JP2008002319A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2008002319A
JP2008002319A JP2006171343A JP2006171343A JP2008002319A JP 2008002319 A JP2008002319 A JP 2008002319A JP 2006171343 A JP2006171343 A JP 2006171343A JP 2006171343 A JP2006171343 A JP 2006171343A JP 2008002319 A JP2008002319 A JP 2008002319A
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
turbine
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006171343A
Other languages
Japanese (ja)
Other versions
JP4697065B2 (en
Inventor
Takashi Ogawa
孝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006171343A priority Critical patent/JP4697065B2/en
Publication of JP2008002319A publication Critical patent/JP2008002319A/en
Application granted granted Critical
Publication of JP4697065B2 publication Critical patent/JP4697065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for more efficiently recovering the performance of an exhaust emission control device in an internal combustion engine equipped with two superchargers. <P>SOLUTION: Two turbines (10a, 20a) of the two-stage superchargers are disposed in an exhaust system of the internal combustion engine and the exhaust system is provided with two bypass passages (11, 21) for bypassing the respective turbines. When recovering such performance of the exhaust emission control device 7 as NOx reduction treatment, SOx poisoning recovery treatment or PM regeneration treatment, the performance recovery treatment is performed more efficiently by changing a combination of the two turbines (10a, 20a) and the two bypass passages (11, 21) through which the exhaust gas passes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関からの排気を浄化する排気浄化システムに関し、特に2段の過給機を備えた内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for purifying exhaust gas from an internal combustion engine, and more particularly to an exhaust gas purification system for an internal combustion engine equipped with a two-stage supercharger.

内燃機関の排気にはNOxなどの有害物質が含まれている。これらの有害物質の排出を
低減するために、内燃機関の排気系に、排気中のNOxを浄化するNOx触媒を設けることが知られている。この技術において例えば吸蔵還元型NOx触媒を設けた場合には、吸蔵
されたNOxの量が増加すると浄化能力が低下するため、リッチスパイク制御を行うこと
により吸蔵還元型NOx触媒に還元剤を供給し、同触媒に吸蔵されたNOxを還元放出することが行われる(以下、「NOx還元処理」という。)。
The exhaust gas of an internal combustion engine contains harmful substances such as NOx. In order to reduce the emission of these harmful substances, it is known to provide a NOx catalyst for purifying NOx in the exhaust gas in the exhaust system of the internal combustion engine. In this technology, for example, when a storage reduction type NOx catalyst is provided, the purification capacity decreases as the amount of stored NOx increases, so that a reducing agent is supplied to the storage reduction type NOx catalyst by performing rich spike control. The NOx occluded in the catalyst is reduced and released (hereinafter referred to as “NOx reduction treatment”).

さらに、NOx触媒に排気中のSOxが吸蔵され、浄化能力が低下するSOx被毒を解消
するために、NOx触媒の床温を上昇させるとともに還元剤を供給する場合もある(以下
、「SOx再生処理」という。)。このSOx再生処理において還元剤は、NOx触媒の床
温を上昇させるためにも用いられる。
Further, in order to eliminate SOx poisoning in which the SOx in the exhaust gas is occluded in the NOx catalyst and the purification ability is reduced, the bed temperature of the NOx catalyst is raised and a reducing agent is sometimes supplied (hereinafter referred to as “SOx regeneration” Processing "). In this SOx regeneration process, the reducing agent is also used to increase the bed temperature of the NOx catalyst.

また、内燃機関の排気にはカーボンを主成分とする微粒子物質(PM:Particulate Matter)が含まれている。これらの微粒子物質の大気への放散を防止するために内燃機関の排気系に微粒子物質を捕集するパティキュレートフィルタ(以下、「フィルタ」という。)を設ける技術が知られている。   Further, the exhaust gas of the internal combustion engine contains particulate matter (PM) containing carbon as a main component. A technique for providing a particulate filter (hereinafter referred to as “filter”) for collecting particulate matter in an exhaust system of an internal combustion engine is known in order to prevent such particulate matter from being released into the atmosphere.

かかるフィルタにおいては、捕集された微粒子物質の堆積量が増加すると、フィルタの目詰まりによって排気における背圧が上昇し機関性能が低下するので、フィルタの温度を上昇させて捕集された微粒子物質を酸化除去することとしている(以下、「PM再生処理」という。)。この場合にも、フィルタの温度を上昇させるために、フィルタに還元剤としての燃料を供給する場合がある。   In such a filter, when the amount of collected particulate matter increases, the back pressure in the exhaust gas increases due to clogging of the filter and the engine performance deteriorates. Therefore, the particulate matter collected by raising the temperature of the filter. Is oxidized and removed (hereinafter referred to as “PM regeneration process”). Also in this case, in order to raise the temperature of the filter, fuel as a reducing agent may be supplied to the filter.

また、内燃機関における排気通路上に、排気ガスによって駆動される排気タービン駆動式過給機(以下、単純に「過給機」という。)を備えた内燃機関が知られている。この過給機は、気筒内から排出される排気ガスのエネルギーを利用してタービンを回し、タービンと同じ回転軸に取り付けられているコンプレッサによって空気を圧縮し、圧縮した空気を気筒内に送り込む装置である。さらに、より高い過給圧力を達成すべく、2段の過給機を備えた2段過給方式が採用される場合もある。   There is also known an internal combustion engine provided with an exhaust turbine drive supercharger (hereinafter simply referred to as “supercharger”) driven by exhaust gas on an exhaust passage in the internal combustion engine. This supercharger is a device that rotates the turbine using the energy of exhaust gas discharged from the cylinder, compresses the air by a compressor attached to the same rotating shaft as the turbine, and sends the compressed air into the cylinder It is. Furthermore, in order to achieve a higher supercharging pressure, a two-stage supercharging system including a two-stage supercharger may be employed.

ここで、上記のNOx還元処理、SOx回復処理またはPM再生処理を実施する際には、排気中に還元剤を添加することにより還元剤を吸蔵還元型NOx触媒あるいはフィルタに
供給する場合や、吸蔵還元型NOx触媒あるいはフィルタに導入される排気の温度を上昇
させる場合がある。このような場合において、排気における空燃比の状態、還元剤の排気への混合状態、排気温度などが、排気の前記2段の過給機の通過の仕方によって変化する場合があった。
Here, when performing the above-mentioned NOx reduction treatment, SOx recovery treatment, or PM regeneration treatment, when the reducing agent is supplied to the NOx storage reduction catalyst or filter by adding the reducing agent into the exhaust gas, or the occlusion In some cases, the temperature of the exhaust gas introduced into the reduced NOx catalyst or the filter is raised. In such a case, the state of the air-fuel ratio in the exhaust, the state of mixing of the reducing agent into the exhaust, the exhaust temperature, and the like may change depending on how the exhaust passes through the two-stage supercharger.

これに対し、直列2段過給エンジンにおいて、2つの過給機の下流側に触媒を備え、過給機のタービンをバイパスするバイパス通路を備え、排気が過給機を通過する際の温度低下を抑制する技術が提案されている(例えば、特許文献1参照。)。   In contrast, in a series two-stage supercharged engine, a catalyst is provided downstream of the two superchargers, a bypass passage that bypasses the turbocharger turbine is provided, and a temperature drop occurs when exhaust passes through the supercharger. The technique which suppresses is proposed (for example, refer patent document 1).

しかし、2段の過給機を積極的に利用して、排気における空燃比の状態、還元剤の排気
への混合状態、排気温度などを積極的に制御することについては開示されていなかった。
特開2004−100694号公報 特開昭63−309727号公報 特開2005−344714号公報
However, it has not been disclosed to actively control the state of the air-fuel ratio in the exhaust, the state of mixing of the reducing agent into the exhaust, the exhaust temperature, etc. by actively using the two-stage supercharger.
JP 2004-1000069 A JP-A 63-309727 JP 2005-344714 A

本発明は、上記従来技術に鑑みてなされたものであり、その目的とするところは、2段の過給機を備えた内燃機関において、より効率よく排気浄化装置の性能回復のための処理を行える技術を提供することである。   The present invention has been made in view of the above prior art, and an object of the present invention is to perform a process for recovering the performance of the exhaust purification device more efficiently in an internal combustion engine having a two-stage supercharger. It is to provide technology that can be used.

上記目的を達成するための本発明は、内燃機関の排気系にタービンを配置させた2つの過給機と、それぞれのタービンを独立にバイパスさせるバイパス通路とを備えており、排気浄化装置の性能回復処理時に、前記2つのタービンと、2つのバイパス通路の各々を通過する排気の量を制御して、性能回復処理を促進させることを最大の特徴とする。   In order to achieve the above object, the present invention comprises two superchargers in which a turbine is disposed in an exhaust system of an internal combustion engine, and a bypass passage that bypasses each turbine independently. In the recovery process, the maximum characteristic is to promote the performance recovery process by controlling the amount of exhaust gas passing through each of the two turbines and the two bypass passages.

より詳しくは、内燃機関の排気通路に第1タービンを有するとともに吸気通路に第1コンプレッサを有し、前記排気通路を通過する排気により駆動されて、前記内燃機関への吸気を過給する第1過給機と、
前記内燃機関の排気通路における前記第1タービンの下流側に第2タービンを有するとともに吸気通路における前記第1コンプレッサの上流側に第2コンプレッサを有し、前記排気通路を通過する排気により駆動されて、前記内燃機関への吸気を過給する第2過給機と、
前記排気通路における前記第1タービンの上流側と、前記第1タービンと前記第2タービンとの間とを連通して前記内燃機関からの排気に前記第1タービンを迂回させる第1バイパス通路と、
前記排気通路における前記第1タービンと前記第2タービンとの間と、前記第2タービンの下流側とを連通して前記内燃機関からの排気に前記第2タービンを迂回させる第2バイパス通路と、
前記排気通路の前記第2タービンの下流側における前記第2バイパス通路との合流部よりさらに下流側に配置され、排気を浄化するとともに、昇温することおよび/または還元剤が供給されることにより、排気浄化性能を回復させる性能回復処理が行われる排気浄化装置と、
前記排気通路の前記第1タービンの上流側における前記第1バイパス通路の分岐部より上流側に配置され、前記排気通路を通過する排気に還元剤を添加する還元剤添加手段と、
前記内燃機関からの排気のうち、前記第1タービンを通過する排気の量が、前記第1バイパス通路を通過する排気の量に比較して多い過給状態と、前記内燃機関からの排気のうち、前記第1バイパス通路を通過する排気の量が、前記第1タービンを通過する排気の量に比較して多いバイパス状態のいずれかを選択可能な第1排気制御手段と、
前記内燃機関からの排気のうち、前記第2タービンを通過する排気の量が、前記第2バイパス通路を通過する排気の量に比較して多い過給状態と、前記内燃機関からの排気のうち、前記第2バイパス通路を通過する排気の量が、前記第2タービンを通過する排気の量に比較して多いバイパス状態のいずれかを選択可能な第2排気制御手段と、
前記性能回復処理が行われる際に、前記第1排気制御手段および/または前記第2排気制御手段を作動させて前記排気浄化装置の性能回復を促進する性能回復促進手段と
を備えることを特徴とする。
More specifically, the first turbine has a first turbine in the exhaust passage of the internal combustion engine and a first compressor in the intake passage, and is driven by exhaust passing through the exhaust passage to supercharge intake air to the internal combustion engine. A turbocharger,
The exhaust passage of the internal combustion engine has a second turbine downstream of the first turbine and a second compressor upstream of the first compressor in the intake passage, and is driven by exhaust gas passing through the exhaust passage. A second supercharger for supercharging intake air to the internal combustion engine;
A first bypass passage that communicates between the upstream side of the first turbine in the exhaust passage and between the first turbine and the second turbine to bypass the first turbine to exhaust from the internal combustion engine;
A second bypass passage that communicates between the first turbine and the second turbine in the exhaust passage and the downstream side of the second turbine to bypass the second turbine to exhaust from the internal combustion engine;
The exhaust passage is disposed further downstream than the junction with the second bypass passage on the downstream side of the second turbine, purifies the exhaust gas, raises the temperature, and / or is supplied with the reducing agent. An exhaust purification device that performs performance recovery processing to recover exhaust purification performance;
A reducing agent adding means disposed on the upstream side of the branch portion of the first bypass passage on the upstream side of the first turbine of the exhaust passage, and for adding a reducing agent to the exhaust gas passing through the exhaust passage;
Of the exhaust from the internal combustion engine, the amount of exhaust passing through the first turbine is larger than the amount of exhaust passing through the first bypass passage, and among the exhaust from the internal combustion engine A first exhaust control means capable of selecting any bypass state in which the amount of exhaust passing through the first bypass passage is larger than the amount of exhaust passing through the first turbine;
Of the exhaust from the internal combustion engine, the amount of exhaust that passes through the second turbine is larger than the amount of exhaust that passes through the second bypass passage, and among the exhaust from the internal combustion engine A second exhaust control means capable of selecting any bypass state in which the amount of exhaust passing through the second bypass passage is larger than the amount of exhaust passing through the second turbine;
Performance recovery promoting means for activating the first exhaust control means and / or the second exhaust control means to promote performance recovery of the exhaust emission control device when the performance recovery processing is performed. To do.

ここで、排気浄化装置の性能回復処理においては、前述のように還元剤添加手段から排気に還元剤を添加することにより、還元剤を排気浄化装置に供給することがある。また、
排気の温度を上昇させて排気浄化装置の温度を上昇させる場合もある。
Here, in the performance recovery process of the exhaust purification device, the reducing agent may be supplied to the exhaust purification device by adding the reducing agent to the exhaust from the reducing agent adding means as described above. Also,
In some cases, the temperature of the exhaust gas purification device is raised by raising the temperature of the exhaust gas.

このような場合において、内燃機関からの排気のうち、過給機のタービンを通過する排気の量を変化させることにより、排気と還元剤との混合度合いを制御することできる。また、リッチスパイクを実施する際の空燃比の変化の勾配を制御することができる。さらに、内燃機関における排気損を変化させ、排気の温度を制御することができる。   In such a case, the degree of mixing of the exhaust gas and the reducing agent can be controlled by changing the amount of the exhaust gas that passes through the turbocharger turbine out of the exhaust gas from the internal combustion engine. In addition, it is possible to control the gradient of the air-fuel ratio change when the rich spike is performed. Furthermore, the exhaust loss in the internal combustion engine can be changed to control the exhaust temperature.

このように、排気に添加された還元剤及び排気のうち、2つの過給機のタービンを通過する排気の量と、2つのバイパス通路を通過する排気の量とを制御することによって、排気浄化装置の性能回復処理をより効率的に行うことができる。   Thus, exhaust gas purification is achieved by controlling the amount of exhaust gas that passes through the turbines of the two superchargers and the amount of exhaust gas that passes through the two bypass passages among the reducing agent and exhaust gas added to the exhaust gas. The performance recovery process of the apparatus can be performed more efficiently.

次に、本発明において前記排気浄化装置の性能回復を促進する排気浄化システム第1の例としては、前記性能回復促進手段が、前記排気浄化装置が吸蔵還元型NOx触媒を含ん
でおり、前記内燃機関の運転状態が所定の低負荷領域に属する場合において前記NOx還
元処理が行われる際に、前記還元剤添加手段から還元剤が添加されるとともに、前記性能回復促進手段は、前記第1排気制御手段または前記第2排気制御手段のいずれか一方に過給状態を選択させ、他方にバイパス状態を選択させる排気浄化システムを挙げることができる。
Next, in the present invention, as a first example of an exhaust purification system that promotes performance recovery of the exhaust purification device, the performance recovery promoting means includes the exhaust purification device including an NOx storage reduction catalyst, and the internal combustion engine When the NOx reduction process is performed when the operating state of the engine belongs to a predetermined low load region, a reducing agent is added from the reducing agent adding unit, and the performance recovery promoting unit is configured to perform the first exhaust control. An exhaust purification system in which either one of the means and the second exhaust control means is selected as a supercharging state and the other is selected as a bypass state.

ここで、吸蔵還元型NOx触媒(以下、単に「NOx触媒」という。)に対するNOx還
元処理においては、深いリッチスパイク処理を行う必要がある場合がある。すなわち、一時的に所定値以下の低い空燃比の排気をNOx触媒に供給することにより、NOx触媒中のNOxを放出還元する場合である。
Here, in the NOx reduction process for the NOx storage reduction catalyst (hereinafter simply referred to as “NOx catalyst”), it may be necessary to perform a deep rich spike process. In other words, this is a case where NOx in the NOx catalyst is released and reduced by temporarily supplying a low air-fuel ratio exhaust gas of a predetermined value or less to the NOx catalyst.

このような場合は、還元剤が添加された排気が過給機を通過すると、リッチな排気の部分がその前後の排気と混合され空燃比の変化がなまされることにより、リッチスパイクが薄くなってしまう場合がある。そこで、低負荷の運転状態においてNOx還元処理を実施
する場合は、性能回復促進手段は、第1排気制御手段または第2排気制御手段のいずれか一方に過給状態を選択させ、他方にバイパス状態を選択させるようにした。
In such a case, when the exhaust gas to which the reducing agent is added passes through the supercharger, the rich exhaust portion is mixed with the exhaust gas before and after the exhaust gas to change the air-fuel ratio, thereby reducing the rich spike. May end up. Therefore, when performing the NOx reduction process in the low-load operation state, the performance recovery promoting means causes either the first exhaust control means or the second exhaust control means to select the supercharging state and the other to the bypass state. Was selected.

そうすれば、還元剤が添加された排気がいずれか一の過給機のタービンを迂回することとなるので、リッチな排気の部分がその前後の排気と混合され空燃比の変化がなまされることを抑制でき、リッチスパイクが薄くなってしまうことを抑制できる。そして、充分に濃いリッチスパイクを触媒に供給し、NOx触媒の浄化効率を高めることができる。   Then, since the exhaust gas to which the reducing agent is added bypasses the turbine of any one of the turbochargers, the rich exhaust gas part is mixed with the exhaust gas before and after the exhaust gas, and the change of the air-fuel ratio is performed. This can be suppressed, and the thinning of the rich spike can be suppressed. A sufficiently rich rich spike can be supplied to the catalyst to increase the purification efficiency of the NOx catalyst.

また、本発明における性能回復促進手段は、この制御を、内燃機関の運転状態が所定の低負荷領域に属する場合に実行するので、排気がいずれか一の過給機のタービンを通過しなくても要求負荷が満たされなくなることを抑制できる。なお、所定の低負荷領域の運転状態とは、排気がいずれか一の過給機のタービンを通過しなくても要求負荷が満たされ得る運転状態の範囲であり、予め実験的に求められてもよい。   Further, the performance recovery promoting means in the present invention executes this control when the operating state of the internal combustion engine belongs to a predetermined low load region, so that the exhaust does not pass through any one of the turbocharger turbines. Can also prevent the required load from being satisfied. The operating state in the predetermined low load region is a range of operating states in which the required load can be satisfied even if the exhaust does not pass through any one of the turbocharger turbines. Also good.

なお、上記の場合、前記第1過給機が、前記第1タービンが所定の小径の羽根車を有する高圧タービンであり、前記第1コンプレッサが所定の小径の羽根車を有する高圧コンプレッサである高圧過給機であり、前記第2過給機が、前記第2タービンが所定の大径の羽根車を有する低圧タービンであり、前記第2コンプレッサが所定の大径の羽根車を有する低圧コンプレッサである低圧過給機であるような2段過給機の構成をとっている場合は、性能回復促進手段は、前記第1排気制御手段に過給状態を選択させ、前記第2排気制御手段にバイパス状態を選択させるようにしてもよい。   In the above case, the first supercharger is a high-pressure turbine in which the first turbine has a predetermined small-diameter impeller, and the first compressor is a high-pressure compressor having a predetermined small-diameter impeller. A supercharger, wherein the second supercharger is a low pressure turbine in which the second turbine has a predetermined large diameter impeller, and the second compressor is a low pressure compressor having a predetermined large diameter impeller. In the case of adopting the configuration of a two-stage supercharger such as a certain low-pressure supercharger, the performance recovery promoting means causes the first exhaust control means to select a supercharging state, and the second exhaust control means A bypass state may be selected.

そうすれば、2段過給機のうち、低負荷の運転状態において、比較的過給効果を得易い
高圧タービンのみに排気を通過させることができ、より効率的に過給効果を得ることができる。なお、上記において第2タービンにおける所定の大径の羽根車の径は、第1タービンにおける所定の小径の羽根車の径の1.2〜1.8倍としてもよい。第2コンプレッサにおける所定の大径の羽根車の径の、第1コンプレッサにおける所定の小径の羽根車の径に対する比も同様としてもよい。
Then, in the two-stage supercharger, in a low-load operation state, the exhaust can be passed through only to a high-pressure turbine that is relatively easy to obtain a supercharging effect, and the supercharging effect can be obtained more efficiently. it can. In the above, the diameter of the predetermined large-diameter impeller in the second turbine may be 1.2 to 1.8 times the diameter of the predetermined small-diameter impeller in the first turbine. The ratio of the diameter of the predetermined large diameter impeller in the second compressor to the diameter of the predetermined small diameter impeller in the first compressor may be the same.

また、上記においては、第1排気制御手段が過給状態を選択する際には、内燃機関からの排気の略全量に前記第1タービンを通過させるようにし、第2排気制御手段がバイパス状態を選択する際には、内燃機関からの排気の略全量に前記第2バイパス通路を通過させるようにしてもよい。   In the above, when the first exhaust control means selects the supercharging state, the first turbine is allowed to pass through substantially the entire amount of exhaust from the internal combustion engine, and the second exhaust control means is in the bypass state. When selecting, the second bypass passage may pass through substantially the entire amount of exhaust from the internal combustion engine.

そうすれば、過給状態が選択される第1過給機においては、排気の略全量が第1タービンを通過するのでより効率的に過給効果を得ることができる。また、バイパス状態が選択される第2過給機においては、排気の略全量が第2バイパス通路を通過するので、より確実にリッチスパイクが薄くなることを抑制できる。   If it does so, in the 1st supercharger from which the supercharging state is selected, since the almost whole quantity of exhaust gas passes the 1st turbine, the supercharging effect can be acquired more efficiently. Further, in the second supercharger in which the bypass state is selected, since almost the entire amount of exhaust gas passes through the second bypass passage, it is possible to more reliably suppress the rich spike from becoming thinner.

また、本発明において、前記排気浄化装置の性能回復を促進する排気浄化システムの第2の例としては、前記排気浄化装置が、吸蔵還元型NOx触媒を含んでおり、SOx被毒回復処理が行われる際に、前記還元剤添加手段から還元剤が添加されるとともに、前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させる排気浄化システムを挙げることができる。   In the present invention, as a second example of the exhaust gas purification system for promoting the performance recovery of the exhaust gas purification device, the exhaust gas purification device includes an NOx storage reduction catalyst, and SOx poisoning recovery processing is performed. In this case, a reducing agent is added from the reducing agent adding means, and the performance recovery promoting means causes both the first exhaust control means and the second exhaust control means to select a supercharging state. Can be mentioned.

ここで、NOx触媒に対してSOx被毒回復処理を行う場合には、NOx触媒を昇温させ
る必要がある。この場合にも還元剤添加手段から還元剤が排気に添加される。その場合、還元剤と排気との混合が不十分な場合は、NOx触媒で還元剤が充分に反応できなかった
り、液滴のままNOx触媒に到達した還元剤が炭化し、この炭化した還元剤によってNOx触媒が詰まったりする場合があった。
Here, when performing the SOx poisoning recovery process on the NOx catalyst, it is necessary to raise the temperature of the NOx catalyst. Also in this case, the reducing agent is added to the exhaust gas from the reducing agent addition means. In that case, when the mixing of the reducing agent and the exhaust is insufficient, the reducing agent cannot sufficiently react with the NOx catalyst, or the reducing agent that has reached the NOx catalyst as a droplet is carbonized, and this carbonized reducing agent As a result, the NOx catalyst may become clogged.

そこで、本発明においては、前記性能回復促進手段が、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させるようにした。それにより、2段のタービンによって排気と還元剤との混合度合いを高めることができる。その結果、NOx触媒に
おける還元剤の反応を促進させ、NOx触媒をより効率的に昇温させることができる。
Therefore, in the present invention, the performance recovery promoting means causes both the first exhaust control means and the second exhaust control means to select a supercharging state. Thereby, the mixing degree of exhaust gas and a reducing agent can be raised by a two-stage turbine. As a result, the reaction of the reducing agent in the NOx catalyst can be promoted, and the temperature of the NOx catalyst can be raised more efficiently.

また、本発明において、前記排気浄化装置の性能回復を促進する排気浄化システムの第3の例としては、第2の例と同様の構成を、PM再生処理におけるフィルタの昇温処理に適用する排気浄化システムを挙げることができる。   Further, in the present invention, as a third example of the exhaust gas purification system that promotes the performance recovery of the exhaust gas purification device, an exhaust gas that applies the same configuration as the second example to the temperature raising process of the filter in the PM regeneration process Mention may be made of a purification system.

また、本発明において、前記排気浄化装置の性能回復を促進する排気浄化システムの第4の例としては、前記排気浄化装置が吸蔵還元型NOx触媒を含んでおり、前記内燃機関
の運転状態が所定の中負荷領域に属する場合において前記NOx還元処理が行われる際に
、前記還元剤添加手段から還元剤が添加されるとともに、前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させる排気浄化システムを挙げることができる。
In the present invention, as a fourth example of the exhaust gas purification system for promoting the performance recovery of the exhaust gas purification device, the exhaust gas purification device includes an NOx storage reduction catalyst, and the operation state of the internal combustion engine is predetermined. When the NOx reduction process is performed in the case of belonging to the middle load region, a reducing agent is added from the reducing agent adding unit, and the performance recovery promoting unit includes the first exhaust control unit and the second exhaust unit. An exhaust purification system that allows both control means to select a supercharging state can be mentioned.

ここで、内燃機関の運転状態が中負荷以上である場合は、燃焼室における燃焼によって排出されるNOxの量が多くなるので、NOx還元処理において必要な還元剤量も多くなる。このような場合、リッチスパイクは充分濃いが、還元剤添加弁からの還元剤の添加量が多いため、還元剤と排気との混合度合いが不十分になるおそれがあった。   Here, when the operating state of the internal combustion engine is equal to or higher than the medium load, the amount of NOx discharged by the combustion in the combustion chamber increases, so the amount of reducing agent required in the NOx reduction process also increases. In such a case, the rich spike is sufficiently dark, but since the amount of reducing agent added from the reducing agent addition valve is large, there is a possibility that the degree of mixing of the reducing agent and exhaust becomes insufficient.

そこで、本発明においては、上記のような場合には、性能回復促進手段は、前記第1排
気制御手段及び前記第2排気制御手段の双方に過給状態を選択させ、還元剤が添加された排気に2つのタービンを通過させ、還元剤と排気の混合度合いを向上させることとした。
Therefore, in the present invention, in the above case, the performance recovery promoting means causes both the first exhaust control means and the second exhaust control means to select the supercharging state, and the reducing agent is added. Two turbines were passed through the exhaust to improve the degree of mixing of the reducing agent and the exhaust.

そうすれば、還元剤のNOx触媒における反応を促進することができ、NOx還元処理の効率を向上させることができる。なお、上記において所定の中負荷の運転状態とは、内燃機関から排出されるNOxが多くなり、且つ排気の温度が高過ぎてNOx還元の効率が低下するほど高負荷でない運転状態であり、予め実験的に求められる。   If it does so, reaction in the NOx catalyst of a reducing agent can be accelerated | stimulated and the efficiency of a NOx reduction process can be improved. In the above, the predetermined medium load operation state is an operation state that is not so high that NOx discharged from the internal combustion engine increases and the temperature of the exhaust gas is too high to reduce the efficiency of NOx reduction. Required experimentally.

また、本発明において、前記排気浄化装置の性能回復を促進する排気浄化システムの第5の例としては、前記排気浄化装置は吸蔵還元型NOx触媒を含み、前記内燃機関の運転
状態が所定の高負荷領域に属する場合において前記SOx被毒回復処理が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させる排気浄化システムを挙げることができる。
Further, in the present invention, as a fifth example of the exhaust gas purification system for promoting the performance recovery of the exhaust gas purification device, the exhaust gas purification device includes an NOx storage reduction catalyst, and the operating state of the internal combustion engine is a predetermined high level. When the SOx poisoning recovery process is performed when belonging to the load region,
A reducing agent is added from the reducing agent adding means, and the performance recovery promoting means includes an exhaust purification system that allows both the first exhaust control means and the second exhaust control means to select a supercharging state. it can.

ここで、従来、上述したような2段構成の過給機を備えた内燃機関においては、高負荷の運転状態においては、排気に、特に上流側の第1タービンを迂回させて第1バイパス通路を通過させることにより、流量の多い排気が第1タービンで絞られてしまうことを避け、これにより燃費が低下することを抑制する場合が多い。   Here, conventionally, in an internal combustion engine provided with a turbocharger having a two-stage configuration as described above, in a high-load operation state, the first bypass passage is bypassed by exhaust, particularly the first turbine on the upstream side. In many cases, the exhaust gas having a high flow rate is prevented from being throttled by the first turbine, thereby suppressing the fuel consumption from being lowered.

しかし、SOx被毒再生におけるNOx触媒の昇温制御においては、NOx触媒の昇温に
時間がかかると逆に燃費が悪化してしまうおそれがあった。そこで、本発明においては、内燃機関の運転状態が所定の高負荷領域に属する場合において前記SOx被毒回復処理が
行われる際に、前記還元剤添加手段から還元剤が添加されるとともに、前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることとした。
However, in the temperature increase control of the NOx catalyst in the SOx poisoning regeneration, if it takes time to increase the temperature of the NOx catalyst, there is a possibility that the fuel consumption may be deteriorated. Therefore, in the present invention, when the SOx poisoning recovery process is performed when the operating state of the internal combustion engine belongs to a predetermined high load region, a reducing agent is added from the reducing agent adding means, and the performance The recovery promoting means causes both the first exhaust control means and the second exhaust control means to select the supercharging state.

そうすれば、内燃機関の排気マニホールドにおける背圧を上昇させることができ、排気損を増加させることができる。その結果、内燃機関本体の負荷が増加し、排気温度を上昇させることができる。これにより、NOx触媒の昇温を加速することができる。また、還
元剤が添加された排気に2つのタービンを通過させることができ、還元剤と排気との混合を促進して触媒での反応を促進し、このことによっても昇温を加速することができる。結果として、NOx触媒の昇温に係る燃費を低減することができる。
Then, the back pressure in the exhaust manifold of the internal combustion engine can be increased, and the exhaust loss can be increased. As a result, the load on the internal combustion engine body increases, and the exhaust temperature can be raised. Thereby, the temperature increase of the NOx catalyst can be accelerated. In addition, the two turbines can be passed through the exhaust gas to which the reducing agent is added, and the reaction of the catalyst is promoted by promoting the mixing of the reducing agent and the exhaust gas. This also accelerates the temperature rise. it can. As a result, the fuel consumption associated with the temperature rise of the NOx catalyst can be reduced.

また、本発明において、前記排気浄化装置の性能回復を促進する排気浄化システムの第6の例としては、第5の例と同様の構成を、PM再生処理におけるフィルタの昇温処理に適用する排気浄化システムを挙げることができる。   Further, in the present invention, as a sixth example of the exhaust gas purification system that promotes recovery of the performance of the exhaust gas purification device, an exhaust gas that applies the same configuration as the fifth example to the temperature raising process of the filter in the PM regeneration process Mention may be made of a purification system.

また、前記第1過給機が、前記第1タービンが所定の小径の羽根車を有する高圧タービンであり、前記第1コンプレッサが所定の小径の羽根車を有する高圧コンプレッサである高圧過給機であり、前記第2過給機が、前記第2タービンが所定の大径の羽根車を有する低圧タービンであり、前記第2コンプレッサが所定の大径の羽根車を有する低圧コンプレッサである低圧過給機であるような2段過給機の構成をとっている場合に、上記の発明を適用してもよい。   The first supercharger is a high pressure turbocharger in which the first turbine is a high pressure turbine having a predetermined small diameter impeller, and the first compressor is a high pressure compressor having a predetermined small diameter impeller. And the second supercharger is a low pressure turbine in which the second turbine has a predetermined large diameter impeller, and the second compressor is a low pressure compressor having a predetermined large diameter impeller. The above-described invention may be applied when a two-stage turbocharger is used as a machine.

特に、上記第5及び第6の例においては、多くの排気に、上流側に設けられた小径の羽根車を有する高圧タービンを通過させることができるので、排気マニホールドにおける背圧をより上昇させることができ、より効率的にNOx触媒及びフィルタの昇温を加速する
ことができる。
In particular, in the fifth and sixth examples, since a high-pressure turbine having a small-diameter impeller provided on the upstream side can be passed through a large amount of exhaust gas, the back pressure in the exhaust manifold can be further increased. And the temperature rise of the NOx catalyst and the filter can be accelerated more efficiently.

なお、上記した本発明の課題を解決する手段については、可能なかぎり組み合わせて用いることができる。   The means for solving the above-described problems of the present invention can be used in combination as much as possible.

本発明にあっては、2つの過給機を備えた内燃機関において、より効率よく排気浄化装置の性能回復のための処理を行うことができる。   In the present invention, in the internal combustion engine provided with two superchargers, the process for recovering the performance of the exhaust emission control device can be performed more efficiently.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings.

先ず、図1を用いて、本実施例における内燃機関及び吸排気系について説明する。本実施例における内燃機関1には、吸気通路2及び排気通路3が接続されている。図中における排気の流れについて矢印で示す。   First, the internal combustion engine and the intake / exhaust system in this embodiment will be described with reference to FIG. An intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1 in this embodiment. The flow of exhaust in the figure is indicated by arrows.

本実施例の吸排気系には、第1ターボチャージャ10と第2ターボチャージャ20の2つのターボチャージャが備えられている。第1ターボチャージャ10の第1タービン10aは排気通路3に配置されている。第2ターボチャージャ20の第2タービン20aは、排気通路3における第1タービン10aの下流側に配置されている。第1ターボチャージャ10の第1タービン10aの羽根車の直径は第2ターボチャージャ20の第2タービン20aの羽根車の直径より小さく設定されている。   The intake / exhaust system of the present embodiment is provided with two turbochargers, a first turbocharger 10 and a second turbocharger 20. The first turbine 10 a of the first turbocharger 10 is disposed in the exhaust passage 3. The second turbine 20 a of the second turbocharger 20 is disposed on the downstream side of the first turbine 10 a in the exhaust passage 3. The diameter of the impeller of the first turbine 10 a of the first turbocharger 10 is set smaller than the diameter of the impeller of the second turbine 20 a of the second turbocharger 20.

排気通路3には、第1タービン10aの上流側と下流側を連通し、排気に第1タービン10aを迂回させるための第1バイパス通路11が設けられている。同様に、第2タービン20aの上流側と下流側とを連通し、排気に第2タービン20aを迂回させるための第2バイパス通路21が設けられている。ここで、第1バイパス通路11の下流側と、第2バイパス通路21の上流側は接続されて共有バイパス通路31を形成している。この共有バイパス通路31と排気通路3との合流部には、三方弁13が設けられており、第1タービン10aの下流側と、共有バイパス通路31と、第2タービン20aの上流側のうちのいずれを接続させるかを制御可能になっている。   The exhaust passage 3 is provided with a first bypass passage 11 that communicates the upstream side and the downstream side of the first turbine 10a and bypasses the first turbine 10a to the exhaust. Similarly, a second bypass passage 21 is provided for communicating the upstream side and the downstream side of the second turbine 20a to bypass the second turbine 20a in the exhaust gas. Here, the downstream side of the first bypass passage 11 and the upstream side of the second bypass passage 21 are connected to form a shared bypass passage 31. A three-way valve 13 is provided at the junction between the shared bypass passage 31 and the exhaust passage 3, and is provided on the downstream side of the first turbine 10 a, the shared bypass passage 31, and the upstream side of the second turbine 20 a. It is possible to control which one is connected.

また、第1バイパス通路11には、流量制御弁15が設けられており、この流量制御弁15を閉弁することにより、内燃機関1から排出された排気の全てに第1タービン10aを通過させることができる。   Further, the first bypass passage 11 is provided with a flow rate control valve 15, and by closing the flow rate control valve 15, the first turbine 10 a is allowed to pass through all of the exhaust discharged from the internal combustion engine 1. be able to.

また、第1バイパス通路11の上流側の排気通路3には、排気通路3を通過する排気に還元剤としての燃料を添加する燃料添加弁5が備えられている。さらに、第2バイパス通路21が第2タービン20aの下流側において排気通路3と合流する箇所のさらに下流側においては、排気を浄化する排気浄化装置7が備えられている。   The exhaust passage 3 upstream of the first bypass passage 11 is provided with a fuel addition valve 5 that adds fuel as a reducing agent to the exhaust that passes through the exhaust passage 3. Furthermore, an exhaust purification device 7 for purifying exhaust gas is provided further downstream of the location where the second bypass passage 21 joins the exhaust passage 3 on the downstream side of the second turbine 20a.

この排気浄化装置7には、吸蔵還元型NOx触媒(以下、単にNOx触媒)7aと、多孔質の基材からなるウォールフロー型のパティキュレートフィルタ(以下、単にフィルタ)7bとが直列に配置されている。   In this exhaust purification device 7, an NOx storage reduction catalyst (hereinafter simply referred to as NOx catalyst) 7a and a wall flow type particulate filter (hereinafter simply referred to as filter) 7b made of a porous base material are arranged in series. ing.

以上述べたように構成された内燃機関1及びその排気系には、該内燃機関1及び排気系を制御するための電子制御ユニット(ECU:Electronic Control Unit)25が併設さ
れている。このECU25は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態等を制御する他、内燃機関1の排気浄化装置7に係る制御を行うユニットである。
The internal combustion engine 1 and its exhaust system configured as described above are provided with an electronic control unit (ECU) 25 for controlling the internal combustion engine 1 and the exhaust system. The ECU 25 is a unit that controls the operation of the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the request of the driver, and performs control related to the exhaust gas purification device 7 of the internal combustion engine 1.

ECU25には、図示しないクランクポジションセンサや、アクセルポジションセンサ、吸入空気量を検出するエアフローメータなどの内燃機関1の運転状態の制御に係るセンサ類が電気配線を介して接続され、出力信号がECU25に入力されるようになっている。一方、ECU25には、内燃機関1内の図示しない燃料噴射弁等が電気配線を介して接続される他、本実施例における燃料添加弁5、流量制御弁15、三方弁13が電気配線を介して接続され、ECU25によって制御されるようになっている。   Sensors related to control of the operating state of the internal combustion engine 1 such as a crank position sensor (not shown), an accelerator position sensor, and an air flow meter that detects the intake air amount are connected to the ECU 25 via an electrical wiring, and an output signal is sent to the ECU 25. To be input. On the other hand, a fuel injection valve (not shown) in the internal combustion engine 1 is connected to the ECU 25 via an electric wiring, and the fuel addition valve 5, the flow control valve 15, and the three-way valve 13 in this embodiment are connected to the ECU 25 via an electric wiring. And are controlled by the ECU 25.

また、ECU25には、CPU、ROM、RAM等が備えられており、ROMには、内燃機関1の種々の制御を行うためのプログラムや、データを格納したマップが記憶されている。   The ECU 25 includes a CPU, a ROM, a RAM, and the like. The ROM stores a program for performing various controls of the internal combustion engine 1 and a map storing data.

ここで、排気浄化装置7のNOx触媒7aに対して所謂NOx還元処理を実施する際の制御について説明する。   Here, control when performing a so-called NOx reduction process on the NOx catalyst 7a of the exhaust purification device 7 will be described.

この場合は、まず燃料添加弁5から燃料を排気中に添加するリッチスパイク処理を実施する。その際、内燃機関1の運転状態が低負荷の運転状態である場合には、流量制御弁15を閉弁するとともに、三方弁13を制御して、三方弁13の上流側と下流側の排気通路3及び、共通バイパス通路31の全てを連通させる。このことにより、燃料が添加された排気の略全量に第1タービン10aを通過させる。そして、第1タービン10aを通過した排気の略全量に流路抵抗の低い第2バイパス通路21を通過させ、第2タービン20aを迂回させる。そしてその状態の排気を排気浄化装置7に導入させる。   In this case, a rich spike process is first performed in which fuel is added from the fuel addition valve 5 into the exhaust gas. At that time, when the operation state of the internal combustion engine 1 is a low load operation state, the flow control valve 15 is closed and the three-way valve 13 is controlled to exhaust the upstream and downstream sides of the three-way valve 13. All of the passage 3 and the common bypass passage 31 are communicated. Thus, the first turbine 10a is allowed to pass through substantially the entire amount of exhaust gas to which fuel has been added. Then, the second bypass passage 21 having a low flow resistance is passed through substantially the entire amount of the exhaust gas that has passed through the first turbine 10a, thereby bypassing the second turbine 20a. Then, the exhaust gas in that state is introduced into the exhaust gas purification device 7.

ここで、リッチスパイクを実行して、燃料添加弁5によって燃料が添加された状態の排気に、第1タービン10a及び第2タービン20aの両方を通過させた場合には、その際にリッチな排気部分がその前後の排気と混合され、空燃比の変化がなまされてしまう。換言するとリッチスパイクが薄くなってしまうおそれがある。しかし、上記のように、リッチスパイクを実行する際には、燃料と混合された排気に少なくとも1つのタービンを迂回させることで、添加燃料と排気の過度の混合を避けて、充分に濃いリッチスパイクが行われた排気を排気浄化装置7のNOx触媒7aに導入させることができる。   Here, when rich spike is executed and both the first turbine 10a and the second turbine 20a are passed through the exhaust with the fuel added by the fuel addition valve 5, the rich exhaust is performed at that time. The part is mixed with the exhaust before and after that, and the change of the air-fuel ratio is made. In other words, the rich spike may become thin. However, as described above, when performing a rich spike, the exhaust mixed with fuel bypasses at least one turbine, avoiding excessive mixing of the added fuel and exhaust, and a sufficiently rich rich spike. It is possible to introduce the exhaust gas having been subjected to the NOx catalyst 7 a of the exhaust gas purification device 7.

その結果、より効率よくNOx触媒7aのNOx還元処理を行うことができる。また、本実施例においては、排気に、2つのタービンのうち、小径の羽根車を有する第1タービン10aのみを通過させているので、低負荷の運転状態であってもより大きな過給効果を得ることができる。   As a result, the NOx reduction treatment of the NOx catalyst 7a can be performed more efficiently. In the present embodiment, since only the first turbine 10a having the small-diameter impeller of the two turbines is passed through the exhaust gas, a larger supercharging effect can be obtained even in a low-load operation state. Obtainable.

なお、上記においては、内燃機関1からの排気の略全量が第1タービン10aを通過し、第2バイパス通路21を通過することとしたが、排気の通過の態様はこれらに限られない。例えば、内燃機関1からの排気の半分以上が第1タービン10aを通過し、残りは第1バイパス通路11を通過し、また、排気の半分以上が第2バイパス通路21を通過し、残りは第2タービン20aを通過するようにしてもよい。これによっても、原理的には本実施例と同傾向の効果を得ることができる。以下の実施例においても同様である。   In the above description, substantially the entire amount of exhaust from the internal combustion engine 1 passes through the first turbine 10a and passes through the second bypass passage 21, but the manner of passage of exhaust is not limited thereto. For example, more than half of the exhaust from the internal combustion engine 1 passes through the first turbine 10a, the rest passes through the first bypass passage 11, and more than half of the exhaust passes through the second bypass passage 21, and the rest passes through the first bypass passage 21. You may make it pass 2 turbine 20a. Even in this case, in principle, the same effect as in the present embodiment can be obtained. The same applies to the following embodiments.

次に、排気浄化装置7のNOx触媒7aのSOx回復処理、フィルタ7bのPM再生処理における昇温処理について説明する。本実施例における内燃機関及び吸排気系の構成は、図1に示したものと同等である。   Next, the SOx recovery process of the NOx catalyst 7a of the exhaust purification device 7 and the temperature increase process in the PM regeneration process of the filter 7b will be described. The configurations of the internal combustion engine and the intake / exhaust system in the present embodiment are the same as those shown in FIG.

ここで、排気浄化装置7のNOx触媒7aのSOx回復処理、フィルタ7bのPM再生処理を実施する場合には、排気浄化装置7の温度上昇のために、還元剤としての燃料を燃料
添加弁5から排気に添加する場合がある。
Here, when the SOx recovery processing of the NOx catalyst 7a of the exhaust purification device 7 and the PM regeneration processing of the filter 7b are performed, fuel as a reducing agent is added to the fuel addition valve 5 to increase the temperature of the exhaust purification device 7. May be added to the exhaust.

この場合、燃料と排気との混合度合いが不十分であれば、排気浄化装置7のNOx触媒
7aで燃料が充分に酸化されなかったり、炭化した燃料によってNOx触媒7aが詰まっ
たりするおそれがあった。
In this case, if the degree of mixing of the fuel and the exhaust is insufficient, the fuel may not be sufficiently oxidized by the NOx catalyst 7a of the exhaust purification device 7, or the NOx catalyst 7a may be clogged by the carbonized fuel. .

これに対し、本実施例においては、排気浄化装置7の昇温処理を行う際にはまず、燃料添加弁5から排気への燃料添加を実施する。そして、流量制御弁15を閉弁することによって排気の全量に第1タービン10aを通過させる。また、三方弁13を制御して三方弁13の上流側と下流側の排気通路3bを連通するとともに共通バイパス通路31は遮断し、排気の略全量に第2タービン20aを通過させる。そして、その排気を排気浄化装置7に導入させる。   On the other hand, in the present embodiment, when performing the temperature raising process of the exhaust purification device 7, first, fuel addition from the fuel addition valve 5 to the exhaust is performed. And the 1st turbine 10a is allowed to pass through to the whole quantity of exhaust gas by closing the flow control valve 15. In addition, the three-way valve 13 is controlled to connect the upstream and downstream exhaust passages 3b of the three-way valve 13 and the common bypass passage 31 is shut off, allowing the second turbine 20a to pass through substantially the entire amount of exhaust. Then, the exhaust gas is introduced into the exhaust gas purification device 7.

そうすれば、燃料が添加された排気が第1タービン10aと第2タービン20aの2つのタービンを通過するために、排気と充分に混合されるので、排気浄化装置7におけるNOx触媒7aで酸化され易く、効率よく昇温を行うことができる。そのことによりフィル
タ7bをも効率よく昇温させることができる。また、液滴のまま排気浄化装置7に導入された燃料がNOx触媒7aにおいて炭化することを抑制でき、排気浄化装置7の詰まりを
抑制することができる。
Then, since the exhaust gas to which fuel is added passes through the two turbines of the first turbine 10a and the second turbine 20a and is sufficiently mixed with the exhaust gas, it is oxidized by the NOx catalyst 7a in the exhaust purification device 7. It is easy and can raise temperature efficiently. As a result, the temperature of the filter 7b can also be raised efficiently. Further, the fuel introduced into the exhaust purification device 7 as droplets can be suppressed from being carbonized in the NOx catalyst 7a, and the exhaust purification device 7 can be prevented from being clogged.

次に本発明における実施例3について説明する。本実施例においては、内燃機関の中負荷の運転状態において排気浄化装置のNOx還元処理を行う際に、燃料と排気との混合度
合いを向上させる例について説明する。本実施例における内燃機関及び吸排気系の構成は図1に示したものと同等である。
Next, a third embodiment of the present invention will be described. In the present embodiment, an example will be described in which the degree of mixing of fuel and exhaust is improved when the NOx reduction process of the exhaust purification device is performed in an intermediate load operation state of the internal combustion engine. The configurations of the internal combustion engine and the intake / exhaust system in this embodiment are the same as those shown in FIG.

排気浄化装置7のNOx触媒7aに対してNOx還元処理を行う場合には、先ず、燃料添加弁5から排気に燃料が添加される。ここで、内燃機関1の運転状態が中負荷の運転状態である場合は、内燃機関1における燃焼の燃焼温度が上昇することから、排出されるNOxの量が多くなる。従って、燃料添加弁5から添加されるべき燃料の量は増量される。そ
うすると、排気浄化装置7に導入される排気において、排気と排気に添加された燃料の混合度合いが不十分になるおそれがあった。
When NOx reduction processing is performed on the NOx catalyst 7a of the exhaust purification device 7, first, fuel is added to the exhaust from the fuel addition valve 5. Here, when the operation state of the internal combustion engine 1 is a medium load operation state, the combustion temperature of the combustion in the internal combustion engine 1 rises, so the amount of NOx discharged increases. Accordingly, the amount of fuel to be added from the fuel addition valve 5 is increased. As a result, in the exhaust gas introduced into the exhaust gas purification device 7, the degree of mixing of the exhaust gas and the fuel added to the exhaust gas may be insufficient.

それに対し、本実施例においては、内燃機関1の中負荷もしくはそれ以上の運転状態においてNOx還元処理を行う場合には、流量制御弁15を閉弁して排気の略全量に第1タ
ービン10aを通過させる。また、三方弁13を制御して三方弁13の上流側と下流側の排気通路3を連通させるとともに共通バイパス通路31は遮断し、排気の略全量に第2タービン20aを通過させる。そうすれば、燃料添加弁5から増量して添加された燃料と排気とを充分に混合させることができ、排気浄化装置7内のNOx触媒7aで効率よくNOx還元処理を行うことができる。
On the other hand, in the present embodiment, when the NOx reduction process is performed in an operation state where the internal combustion engine 1 is at a medium load or higher, the flow rate control valve 15 is closed and the first turbine 10a is set to substantially the entire exhaust amount. Let it pass. Further, the three-way valve 13 is controlled to connect the upstream and downstream exhaust passages 3 of the three-way valve 13 and the common bypass passage 31 is shut off, allowing the second turbine 20a to pass through substantially the entire amount of exhaust. By doing so, the fuel added in an increased amount from the fuel addition valve 5 and the exhaust gas can be sufficiently mixed, and the NOx reduction treatment can be efficiently performed by the NOx catalyst 7a in the exhaust purification device 7.

また、その際、NOx触媒7a内の酸素が燃料によって効率よく消費されるので、この
ことによってもNOx触媒7aにおける還元効率を高めることができる。
At that time, the oxygen in the NOx catalyst 7a is efficiently consumed by the fuel, so that the reduction efficiency in the NOx catalyst 7a can also be increased.

次に、本実施例における実施例4について説明する。本実施例においては、特に内燃機関の運転状態が高負荷の運転状態である場合に、排気浄化装置を効率よく昇温する例について説明する。本実施例における内燃機関及び吸排気系の構成は図1に示したものと同等である。   Next, Example 4 in the present example will be described. In the present embodiment, an example will be described in which the temperature of the exhaust emission control device is increased efficiently, particularly when the operating state of the internal combustion engine is a high-load operating state. The configurations of the internal combustion engine and the intake / exhaust system in this embodiment are the same as those shown in FIG.

ここで、従来より、内燃機関1の運転状態が高負荷の運転状態である場合は、流量制御弁15を開弁して排気に第1バイパス通路11を通過させ、多量の排気が第1タービン10aを通過して絞られることを抑制し、燃費が悪化することを抑制することが多い。   Here, conventionally, when the operation state of the internal combustion engine 1 is a high load operation state, the flow control valve 15 is opened to allow the exhaust gas to pass through the first bypass passage 11, and a large amount of exhaust gas is generated in the first turbine. In many cases, it is possible to prevent the fuel from being squeezed through 10a and to prevent the fuel consumption from deteriorating.

しかし、本実施例における排気浄化装置7のNOx触媒7aのSOx被毒回復処理またはフィルタ7bのPM再生処理の際には、流量制御弁15を閉弁して排気の略全量に第1タービン10aを通過させる。また、三方弁13を制御して三方弁13の上流側と下流側の排気通路3を連通させるとともに共通バイパス通路31は遮断し、排気の略全量に第2タービン20aを通過させる。   However, during the SOx poisoning recovery process of the NOx catalyst 7a of the exhaust purification apparatus 7 or the PM regeneration process of the filter 7b in the present embodiment, the flow rate control valve 15 is closed to bring the first turbine 10a to substantially the entire exhaust amount. Pass through. Further, the three-way valve 13 is controlled to connect the upstream and downstream exhaust passages 3 of the three-way valve 13 and the common bypass passage 31 is shut off, allowing the second turbine 20a to pass through substantially the entire amount of exhaust.

そうすれば、小径の羽根車を有する容量の小さい第1タービン10aに多量の排気を通過させることにより、排気通路3の上流の図示しない排気マニホールドにおける背圧を上昇させることができ、排気損を増加させることができる。そうすると、内燃機関1の負荷が増加するために排気温度を上昇させることができ、より効率的に排気浄化装置7のNOx触媒7aまたはフィルタ7bを昇温させることができる。その結果、排気浄化装置7の
昇温時間を短縮することができ、燃費を向上させることができる。
Then, by passing a large amount of exhaust gas through the first turbine 10a having a small diameter impeller and having a small capacity, the back pressure in the exhaust manifold (not shown) upstream of the exhaust passage 3 can be increased, and the exhaust loss can be reduced. Can be increased. Then, since the load of the internal combustion engine 1 increases, the exhaust temperature can be raised, and the NOx catalyst 7a or the filter 7b of the exhaust purification device 7 can be heated more efficiently. As a result, the temperature raising time of the exhaust purification device 7 can be shortened, and the fuel consumption can be improved.

なお、上記の実施例において、NOx還元処理、SOx被毒回復処理、PM再生処理は性能回復処理に相当する。また、流量制御弁15は第1排気制御手段を構成する。また、流量制御弁15と三方弁13の組合せは第2排気制御手段を構成する。さらに、ECU25は性能回復促進手段を構成する。   In the above embodiment, the NOx reduction process, the SOx poisoning recovery process, and the PM regeneration process correspond to the performance recovery process. The flow control valve 15 constitutes first exhaust control means. The combination of the flow control valve 15 and the three-way valve 13 constitutes second exhaust control means. Further, the ECU 25 constitutes performance recovery promoting means.

本発明の実施例に係る内燃機関及び吸排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine and the intake / exhaust system which concern on the Example of this invention.

符号の説明Explanation of symbols

1・・・内燃機関
2・・・吸気通路
3・・・排気通路
5・・・燃料添加弁
7・・・排気浄化装置
7a・・・NOx触媒
7b・・・フィルタ
10・・・第1ターボチャージャ
10a・・・第1タービン
11・・・第1バイパス通路
13・・・三方弁
15・・・流量制御弁
20・・・第2ターボチャージャ
20a・・・第2タービン
25・・・ECU
31・・・共通バイパス通路
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Intake passage 3 ... Exhaust passage 5 ... Fuel addition valve 7 ... Exhaust gas purification device 7a ... NOx catalyst 7b ... Filter 10 ... First turbo Charger 10a ... First turbine 11 ... First bypass passage 13 ... Three-way valve 15 ... Flow control valve 20 ... Second turbocharger 20a ... Second turbine 25 ... ECU
31 ... Common bypass passage

Claims (11)

内燃機関の排気通路に第1タービンを有するとともに吸気通路に第1コンプレッサを有し、前記排気通路を通過する排気により駆動されて、前記内燃機関への吸気を過給する第1過給機と、
前記内燃機関の排気通路における前記第1タービンの下流側に第2タービンを有するとともに吸気通路における前記第1コンプレッサの上流側に第2コンプレッサを有し、前記排気通路を通過する排気により駆動されて、前記内燃機関への吸気を過給する第2過給機と、
前記排気通路における前記第1タービンの上流側と、前記第1タービンと前記第2タービンとの間とを連通して前記内燃機関からの排気に前記第1タービンを迂回させる第1バイパス通路と、
前記排気通路における前記第1タービンと前記第2タービンとの間と、前記第2タービンの下流側とを連通して前記内燃機関からの排気に前記第2タービンを迂回させる第2バイパス通路と、
前記排気通路の前記第2タービンの下流側における前記第2バイパス通路との合流部よりさらに下流側に配置され、排気を浄化するとともに、昇温することおよび/または還元剤が供給されることにより、排気浄化性能を回復させる性能回復処理が行われる排気浄化装置と、
前記排気通路の前記第1タービンの上流側における前記第1バイパス通路の分岐部より上流側に配置され、前記排気通路を通過する排気に還元剤を添加する還元剤添加手段と、
前記内燃機関からの排気のうち、前記第1タービンを通過する排気の量が、前記第1バイパス通路を通過する排気の量に比較して多い過給状態と、前記内燃機関からの排気のうち、前記第1バイパス通路を通過する排気の量が、前記第1タービンを通過する排気の量に比較して多いバイパス状態のいずれかを選択可能な第1排気制御手段と、
前記内燃機関からの排気のうち、前記第2タービンを通過する排気の量が、前記第2バイパス通路を通過する排気の量に比較して多い過給状態と、前記内燃機関からの排気のうち、前記第2バイパス通路を通過する排気の量が、前記第2タービンを通過する排気の量に比較して多いバイパス状態のいずれかを選択可能な第2排気制御手段と、
前記性能回復処理が行われる際に、前記第1排気制御手段および/または前記第2排気制御手段を作動させて前記排気浄化装置の性能回復を促進する性能回復促進手段と
を備えることを特徴とする内燃機関の排気浄化システム。
A first turbocharger having a first turbine in an exhaust passage of the internal combustion engine and a first compressor in an intake passage, which is driven by exhaust gas passing through the exhaust passage and supercharges intake air to the internal combustion engine; ,
The exhaust passage of the internal combustion engine has a second turbine downstream of the first turbine and a second compressor upstream of the first compressor in the intake passage, and is driven by exhaust gas passing through the exhaust passage. A second supercharger for supercharging intake air to the internal combustion engine;
A first bypass passage that communicates between the upstream side of the first turbine in the exhaust passage and between the first turbine and the second turbine to bypass the first turbine to exhaust from the internal combustion engine;
A second bypass passage that communicates between the first turbine and the second turbine in the exhaust passage and the downstream side of the second turbine to bypass the second turbine to exhaust from the internal combustion engine;
The exhaust passage is disposed further downstream than the junction with the second bypass passage on the downstream side of the second turbine, purifies the exhaust gas, raises the temperature, and / or is supplied with the reducing agent. An exhaust purification device that performs performance recovery processing to recover exhaust purification performance;
A reducing agent adding means disposed on the upstream side of the branch portion of the first bypass passage on the upstream side of the first turbine of the exhaust passage, and for adding a reducing agent to the exhaust gas passing through the exhaust passage;
Of the exhaust from the internal combustion engine, the amount of exhaust passing through the first turbine is larger than the amount of exhaust passing through the first bypass passage, and among the exhaust from the internal combustion engine A first exhaust control means capable of selecting any bypass state in which the amount of exhaust passing through the first bypass passage is larger than the amount of exhaust passing through the first turbine;
Of the exhaust from the internal combustion engine, the amount of exhaust that passes through the second turbine is larger than the amount of exhaust that passes through the second bypass passage, and among the exhaust from the internal combustion engine A second exhaust control means capable of selecting any bypass state in which the amount of exhaust passing through the second bypass passage is larger than the amount of exhaust passing through the second turbine;
Performance recovery promoting means for activating the first exhaust control means and / or the second exhaust control means to promote performance recovery of the exhaust emission control device when the performance recovery processing is performed. An exhaust purification system for an internal combustion engine.
前記排気浄化装置は吸蔵還元型NOx触媒を含み、
前記性能回復処理は前記吸蔵還元型NOx触媒のNOxを還元放出させるNOx還元処理
であり、
前記内燃機関の運転状態が所定の低負荷領域に属する場合において前記NOx還元処理
が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段または前記第2排気制御手段のいずれか一方に過給状態を選択させ、他方にバイパス状態を選択させることを特徴とする請求項1に記載の内燃機関の排気浄化システム。
The exhaust purification device includes an NOx storage reduction catalyst,
The performance recovery process is a NOx reduction process for reducing and releasing NOx of the NOx storage reduction catalyst,
When the NOx reduction process is performed when the operating state of the internal combustion engine belongs to a predetermined low load region,
A reducing agent is added from the reducing agent addition means,
The said performance recovery promotion means makes either one of the said 1st exhaust control means or the said 2nd exhaust control means select a supercharging state, and makes the other select a bypass state, The Claim 1 characterized by the above-mentioned. An exhaust purification system for an internal combustion engine.
前記第1過給機は、前記第1タービンが所定の小径の羽根車を有する高圧タービンであり、前記第1コンプレッサが所定の小径の羽根車を有する高圧コンプレッサである高圧過給機であり、
前記第2過給機は、前記第2タービンが所定の大径の羽根車を有する低圧タービンであり、前記第2コンプレッサが所定の大径の羽根車を有する低圧コンプレッサである低圧過給機であり、
前記性能回復促進手段は、前記第1排気制御手段に過給状態を選択させ、前記第2排気
制御手段にバイパス状態を選択させることを特徴とする請求項2に記載の内燃機関の排気浄化システム。
The first supercharger is a high pressure turbocharger in which the first turbine is a high pressure turbine having a predetermined small diameter impeller, and the first compressor is a high pressure compressor having a predetermined small diameter impeller,
The second supercharger is a low pressure turbocharger in which the second turbine is a low pressure turbine having a predetermined large diameter impeller, and the second compressor is a low pressure compressor having a predetermined large diameter impeller. Yes,
The exhaust gas purification system for an internal combustion engine according to claim 2, wherein the performance recovery promoting means causes the first exhaust control means to select a supercharging state and causes the second exhaust control means to select a bypass state. .
前記第1排気制御手段は過給状態を選択する際に、内燃機関からの排気の略全量に前記第1タービンを通過させ、
前記第2排気制御手段は、バイパス状態を選択する際に、内燃機関からの排気の略全量に前記第2バイパス通路を通過させることを特徴とする請求項3に記載の内燃機関の排気浄化システム。
When the first exhaust control means selects the supercharging state, the first turbine is allowed to pass through substantially the entire amount of exhaust from the internal combustion engine,
The exhaust purification system for an internal combustion engine according to claim 3, wherein the second exhaust control means allows the exhaust gas from the internal combustion engine to pass through the second bypass passage when selecting the bypass state. .
前記排気浄化装置は吸蔵還元型NOx触媒を含み、
前記性能回復処理は前記吸蔵還元型NOx触媒のSOxを還元放出させるSOx被毒回復
処理であり、
前記SOx被毒回復処理が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることを特徴とする請求項1に記載の内燃機関の排気浄化システム。
The exhaust purification device includes an NOx storage reduction catalyst,
The performance recovery process is a SOx poisoning recovery process for reducing and releasing SOx of the NOx storage reduction catalyst,
When the SOx poisoning recovery process is performed,
A reducing agent is added from the reducing agent addition means,
2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the performance recovery promoting unit causes both the first exhaust control unit and the second exhaust control unit to select a supercharging state. 3.
前記排気浄化装置は排気中の微粒子物質を捕集するフィルタを含み、
前記性能回復処理は前記フィルタの微粒子物質を酸化除去するPM再生処理であり、
前記PM再生処理が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることを特徴とする請求項1に記載の内燃機関の排気浄化システム。
The exhaust gas purification device includes a filter that collects particulate matter in the exhaust gas,
The performance recovery process is a PM regeneration process for oxidizing and removing particulate matter of the filter,
When the PM regeneration process is performed,
A reducing agent is added from the reducing agent addition means,
2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the performance recovery promoting unit causes both the first exhaust control unit and the second exhaust control unit to select a supercharging state. 3.
前記排気浄化装置は吸蔵還元型NOx触媒を含み、
前記性能回復処理は前記吸蔵還元型NOx触媒のNOxを還元放出させるNOx還元処理
であり、
前記内燃機関の運転状態が所定の中負荷領域に属する場合において前記NOx還元処理
が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることを特徴とする請求項1に記載の内燃機関の排気浄化システム。
The exhaust purification device includes an NOx storage reduction catalyst,
The performance recovery process is a NOx reduction process for reducing and releasing NOx of the NOx storage reduction catalyst,
When the NOx reduction process is performed when the operating state of the internal combustion engine belongs to a predetermined medium load region,
A reducing agent is added from the reducing agent addition means,
2. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the performance recovery promoting unit causes both the first exhaust control unit and the second exhaust control unit to select a supercharging state. 3.
前記内燃機関の運転状態が所定の高負荷領域に属する場合において前記SOx被毒回復
処理が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることを特徴とする請求項5に記載の内燃機関の排気浄化システム。
When the SOx poisoning recovery process is performed when the operating state of the internal combustion engine belongs to a predetermined high load region,
A reducing agent is added from the reducing agent addition means,
6. The exhaust gas purification system for an internal combustion engine according to claim 5, wherein the performance recovery promoting means causes both the first exhaust control means and the second exhaust control means to select a supercharging state.
前記内燃機関の運転状態が所定の高負荷領域に属する場合において前記PM再生処理が行われる際に、
前記還元剤添加手段から還元剤が添加されるとともに、
前記性能回復促進手段は、前記第1排気制御手段及び前記第2排気制御手段の双方に過給状態を選択させることを特徴とする請求項6に記載の内燃機関の排気浄化システム。
When the PM regeneration process is performed when the operating state of the internal combustion engine belongs to a predetermined high load region,
A reducing agent is added from the reducing agent addition means,
The exhaust purification system for an internal combustion engine according to claim 6, wherein the performance recovery promoting means causes both the first exhaust control means and the second exhaust control means to select a supercharging state.
前記第1過給機は、前記第1タービンが所定の小径の羽根車を有する高圧タービンであり、前記第1コンプレッサが所定の小径の羽根車を有する高圧コンプレッサである高圧過給機であり、
前記第2過給機は、前記第2タービンが所定の大径の羽根車を有する低圧タービンであり、前記第2コンプレッサが所定の大径の羽根車を有する低圧コンプレッサである低圧過
給機であることを特徴とする請求項5から9のいずれかに記載の内燃機関の排気浄化システム。
The first supercharger is a high pressure turbocharger in which the first turbine is a high pressure turbine having a predetermined small diameter impeller, and the first compressor is a high pressure compressor having a predetermined small diameter impeller,
The second supercharger is a low pressure turbocharger in which the second turbine is a low pressure turbine having a predetermined large diameter impeller, and the second compressor is a low pressure compressor having a predetermined large diameter impeller. 10. The exhaust gas purification system for an internal combustion engine according to claim 5, wherein the exhaust gas purification system is an internal combustion engine.
前記第1排気制御手段は、過給状態を選択する際に、内燃機関からの排気の略全量に前記第1タービンを通過させ、
前記第2排気制御手段は、過給状態を選択する際に、内燃機関からの排気の略全量に前記第2タービンを通過させることを特徴とする請求項5から9のいずれかに記載の内燃機関の排気浄化システム。
The first exhaust control means allows the first turbine to pass through substantially the entire amount of exhaust from the internal combustion engine when selecting the supercharging state,
The internal combustion engine according to any one of claims 5 to 9, wherein the second exhaust control means allows the second turbine to pass through substantially the entire amount of exhaust from the internal combustion engine when selecting the supercharging state. Engine exhaust purification system.
JP2006171343A 2006-06-21 2006-06-21 Exhaust gas purification system for internal combustion engine Expired - Fee Related JP4697065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171343A JP4697065B2 (en) 2006-06-21 2006-06-21 Exhaust gas purification system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171343A JP4697065B2 (en) 2006-06-21 2006-06-21 Exhaust gas purification system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008002319A true JP2008002319A (en) 2008-01-10
JP4697065B2 JP4697065B2 (en) 2011-06-08

Family

ID=39006917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171343A Expired - Fee Related JP4697065B2 (en) 2006-06-21 2006-06-21 Exhaust gas purification system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4697065B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091835A2 (en) * 2008-01-14 2009-07-23 Cummins, Inc. Apparatus, system, and method for utilizing a diesel after treatment device between the high pressure and low pressure turbine stages of a two-stage turbocharging system
FR2926593A3 (en) * 2008-01-17 2009-07-24 Renault Sas Internal combustion engine i.e. oil engine, for motor vehicle, has by-pass duct that is parallel to exhaust duct, independent from turbines, and selectively circulates all or part of exhaust gas directly from manifold to depollution device
JP2009185737A (en) * 2008-02-07 2009-08-20 Mazda Motor Corp Supercharger for engine
JP2009185767A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Supercharger of engine
JP2009191817A (en) * 2008-02-18 2009-08-27 Mazda Motor Corp Supercharger for engine
WO2009111097A2 (en) * 2008-03-04 2009-09-11 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
JP2011132947A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
KR20150019784A (en) * 2013-08-16 2015-02-25 현대중공업 주식회사 A CLEAN Engine With Easy to Assemble and Disassemble Structure of Exhaust Pipe
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
JP2020197198A (en) * 2019-06-05 2020-12-10 ヤンマーパワーテクノロジー株式会社 Engine system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294332U (en) * 1989-01-17 1990-07-26
JP2003027919A (en) * 2001-07-12 2003-01-29 Nissan Motor Co Ltd Exhaust emission control device of diesel engine having turbocharger
JP2005291175A (en) * 2004-04-05 2005-10-20 Toyota Motor Corp Exhaust emission control device for engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294332U (en) * 1989-01-17 1990-07-26
JP2003027919A (en) * 2001-07-12 2003-01-29 Nissan Motor Co Ltd Exhaust emission control device of diesel engine having turbocharger
JP2005291175A (en) * 2004-04-05 2005-10-20 Toyota Motor Corp Exhaust emission control device for engine

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091835A3 (en) * 2008-01-14 2009-10-08 Cummins, Inc. Apparatus, system, and method for utilizing a diesel after treatment device between the high pressure and low pressure turbine stages of a two-stage turbocharging system
WO2009091835A2 (en) * 2008-01-14 2009-07-23 Cummins, Inc. Apparatus, system, and method for utilizing a diesel after treatment device between the high pressure and low pressure turbine stages of a two-stage turbocharging system
FR2926593A3 (en) * 2008-01-17 2009-07-24 Renault Sas Internal combustion engine i.e. oil engine, for motor vehicle, has by-pass duct that is parallel to exhaust duct, independent from turbines, and selectively circulates all or part of exhaust gas directly from manifold to depollution device
JP2009185737A (en) * 2008-02-07 2009-08-20 Mazda Motor Corp Supercharger for engine
JP2009185767A (en) * 2008-02-08 2009-08-20 Mazda Motor Corp Supercharger of engine
JP2009191817A (en) * 2008-02-18 2009-08-27 Mazda Motor Corp Supercharger for engine
US8776504B2 (en) 2008-03-04 2014-07-15 Tenneco Automotive Operating Company Inc. Bypass fluid system for exhaust aftertreatment
WO2009111097A2 (en) * 2008-03-04 2009-09-11 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
WO2009111097A3 (en) * 2008-03-04 2009-10-29 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
US7980061B2 (en) 2008-03-04 2011-07-19 Tenneco Automotive Operating Company Inc. Charged air bypass for aftertreatment combustion air supply
JP2011132947A (en) * 2009-12-23 2011-07-07 Ford Global Technologies Llc Method and device of exhaust emission control
KR20150019784A (en) * 2013-08-16 2015-02-25 현대중공업 주식회사 A CLEAN Engine With Easy to Assemble and Disassemble Structure of Exhaust Pipe
WO2016088407A1 (en) * 2014-12-05 2016-06-09 三菱重工業株式会社 Exhaust gas treatment device
JP2020197198A (en) * 2019-06-05 2020-12-10 ヤンマーパワーテクノロジー株式会社 Engine system
WO2020246419A1 (en) * 2019-06-05 2020-12-10 ヤンマーパワーテクノロジー株式会社 Engine system
JP7305436B2 (en) 2019-06-05 2023-07-10 ヤンマーパワーテクノロジー株式会社 Engine system and engine system control method

Also Published As

Publication number Publication date
JP4697065B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4697065B2 (en) Exhaust gas purification system for internal combustion engine
EP3051105B1 (en) Exhaust gas purification system for internal combustion engine
JP4442459B2 (en) Internal combustion engine having supercharger with electric motor
JP4811366B2 (en) Exhaust control device for internal combustion engine
JP2009299522A (en) Regenerating method and system of dust collection filter
JP2006022770A (en) Exhaust emission control device for internal combustion engine
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
US10138849B2 (en) Exhaust gas recirculation apparatus and control method therefor
JP4862604B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP5708806B2 (en) Exhaust gas purification device for internal combustion engine
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
EP2395218A1 (en) Internal combustion engine exhaust purifying device and exhaust purifying method
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
JP2010270715A (en) Internal combustion engine with sequential two-stage supercharger and method for controlling the same
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
JP2019105267A (en) Internal combustion engine
JP2010007634A (en) Exhaust emission control device for an internal combustion engine
JP2008175100A (en) Exhaust gas recirculation device for internal combustion engine
JP4631680B2 (en) Exhaust gas purification device for internal combustion engine
JP2007040223A (en) Exhaust emission control device
JP2014084819A (en) Control device for exhaust pressure control valve
JP5589987B2 (en) Exhaust temperature control device
JP4325580B2 (en) Control device for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R151 Written notification of patent or utility model registration

Ref document number: 4697065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees