスペクト比:1(長軸長さ)/d(短軸長さ)が1/d>3.42であることを特徴とする疲労亀裂伝播特性の優れた鋼材が記載されている。
特許第2785643号公報 特許第2962134号公報 特許第3489243号公報 特許第3434434号公報
Patent Document 4 discloses a ferrite matrix in which the distance from the interface between the second phases in the fatigue crack propagation direction to the interface to the next second phase is 25 μm or less, and the cross-sectional structure in the plate thickness direction is 60 to 90% in area ratio. The second phase hardness: Hv (SP) and the ferrite hardness: Hv (F) satisfy the value represented by the formula, and the aspect ratio of the second phase: 1 ( A steel material having excellent fatigue crack propagation characteristics, characterized in that the long axis length) / d (short axis length) is 1 / d> 3.42, is described.
Japanese Patent No. 2785643 Japanese Patent No. 2962134 Japanese Patent No. 3489243 Japanese Patent No. 3434434

しかしながら、特許文献1、2、3記載の発明に係る鋼板は、それらの疲労亀裂伝播特性を全厚あるいは減厚したコンパクト試験片を用いた疲労亀裂伝播試験で調査している。   However, the steel sheets according to the inventions described in Patent Documents 1, 2, and 3 are investigated by a fatigue crack propagation test using a compact test piece whose thickness or thickness is reduced.

この場合、得られる疲労亀裂伝播速度は鋼板の長手方向あるいは幅方向の特性であり、鋼板内において亀裂伝播の方向を特定せずに、すなわち、あらゆる方向に対する疲労亀裂伝播特性(以下、亀裂伝播異方性)を向上させることについては記載がない。   In this case, the obtained fatigue crack propagation rate is a characteristic in the longitudinal direction or width direction of the steel sheet, and the crack propagation direction in any direction (hereinafter referred to as crack propagation difference) is not specified within the steel sheet. There is no description about improving the directionality.

特許文献4では、面外ガセット型の継手試験片を用いて疲労試験を行っているが、特許文献4記載の発明に係る鋼板の組織が板厚方向の伝播速度を抑制することを目的としていることは明らかである。   In Patent Document 4, a fatigue test is performed using an out-of-plane gusset-type joint test piece. The structure of the steel sheet according to the invention described in Patent Document 4 aims to suppress the propagation speed in the thickness direction. It is clear.

更に、特許文献1〜4記載の発明に係る鋼板は硬化相としてベイナイトあるいはマルテンサイトなどを導入するため、延性や、曲げ加工性の劣化が懸念される。   Furthermore, since the steel plates according to the inventions described in Patent Documents 1 to 4 introduce bainite or martensite as a hardened phase, there is a concern about deterioration of ductility and bending workability.

そこで、本発明は、亀裂伝播異方性が小さく、疲労亀裂伝播抵抗性に優れ、且つ延性や、曲げ加工性に優れた鋼材およびその製造方法を提供することを目的としたものである。   Accordingly, an object of the present invention is to provide a steel material having small crack propagation anisotropy, excellent fatigue crack propagation resistance, excellent ductility and bending workability, and a method for producing the same.

本発明者等は、フェライトとパーライトの二相組織を対象に、疲労亀裂伝播におよぼすミクロ組織の影響を、3次元空間における亀裂伝播方向とその方向でのミクロ組織形態との関係から鋭意詳細に検討し、二相組織におけるフェライトを特定量とし、パーライト平均間隔(L、T面)、フェライト平均粒径(L,T面)及びパーライト塊形状(L−T−Z空間)を特定した場合、亀裂伝播異方性の小さい疲労亀裂伝播抵抗性に優れた鋼材が得られることを新たに見出した。   The inventors of the present invention have studied in detail the influence of microstructure on fatigue crack propagation from the relationship between the crack propagation direction in three-dimensional space and the microstructure morphology in the two-phase structure of ferrite and pearlite. When the specific amount of ferrite in the two-phase structure is studied and the pearlite average interval (L, T plane), the ferrite average particle size (L, T plane) and the pearlite lump shape (L-T-Z space) are specified, It was newly found that a steel material with small crack propagation anisotropy and excellent fatigue crack propagation resistance can be obtained.

本発明は、得られた知見に更に検討を加えてなされたもので、すなわち、本発明は
1.質量%で、C:0.04〜0.20%、Si:0.05〜0.50%、Mn:0.5〜1.8%、P:0.05%以下、S:0.02%以下、残部が実質的にFeからなる鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行いAr点以上で圧延を終了した後、ArからAr−60℃の温度域より650℃以下450℃以上まで、10℃/s以上で加速冷却し、ミクロ組織が(1)〜(3)の特徴を有するフェライトとパーライトの二相組織で、面積率65〜85%のフェライトを有することを特徴とする疲労亀裂伝播抵抗性に優れた鋼材の製造方法。
(1)L面およびT面のパーライト平均間隔:15〜30μm
(2)L面およびT面のフェライト平均粒径: 10〜20μm
(3)パーライト塊形状: L(L)≦3Z(L)、T(T)≦3Z(T)
ここで、L(L):L面でのL方向平均長さ、Z(L):L面でのZ方向平均長さ、T(T):T面でのT方向平均長さ、Z(T):T面でのZ方向平均長さ
2.更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.10%以下、Ti:0.03%以下、B:0.003%以下の一種または二種以上を含有することを特徴とする1記載の疲労亀裂伝播抵抗性に優れた鋼材の製造方法。
The present invention has been made by further studying the obtained knowledge. In mass%, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.02 % or less, the steel balance being substantially Fe, 1000 ° C. or higher, then heated to 1300 ° C. or less, after completion of the rolling at a cumulative reduction of 50% or more of the rolling performed Ar 3 point or more by Ar 3 or more points From the temperature range of Ar 3 to Ar 3 −60 ° C. to 650 ° C. or lower and 450 ° C. or higher, accelerated cooling is performed at 10 ° C./s or higher, and the microstructures of ferrite and pearlite having the characteristics of (1) to (3) A method for producing a steel material having excellent fatigue crack propagation resistance, comprising a ferrite having an area ratio of 65 to 85% in a phase structure.
(1) L-plane and T-plane pearlite average spacing: 15-30 μm
(2) L-plane and T-plane ferrite average particle diameter: 10 to 20 μm
(3) Perlite lump shape: L (L) ≦ 3Z (L), T (T) ≦ 3Z (T)
Here, L (L): L direction average length on the L plane, Z (L): Z direction average length on the L plane, T (T): T direction average length on the T plane, Z ( T): Z-direction average length on the T plane Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, V: 0.10% or less, Ti: 0.03% or less, B: 0.003% or less of one type or two or more types of steel material having excellent fatigue crack propagation resistance according to 1, Production method.

本発明によれば、鋼中における、発生・伝播する疲労亀裂の方向によらずに、常に高い疲労亀裂伝播抵抗性を有する、亀裂伝播異方性が小さく、疲労亀裂伝播抵抗性に優れた鋼材およびその製造方法が得られ、例え、応力集中部や溶接部等から疲労亀裂が経年的に発生したとしても、その後の伝播を遅らせて、鋼構造物の安全性を高めることが可能で産業上極めて有用である。   According to the present invention, a steel material that always has high fatigue crack propagation resistance, small crack propagation anisotropy, and excellent fatigue crack propagation resistance regardless of the direction of fatigue cracks that occur and propagate in steel. Even if fatigue cracks have occurred over time from stress-concentrated parts or welded parts, it is possible to delay the subsequent propagation and increase the safety of steel structures. Very useful.

本発明の成分組成、製造条件およびミクロ組織の規定について詳細に説明する。   The component composition, production conditions and microstructure of the present invention will be described in detail.

[成分組成]説明において%は質量%とする。

Cは強度を確保するため0.04%以上添加する。0.20%を超えて添加すると溶接性が阻害されるため、0.04〜0.20%、好ましくは0.06〜0.18%を添加する。
[Ingredient composition] In the description, “%” means “mass%”.
C
C is added in an amount of 0.04% or more to ensure strength. If it exceeds 0.20%, weldability is impaired, so 0.04 to 0.20%, preferably 0.06 to 0.18% is added.

Si
Siは脱酸と強度を確保するため0.05%以上添加する。0.50%を超えて添加すると溶接性、靭性が劣化するため、0.05〜0.50%、好ましくは0.10〜0.40%とする。
Si
Si is added in an amount of 0.05% or more to ensure deoxidation and strength. If added over 0.50%, weldability and toughness deteriorate, so 0.05 to 0.50%, preferably 0.10 to 0.40%.

Mn
Mnは焼入れ性の増加により、強度、靭性を確保させるため、0.5%以上添加する。1.8%を超えると溶接性を劣化させるため、0.5〜1.8%、好ましくは0.8〜1.6%を添加する。
Mn
Mn is added in an amount of 0.5% or more in order to ensure strength and toughness by increasing hardenability. If it exceeds 1.8%, the weldability deteriorates, so 0.5 to 1.8%, preferably 0.8 to 1.6% is added.


Pは不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.05%以下、好ましくは0.03%以下とする。
P
P is an impurity and degrades toughness. Therefore, its content is preferably as small as possible, and is 0.05% or less, preferably 0.03% or less in terms of manufacturing cost.


Sは不純物で、靭性を劣化させるため、その含有量は少ないほど良く、製造コスト上、0.02%以下、好ましくは0.01%以下とする。
S
Since S is an impurity and degrades toughness, the content is preferably as small as possible, and is 0.02% or less, preferably 0.01% or less in terms of manufacturing cost.

以上が本発明に係る鋼の基本成分組成であるが、更に強度、靭性、溶接性を向上させたり、耐候性を付与する場合、Cu,Ni、Cr,Mo、Nb,V,Ti,Bの一種または二種以上を添加する。   The above is the basic component composition of the steel according to the present invention. When further improving the strength, toughness, weldability, or imparting weather resistance, Cu, Ni, Cr, Mo, Nb, V, Ti, B Add one or two or more.

Cu
Cuは固溶により強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性が損なわれ、鋼材製造時に疵が生じやすくなるので0.4%以下とし、好ましくは、0.3%以下とする。
Cu
Cu increases the strength by solid solution and improves the weather resistance, so it is added according to the desired properties. When added, if it exceeds 0.4%, the weldability is impaired, and flaws are likely to occur during the production of the steel material, so 0.4% or less, preferably 0.3% or less.

Ni
Niは低温靭性や耐候性を向上させ、またCuを添加した場合の熱間脆性を改善するので、所望する特性に応じて添加する。添加する場合、0.8%を超えると溶接性が損なわれ、鋼材コストが上昇するので0.8%以下とし、好ましくは、0.6%以下とする。
Ni
Ni improves low-temperature toughness and weather resistance, and improves hot brittleness when Cu is added, so it is added according to desired characteristics. When added, if it exceeds 0.8%, the weldability is impaired and the steel material cost increases, so the content is made 0.8% or less, preferably 0.6% or less.

Cr
Crは強度を上昇させ、また耐候性を向上させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性と靭性が損なわれるので0.4%以下とし、好ましくは、0.3%以下とする。
Cr
Cr increases the strength and improves the weather resistance, so it is added according to the desired properties. When added, if it exceeds 0.4%, weldability and toughness are impaired, so 0.4% or less, preferably 0.3% or less.

Mo
Moは強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.4%を超えると溶接性と靭性が損なわれるので0.4%以下とし、好ましくは、0.2%以下とする。
Mo
Since Mo increases strength, it is added according to desired characteristics. When added, if it exceeds 0.4%, weldability and toughness are impaired, so 0.4% or less, preferably 0.2% or less.

Nb
Nbは圧延時のオーステナイト再結晶を抑制し細粒化を図ると同時に、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると靭性が損なわれるので0.05%以下とし、好ましくは0.03%以下とする。
Nb
Nb suppresses austenite recrystallization during rolling to achieve finer grains, and at the same time, precipitates during air cooling after accelerated cooling and increases strength. Therefore, Nb is added according to desired characteristics. When added, if it exceeds 0.05%, the toughness is impaired, so 0.05% or less, preferably 0.03% or less.


Vは、加速冷却後の空冷時に析出し強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.05%を超えると溶接性と靭性が損なわれるので0.05%以下、好ましくは0.03%以下とする。
V
V precipitates during air cooling after accelerated cooling and increases the strength, so it is added according to the desired characteristics. When added, if it exceeds 0.05%, weldability and toughness are impaired, so 0.05% or less, preferably 0.03% or less.

Ti
Tiは、強度を上昇させ、溶接部靭性を向上させるので、所望する特性に応じて添加する。添加する場合、0.03%を超えると鋼材コストが上昇するので0.03%%以下、好ましくは0.02%以下とする。
Ti
Ti increases strength and improves weld toughness, so it is added according to desired properties. When adding, if it exceeds 0.03%, the steel material cost increases, so 0.03% or less, preferably 0.02% or less.


Bは焼入れ性を高め、強度を上昇させるので、所望する特性に応じて添加する。添加する場合、0.003%%を超えると溶接性が低下するので、0.003%以下、好ましくは0.002%以下とする。
B
B increases the hardenability and increases the strength, so it is added according to the desired properties. When adding, if it exceeds 0.003%, weldability deteriorates, so 0.003% or less, preferably 0.002% or less.

[製造条件]
本発明に係る鋼材は上記に記載の成分の鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行いAr点以上で圧延を終了した後、ArからAr−60℃の温度域より650℃以下450℃以上まで、10℃/s以上で加速冷却することにより得られる。
[Production conditions]
Steel components according to the steel according to the present invention described above, 1000 ° C. or higher, then heated to 1300 ° C. or less to complete the rolling at a cumulative reduction of 50% or more of the rolling performed Ar 3 point or more by Ar 3 or more points Then, it is obtained by accelerated cooling at 10 ° C./s or more from Ar 3 to Ar 3 −60 ° C. to 650 ° C. or less and 450 ° C. or more.

1.加熱温度
加熱温度は圧延温度を確保するため1000℃以上とする。1300℃を超えると鋼の結晶粒が粗大化するので上限を1300℃以下とする。
1. Heating temperature The heating temperature is set to 1000 ° C. or higher in order to secure the rolling temperature. If the temperature exceeds 1300 ° C, the crystal grains of the steel become coarse, so the upper limit is made 1300 ° C or less.

2.圧延条件
圧延終了温度がAr点を下回る場合、二相域圧延となり、パーライトが圧延方向に伸張することで疲労亀裂伝播速度に異方性が生じる。また、Ar点以上の累積圧下率が50%を下回る場合、オーステナイト粒の微細化を通じたフェライト粒の微細化やパーライト間隔の微細化が達成されない。なお、上記圧延は異方性を生じさせないためにオーステナイト再結晶域で行うことが望ましい。
2. Rolling conditions When the rolling end temperature is lower than the Ar 3 point, two-phase region rolling occurs, and the pearlite extends in the rolling direction, causing anisotropy in the fatigue crack propagation rate. Further, when the cumulative rolling reduction at 3 or more points of Ar is less than 50%, refinement of ferrite grains and refinement of pearlite intervals through refinement of austenite grains cannot be achieved. The rolling is desirably performed in the austenite recrystallization region so as not to cause anisotropy.

3.加速冷却条件
加速冷却開始温度は延性や曲げ加工性を低下させるベイナイトの生成を抑制するためにAr点以下とする。また、疲労亀裂伝播特性に異方性を生じさせるバンド状パーライトの生成を抑制させるためにAr点−60℃とする。
3. Accelerated cooling conditions The accelerated cooling start temperature is set to 3 points or less in order to suppress the formation of bainite that reduces ductility and bending workability. Further, Ar 3 point to 60 ° C. is used in order to suppress generation of band-like pearlite that causes anisotropy in fatigue crack propagation characteristics.

加速冷却停止温度は、未変態オーステナイトをパーライト変態させ、それらパーライトを鋼材中に微細かつ均質に分散させるため650℃以下、450℃以上とする。   The accelerated cooling stop temperature is set to 650 ° C. or lower and 450 ° C. or higher in order to cause pearlite transformation of untransformed austenite and to disperse the pearlite finely and uniformly in the steel material.

加速冷却停止温度が650℃を超える場合、疲労亀裂伝播特性に異方性を生じさせるバンド状パーライトが生成する。また、加速冷却停止温度が450℃を下回る場合、ベイナイトが生成する。   When the accelerated cooling stop temperature exceeds 650 ° C., band-like pearlite that causes anisotropy in fatigue crack propagation characteristics is generated. Further, when the accelerated cooling stop temperature is lower than 450 ° C., bainite is generated.

冷却速度は、冷却中に疲労亀裂伝播特性を劣化させるフェライトの粗大化やこれを通じたパーライト間隔の粗大化を防ぐために10℃/s以上とする。   The cooling rate is set to 10 ° C./s or more in order to prevent coarsening of ferrite that deteriorates fatigue crack propagation characteristics during cooling and coarsening of the pearlite interval through the ferrite.

なお、上記温度は鋼材の表面温度とし、冷却速度は鋼材の厚さ方向の平均冷却速度とする。また、Ar点はAr(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo(但し、元素記号は鋼材中の各元素の質量%での含有量を表す。)等で求めることができる。 The above temperature is the surface temperature of the steel material, and the cooling rate is the average cooling rate in the thickness direction of the steel material. The Ar 3 point is determined by Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (where the element symbol represents the content in mass% of each element in the steel). be able to.

上述した成分組成と製造条件の組合わせにより、以下のミクロ組織を備えた鋼板が得られる。得られたミクロ組織は、フェライトとパーライトの二相組織を主体として構成され、それらのL面、T面、Z面における面積率、形態の特徴により、亀裂伝播異方性が小さく、疲労亀裂伝播抵抗性に優れた特性を備える。   A steel sheet having the following microstructure can be obtained by a combination of the above-described component composition and manufacturing conditions. The resulting microstructure is composed mainly of a two-phase structure of ferrite and pearlite, and has a small crack propagation anisotropy and fatigue crack propagation due to the characteristics of the area ratio and form on the L, T, and Z planes. Has excellent resistance characteristics.

[ミクロ組織形態]
本発明では、得られたミクロ組織の形態を、鋼材のフェライトとパーライトの面積率ならびにそれら組織のL面、T面、Z面(図1に規定)に代表される三次元的なミクロ組織形態における、パーライト間隔、フェライト粒径、パーライト三次元形状で規定する。
[Microstructure]
In the present invention, the obtained microstructure is divided into three-dimensional microstructures represented by the area ratios of the ferrite and pearlite of the steel material and the L, T, and Z surfaces (defined in FIG. 1) of these structures. In pearlite spacing, ferrite grain size, and pearlite three-dimensional shape.

1.フェライトとパーライトの面積率
延性や曲げ加工性を考慮し、ミクロ組織の主体組織をフェライトとパーライトから構成される二相組織とする。フェライト面積率は65%を下回る場合、延性や曲げ加工性が低下する。一方で85%を超える場合には十分な強度が得られない。
1. Considering the area ratio ductility and bending workability of ferrite and pearlite, the microstructure of the microstructure is a two-phase structure composed of ferrite and pearlite. When the ferrite area ratio is less than 65%, ductility and bending workability are lowered. On the other hand, when it exceeds 85%, sufficient strength cannot be obtained.

パーライト面積率は10%を下回る場合、後述する疲労亀裂伝播特性の向上効果が発揮されない。一方、30%を超える場合には、溶接性、延性、曲げ加工性が低下する。   When the pearlite area ratio is less than 10%, the effect of improving the fatigue crack propagation characteristics described later is not exhibited. On the other hand, when it exceeds 30%, weldability, ductility, and bending workability deteriorate.

なお、本発明では残部組織としてベイナイト、マルテンサイトが混入することを許容する。但し、延性や曲げ加工性を考慮し、それら残部組織の面積分率は5%以下であることが好ましい。   In the present invention, bainite and martensite are allowed to be mixed in as the remaining structure. However, in consideration of ductility and bending workability, the area fraction of the remaining structure is preferably 5% or less.

2.L面およびT面のパーライト平均間隔
パーライト間隔は、疲労亀裂が進展する方向にパーライトを効果的に配置し、このパーライトにより亀裂先端での塑性域の形成を制御し、結果としてパーライトへの回り込みによる亀裂の屈曲を誘起するために、平均間隔で15μm以上とする。
2. Perlite average interval between L plane and T plane The pearlite interval is the effective arrangement of pearlite in the direction in which fatigue cracks propagate, and this pearlite controls the formation of a plastic zone at the crack tip, resulting in wraparound to pearlite. In order to induce crack bending, the average interval is set to 15 μm or more.

ただし、平均間隔で30μmを超えると回り込みの頻度が減少し、亀裂伝播抵抗性が小さくなるため15〜30μmとする。平均間隔は亀裂伝播の異方性を生じさせないため鋼板の任意の面について確保することが望ましく、代表させてL面およびT面で規定する。   However, if the average interval exceeds 30 μm, the frequency of wraparound decreases and the crack propagation resistance decreases, so the thickness is set to 15 to 30 μm. It is desirable to secure an average interval for any surface of the steel sheet so as not to cause crack propagation anisotropy, and it is defined by the L and T planes as representatives.

3.L面およびT面のフェライト平均粒径
フェライト粒径は、疲労亀裂がフェライト粒界に衝突する回数が、亀裂進展速度が低下する効果を得るために十分な回数となるように20μm以下とする。
3. The ferrite average particle diameter of ferrite on the L face and T face is set to 20 μm or less so that the number of times the fatigue crack collides with the ferrite grain boundary is sufficient to obtain the effect of reducing the crack growth rate.

ただし、粒径が小さすぎると上述のパーライト間での塑性域の形成を妨げるため10μm以上とし、10〜20μmとする。平均粒径亀裂伝播の異方性を生じさせないために鋼板の任意の面について確保することが望ましく、代表させてL面およびT面で規定する。   However, if the particle size is too small, the formation of the plastic region between the above-mentioned pearlites is hindered, so that it is 10 μm or more, and 10 to 20 μm. In order not to cause anisotropy of the average grain size crack propagation, it is desirable to secure an arbitrary surface of the steel sheet, and the L plane and the T plane are representatively defined.

4.パーライト塊三次元形状
本発明では、疲労亀裂がパーライトに接近した際に生じる亀裂先端の塑性域の形状変化を制御し、疲労亀裂のパーライト回り込みによる亀裂の屈曲進展を活用し疲労亀裂伝播抵抗性を向上している。この効果を亀裂伝播方向により異方性を生じせしめること無く、全方向に対して良好な疲労亀裂伝播抵抗性が発揮されるように、パーライトの三次元的な形状を以下のように規定する。
4). Three-dimensional shape of pearlite massIn the present invention, the fatigue crack propagation resistance is controlled by controlling the shape change of the plastic zone at the crack tip that occurs when the fatigue crack approaches the pearlite, and by utilizing the flexural progress of the crack due to the pearlite wrapping around the fatigue crack. It has improved. The three-dimensional shape of pearlite is defined as follows so that this effect exhibits good fatigue crack propagation resistance in all directions without causing anisotropy in the crack propagation direction.

すなわち、本発明の主たる目的は実構造物で懸念される、鋼板に対しての様々な方向への疲労亀裂伝播に対して、等しく優れた疲労亀裂伝播抵抗特性を備えることであり、そのため、各方向に対する疲労亀裂伝播特性が等しくなるように、パーライト三次元形状を(1)式、(2)式で規定する。
L(L)≦3Z(L)・・・(1)式
T(T)≦3Z(T)・・・(2)式
ここで、L(L)はL面でのL方向平均長さ、Z(L)はL面でのZ方向平均長さ、T(T)はT面でのT方向平均長さ、Z(T)はT面でのZ方向平均長さをそれぞれ示す。図2〜4に、上述した1〜3の規定を満足するミクロ組織の効果を示す。
That is, the main purpose of the present invention is to provide equally excellent fatigue crack propagation resistance characteristics with respect to fatigue crack propagation in various directions with respect to the steel sheet, which is a concern in actual structures. The pearlite three-dimensional shape is defined by equations (1) and (2) so that the fatigue crack propagation characteristics with respect to the direction are equal.
L (L) ≦ 3Z (L) (1) Formula T (T) ≦ 3Z (T) (2) where L (L) is the average length in the L direction on the L plane, Z (L) represents the average length in the Z direction on the L plane, T (T) represents the average length in the T direction on the T plane, and Z (T) represents the average length in the Z direction on the T plane. 2 to 4 show the effect of the microstructure satisfying the above-mentioned regulations 1 to 3.

図2はパーライト平均間隔と(実亀裂伝播長さ)/(亀裂伝播方向の直線距離)との関係を示し、フェライト面積率、パーライト面積率、フェライト平均粒径、パーライト塊形状を本発明範囲内とした上で、パーライト平均間隔のみを変化させた鋼のT方向における疲労亀裂伝播試験(試験条件:ΔK=20MPa√m一定)の結果より得たものである。   FIG. 2 shows the relationship between the average pearlite interval and (actual crack propagation length) / (linear distance in the crack propagation direction), and the ferrite area ratio, pearlite area ratio, ferrite average particle diameter, and pearlite lump shape are within the scope of the present invention. Then, it was obtained from the result of fatigue crack propagation test (test condition: ΔK = 20 MPa√m constant) in the T direction of steel with only the pearlite average interval changed.

ここで(実亀裂伝播長さ)/(亀裂伝播方向の直線距離)が大きい場合は前述のパーライト部分での亀裂の屈曲、回り込みが多く発生し、結果として実伝播距離の増加、破面の凹凸の増加が生じていることを意味している。   If (actual crack propagation length) / (straight distance in the crack propagation direction) is large here, cracks and wraparound often occur in the pearlite part, resulting in an increase in the actual propagation distance and irregularities in the fracture surface. It means that there is an increase.

(実亀裂伝播長さ)は亀裂の伝播した長さの全長で定義され、亀裂が蛇行している場合は蛇行に沿った長さとする。亀裂が枝分かれしている場合は、主亀裂(最も伝播している長さが長い亀裂)の長さとする。   (Actual crack propagation length) is defined by the total length of the crack propagated, and when the crack is meandering, the length is along the meandering. When the crack is branched, the length is the length of the main crack (the crack having the longest propagation length).

(亀裂伝播方向の直線距離)とは、亀裂を亀裂伝播方向に投影した際に得られる長さで定義する。亀裂が蛇行している場合は、亀裂伝播方向を蛇行しつつ、亀裂が進行する方向とし、当該方向に亀裂を投影して得られる長さとする。亀裂が枝分かれしている場合は、亀裂伝播方向を主亀裂が進行する方向とし、当該方向に主亀裂を投影して得られる距離とする。   (Linear distance in the crack propagation direction) is defined as the length obtained when a crack is projected in the crack propagation direction. When the crack is meandering, the crack propagation direction is meandering, the crack progressing direction, and the length obtained by projecting the crack in that direction. When the crack is branched, the crack propagation direction is the direction in which the main crack progresses, and the distance obtained by projecting the main crack in that direction.

本発明は(実亀裂伝播長さ)/(亀裂伝播方向の直線距離)の値を1.1以上にすることを目標としており、図よりパーライト平均間隔で15〜30μmでこの値が達成されていることが認められる。   The object of the present invention is to set the value of (actual crack propagation length) / (linear distance in the crack propagation direction) to 1.1 or more. From the figure, this value is achieved at an average pearlite interval of 15 to 30 μm. It is recognized that

図3に図2で実施した試験で得られた(実亀裂伝播長さ)/(亀裂伝播方向の直線距離)と疲労亀裂伝播速度の関係を示す。   FIG. 3 shows the relationship between (actual crack propagation length) / (linear distance in the crack propagation direction) and fatigue crack propagation speed obtained in the test performed in FIG.

上述のパーライト平均間隔の制御による実伝播距離の増加、破面凹凸の増加の結果、(実亀裂伝播長さ)/(亀裂伝播方向の直線距離)の増加とともに、特にこの値が1.1以上の場合に、疲労亀裂伝播速度の低下、すなわち疲労亀裂伝播抵抗性の向上が認められる。   As a result of the increase in the actual propagation distance and the increase in the fracture surface irregularities due to the control of the pearlite average interval described above, this value is 1.1 or more as the (actual crack propagation length) / (linear distance in the crack propagation direction) increases. In this case, a decrease in fatigue crack propagation rate, that is, an improvement in fatigue crack propagation resistance is observed.

図4はパーライト塊形状に関して、L(L)/Z(L):L面でのL方向平均長さとL面でのZ方向平均長さの比、T(T)/Z(T):T面でのT方向平均長さとT面でのZ方向平均長さの比で、これらと速度(Z)/速度(L):Z方向の疲労亀裂伝播速度とL方向の亀裂伝播速度の比、速度(Z)/速度(T):Z方向の疲労亀裂伝播速度とT方向の亀裂伝播速度の比の関係を示す。   FIG. 4 shows L (L) / Z (L): ratio of L-direction average length on the L plane to Z-direction average length on the L plane, T (T) / Z (T): T The ratio of the average length in the T direction in the plane to the average length in the Z direction in the T plane, and these and the speed (Z) / speed (L): the ratio of the fatigue crack propagation speed in the Z direction to the crack propagation speed in the L direction, Velocity (Z) / Velocity (T): Shows the relationship between the fatigue crack propagation speed in the Z direction and the crack propagation speed in the T direction.

図4に示す結果は、フェライト面積率、パーライト面積率、フェライト平均粒径、パーライト平均間隔を本発明範囲内とし、パーライト塊形状のみを変化させた鋼の疲労亀裂伝播試験(試験条件:ΔK=20MPa√m一定)での結果より得たものである。   The results shown in FIG. 4 indicate that the fatigue crack propagation test (test condition: ΔK =) of steel in which the ferrite area ratio, pearlite area ratio, ferrite average particle diameter, and pearlite average interval are within the scope of the present invention, and only the pearlite lump shape is changed. It is obtained from the result at 20 MPa√m constant).

L(L)/Z(L)およびT(T)/Z(T)を3以下とすることで方向性の少ない(異方性の小さい)疲労亀裂伝播特性が得られ、実構造物での、鋼板に対して様々な方向に進展する疲労亀裂に対して、等しく優れた疲労亀裂伝播抵抗性が実現される。   By setting L (L) / Z (L) and T (T) / Z (T) to 3 or less, fatigue crack propagation characteristics with less directionality (small anisotropy) can be obtained. Equally excellent fatigue crack propagation resistance is realized for fatigue cracks that propagate in various directions with respect to the steel sheet.

表1に示す成分組成の鋼片にて、表2に示す条件にて板厚12〜50mmの鋼板を作成し、得られた鋼板のミクロ組織観察、機械的性質および疲労亀裂伝播特性を調査した。   A steel sheet having a thickness of 12 to 50 mm was prepared under the conditions shown in Table 2 using steel pieces having the composition shown in Table 1, and the microstructure observation, mechanical properties, and fatigue crack propagation characteristics of the obtained steel sheet were investigated. .

組織観察は任意の箇所から採取した試料を研磨したサンプルを用いて、2%ナイタール腐食液によりエッチングしたT面、L面の板厚/4位置にて実施した。   The structure observation was carried out using a sample obtained by polishing a sample collected from an arbitrary location at a thickness of / 4 on the T and L surfaces etched with 2% nital etchant.

光学顕微鏡観察によりフェライトの面積率、パーライトの面積率、ならびにパーライトの平均間隔、フェライトの平均粒径、パーライト塊形状を測定した。これらの値は1サンプルについて5視野で実施し、それら総視野での平均値として求めた。   The area ratio of ferrite, the area ratio of pearlite, the average interval of pearlite, the average particle diameter of ferrite, and the shape of pearlite lump were measured by optical microscope observation. These values were carried out for 5 samples per sample, and were obtained as an average value in the total field of view.

疲労亀裂伝播特性は全厚のCT試験片(板厚25mm超えは25mmt片面減厚CT試験片)にて、L方向、T方向に亀裂が進展する時の疲労亀裂伝播試験にて調査した。Z方向に亀裂が進展する場合の疲労亀裂伝播特性に関しては全厚の3点曲げ試験片(板厚25mm超えは25mmt片面減厚)にて調査した。   Fatigue crack propagation characteristics were examined by a fatigue crack propagation test when a crack propagates in the L direction and the T direction using a full-thickness CT test piece (a plate thickness exceeding 25 mm is a 25 mmt single-sided thinned CT test piece). The fatigue crack propagation characteristics in the case where cracks propagate in the Z direction were investigated using a full-thickness three-point bending test piece (thickness on one side is reduced by 25 mm when the plate thickness exceeds 25 mm).

試験条件は応力比0.1、周波数20Hz,室温大気中にて実施した。実施例において、応力拡大係数K=20MPa√mとした場合の疲労亀裂伝播速度が亀裂伝播方向によらず、5.0×10−8m/Cycle以下を本発明例とした。 The test conditions were a stress ratio of 0.1, a frequency of 20 Hz, and a room temperature atmosphere. In the examples, the fatigue crack propagation rate when the stress intensity factor K = 20 MPa√m is set to 5.0 × 10 −8 m / cycle or less regardless of the crack propagation direction.

引張強度はT方向に採取したJISZ2201 1A号の全厚試験片を用いた引張試験により求めた。実施例において、TSが400MPa以上、伸びが20%以上を本発明例とした。   The tensile strength was obtained by a tensile test using a full thickness test piece of JISZ2201 1A collected in the T direction. In the examples, TS was 400 MPa or more, and the elongation was 20% or more.

靭性はシャルピー衝撃試験により破面遷移温度vTrs(℃)を求めた。シャルピー衝撃試験片(JISZ2202)は板厚/4(板厚25mm未満は板厚/2)より、圧延方向に平行に採取した。実施例において、vTrsが−20℃以下を本発明例とした。   As for toughness, a fracture surface transition temperature vTrs (° C.) was obtained by a Charpy impact test. A Charpy impact test piece (JISZ2202) was taken in parallel with the rolling direction from a thickness of / 4 (plate thickness of less than 25 mm was thickness / 2). In the examples, vTrs of −20 ° C. or less was taken as an example of the present invention.

組織観察結果を表3、引張、靭性、疲労亀裂伝播試験結果を表4に示す。成分、製造方法、組織を本発明規定範囲内とした板番No.1〜No.8の鋼板はいずれの方向においても優れた耐疲労亀裂伝播抵抗を示し、かつ、強度、延性、靭性にも優れていることが確認される。   Table 3 shows the structure observation results, and Table 4 shows the tensile, toughness, and fatigue crack propagation test results. The plate number No. in which the components, the production method and the structure are within the scope of the present invention. 1-No. It is confirmed that the steel plate No. 8 exhibits excellent fatigue crack propagation resistance in any direction and is excellent in strength, ductility, and toughness.

一方、C、Si、Mnが本発明範囲を超えるNo.9の鋼板は高成分のため、フェライト分率、パーライト平均間隔が本発明規定値を下回り、パーライト分率が本発明規定値を超えている。このため、疲労亀裂伝播抵抗が劣り、延性、靭性が低い。   On the other hand, No. C, Si, and Mn exceed the scope of the present invention. Since the steel plate No. 9 is a high component, the ferrite fraction and the pearlite average interval are below the specified values of the present invention, and the pearlite fraction exceeds the specified values of the present invention. For this reason, fatigue crack propagation resistance is inferior and ductility and toughness are low.

加熱温度が本発明規定値を超え、Ar点以上の圧下率が本発明規定値を下回るNo.10の鋼板は焼入れ性が高く、フェライト/ベイナイト組織となっている。このため、延性、靭性が低い。 The heating temperature exceeds the specified value of the present invention, and the rolling reduction rate of Ar 3 points or more falls below the specified value of the present invention. Steel plate No. 10 has high hardenability and has a ferrite / bainite structure. For this reason, ductility and toughness are low.

加速冷却開始温度がAr点を上回るNo.11の鋼板はベイナイト単相組織であるため、延性が低く、疲労亀裂伝播抵抗が劣る。圧延終了温度がAr点を下回り(二相域圧延)、加速冷却の開始温度がAr−60℃を下回るNo.12の鋼板はフェライト粒径、パーライト平均間隔が本規定値を下回り、パーライト塊形状がL(L)>3Z(L)、T(T)>3Z(T)である。 The accelerated cooling start temperature is higher than the Ar 3 point. Since the steel plate No. 11 has a bainite single phase structure, the ductility is low and the fatigue crack propagation resistance is poor. The rolling end temperature is lower than the Ar 3 point (two-phase rolling), and the accelerated cooling start temperature is lower than Ar 3 -60 ° C. Steel No. 12 has a ferrite grain size and an average pearlite interval below this specified value, and the pearlite lump shapes are L (L)> 3Z (L) and T (T)> 3Z (T).

このため疲労亀裂伝播抵抗において異方性が生じ、Z方向と比較してL方向、T方向の疲労亀裂伝播速度が顕著に劣化している。加速冷却時の冷却速度が本規定値を下回るNo.13の鋼板、加速冷却時の停止温度が本規定値を超えるNo.14の鋼板は、フェライト粒径、パーライト平均間隔が本規定値を超える。   For this reason, anisotropy occurs in the fatigue crack propagation resistance, and the fatigue crack propagation rates in the L direction and the T direction are significantly deteriorated compared to the Z direction. No. in which the cooling rate during accelerated cooling is lower than this specified value. No. 13 steel sheet, No. in which the stop temperature during accelerated cooling exceeds this specified value. In the steel plate No. 14, the ferrite grain size and the pearlite average interval exceed the specified values.

このため、疲労亀裂伝播抵抗に劣り、強度と靭性が低い。加速冷却の停止温度が本規定値を下回るNo.15の鋼板はフェライト/ベイナイト組織となっている。このため、延性、靭性が低い。   For this reason, it is inferior to fatigue crack propagation resistance and has low strength and toughness. No. of acceleration cooling stop temperature below this specified value. The steel plate of 15 has a ferrite / bainite structure. For this reason, ductility and toughness are low.

Figure 2008007834
Figure 2008007834

Figure 2008007834
Figure 2008007834

Figure 2008007834
Figure 2008007834

Figure 2008007834
Figure 2008007834

本発明で規定する鋼材のL、T、Z面およびL、T、Z方向を説明する図。The figure explaining the L, T, Z surface and L, T, Z direction of the steel materials prescribed | regulated by this invention. パーライト平均間隔と(実亀裂長さ)/(亀裂伝播方向の直線距離)の関係を示す図。The figure which shows the relationship of a pearlite average space | interval and (actual crack length) / (linear distance of a crack propagation direction). (実亀裂長さ)/(亀裂伝播方向の直線距離)と疲労亀裂伝播速度の関係を示す図。The figure which shows the relationship between (actual crack length) / (linear distance of a crack propagation direction) and fatigue crack propagation velocity. パーライト塊形状と疲労亀裂伝播速度比の関係を示す図。The figure which shows the relationship between a pearlite lump shape and a fatigue crack propagation rate ratio.

Claims (2)

質量%で、C:0.04〜0.20%、Si:0.05〜0.50%、Mn:0.5〜1.8%、P:0.05%以下、S:0.02%以下、残部が実質的にFeからなる鋼を、1000℃以上、1300℃以下に加熱し、Ar点以上で累積圧下率50%以上の圧延を行いAr点以上で圧延を終了した後、ArからAr−60℃の温度域より650℃以下450℃以上まで、10℃/s以上で加速冷却し、ミクロ組織が(1)〜(3)の特徴を有するフェライトとパーライトの二相組織で、面積率65〜85%のフェライトを有することを特徴とする疲労亀裂伝播抵抗性に優れた鋼材の製造方法。
(1)L面およびT面のパーライト平均間隔:15〜30μm
(2)L面およびT面のフェライト平均粒径: 10〜20μm
(3)パーライト塊形状: L(L)≦3Z(L)、T(T)≦3Z(T)
ここで、L(L):L面でのL方向平均長さ、Z(L):L面でのZ方向平均長さ、T(T):T面でのT方向平均長さ、Z(T):T面でのZ方向平均長さ
In mass%, C: 0.04 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.02 % or less, the steel balance being substantially Fe, 1000 ° C. or higher, then heated to 1300 ° C. or less, after completion of the rolling at a cumulative reduction of 50% or more of the rolling performed Ar 3 point or more by Ar 3 or more points From the temperature range of Ar 3 to Ar 3 −60 ° C. to 650 ° C. or lower and 450 ° C. or higher, accelerated cooling is performed at 10 ° C./s or higher, and the microstructures of ferrite and pearlite having the characteristics of (1) to (3) A method for producing a steel material having excellent fatigue crack propagation resistance, comprising a ferrite having an area ratio of 65 to 85% in a phase structure.
(1) L-plane and T-plane pearlite average spacing: 15-30 μm
(2) L-plane and T-plane ferrite average particle diameter: 10 to 20 μm
(3) Perlite lump shape: L (L) ≦ 3Z (L), T (T) ≦ 3Z (T)
Here, L (L): L direction average length on the L plane, Z (L): Z direction average length on the L plane, T (T): T direction average length on the T plane, Z ( T): Average length in the Z direction on the T plane
更に、鋼成分として、質量%で、Cu:0.4%以下、Ni:0.8%以下、Cr:0.4%以下、Mo:0.4%以下、Nb:0.05%以下、V:0.10%以下、Ti:0.03%以下、B:0.003%以下の一種または二種以上を含有することを特徴とする請求項1記載の疲労亀裂伝播抵抗性に優れた鋼材の製造方法。
Further, as a steel component, in mass%, Cu: 0.4% or less, Ni: 0.8% or less, Cr: 0.4% or less, Mo: 0.4% or less, Nb: 0.05% or less, It has excellent fatigue crack propagation resistance according to claim 1, characterized by containing one or more of V: 0.10% or less, Ti: 0.03% or less, B: 0.003% or less. Steel manufacturing method.
JP2006181297A 2006-06-30 2006-06-30 Manufacturing method of steel material with excellent fatigue crack propagation resistance Expired - Fee Related JP5151079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181297A JP5151079B2 (en) 2006-06-30 2006-06-30 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181297A JP5151079B2 (en) 2006-06-30 2006-06-30 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Publications (2)

Publication Number Publication Date
JP2008007834A true JP2008007834A (en) 2008-01-17
JP5151079B2 JP5151079B2 (en) 2013-02-27

Family

ID=39066302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181297A Expired - Fee Related JP5151079B2 (en) 2006-06-30 2006-06-30 Manufacturing method of steel material with excellent fatigue crack propagation resistance

Country Status (1)

Country Link
JP (1) JP5151079B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245545A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp Welded joint
JP2014095146A (en) * 2012-10-10 2014-05-22 Jfe Steel Corp Steel sheet for welded structure excellent in fatigue crack propagation resistance and its manufacturing method
JP2014095145A (en) * 2012-10-10 2014-05-22 Jfe Steel Corp Steel sheet for welded structure excellent in weldability and fatigue crack propagation resistance and its manufacturing method
JP2015127447A (en) * 2013-12-27 2015-07-09 Jfeスチール株式会社 High strength steel material excellent in fatigue crack propagation property and determination method therefor
JP2015227483A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel sheet excellent in shock resistance and manufacturing method therefor
CN110592480A (en) * 2019-09-25 2019-12-20 南京钢铁股份有限公司 Thick Q345R steel plate with excellent low-temperature impact toughness at core and manufacturing method thereof
WO2022236961A1 (en) * 2021-05-14 2022-11-17 南京钢铁股份有限公司 Api 2w-50 steel plate for offshore oil platform, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH06322477A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Steel excellent in fatigue crack propagating property in wet hydrogen sulfide environment
JPH1192858A (en) * 1997-09-16 1999-04-06 Nkk Corp Steel excellent in ductile crack propagation resistance under repeated large deformation and its production
JP2005314811A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2005314812A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JPH06322477A (en) * 1993-05-11 1994-11-22 Sumitomo Metal Ind Ltd Steel excellent in fatigue crack propagating property in wet hydrogen sulfide environment
JPH1192858A (en) * 1997-09-16 1999-04-06 Nkk Corp Steel excellent in ductile crack propagation resistance under repeated large deformation and its production
JP2005314811A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having excellent ductility and fatigue crack propagation resistance
JP2005314812A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk Method for producing steel having reduced difference in strength in sheet thickness direction and having excellent fatigue crack propagation property

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245545A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp Welded joint
JP2014095146A (en) * 2012-10-10 2014-05-22 Jfe Steel Corp Steel sheet for welded structure excellent in fatigue crack propagation resistance and its manufacturing method
JP2014095145A (en) * 2012-10-10 2014-05-22 Jfe Steel Corp Steel sheet for welded structure excellent in weldability and fatigue crack propagation resistance and its manufacturing method
JP2015127447A (en) * 2013-12-27 2015-07-09 Jfeスチール株式会社 High strength steel material excellent in fatigue crack propagation property and determination method therefor
JP2015227483A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel sheet excellent in shock resistance and manufacturing method therefor
CN110592480A (en) * 2019-09-25 2019-12-20 南京钢铁股份有限公司 Thick Q345R steel plate with excellent low-temperature impact toughness at core and manufacturing method thereof
CN110592480B (en) * 2019-09-25 2022-01-11 南京钢铁股份有限公司 Thick Q345R steel plate with excellent low-temperature impact toughness at core and manufacturing method thereof
WO2022236961A1 (en) * 2021-05-14 2022-11-17 南京钢铁股份有限公司 Api 2w-50 steel plate for offshore oil platform, and production method therefor

Also Published As

Publication number Publication date
JP5151079B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP5070744B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP5151079B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP4670371B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP4770235B2 (en) Manufacturing method of steel with excellent ductility and fatigue crack propagation characteristics
WO1996010654A1 (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
JP2010229453A (en) High strength thick steel plate having excellent toughness to one layer large heat input welding affected zone and method of manufacturing the same
JP4687122B2 (en) Manufacturing method of steel with excellent strength uniformity in the thickness direction and fatigue crack propagation characteristics
JP5050423B2 (en) Steel with excellent fatigue crack propagation resistance
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2008255468A (en) Fatigue crack propagation delayed steel and its manufacturing method
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP6981546B2 (en) Thick steel plate and its manufacturing method
JP5266836B2 (en) Method of manufacturing a steel material excellent in fatigue crack propagation resistance and ductility
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate
JP4645462B2 (en) A high-strength steel material excellent in fatigue crack propagation characteristics with low strength dependence and a method for producing the same.
JP5157220B2 (en) Manufacturing method of thick steel plate with excellent total elongation and fatigue crack propagation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees