JP2020197198A - Engine system - Google Patents

Engine system Download PDF

Info

Publication number
JP2020197198A
JP2020197198A JP2019105447A JP2019105447A JP2020197198A JP 2020197198 A JP2020197198 A JP 2020197198A JP 2019105447 A JP2019105447 A JP 2019105447A JP 2019105447 A JP2019105447 A JP 2019105447A JP 2020197198 A JP2020197198 A JP 2020197198A
Authority
JP
Japan
Prior art keywords
exhaust gas
pressure stage
exhaust
pressure
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019105447A
Other languages
Japanese (ja)
Other versions
JP7305436B2 (en
Inventor
義典 福井
Yoshinori Fukui
義典 福井
俊次 濱岡
Shunji Hamaoka
俊次 濱岡
愛 冨長
Ai Tominaga
愛 冨長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Power Technology Co Ltd
Original Assignee
Yanmar Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Power Technology Co Ltd filed Critical Yanmar Power Technology Co Ltd
Priority to JP2019105447A priority Critical patent/JP7305436B2/en
Priority to PCT/JP2020/021577 priority patent/WO2020246419A1/en
Publication of JP2020197198A publication Critical patent/JP2020197198A/en
Application granted granted Critical
Publication of JP7305436B2 publication Critical patent/JP7305436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To provide technique capable of obtaining high output or reducing exhaust emission, only by adopting a rational and simple structure, in an engine system performing supercharging in multistage.SOLUTION: An engine system is equipped with a high-pressure stage waist gate valve 1 disposed in a high-pressure stage bypass path 25 bypassing a high-pressure stage turbine in a discharge path and configured to adjust an opening. A control portion 60 executes the high-pressure waist gate valve that controls the opening of the high-pressure waist gate valve V1 on the basis of an output state of the engine 10.SELECTED DRAWING: Figure 2

Description

本発明は、吸気路から新気を吸気して排気路に排ガスを排出するエンジンと、前記排気路に配置された高圧段タービンにより前記吸気路に配置された高圧段コンプレッサを回転させる高圧段過給機と、前記排気路における前記高圧段タービンよりも下流側に配置された低圧段タービンにより前記吸気路における前記高圧段コンプレッサよりも上流側に配置された低圧段コンプレッサを回転させる低圧段過給機と、運転を制御する制御部と、を備えたエンジンシステムに関する。 According to the present invention, a high-pressure turbocharger that takes in fresh air from an intake passage and discharges exhaust gas to an exhaust passage and a high-pressure stage turbine arranged in the exhaust passage rotates a high-pressure stage compressor arranged in the intake passage. A low-pressure turbocharger that rotates a low-pressure stage compressor arranged on the upstream side of the high-pressure stage compressor in the intake passage by a feeder and a low-pressure stage turbine arranged on the downstream side of the high-pressure stage turbine in the exhaust passage. It relates to an engine system including a machine and a control unit for controlling operation.

例えば船舶に装備されるエンジンシステムとして、高圧段過給機と低圧段過給機とを設けてエンジンに対して多段式の過給を行うものが知られている(例えば、特許文献1を参照。)。従来、このようなエンジンシステムでは、高出力化を実現するために最大燃焼圧力を増加させていた。 For example, as an engine system installed on a ship, a high-pressure turbocharger and a low-pressure turbocharger are provided to supercharge the engine in multiple stages (see, for example, Patent Document 1). .). Conventionally, in such an engine system, the maximum combustion pressure has been increased in order to achieve high output.

特開2015−086725号公報JP-A-2015-08625

エンジンシステムにおいて、高出力化を実現する目的で最大燃焼圧力を増加させる場合には、エンジンや夫々の過給機の耐圧性能を強化する必要があるため、構造や各種部品の材質を見直すなどのエンジンの開発に大幅な工数とコストが必要であった。
また、このような多段式の過給を行うエンジンシステムでは、特に中出力域において低圧段タービンから排出される排ガスの温度が低下することで、選択還元触媒部などの排ガス処理部において充分に排ガスを処理できずに、所望のとおりに排気エミッションを低減できない場合があった。
この実情に鑑み、本発明の主たる課題は、多段式の過給を行うエンジンシステムにおいて、合理的且つ簡単な構成を採用するだけで、高出力化や排気エミッションの低減を実現可能な技術を提供する点にある。
In the engine system, when increasing the maximum combustion pressure for the purpose of achieving high output, it is necessary to strengthen the withstand voltage performance of the engine and each supercharger, so the structure and materials of various parts should be reviewed. Significant man-hours and costs were required to develop the engine.
Further, in such a multi-stage supercharging engine system, the temperature of the exhaust gas discharged from the low-pressure stage turbine is lowered, especially in the medium output range, so that the exhaust gas is sufficiently discharged in the exhaust gas treatment part such as the selective reduction catalyst part. Could not be processed and the exhaust emissions could not be reduced as desired.
In view of this situation, the main subject of the present invention is to provide a technique capable of increasing the output and reducing the exhaust emission by simply adopting a rational and simple configuration in a multi-stage supercharging engine system. There is a point to do.

本発明の第1特徴構成は、吸気路から新気を吸気して排気路に排ガスを排出するエンジンと、
前記排気路に配置された高圧段タービンにより前記吸気路に配置された高圧段コンプレッサを回転させる高圧段過給機と、
前記排気路における前記高圧段タービンよりも下流側に配置された低圧段タービンにより前記吸気路における前記高圧段コンプレッサよりも上流側に配置された低圧段コンプレッサを回転させる低圧段過給機と、
運転を制御する制御部と、を備えたエンジンシステムであって、
前記排気路において前記高圧段タービンをバイパスする高圧段バイパス路に配置されて開度調整可能に構成された高圧段ウエストゲート弁を備え、
前記制御部が、前記エンジンの出力状態に基づいて前記高圧段ウエストゲート弁の開度を制御する高圧段ウエストゲート弁制御を実行する点にある。
The first characteristic configuration of the present invention is an engine that takes in fresh air from the intake passage and discharges exhaust gas to the exhaust passage.
A high-pressure turbocharger that rotates a high-pressure compressor arranged in the intake passage by a high-pressure turbine arranged in the exhaust passage.
A low-pressure turbocharger that rotates a low-pressure stage compressor arranged on the upstream side of the high-pressure stage compressor in the intake passage by a low-pressure stage turbine arranged on the downstream side of the high-pressure stage turbine in the exhaust passage.
An engine system equipped with a control unit that controls operation.
It is provided with a high-pressure stage waistgate valve arranged in the high-pressure stage bypass path that bypasses the high-pressure stage turbine in the exhaust path and configured to have an adjustable opening.
The point is that the control unit executes high-pressure stage waistgate valve control that controls the opening degree of the high-pressure stage waistgate valve based on the output state of the engine.

本構成によれば、制御部が高圧段ウエストゲート弁制御を実行して高圧段ウエストゲート弁の開度をエンジンの出力状態に基づいて制御するので、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて高圧段タービンをバイパスする排ガスの流量を、例えば高出力化や排気エミッションの低減に寄与する適切な状態に維持することができる。 According to this configuration, the control unit executes high-pressure stage waistgate valve control to control the opening degree of the high-pressure stage waistgate valve based on the output state of the engine, so that high pressure is applied from the primary side of the high-pressure stage turbine in the exhaust passage. The flow rate of the exhaust gas extracted to the stage bypass path and bypassing the high-pressure stage turbine can be maintained in an appropriate state that contributes to, for example, high output and reduction of exhaust emissions.

従って、本発明により、多段式の過給を行うエンジンシステムにおいて、高圧段ウエストゲート弁の開度をエンジンの出力状態に基づいて制御するというような合理的且つ簡単な構成を採用するだけで、高出力化や排気エミッションの低減を実現可能な技術を提供することができる。 Therefore, according to the present invention, in an engine system for multi-stage supercharging, a rational and simple configuration such as controlling the opening degree of a high-pressure stage waistgate valve based on the output state of the engine is simply adopted. It is possible to provide a technology that can realize high output and reduction of exhaust emissions.

本発明の第2特徴構成は、前記制御部が、前記高圧段ウエストゲート弁制御として、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記低圧段タービン側とした状態において、前記エンジンの出力増加に伴って前記高圧段ウエストゲート弁の開度を拡大する高出力化優先制御を実行する点にある。 The second characteristic configuration of the present invention is that the control unit controls the high-pressure stage waistgate valve so that the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust passage is the low-pressure stage turbine side. The point is to execute high output priority control that increases the opening degree of the high pressure stage waistgate valve as the output of the engine increases.

本構成によれば、制御部が高出力化優先制御を実行することで、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて低圧段タービンの一次側に再流入される排ガスの流量が、エンジンの出力増加に伴って増加される。すると、エンジンの出力増加に伴って、エンジンからの排ガスの排出量が過剰に増加する場合であっても、その余分な排ガスを高圧段タービンの一次側から抜き出すことで、エンジンの吸気圧力の低下はできるだけ抑制しながらエンジンの排気圧力をできるだけ低下させて、高出力化を図ることができる。更に、その抜き出した排ガスのエネルギを低圧段タービンで回収して低圧段コンプレッサによる新気の低圧側の過給に利用して、エンジンの吸気圧力の低下を一層抑制することができる。 According to this configuration, when the control unit executes high output priority control, it is extracted from the primary side of the high-pressure stage turbine to the high-pressure stage bypass path in the exhaust passage and re-inflowed into the primary side of the low-pressure stage turbine. The flow rate of exhaust gas increases as the output of the engine increases. Then, even if the exhaust gas from the engine increases excessively as the output of the engine increases, the excess exhaust gas is extracted from the primary side of the high-pressure turbine to reduce the intake pressure of the engine. The exhaust pressure of the engine can be reduced as much as possible while suppressing as much as possible to increase the output. Further, the energy of the extracted exhaust gas can be recovered by the low-pressure stage turbine and used for supercharging the fresh air on the low-pressure side by the low-pressure stage compressor, so that the decrease in the intake pressure of the engine can be further suppressed.

本発明の第3特徴構成は、前記排気路における前記低圧段タービンよりも下流側に配置されて排ガス中の窒素酸化物を還元させる選択還元触媒部を有する排ガス処理部を備え、
前記制御部が、前記高圧段ウエストゲート弁制御として、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記排ガス処理部側とした状態において、前記エンジンの出力低下に伴って前記高圧段ウエストゲート弁の開度を拡大する排気エミッション優先制御を実行する点にある。
The third characteristic configuration of the present invention includes an exhaust gas treatment unit which is arranged on the downstream side of the low-pressure stage turbine in the exhaust passage and has a selective reduction catalyst unit for reducing nitrogen oxides in the exhaust gas.
As the high-pressure stage waistgate valve control, the control unit sets the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust path to the exhaust gas treatment unit side, and the output of the engine decreases. The point is to execute exhaust emission priority control that expands the opening of the high-pressure stage waistgate valve.

本構成によれば、制御部が排気エミッション優先制御を実行することで、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて排ガス処理部側に再流入される排ガスの流量が、エンジンの出力増加に伴って増加される。すると、特に中出力域において、エンジンの出力低下に伴って、低圧段タービンから排ガス処理部側に供給される排ガスの温度が低下して、選択還元触媒部の活性の低下が懸念される場合であっても、高圧段バイパス路から排ガス処理部側に再流入される比較的高温の排ガスの流入量を増加させることができる。このことで、エンジンの出力低下による選択還元触媒部の活性低下を抑制して、排気エミッションの増加を防止することができる。 According to this configuration, when the control unit executes the exhaust emission priority control, the flow rate of the exhaust gas that is extracted from the primary side of the high-pressure stage turbine to the high-pressure stage bypass path and re-inflowed into the exhaust gas treatment unit side in the exhaust passage. However, it increases as the engine output increases. Then, especially in the medium output region, the temperature of the exhaust gas supplied from the low-pressure stage turbine to the exhaust gas treatment unit decreases as the engine output decreases, and there is a concern that the activity of the selective reduction catalyst unit decreases. Even if there is, it is possible to increase the inflow amount of the relatively high temperature exhaust gas re-inflowing from the high-pressure stage bypass path to the exhaust gas treatment unit side. As a result, it is possible to suppress a decrease in the activity of the selective reduction catalyst portion due to a decrease in the output of the engine and prevent an increase in exhaust emissions.

本発明の第4特徴構成は、上記第3特徴構成に加えて、前記排ガス処理部が、前記排気路における前記選択還元触媒部の上流側に配置されて前記排気路に添加された還元剤と排ガスとの混合を促進させる排ガス混合促進部を有し、
前記高圧段バイパス路から前記排ガス処理部側に再流入される排ガスを前記選択還元触媒部と前記排ガス混合促進部とに分配供給して、当該排ガス混合促進部への排ガスの分配割合を調整可能な分配割合調整部を備え、
前記制御部が、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記排ガス処理部側とした状態において、前記エンジンの出力増加に伴って前記分配割合調整部により前記排ガス混合促進部への排ガスの分配割合を増加させる排ガス分配制御を実行する点にある。
In the fourth feature configuration of the present invention, in addition to the third feature configuration, the exhaust gas treatment section is arranged on the upstream side of the selective reduction catalyst section in the exhaust passage, and the reducing agent added to the exhaust passage is provided. It has an exhaust gas mixing promotion unit that promotes mixing with exhaust gas.
The exhaust gas re-inflowing from the high-pressure stage bypass path to the exhaust gas treatment unit side can be distributed and supplied to the selective reduction catalyst unit and the exhaust gas mixing promotion unit, and the distribution ratio of the exhaust gas to the exhaust gas mixing promotion unit can be adjusted. Equipped with a distribution ratio adjustment unit
In a state where the control unit sets the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust path to the exhaust gas treatment unit side, the exhaust gas mixing is promoted by the distribution ratio adjusting unit as the output of the engine increases. The point is to execute exhaust gas distribution control that increases the distribution ratio of exhaust gas to the unit.

本構成によれば、排ガス混合促進部にて還元剤と充分に混合された排ガスを選択還元触媒部に供給して処理するものとして構成されている。そして、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて排ガス処理部側に再流入される排ガスを、分配部調整部により、排ガス混合促進部への分配割合の調整を伴って選択還元触媒部の一次側と排ガス混合促進部の一次側とに分配供給することができる。 According to this configuration, the exhaust gas mixing promotion unit is configured to supply the exhaust gas sufficiently mixed with the reducing agent to the selective reduction catalyst unit for treatment. Then, in the exhaust passage, the distribution ratio of the exhaust gas extracted from the primary side of the high-pressure turbine to the high-pressure bypass passage and re-inflowed into the exhaust gas treatment section is adjusted by the distribution section adjustment section to the exhaust gas mixing promotion section. As a result, it can be distributed and supplied to the primary side of the selective reduction catalyst section and the primary side of the exhaust gas mixing promotion section.

更に、制御部が排ガス分配制御を実行することで、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて排ガス処理部側に再流入される排ガスのうち排ガス混合促進部の一次側に分配供給される排ガスの流量が、エンジンの出力増加に伴って増加される。すると、特に中出力域において、エンジンの出力増加に伴って、還元剤の添加量が増加される場合であっても、排ガス混合促進部においてその還元剤を排ガスに良好に混合することができる。このことで、還元剤の添加量増加による排ガスへの混合不足を抑制して、排気エミッションの増加を防止することができる。 Further, when the control unit executes the exhaust gas distribution control, the exhaust gas mixing promotion unit of the exhaust gas that is extracted from the primary side of the high-pressure stage turbine to the high-pressure stage bypass path and re-inflowed into the exhaust gas treatment unit side in the exhaust passage. The flow rate of the exhaust gas distributed and supplied to the primary side is increased as the output of the engine increases. Then, even when the amount of the reducing agent added is increased with the increase in the output of the engine, particularly in the medium output region, the reducing agent can be satisfactorily mixed with the exhaust gas in the exhaust gas mixing promoting unit. As a result, it is possible to suppress insufficient mixing with the exhaust gas due to an increase in the amount of the reducing agent added, and prevent an increase in exhaust emissions.

本発明の第5特徴構成は、前記排気路における前記低圧段タービンよりも下流側に配置されて排ガス中の窒素酸化物を還元させる選択還元触媒部を有する排ガス処理部を備え、
前記排気路における前記高圧段バイパス路からの排ガスの再流入先を、前記低圧段タービン側と前記排ガス処理部側との間で切替可能な再流入先切替部を備えた点にある。
The fifth characteristic configuration of the present invention includes an exhaust gas treatment unit having a selective reduction catalyst unit that is arranged on the downstream side of the low-pressure stage turbine in the exhaust passage and reduces nitrogen oxides in the exhaust gas.
The point is that the re-inflow destination switching portion capable of switching the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust passage between the low-pressure stage turbine side and the exhaust gas treatment unit side is provided.

本構成によれば、再流入先切替部により上記排ガスの再流入先を低圧段タービン側に切り替えた状態で、制御部が例えば上記第2特徴構成で示した高出力化優先制御を高圧段ウエストゲート弁制御として実行することで、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて低圧段タービンの一次側に再流入される排ガスの流量を適切なものに調整して、エンジンの吸気圧力の低下はできるだけ抑制しながらエンジンの排気圧力をできるだけ低下させて、高出力化を図ることができる。 According to this configuration, in a state where the re-inflow destination of the exhaust gas is switched to the low-pressure stage turbine side by the re-inflow destination switching unit, the control unit performs, for example, the high output priority control shown in the second characteristic configuration in the high-pressure stage waist. By executing as gate valve control, the flow rate of the exhaust gas that is extracted from the primary side of the high-pressure stage turbine to the high-pressure stage bypass path and re-inflowed into the primary side of the low-pressure stage turbine in the exhaust passage is adjusted to an appropriate level. It is possible to increase the output by reducing the exhaust pressure of the engine as much as possible while suppressing the decrease of the intake pressure of the engine as much as possible.

また、再流入先切替部により上記排ガスの再流入先を排ガス処理部側に切り替えた状態で、制御部が例えば上記第3特徴構成で示した排気エミッション優先制御を高圧段ウエストゲート弁制御として実行することで、排気路において高圧段タービンの一次側から高圧段バイパス路に抜き出されて排ガス処理部側に再流入される排ガスの流量を適切なものに調整して、エンジンの出力低下による選択還元触媒部の活性低下を抑制し、排気エミッションの増加を防止することができる。 Further, in a state where the re-inflow destination of the exhaust gas is switched to the exhaust gas treatment unit side by the re-inflow destination switching unit, the control unit executes, for example, the exhaust emission priority control shown in the third characteristic configuration as the high-pressure stage waistgate valve control. By doing so, the flow rate of the exhaust gas that is extracted from the primary side of the high-pressure stage turbine to the high-pressure stage bypass path and re-inflowed into the exhaust gas treatment section side in the exhaust path is adjusted to an appropriate level, and selection is made based on the decrease in engine output. It is possible to suppress a decrease in the activity of the reduction catalyst portion and prevent an increase in exhaust emissions.

本発明の実施形態におけるエンジンシステムの第1状態を示す図The figure which shows the 1st state of the engine system in embodiment of this invention. 本発明の実施形態におけるエンジンシステムの第2状態を示す図The figure which shows the 2nd state of the engine system in embodiment of this invention. 本発明の実施形態におけるエンジンシステムの第3状態を示す図The figure which shows the 3rd state of the engine system in embodiment of this invention. 本発明の実施形態におけるエンジンシステムの制御フローを示す図The figure which shows the control flow of the engine system in embodiment of this invention. 高出力化優先制御におけるエンジン出力と高圧段ウエストゲート弁の開度目標値との関係を例示するグラフ図Graph diagram exemplifying the relationship between engine output and high-pressure stage waistgate valve opening target value in high-power priority control 排気エミッション優先制御におけるエンジン出力と高圧段ウエストゲート弁の開度目標値との関係を例示するグラフ図Graph diagram illustrating the relationship between the engine output and the opening target value of the high-pressure stage waistgate valve in exhaust emission priority control 排ガス分配制御におけるエンジン出力と分配割合目標値との関係を例示するグラフ図Graph diagram exemplifying the relationship between engine output and distribution ratio target value in exhaust gas distribution control

本発明に係るエンジンシステムの実施形態について図面に基づいて説明する。
尚、図1〜図3に示すエンジンシステムにおいて、ガスが通流している流路を実線で示し、ガスの通流が停止している流路を破線で表している。また、同図において、閉弁状態にある弁は黒塗りで表し、開弁状態にある弁は白抜きで表している。
An embodiment of the engine system according to the present invention will be described with reference to the drawings.
In the engine system shown in FIGS. 1 to 3, the flow path through which the gas is flowing is indicated by a solid line, and the flow path through which the gas is stopped is indicated by a broken line. Further, in the figure, the valve in the closed state is shown in black, and the valve in the open state is shown in white.

本実施形態のエンジンシステム(以下、「本エンジンシステム」と呼ぶ。)は、図1〜図3に示すように、吸気路12,13,14から新気Aを吸気して排気路16,17,18に排ガスEを排出するエンジン10と、それらエンジン10の運転を制御する制御装置60(制御部の一例)とを備える。 As shown in FIGS. 1 to 3, the engine system of the present embodiment (hereinafter referred to as “the engine system”) takes in fresh air A from the intake passages 12, 13 and 14, and exhaust passages 16 and 17. , 18 includes an engine 10 that discharges exhaust gas E, and a control device 60 (an example of a control unit) that controls the operation of the engines 10.

本エンジンシステムは、船舶に搭載されるエンジンシステムであって、船内の消費電力を発電する発電機20を駆動する1機以上のエンジン10を備える。本エンジンシステムに備えられる制御装置60は、船内の電力負荷に応じて夫々のエンジン10を適宜作動されるように構成されている。 This engine system is an engine system mounted on a ship, and includes one or more engines 10 for driving a generator 20 that generates power consumption in the ship. The control device 60 provided in this engine system is configured to appropriately operate each engine 10 according to the electric power load in the ship.

本エンジンシステムは、エンジン10に対して高圧段過給機30と低圧段過給機40とが直列的に接続されて、多段式の過給を行うものとして構成されている。即ち、吸気路12,13,14には、高圧段過給機30の高圧段コンプレッサ31と低圧段過給機40の低圧段コンプレッサ41とが直列的に配置されている。一方、排気路16,17,18には、高圧段過給機30の高圧段タービン32と低圧段過給機40の低圧段タービン42とを直列的に配置されている。 This engine system is configured such that a high-pressure turbocharger 30 and a low-pressure turbocharger 40 are connected in series to the engine 10 to perform multi-stage turbocharging. That is, the high-pressure stage compressor 31 of the high-pressure stage turbocharger 30 and the low-pressure stage compressor 41 of the low-pressure stage supercharger 40 are arranged in series in the intake passages 12, 13, and 14. On the other hand, in the exhaust passages 16, 17, and 18, the high-pressure stage turbine 32 of the high-pressure stage supercharger 30 and the low-pressure stage turbine 42 of the low-pressure stage supercharger 40 are arranged in series.

ここで、吸気路12,13,14において、エンジン10の吸気マニホールドと高圧段コンプレッサ31の二次側(新気流出側)とを接続する吸気路を高圧吸気路12と呼ぶ。高圧段コンプレッサ31の一次側(新気流入側)と低圧段コンプレッサ41の二次側(新気流入側)とを接続する吸気路を中圧吸気路13と呼ぶ。また、低圧段コンプレッサ41の一次側(新気流入側)と大気側とを接続する吸気路を低圧吸気路14と呼ぶ。一方、排気路16,17,18において、エンジン10の排気マニホールドと高圧段タービン32の一次側(排ガス流入側)とを接続する排気路を高圧排気路16と呼ぶ。高圧段タービン32の二次側(排ガス流出側)と低圧段タービン42の一次側(排ガス流入側)とを接続する排気路を中圧排気路17と呼ぶ。また、低圧段タービン42の二次側(排ガス流出側)と大気側とを接続する排気路を低圧排気路18と呼ぶ。 Here, in the intake passages 12, 13 and 14, the intake passage connecting the intake manifold of the engine 10 and the secondary side (fresh air outflow side) of the high-pressure stage compressor 31 is referred to as a high-pressure intake passage 12. The intake passage connecting the primary side (fresh air inflow side) of the high-pressure stage compressor 31 and the secondary side (fresh air inflow side) of the low-pressure stage compressor 41 is called a medium-pressure intake passage 13. Further, the intake passage connecting the primary side (fresh air inflow side) of the low pressure stage compressor 41 and the atmosphere side is referred to as a low pressure intake passage 14. On the other hand, in the exhaust passages 16, 17, and 18, the exhaust passage connecting the exhaust manifold of the engine 10 and the primary side (exhaust gas inflow side) of the high-pressure stage turbine 32 is called a high-pressure exhaust passage 16. The exhaust passage connecting the secondary side (exhaust gas outflow side) of the high-pressure turbine 32 and the primary side (exhaust gas inflow side) of the low-pressure turbine 42 is called a medium-pressure exhaust passage 17. Further, the exhaust passage connecting the secondary side (exhaust gas outflow side) of the low-pressure turbine 42 and the atmosphere side is referred to as a low-pressure exhaust passage 18.

高圧段過給機30は、排気路16,17に配置された高圧段タービン32により吸気路12,13に配置された高圧段コンプレッサ31を回転させる所謂ターボ式の過給機として構成されている。具体的には、エンジン10から高圧排気路16を通じて高圧段タービン32に流入した排ガスEのエネルギが回収されて、高圧段タービン32が回転する。すると、高圧段タービン32に連結された高圧段コンプレッサ31が回転して、中圧吸気路13から高圧段コンプレッサ31に流入した新気Aが加圧される。そして、このように高圧段コンプレッサ31で加圧された新気Aを、エアクリーナ23が設けられた高圧吸気路12を通じてエンジン10に吸気させることができる。 The high-pressure turbocharger 30 is configured as a so-called turbocharger in which the high-pressure stage compressors 31 arranged in the intake passages 12 and 13 are rotated by the high-pressure stage turbines 32 arranged in the exhaust passages 16 and 17. .. Specifically, the energy of the exhaust gas E flowing from the engine 10 into the high-pressure turbine 32 through the high-pressure exhaust passage 16 is recovered, and the high-pressure turbine 32 rotates. Then, the high-pressure stage compressor 31 connected to the high-pressure stage turbine 32 rotates, and the fresh air A flowing into the high-pressure stage compressor 31 from the medium-pressure intake passage 13 is pressurized. Then, the fresh air A pressurized by the high-pressure stage compressor 31 can be sucked into the engine 10 through the high-pressure intake passage 12 provided with the air cleaner 23.

低圧段過給機40は、排気路17,18に配置された低圧段タービン42により吸気路13,14に配置された低圧段コンプレッサ41を回転させる所謂ターボ式の過給機として構成されている。具体的には、高圧段タービン32から中圧排気路17を通じて低圧段タービン42に流入した排ガスEのエネルギが回収されて、低圧段タービン42が回転する。すると、低圧段タービン42に連結された低圧段コンプレッサ41が回転して、低圧吸気路14から低圧段コンプレッサ41に流入した新気Aが加圧される。そして、このように低圧段コンプレッサ41で加圧された新気Aを、インタークーラ24が設けられた中圧吸気路13を通じて高圧段コンプレッサ31に供給することができる。 The low-pressure turbocharger 40 is configured as a so-called turbocharger in which the low-pressure stage compressors 41 arranged in the intake passages 13 and 14 are rotated by the low-pressure stage turbines 42 arranged in the exhaust passages 17 and 18. .. Specifically, the energy of the exhaust gas E flowing from the high-pressure stage turbine 32 into the low-pressure stage turbine 42 through the medium-pressure exhaust passage 17 is recovered, and the low-pressure stage turbine 42 rotates. Then, the low-pressure stage compressor 41 connected to the low-pressure stage turbine 42 rotates, and the fresh air A flowing into the low-pressure stage compressor 41 from the low-pressure intake passage 14 is pressurized. Then, the fresh air A pressurized by the low-pressure stage compressor 41 can be supplied to the high-pressure stage compressor 31 through the medium-pressure intake passage 13 provided with the intercooler 24.

排気路16,17,18における低圧段タービン42よりも下流側の低圧排気路18には、排ガスE中の窒素酸化物を還元させる選択還元触媒部54を有する排ガス処理部50が設けられている。選択還元触媒部54は、排ガスE中のNOx(窒素酸化物)を選択的に還元させて浄化するSCR(選択還元触媒:Selective Catalytic Reduction)を用いた排ガス浄化部として構成されている。即ち、選択還元触媒部54では、低圧排気路18において選択還元触媒部54よりも上流側に配置された還元剤添加ノズル51から噴射された尿素水等の還元剤Uが排ガスEの熱により加水分解される。そして、それにより生成されるアンモニアの還元作用により、排ガスE中のNOxが選択的に水と窒素に還元されて、排ガスEが浄化される。
低圧排気路18に設けられた排ガス処理部50には、上記選択還元触媒部54よりも上流側で且つ還元剤添加ノズル51よりも下流側に配置されて、低圧排気路18に添加された還元剤Uと排ガスEとの混合を促進させる排ガス混合促進部52が設けられている。
The low-pressure exhaust passage 18 on the downstream side of the low-pressure stage turbine 42 in the exhaust passages 16, 17, and 18 is provided with an exhaust gas treatment unit 50 having a selective reduction catalyst unit 54 for reducing nitrogen oxides in the exhaust gas E. .. The selective reduction catalyst unit 54 is configured as an exhaust gas purification unit using SCR (selective reduction catalyst: Selective Catalytic Reduction) that selectively reduces and purifies NOx (nitrogen oxides) in the exhaust gas E. That is, in the selective reduction catalyst unit 54, the reducing agent U such as urea water injected from the reducing agent addition nozzle 51 arranged on the upstream side of the selective reduction catalyst unit 54 in the low pressure exhaust passage 18 is hydrolyzed by the heat of the exhaust gas E. It is disassembled. Then, the NOx in the exhaust gas E is selectively reduced to water and nitrogen by the reducing action of the ammonia produced thereby, and the exhaust gas E is purified.
The exhaust gas treatment unit 50 provided in the low-pressure exhaust passage 18 is arranged on the upstream side of the selective reduction catalyst unit 54 and on the downstream side of the reducing agent addition nozzle 51, and the reduction added to the low-pressure exhaust passage 18 An exhaust gas mixing promoting unit 52 for promoting mixing of the agent U and the exhaust gas E is provided.

本エンジンシステムには、排気路16,17,18において高圧段タービン32をバイパスする高圧段バイパス路として、取出路25と第1再流入路26と第2再流入路27と第1分配路28と第2分配路29と、が配置されている。更に、この高圧段バイパス路には、高圧段ウエストゲート弁V1と再流入先切替弁V2(再流入先切替部の一例)と分配割合調整弁V3(分配割合調整部の一例)とが配置されている。 In this engine system, as high-pressure stage bypass paths that bypass the high-pressure stage turbine 32 in the exhaust paths 16, 17, and 18, the take-out path 25, the first re-inflow path 26, the second re-inflow path 27, and the first distribution path 28 And the second distribution path 29 are arranged. Further, a high-pressure stage waistgate valve V1, a re-inflow destination switching valve V2 (an example of a re-inflow destination switching unit), and a distribution ratio adjusting valve V3 (an example of a distribution ratio adjusting unit) are arranged in this high-pressure stage bypass path. ing.

取出路25は、高圧排気路16と再流入先切替弁V2の流入側ポートPiとを接続する流路として構成されている。また、この取出路25には、開度調整可能に構成された高圧段ウエストゲート弁V1が設けられている。
高圧段ウエストゲート弁V1は、制御装置60から入力される指令信号に基づいて開度を調整可能なものとして構成されている。
The take-out passage 25 is configured as a flow path connecting the high-pressure exhaust passage 16 and the inflow side port Pi of the re-inflow destination switching valve V2. Further, the take-out path 25 is provided with a high-pressure stage waistgate valve V1 configured so that the opening degree can be adjusted.
The high-pressure stage waistgate valve V1 is configured so that the opening degree can be adjusted based on a command signal input from the control device 60.

そして、高圧段ウエストゲート弁V1の開度を調整することで、高圧排気路16から取出路25に抜き出されて高圧段タービン32をバイパスする排ガスEの流量を適切な状態に設定することができる。 Then, by adjusting the opening degree of the high-pressure stage waistgate valve V1, the flow rate of the exhaust gas E extracted from the high-pressure exhaust passage 16 to the take-out passage 25 and bypassing the high-pressure stage turbine 32 can be set to an appropriate state. it can.

第1再流入路26は、再流入先切替弁V2の第1流出側ポートP1と低圧段タービン42の一次側である中圧排気路17とを接続する流路として構成されている。
第2再流入路27は、再流入先切替弁V2の第2流出側ポートP2と分配割合調整弁V3の流入側ポートPiとを接続する流路として構成されている。
再流入先切替弁V2は、制御装置60から入力される指令信号に基づいて第1流出側ポートP1と第2流出側ポートP2とのうちの流入側ポートPiに対して開放させるポートを切替可能に構成されている。
The first reinflow passage 26 is configured as a flow path connecting the first outflow side port P1 of the reinflow destination switching valve V2 and the medium pressure exhaust passage 17 which is the primary side of the low pressure stage turbine 42.
The second reinflow passage 27 is configured as a flow path connecting the second outflow side port P2 of the reinflow destination switching valve V2 and the inflow side port Pi of the distribution ratio adjusting valve V3.
The re-inflow destination switching valve V2 can switch the port to be opened to the inflow side port Pi of the first outflow side port P1 and the second outflow side port P2 based on the command signal input from the control device 60. It is configured in.

そして、再流入先切替弁V2の状態を流入側ポートPiに対して第1流出側ポートP1を開放し第2流出側ポートP2を遮断する状態(図2に示す状態)とすれば、高圧排気路16から取出路25に抜き出されて高圧段タービン32をバイパスする排ガスEの再流入先を、第1再流入路26を通じて低圧段タービン42側とした状態とすることができる。一方、再流入先切替弁V2の状態を流入側ポートPiに対して第1流出側ポートP1を遮断し第2流出側ポートP2を開放させる状態(図3に示す状態)とすれば、高圧排気路16から取出路25に抜き出されて高圧段タービン32をバイパスする排ガスEの再流入先を、第2再流入路27を通じて分配割合調整弁V3の流入側ポートPiとした状態とすることができる。 Then, if the state of the re-inflow destination switching valve V2 is set to a state in which the first outflow side port P1 is opened with respect to the inflow side port Pi and the second outflow side port P2 is shut off (the state shown in FIG. 2), high-pressure exhaust is performed. The re-inflow destination of the exhaust gas E extracted from the passage 16 to the take-out passage 25 and bypassing the high-pressure stage turbine 32 can be set to the low-pressure stage turbine 42 side through the first re-inflow passage 26. On the other hand, if the state of the re-inflow destination switching valve V2 is set to a state in which the first outflow side port P1 is shut off and the second outflow side port P2 is opened with respect to the inflow side port Pi (state shown in FIG. 3), high pressure exhaust is performed. The re-inflow destination of the exhaust gas E extracted from the path 16 to the take-out path 25 and bypassing the high-pressure stage turbine 32 may be set to the inflow side port Pi of the distribution ratio adjusting valve V3 through the second re-inflow path 27. it can.

第1分配路28は、分配割合調整弁V3の第1流出側ポートP1と低圧排気路18における選択還元触媒部54の一次側(排ガス流入側)とを接続する流路として構成されている。
第2分配路29は、分配割合調整弁V3の第2流出側ポートP2と低圧排気路18における排ガス混合促進部52の一次側(排ガス流入側)とを接続する流路として構成されている。
The first distribution path 28 is configured as a flow path connecting the first outflow side port P1 of the distribution ratio adjusting valve V3 and the primary side (exhaust gas inflow side) of the selective reduction catalyst section 54 in the low pressure exhaust path 18.
The second distribution path 29 is configured as a flow path connecting the second outflow side port P2 of the distribution ratio adjusting valve V3 and the primary side (exhaust gas inflow side) of the exhaust gas mixing promotion unit 52 in the low pressure exhaust path 18.

分配割合調整弁V3は、図3に示すように、第2再流入路27から流入側ポートPiに流入された排ガスEを、選択還元触媒部54の一次側に通じる第1分配路28(第1流出側ポートP1側)と排ガス混合促進部52の一次側に通じる第2分配路29(第2流出側ポートP2側)とに分配供給することができる。更に、分配割合調整弁V3は、制御装置60から入力される指令信号に基づいて、排ガス混合促進部52の一次側に通じる第2分配路29への排ガスEの分配割合を調整可能に構成されている。 As shown in FIG. 3, the distribution ratio adjusting valve V3 connects the exhaust gas E flowing into the inflow side port Pi from the second reinflow path 27 to the primary side of the selective reduction catalyst section 54 (first distribution path 28 (first)). 1 Outflow side port P1 side) and the second distribution path 29 (second outflow side port P2 side) leading to the primary side of the exhaust gas mixing promotion unit 52 can be distributed and supplied. Further, the distribution ratio adjusting valve V3 is configured to be able to adjust the distribution ratio of the exhaust gas E to the second distribution path 29 leading to the primary side of the exhaust gas mixing promotion unit 52 based on the command signal input from the control device 60. ing.

よって、高圧排気路16から取出路25に抜き出されて第2再流入路27を通じて分配割合調整弁V3の流入側ポートPiに流入した排ガスEを、分配割合調整弁V3による分配率調整を伴って、低圧排気路18における選択還元触媒部54の一次側と排ガス混合促進部52の一次側とに分配供給することができる。そして、高圧排気路16から取出路25に抜き出された排ガスEは比較的高温である。そのため、選択還元触媒部54の一次側に分配供給された高温の排ガスEは当該選択還元触媒部54の活性向上に寄与することができる。一方、排ガス混合促進部52の一次側に分配供された高温の排ガスEは、当該排ガス混合促進部52での還元剤Uの混合促進に寄与することができる。 Therefore, the exhaust gas E extracted from the high-pressure exhaust passage 16 into the take-out passage 25 and flowing into the inflow side port Pi of the distribution ratio adjusting valve V3 through the second reinflow passage 27 is accompanied by the distribution ratio adjustment by the distribution ratio adjusting valve V3. Therefore, it can be distributed and supplied to the primary side of the selective reduction catalyst unit 54 and the primary side of the exhaust gas mixing promotion unit 52 in the low pressure exhaust passage 18. The exhaust gas E extracted from the high-pressure exhaust passage 16 to the extraction passage 25 has a relatively high temperature. Therefore, the high-temperature exhaust gas E distributed and supplied to the primary side of the selective reduction catalyst unit 54 can contribute to the improvement of the activity of the selective reduction catalyst unit 54. On the other hand, the high-temperature exhaust gas E distributed to the primary side of the exhaust gas mixing promoting unit 52 can contribute to the mixing promotion of the reducing agent U in the exhaust gas mixing promoting unit 52.

制御装置60には、各種センサ類の検知信号が入力されると共に、エンジン10の出力や回転数が発電機20等から入力される。
センサ類としては、エンジン10の吸気圧力を検知する圧力センサ21、エンジン10の排気圧力を検知する圧力センサ22、選択還元触媒部54の温度を検知する温度センサ55、排ガス混合促進部52の温度を検知する温度センサ53等が設けられている。
Detection signals of various sensors are input to the control device 60, and the output and rotation speed of the engine 10 are input from the generator 20 and the like.
The sensors include a pressure sensor 21 that detects the intake pressure of the engine 10, a pressure sensor 22 that detects the exhaust pressure of the engine 10, a temperature sensor 55 that detects the temperature of the selective reduction catalyst unit 54, and the temperature of the exhaust gas mixing promotion unit 52. A temperature sensor 53 or the like for detecting the above is provided.

本エンジンシステムは、以上のような合理的且つ簡単な構成を採用して、制御装置60による特徴的な運転制御を実施するだけで、低燃費を維持した状態での高出力化や特に中出力域での排気エミッションの低減を実現可能に構成されている。
以下に、本エンジンシステムの制御装置60により実施される運転制御の詳細について、図4に示す制御フロー等に沿って説明する。
This engine system adopts the above rational and simple configuration, and only by implementing the characteristic operation control by the control device 60, the output is increased while maintaining low fuel consumption, and especially the medium output. It is configured to make it possible to reduce exhaust emissions in the region.
Hereinafter, the details of the operation control performed by the control device 60 of the engine system will be described along with the control flow and the like shown in FIG.

先ず、制御装置60は、本エンジンシステムが搭載された船舶の現在位置情報等を用いて再流入先切替弁V2の状態を切り替えて、高圧排気路16から取出路25に抜き出されて高圧段タービン32をバイパスする排ガスEの再流入先を切り替える再流入先切替制御を実行する(図4のステップ#1、ステップ#2、ステップ#4)。
即ち、この再流入先切替制御では、先ず、船舶の現在位置が大気汚染物質放出規制海域(ECA:Emission Control Area)であるか否かが判定される(図4のステップ#1)。
First, the control device 60 switches the state of the re-inflow destination switching valve V2 using the current position information of the ship on which the engine system is mounted, and is extracted from the high-pressure exhaust passage 16 to the take-out passage 25 to reach the high-pressure stage. The re-inflow destination switching control for switching the re-inflow destination of the exhaust gas E bypassing the turbine 32 is executed (step # 1, step # 2, step # 4 in FIG. 4).
That is, in this re-inflow destination switching control, first, it is determined whether or not the current position of the ship is in the air pollutant release restricted sea area (ECA: Emission Control Area) (step # 1 in FIG. 4).

そして、船舶の現在位置が大気汚染物質放出規制海域ではない場合(図4のステップ#1のNECA)には、再流入先切替弁V2の状態が流入側ポートPiに対して第1流出側ポートP1を開放し第2流出側ポートP2を遮断する状態(図2に示す状態)とされる(図4のステップ#2)。すると、高圧排気路16から取出路25に抜き出されて高圧段タービン32をバイパスする排ガスEが、第1再流入路26を通じて低圧段タービン42の一次側に再流入される。 When the current position of the ship is not in the air pollutant release restricted sea area (NECA in step # 1 in FIG. 4), the state of the re-inflow destination switching valve V2 is the first outflow side port with respect to the inflow side port Pi. A state in which P1 is opened and the second outflow side port P2 is shut off (state shown in FIG. 2) is set (step # 2 in FIG. 4). Then, the exhaust gas E extracted from the high-pressure exhaust passage 16 into the take-out passage 25 and bypassing the high-pressure stage turbine 32 is re-inflowed into the primary side of the low-pressure stage turbine 42 through the first re-inflow passage 26.

一方、船舶の現在位置が大気汚染物質放出規制海域である場合(図4のステップ#1のECA)には、再流入先切替弁V2の状態が流入側ポートPiに対して第1流出側ポートP1を遮断し第2流出側ポートP2を開放させる状態(図3に示す状態)とされる(図4のステップ#4)。すると、高圧排気路16から抜き出されて高圧段タービン32をバイパスし排ガス処理部50側に再流入される排ガスEが、第2再流入路27を通じて分配割合調整弁V3に供給され、分配割合調整弁V3による分配率調整を伴って低圧排気路18における選択還元触媒部54の一次側と排ガス混合促進部52の一次側とに分配供給される。 On the other hand, when the current position of the ship is in the air pollutant release restricted sea area (ECA in step # 1 in FIG. 4), the state of the re-inflow destination switching valve V2 is the first outflow side port with respect to the inflow side port Pi. A state in which P1 is shut off and the second outflow side port P2 is opened (state shown in FIG. 3) is set (step # 4 in FIG. 4). Then, the exhaust gas E, which is extracted from the high-pressure exhaust passage 16 and bypasses the high-pressure stage turbine 32 and is re-inflowed to the exhaust gas treatment unit 50 side, is supplied to the distribution ratio adjusting valve V3 through the second re-inflow passage 27, and the distribution ratio is increased. The distribution is distributed and supplied to the primary side of the selective reduction catalyst section 54 and the primary side of the exhaust gas mixing promotion section 52 in the low pressure exhaust passage 18 with the distribution rate adjustment by the adjusting valve V3.

図4のステップ#2の再流入先切替弁V2に対する再流入先切替制御にて、高圧段タービン32をバイパスする排ガスEが低圧段タービン42の一次側に再流入される状態となる。すると、制御装置60は、エンジン10の出力状態に基づいて高圧段ウエストゲート弁V1の開度を制御する高圧段ウエストゲート弁制御として、低燃費を維持した状態でのエンジン10の高出力化を図るための高出力化優先制御(図4のステップ#3)を実行する。 In the re-inflow destination switching control for the re-inflow destination switching valve V2 in step # 2 of FIG. 4, the exhaust gas E bypassing the high-pressure stage turbine 32 is re-inflowed to the primary side of the low-pressure stage turbine 42. Then, the control device 60 increases the output of the engine 10 while maintaining low fuel consumption as the high-pressure stage waistgate valve control that controls the opening degree of the high-pressure stage waistgate valve V1 based on the output state of the engine 10. High-voltage priority control (step # 3 in FIG. 4) for attempting is executed.

高出力化優先制御(図4のステップ#3)は、エンジン10の出力増加に伴って高圧段ウエストゲート弁V1の開度を拡大する制御として構成されている。
例えば、図5に示すように、エンジン10の出力が高出力域の下限である第1出力W1(例えば高出力化優先制御実行時の最大出力Wr1の85%)未満である場合には、高圧段ウエストゲート弁V1が全閉状態(図1に示す状態)とされる。すると、エンジン10から高圧排気路16に排出された排ガスEの全量が高圧段タービン32に供給される。
尚、高出力化優先制御実行時では、エンジン10の出力増加が実現されていることから、この高出力化優先制御実行時の最大出力Wr1は、後述する排気エミッション優先制御実行時の最大出力Wr2(図6及び図7参照)よりも大きい値に設定されており、例えばその出力差は10%程度に設定されている。
The high output priority control (step # 3 in FIG. 4) is configured as a control for increasing the opening degree of the high pressure stage waistgate valve V1 as the output of the engine 10 increases.
For example, as shown in FIG. 5, when the output of the engine 10 is less than the first output W1 which is the lower limit of the high output region (for example, 85% of the maximum output Wr1 when the high output priority control is executed), the high voltage is high. The step waistgate valve V1 is fully closed (the state shown in FIG. 1). Then, the entire amount of the exhaust gas E discharged from the engine 10 to the high-pressure exhaust passage 16 is supplied to the high-pressure stage turbine 32.
Since the output of the engine 10 is increased when the high output priority control is executed, the maximum output Wr1 when the high output priority control is executed is the maximum output Wr2 when the exhaust emission priority control is executed, which will be described later. It is set to a value larger than (see FIGS. 6 and 7), and the output difference is set to about 10%, for example.

更に、エンジン10の出力が上記第1出力W1以上且つ最大出力Wr1以下の範囲内である高出力域にある場合には、高圧段ウエストゲート弁V1の開度がエンジン10の出力増加に伴って例えば全開状態まで拡大される。すると、高圧段タービン32の一次側の高圧排気路16から取出路25に抜き出されて第1再流入路26を通じて低圧段タービン42の一次側の中圧排気路17に再流入される排ガスEの流量が、エンジン10の出力増加に伴って増加される。 Further, when the output of the engine 10 is in the high output region within the range of the first output W1 or more and the maximum output Wr1 or less, the opening degree of the high-pressure stage waistgate valve V1 increases as the output of the engine 10 increases. For example, it is expanded to the fully open state. Then, the exhaust gas E is extracted from the high-pressure exhaust passage 16 on the primary side of the high-pressure turbine 32 into the take-out passage 25 and re-inflowed into the medium-pressure exhaust passage 17 on the primary side of the low-pressure turbine 42 through the first re-inflow passage 26. The flow rate of the engine 10 is increased as the output of the engine 10 is increased.

このような高出力化優先制御が実行されることで、高出力域において、エンジン10の出力増加に伴って、エンジン10から高圧排気路16への排ガスEの排出量が過剰に増加する場合であっても、その余分な排ガスEが高圧段タービン32の一次側から抜き出されることで、エンジン10の吸気圧力の低下ができるだけ抑制されながら、エンジン10の排気圧力ができるだけ低下されて、吸気圧力と排気圧力との圧力差が拡大される。結果、低燃費を維持した状態でエンジン10の高出力化が図られる。更に、その抜き出された排ガスEのエネルギが低圧段タービン42で回収されて、低圧段コンプレッサ41による新気Aの低圧側の過給に利用されるので、エンジン10の吸気圧力の低下を一層抑制される。 When such high output priority control is executed, the amount of exhaust gas E emitted from the engine 10 to the high-pressure exhaust passage 16 increases excessively in the high output region as the output of the engine 10 increases. Even if there is, the excess exhaust gas E is extracted from the primary side of the high-pressure stage turbine 32, so that the decrease in the intake pressure of the engine 10 is suppressed as much as possible, while the exhaust pressure of the engine 10 is reduced as much as possible, and the intake pressure is reduced. And the exhaust pressure are widened. As a result, the output of the engine 10 can be increased while maintaining low fuel consumption. Further, the energy of the extracted exhaust gas E is recovered by the low-pressure stage turbine 42 and used for supercharging the low-pressure side of the fresh air A by the low-pressure stage compressor 41, so that the intake pressure of the engine 10 is further reduced. It is suppressed.

図4のステップ#4の再流入先切替弁V2に対する再流入先切替制御にて、高圧段タービン32をバイパスする排ガスEが選択還元触媒部54の一次側と排ガス混合促進部52の一次側とに分配供給される状態となる。すると、制御装置60は、エンジン10の出力状態に基づいて高圧段ウエストゲート弁V1の開度を制御する高圧段ウエストゲート弁制御として、特に中出力域での排気エミッションの増加を防止するための排気エミッション優先制御(図4のステップ#5)と排ガス分配制御(図4のステップ#6)とを実行する。 In the re-inflow destination switching control for the re-inflow destination switching valve V2 in step # 4 of FIG. 4, the exhaust gas E bypassing the high-pressure stage turbine 32 is the primary side of the selective reduction catalyst section 54 and the primary side of the exhaust gas mixing promotion section 52. It will be in a state of being distributed and supplied to. Then, the control device 60 is used as a high-pressure stage waistgate valve control for controlling the opening degree of the high-pressure stage waistgate valve V1 based on the output state of the engine 10, in order to prevent an increase in exhaust emissions particularly in the medium output range. Exhaust gas emission priority control (step # 5 in FIG. 4) and exhaust gas distribution control (step # 6 in FIG. 4) are executed.

排気エミッション優先制御(図4のステップ#5)は、エンジン10の出力低下に伴って高圧段ウエストゲート弁V1の開度を拡大する制御として構成されている。
例えば、図6に示すように、エンジン10の出力が第3出力W3(例えば排気エミッション優先制御実行時の最大出力Wr2の25%)未満である場合、又は、エンジン10の出力が第2出力W2(例えば最大出力Wr2の60%)よりも大きい場合には、高圧段ウエストゲート弁V1が全閉状態(図1に示す状態)とされる。すると、エンジン10から高圧排気路16に排出された排ガスEの全量が高圧段タービン32に供給される。
The exhaust emission priority control (step # 5 in FIG. 4) is configured as a control for increasing the opening degree of the high-pressure stage waistgate valve V1 as the output of the engine 10 decreases.
For example, as shown in FIG. 6, when the output of the engine 10 is less than the third output W3 (for example, 25% of the maximum output Wr2 when the exhaust emission priority control is executed), or the output of the engine 10 is the second output W2. When it is larger than (for example, 60% of the maximum output Wr2), the high-pressure stage waistgate valve V1 is in a fully closed state (state shown in FIG. 1). Then, the entire amount of the exhaust gas E discharged from the engine 10 to the high-pressure exhaust passage 16 is supplied to the high-pressure stage turbine 32.

更に、エンジン10の出力が上記第3出力W3以上且つ第2出力W2以下の範囲内である中出力域にある場合には、高圧段ウエストゲート弁V1の開度がエンジン10の出力低下に伴って例えば全開状態の30%の開度まで増加される。すると、高圧段タービン32の一次側の高圧排気路16から取出路25に抜き出されて第2再流入路27を通じて選択還元触媒部54の一次側と排ガス混合促進部52の一次側とに分配供給される排ガスEの流量が、エンジン10の出力低下に伴って増加される。 Further, when the output of the engine 10 is in the medium output range within the range of the third output W3 or more and the second output W2 or less, the opening degree of the high-pressure stage waistgate valve V1 accompanies the decrease in the output of the engine 10. For example, the opening is increased to 30% of the fully open state. Then, it is extracted from the high-pressure exhaust passage 16 on the primary side of the high-pressure stage turbine 32 to the take-out passage 25 and distributed to the primary side of the selective reduction catalyst section 54 and the primary side of the exhaust gas mixing promotion section 52 through the second re-inflow passage 27. The flow rate of the supplied exhaust gas E is increased as the output of the engine 10 decreases.

特に中出力域において、エンジン10の出力低下に伴って、低圧段タービン42から低圧排気路18を通じて排ガス処理部50に供給される排ガスEの温度が低下して、選択還元触媒部54の活性の低下が懸念される。しかし、上記のような排気エミッション優先制御が実行されることで、高圧段タービン32をバイパスして排ガス処理部50側に再流入される比較的高温の排ガスEの流入量が増加することになる。このことで、エンジン10の出力低下による選択還元触媒部54の活性低下が抑制されて、結果、特に中出力域での排気エミッションの増加が防止される。 Especially in the medium output region, as the output of the engine 10 decreases, the temperature of the exhaust gas E supplied from the low-pressure stage turbine 42 to the exhaust gas treatment unit 50 through the low-pressure exhaust passage 18 decreases, and the activity of the selective reduction catalyst unit 54 becomes active. There is concern about a decline. However, by executing the exhaust emission priority control as described above, the inflow amount of the relatively high temperature exhaust gas E that bypasses the high pressure stage turbine 32 and is re-inflowed to the exhaust gas treatment unit 50 side increases. .. As a result, the decrease in the activity of the selective reduction catalyst unit 54 due to the decrease in the output of the engine 10 is suppressed, and as a result, the increase in exhaust emissions is prevented, especially in the medium output range.

更に、このような排気エミッション優先制御と同時に実行される排ガス分配制御(図4のステップ#6)は、高圧段タービン32をバイパスする排ガスEの再流入先を排ガス処理部50側とした状態において、エンジン10の出力増加に伴って分配割合調整弁V3により、選択還元触媒部54と排ガス混合促進部52とに分配供給される排ガスEの全量のうちの排ガス混合促進部52への分配割合を増加させる制御として構成されている。
例えば、図7に示すように、エンジン10の出力が第3出力W3(例えば最大出力Wr2の25%)未満である場合には、分配割合調整弁V3において、選択還元触媒部54の一次側に通ずる第1流出側ポートP1が全開状態とされ、一方、排ガス混合促進部52の一次側に通ずる第2流出側ポートP2が全閉状態とされる。このことで、高圧段タービン32をバイパスして排ガス処理部50側に再流入される比較的高温の排ガスEの全量が選択還元触媒部54の一次側に供給されて、当該選択還元触媒部54の昇温が促進される。
Further, the exhaust gas distribution control (step # 6 in FIG. 4), which is executed at the same time as the exhaust gas emission priority control, is performed in a state where the re-inflow destination of the exhaust gas E bypassing the high-pressure stage turbine 32 is the exhaust gas treatment unit 50 side. As the output of the engine 10 increases, the distribution ratio adjusting valve V3 determines the distribution ratio of the total amount of exhaust gas E distributed and supplied to the selective reduction catalyst unit 54 and the exhaust gas mixing promoting unit 52 to the exhaust gas mixing promoting unit 52. It is configured as a control to increase.
For example, as shown in FIG. 7, when the output of the engine 10 is less than the third output W3 (for example, 25% of the maximum output Wr2), the distribution ratio adjusting valve V3 is placed on the primary side of the selective reduction catalyst unit 54. The first outflow side port P1 that communicates is fully opened, while the second outflow side port P2 that communicates with the primary side of the exhaust gas mixing promotion unit 52 is fully closed. As a result, the entire amount of the relatively high temperature exhaust gas E that bypasses the high-pressure stage turbine 32 and is re-flowed into the exhaust gas treatment unit 50 side is supplied to the primary side of the selective reduction catalyst unit 54, and the selective reduction catalyst unit 54 The temperature rise is promoted.

更に、エンジン10の出力が上記第3出力W3以上且つ第2出力W2以下の範囲内である中出力域にある場合には、分配割合調整弁V3における第1流出側ポートP1及び第2流出側ポートP2の開度のバランスが調整されて、高圧段タービン32をバイパスして排ガス処理部50側に再流入される比較的高温の排ガスEの全量のうちの排ガス混合促進部52の一次側に分配供給される排ガスEの分配割合がエンジン10の出力増加に伴って例えば所定の割合R3(例えば100%)まで増加される。 Further, when the output of the engine 10 is in the medium output range within the range of the third output W3 or more and the second output W2 or less, the first outflow side port P1 and the second outflow side in the distribution ratio adjusting valve V3 The balance of the opening degree of the port P2 is adjusted, bypassing the high-pressure stage turbine 32 and re-flowing into the exhaust gas treatment unit 50 side to the primary side of the exhaust gas mixing promotion unit 52 out of the total amount of the relatively high temperature exhaust gas E. The distribution ratio of the exhaust gas E to be distributed and supplied is increased to, for example, a predetermined ratio R3 (for example, 100%) as the output of the engine 10 increases.

このよう排ガス分配制御が実行されることで、高圧段タービン32をバイパスして排ガス処理部50側に再流入される排ガスEのうち排ガス混合促進部52に分配供給される排ガスEの流量が、エンジン10の出力増加に伴って増加される。すると、特に中出力域において、エンジン10の出力増加に伴って、還元剤Uの添加量が増加される場合であっても、排ガス混合促進部52においてその還元剤Uの排ガスEに対する混合が良好に促進される。このことで、還元剤Uの添加量増加による排ガスEへの混合不足が抑制されて、特に中出力域での排気エミッションの増加が防止される。 By executing the exhaust gas distribution control in this way, the flow rate of the exhaust gas E distributed and supplied to the exhaust gas mixing promotion unit 52 among the exhaust gas E re-inflowing to the exhaust gas treatment unit 50 side by bypassing the high-pressure stage turbine 32 becomes It is increased as the output of the engine 10 increases. Then, even when the amount of the reducing agent U added increases as the output of the engine 10 increases, particularly in the medium output region, the exhaust gas mixing promoting unit 52 mixes the reducing agent U with the exhaust gas E well. Promoted to. As a result, insufficient mixing with the exhaust gas E due to an increase in the amount of the reducing agent U added is suppressed, and an increase in exhaust emissions is prevented, especially in the medium output range.

〔別実施形態〕
本発明の他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another Embodiment]
Other embodiments of the present invention will be described. The configurations of the respective embodiments described below are not limited to being applied independently, but can also be applied in combination with the configurations of other embodiments.

(1)上記実施形態では、制御装置60は、高出力化優先制御や排気エミッション優先制御を高圧段ウエストゲート弁制御として実行するように構成したが、エンジン10の出力状態に基づいて高圧段ウエストゲート弁V1の開度を制御するものであれば、これらとは別形態の高圧段ウエストゲート弁制御を実行するように構成しても構わない。 (1) In the above embodiment, the control device 60 is configured to execute high output priority control and exhaust emission priority control as high pressure stage waist gate valve control, but the high pressure stage waist is based on the output state of the engine 10. As long as it controls the opening degree of the gate valve V1, it may be configured to execute a high-pressure stage waist gate valve control of a different form from these.

(2)上記実施形態では、高圧排気路16から抜き出されて高圧段タービン32をバイパスし排ガス処理部50側に再流入される排ガスEを、低圧排気路18における選択還元触媒部54の一次側と排ガス混合促進部52の一次側とに分配供給するように構成したが、このような低圧排気路18における排ガスEの再流入先の位置や数については適宜変更することができ、選択還元触媒部54よりも上流側の特定箇所に高圧段タービン32をバイパスして排ガス処理部50側に再流入される排ガスEの全量を再流入させるように構成することもできる。 (2) In the above embodiment, the exhaust gas E extracted from the high-pressure exhaust passage 16, bypassing the high-pressure stage turbine 32, and re-flowing into the exhaust gas treatment unit 50 side is the primary of the selective reduction catalyst unit 54 in the low-pressure exhaust passage 18. Although it is configured to distribute and supply to the side and the primary side of the exhaust gas mixing promotion unit 52, the position and number of the re-inflow destinations of the exhaust gas E in such a low pressure exhaust passage 18 can be appropriately changed, and selective reduction can be performed. It is also possible to bypass the high-pressure stage turbine 32 at a specific location on the upstream side of the catalyst unit 54 and re-inflow the entire amount of the exhaust gas E that is re-inflowed to the exhaust gas treatment unit 50 side.

10 エンジン
12 高圧吸気路(吸気路)
13 中圧吸気路(吸気路)
14 低圧吸気路(吸気路)
16 高圧排気路(排気路)
17 中圧排気路(排気路)
18 低圧排気路(排気路)
25 取出路(高圧段バイパス路)
26 第1再流入路(高圧段バイパス路)
27 第2再流入路(高圧段バイパス路)
28 第1分配路(高圧段バイパス路)
29 第2分配路(高圧段バイパス路)
30 高圧段過給機
31 高圧段コンプレッサ
32 高圧段タービン
40 低圧段過給機
41 低圧段コンプレッサ
42 低圧段タービン
50 排ガス処理部
52 排ガス混合促進部
54 選択還元触媒部
60 制御装置(制御部)
A 新気
E 排ガス
V1 高圧段ウエストゲート弁
V2 再流入先切替弁(再流入先切替部)
V3 分配割合調整弁(分配割合調整部)
10 Engine 12 High-pressure intake path (intake path)
13 Medium pressure intake path (intake path)
14 Low pressure intake path (intake path)
16 High-pressure exhaust passage (exhaust passage)
17 Medium pressure exhaust passage (exhaust passage)
18 Low pressure exhaust passage (exhaust passage)
25 Take-out route (high-voltage stage bypass route)
26 1st re-inflow path (high pressure stage bypass path)
27 Second re-inflow path (high pressure stage bypass path)
28 First distribution path (high-voltage stage bypass path)
29 Second distribution path (high-voltage stage bypass path)
30 High-pressure stage supercharger 31 High-pressure stage compressor 32 High-pressure stage turbine 40 Low-pressure stage supercharger 41 Low-pressure stage compressor 42 Low-pressure stage turbine 50 Exhaust gas treatment unit 52 Exhaust gas mixing promotion unit 54 Selective reduction catalyst unit 60 Control device (control unit)
A Shinki E Exhaust gas V1 High-pressure stage waistgate valve V2 Re-inflow destination switching valve (re-inflow destination switching part)
V3 distribution ratio adjustment valve (distribution ratio adjustment unit)

Claims (5)

吸気路から新気を吸気して排気路に排ガスを排出するエンジンと、
前記排気路に配置された高圧段タービンにより前記吸気路に配置された高圧段コンプレッサを回転させる高圧段過給機と、
前記排気路における前記高圧段タービンよりも下流側に配置された低圧段タービンにより前記吸気路における前記高圧段コンプレッサよりも上流側に配置された低圧段コンプレッサを回転させる低圧段過給機と、
運転を制御する制御部と、を備えたエンジンシステムであって、
前記排気路において前記高圧段タービンをバイパスする高圧段バイパス路に配置されて開度調整可能に構成された高圧段ウエストゲート弁を備え、
前記制御部が、前記エンジンの出力状態に基づいて前記高圧段ウエストゲート弁の開度を制御する高圧段ウエストゲート弁制御を実行するエンジンシステム。
An engine that takes in fresh air from the intake passage and discharges exhaust gas to the exhaust passage,
A high-pressure turbocharger that rotates a high-pressure compressor arranged in the intake passage by a high-pressure turbine arranged in the exhaust passage.
A low-pressure turbocharger that rotates a low-pressure stage compressor arranged on the upstream side of the high-pressure stage compressor in the intake passage by a low-pressure stage turbine arranged on the downstream side of the high-pressure stage turbine in the exhaust passage.
An engine system equipped with a control unit that controls operation.
It is provided with a high-pressure stage waistgate valve arranged in the high-pressure stage bypass path that bypasses the high-pressure stage turbine in the exhaust path and configured to have an adjustable opening.
An engine system in which the control unit executes high-pressure stage waistgate valve control that controls the opening degree of the high-pressure stage waistgate valve based on the output state of the engine.
前記制御部が、前記高圧段ウエストゲート弁制御として、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記低圧段タービン側とした状態において、前記エンジンの出力増加に伴って前記高圧段ウエストゲート弁の開度を拡大する高出力化優先制御を実行する請求項1に記載のエンジンシステム。 As the high-pressure stage waistgate valve control, the control unit sets the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust passage to the low-pressure stage turbine side, and the output of the engine increases. The engine system according to claim 1, wherein the high output priority control for expanding the opening degree of the high pressure stage waistgate valve is executed. 前記排気路における前記低圧段タービンよりも下流側に配置されて排ガス中の窒素酸化物を還元させる選択還元触媒部を有する排ガス処理部を備え、
前記制御部が、前記高圧段ウエストゲート弁制御として、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記排ガス処理部側とした状態において、前記エンジンの出力低下に伴って前記高圧段ウエストゲート弁の開度を拡大する排気エミッション優先制御を実行する請求項1又は2に記載のエンジンシステム。
An exhaust gas treatment unit having a selective reduction catalyst unit that is arranged downstream of the low-pressure stage turbine in the exhaust passage and reduces nitrogen oxides in the exhaust gas is provided.
As the high-pressure stage waistgate valve control, the control unit sets the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust path to the exhaust gas treatment unit side, and the output of the engine decreases. The engine system according to claim 1 or 2, wherein the exhaust emission priority control for expanding the opening degree of the high-pressure stage waistgate valve is executed.
前記排ガス処理部が、前記排気路における前記選択還元触媒部の上流側に配置されて前記排気路に添加された還元剤と排ガスとの混合を促進させる排ガス混合促進部を有し、
前記高圧段バイパス路から前記排ガス処理部側に再流入される排ガスを前記選択還元触媒部と前記排ガス混合促進部とに分配供給して、当該排ガス混合促進部への排ガスの分配割合を調整可能な分配割合調整部を備え、
前記制御部が、前記排気路における前記高圧段バイパス路からの排ガスの再流入先を前記排ガス処理部側とした状態において、前記エンジンの出力増加に伴って前記分配割合調整部により前記排ガス混合促進部への排ガスの分配割合を増加させる排ガス分配制御を実行する請求項3に記載のエンジンシステム。
The exhaust gas treatment unit has an exhaust gas mixing promoting unit that is arranged on the upstream side of the selective reduction catalyst unit in the exhaust gas passage and promotes mixing of the reducing agent added to the exhaust gas and the exhaust gas.
The exhaust gas re-inflowing from the high-pressure stage bypass path to the exhaust gas treatment unit side can be distributed and supplied to the selective reduction catalyst unit and the exhaust gas mixing promotion unit, and the distribution ratio of the exhaust gas to the exhaust gas mixing promotion unit can be adjusted. Equipped with a distribution ratio adjustment unit
In a state where the control unit sets the re-inflow destination of the exhaust gas from the high-pressure stage bypass path in the exhaust path to the exhaust gas treatment unit side, the exhaust gas mixing is promoted by the distribution ratio adjusting unit as the output of the engine increases. The engine system according to claim 3, wherein the exhaust gas distribution control for increasing the distribution ratio of the exhaust gas to the unit is executed.
前記排気路における前記低圧段タービンよりも下流側に配置されて排ガス中の窒素酸化物を還元させる選択還元触媒部を有する排ガス処理部を備え、
前記排気路における前記高圧段バイパス路からの排ガスの再流入先を、前記低圧段タービン側と前記排ガス処理部側との間で切替可能な再流入先切替部を備えた請求項1〜4の何れか1項に記載のエンジンシステム。
An exhaust gas treatment unit having a selective reduction catalyst unit that is arranged downstream of the low-pressure stage turbine in the exhaust passage and reduces nitrogen oxides in the exhaust gas is provided.
Claims 1 to 4 provided with a re-inflow destination switching unit capable of switching the re-inflow destination of exhaust gas from the high-pressure stage bypass path in the exhaust path between the low-pressure stage turbine side and the exhaust gas treatment unit side. The engine system according to any one item.
JP2019105447A 2019-06-05 2019-06-05 Engine system and engine system control method Active JP7305436B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019105447A JP7305436B2 (en) 2019-06-05 2019-06-05 Engine system and engine system control method
PCT/JP2020/021577 WO2020246419A1 (en) 2019-06-05 2020-06-01 Engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019105447A JP7305436B2 (en) 2019-06-05 2019-06-05 Engine system and engine system control method

Publications (2)

Publication Number Publication Date
JP2020197198A true JP2020197198A (en) 2020-12-10
JP7305436B2 JP7305436B2 (en) 2023-07-10

Family

ID=73647895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019105447A Active JP7305436B2 (en) 2019-06-05 2019-06-05 Engine system and engine system control method

Country Status (2)

Country Link
JP (1) JP7305436B2 (en)
WO (1) WO2020246419A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154684A (en) * 2005-12-01 2007-06-21 Isuzu Motors Ltd Two-stage supercharging type engine
JP2008002319A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2013136986A (en) * 2011-12-28 2013-07-11 Mazda Motor Corp Control device of diesel engine with turbocharger
JP2014139425A (en) * 2013-01-21 2014-07-31 Toyota Motor Corp Internal combustion engine
JP2017180427A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Turbocharging-type engine and method for inputting load for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154684A (en) * 2005-12-01 2007-06-21 Isuzu Motors Ltd Two-stage supercharging type engine
JP2008002319A (en) * 2006-06-21 2008-01-10 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2013136986A (en) * 2011-12-28 2013-07-11 Mazda Motor Corp Control device of diesel engine with turbocharger
JP2014139425A (en) * 2013-01-21 2014-07-31 Toyota Motor Corp Internal combustion engine
JP2017180427A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Turbocharging-type engine and method for inputting load for the same

Also Published As

Publication number Publication date
JP7305436B2 (en) 2023-07-10
WO2020246419A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
KR101826571B1 (en) Engine system
KR101886090B1 (en) Engine system
JP2005344714A (en) Engine with turbocharger
US9051903B2 (en) NOx emission control using large volume EGR
US20080000226A1 (en) Method for operating an internal combustion engine having an exhaust gas turbocharger and a power turbine
JP2002508472A (en) Equipment for combustion engines
JP5444996B2 (en) Internal combustion engine and control method thereof
JP4108061B2 (en) EGR system for turbocharged engine
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
JP2009024619A (en) Exhaust control device of internal combustion engine
JP2013108479A (en) Diesel engine
KR20190120864A (en) Secondary air injection system
KR20130126507A (en) Internal combustion engine
KR101683495B1 (en) Engine system having turbo charger
JP3664181B2 (en) EGR supercharging system
JP2009191668A (en) Supercharging device and supercharging engine system
WO2020246419A1 (en) Engine system
JP2009191667A (en) Supercharging device and supercharging engine system
US20070267002A1 (en) Internal Combustion Engine with Exhaust Gas Recirculation Device, and Associated Method
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP2010242681A (en) Egr system for internal combustion engine
JP2010127126A (en) Two-stage supercharging system
WO2001009495A1 (en) Turbocharger
JP5413113B2 (en) Internal combustion engine equipped with turbocharger and mechanical supercharger, and control method thereof
JP2008151006A (en) Control device of turbocharger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200814

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150