JP2007154684A - Two-stage supercharging type engine - Google Patents

Two-stage supercharging type engine Download PDF

Info

Publication number
JP2007154684A
JP2007154684A JP2005347809A JP2005347809A JP2007154684A JP 2007154684 A JP2007154684 A JP 2007154684A JP 2005347809 A JP2005347809 A JP 2005347809A JP 2005347809 A JP2005347809 A JP 2005347809A JP 2007154684 A JP2007154684 A JP 2007154684A
Authority
JP
Japan
Prior art keywords
pressure
low
engine
bypass pipe
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005347809A
Other languages
Japanese (ja)
Inventor
Takero Nakajima
健朗 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005347809A priority Critical patent/JP2007154684A/en
Publication of JP2007154684A publication Critical patent/JP2007154684A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-stage turbo supercharging engine which includes a bypass pipe line in an exhaust passage and controls the actuation of a turbo supercharger in high pressure/low pressure stages in according to an operating state, wherein both turbo superchargers are effectively actuated by achieving compact layouts by the simplification of a composition of an exhaust passage. <P>SOLUTION: A high pressure bypass pipe 5 for bypassing a high pressure stage turbine HT and a low pressure bypass pipe 9 for bypassing a low pressure stage turbine LT are provided at an exhaust passage of an engine 1 which keeps the high pressure stage turbine HT and the low pressure stage turbine LT arranged in series. An inlet of the low pressure bypass pipe 9 is connected to an outlet of the high pressure bypass pipe 5. A bypass valve is mounted in the connection part so as to control both bypass pipes by one valve. The low pressure bypass pipe 9 is opened to reduce back pressure in the high pressure stage turbine HT at low speed and a low load of the engine 1, thereby enhancing the efficiency of the turbo supercharge in the high pressure stage to reduce a fuel consumption rate of the engine. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、2段ターボ過給方式のエンジン、すなわち、エンジンの吸気通路に低圧段コンプレッサ及び高圧段コンプレッサを直列に配置し、これらを駆動する低圧段タービン及び高圧段タービンをエンジンの排気通路に設置して、2段のターボ過給機によりエンジンシリンダに供給される空気等を加圧する過給方式を備えたエンジンに関する。   The present invention relates to a two-stage turbocharged engine, that is, a low-pressure stage compressor and a high-pressure stage compressor that are arranged in series in an intake passage of the engine, and a low-pressure turbine and a high-pressure turbine that drive these compressors in the exhaust passage of the engine. The present invention relates to an engine having a supercharging system that is installed and pressurizes air supplied to an engine cylinder by a two-stage turbocharger.

エンジンの吸入空気量を増加させるため、吸気通路に吸入空気加圧用のコンプレッサを配置し、これを排気通路に設置したタービンで駆動する排気ターボ過給機は、エンジンを高出力化する手段としてよく知られており、車両用のエンジンでも、小型軽量化、燃料経済性の向上(燃料消費率の低減)等を目的として広く採用されている。殊に、ディーゼルエンジンは、ガソリンエンジンのように混合気をエンジンシリンダに供給するものではなく、空気のみを供給するエンジンであり、また、出力の調整を吸入空気量の増減によって行わないため、ガソリンエンジンと比べると排気ターボ過給機との適合性が良好で、燃料の吹き抜けや出力調整に起因する効率の悪化を招くことなく出力の向上を図ることができる。   In order to increase the intake air amount of the engine, an exhaust turbo supercharger that is driven by a turbine provided with an intake air pressurizing compressor in the intake passage and installed in the exhaust passage may be used as a means for increasing the engine output. It is known and widely used for the purpose of reducing the size and weight and improving the fuel economy (reducing the fuel consumption rate) even in the engine for vehicles. In particular, a diesel engine is an engine that supplies only air instead of supplying an air-fuel mixture to an engine cylinder, unlike a gasoline engine, and does not adjust output by increasing or decreasing the amount of intake air. Compared with the engine, the compatibility with the exhaust turbocharger is good, and the output can be improved without causing the deterioration of the efficiency due to the blow-through of the fuel or the output adjustment.

排気ターボ過給機を備えたエンジンにおいて、さらなる出力あるいは燃料消費率の改善を目指して、近年では、低圧段ターボ過給機と高圧段ターボ過給機とを直列に配置した2段ターボ過給機を車両用エンジンに適用する開発が行われている。一般的に、ターボ過給機等で用いられるコンプレッサは、空気(体積)流量と圧力比とに応じて効率が変化する特性を有し、その特性はいわゆるコンプレッサマップとして表される。2段ターボ過給機を適用したときは、低圧段ターボ過給機のコンプレッサとして大流量で高効率な大容量型のものを、高圧段のコンプレッサとして小流量で高効率な小容量型のものを使用することによって、エンジンの排気エネルギをより一層有効に利用することが可能となる。   In recent years, in order to further improve the output or fuel consumption rate of an engine equipped with an exhaust turbocharger, a two-stage turbocharger in which a low-pressure turbocharger and a high-pressure turbocharger are arranged in series Development is underway to apply the aircraft to vehicle engines. Generally, a compressor used in a turbocharger or the like has a characteristic in which efficiency changes according to an air (volume) flow rate and a pressure ratio, and the characteristic is expressed as a so-called compressor map. When a two-stage turbocharger is used, the compressor for the low-pressure turbocharger is a large-capacity type with a large flow rate and high efficiency, and the compressor for a high-pressure stage is a small-capacity type with a small flow rate and high efficiency. By using the engine, it becomes possible to more effectively utilize the exhaust energy of the engine.

さらに、2段ターボ過給機では、エンジンの種々の特性に合わせた過給方式の選択が可能となる。例えば、エンジンが低速低負荷で運転されているときは吸入空気量が少ないから、小流量で高効率な高圧段ターボ過給機を作動させ、低圧段ターボ過給機は実質的に作動を停止させるようにすると、過給機の効率が上昇する結果、エンジンの燃料消費率が低減する。エンジンが高速高負荷の運転状態となると、エンジンの排気ガスが高圧段ターボ過給機の高圧段タービンをバイパスするようにして、実質的に大容量型の低圧段ターボ過給機のみを作動させ、エンジンの出力増大に見合う吸入空気量を確保する。   Furthermore, in the two-stage turbocharger, it is possible to select a supercharging system that matches various characteristics of the engine. For example, when the engine is operating at a low speed and a low load, the intake air amount is small, so a high-efficiency high-pressure turbocharger with a small flow rate is activated, and the low-pressure turbocharger is substantially deactivated. As a result, the efficiency of the supercharger increases, and as a result, the fuel consumption rate of the engine decreases. When the engine enters a high-speed and high-load operation state, the engine exhaust gas bypasses the high-pressure stage turbocharger's high-pressure stage turbine so that only the large-capacity low-pressure stage turbocharger operates. Ensure sufficient intake air volume to meet engine output increase.

2段ターボ過給機を装備し、エンジンの運転状態に対応して低圧段ターボ過給機及び高圧段ターボ過給機の作動を制御する過給方式について、図6によって説明する。エンジン1には、大容量の低圧段ターボ過給機HTC及び小容量の高圧段ターボ過給機LTCが直列に設置されており、低圧段ターボ過給機LTCの低圧段コンプレッサLCの出口は高圧段ターボ過給機HTの高圧段コンプレッサHCの入口に接続される。高圧段コンプレッサHCの出口は、圧縮空気を冷却する空気冷却器2を介してエンジン1の吸気マニホールド3に連結される。一方、エンジン1の排気マニホールド4には、高圧段タービンHTと低圧段タービンLTとが直列に接続されるとともに、高圧段タービンHTをバイパスして排気ガスを直接低圧段タービンLTに導くバイパス管路5が設けられ、その管路にはバイパスバルブ51が配置されている。なお、6は排気ガスをエンジンシリンダに再循環(EGR)するための管路であり、その途中にはEGR制御弁61及びEGRクーラー62が配置される。   A supercharging system equipped with a two-stage turbocharger and controlling the operation of the low-pressure turbocharger and the high-pressure turbocharger in accordance with the operating state of the engine will be described with reference to FIG. The engine 1 has a large-capacity low-pressure turbocharger HTC and a small-capacity high-pressure turbocharger LTC installed in series, and the outlet of the low-pressure compressor LC of the low-pressure turbocharger LTC is high-pressure. It is connected to the inlet of the high-pressure stage compressor HC of the stage turbocharger HT. The outlet of the high-pressure compressor HC is connected to an intake manifold 3 of the engine 1 via an air cooler 2 that cools compressed air. On the other hand, a high-pressure stage turbine HT and a low-pressure stage turbine LT are connected in series to the exhaust manifold 4 of the engine 1, and a bypass pipe that bypasses the high-pressure stage turbine HT and directly leads the exhaust gas to the low-pressure stage turbine LT. 5 is provided, and a bypass valve 51 is disposed in the pipeline. Reference numeral 6 denotes a conduit for recirculating (EGR) the exhaust gas to the engine cylinder, and an EGR control valve 61 and an EGR cooler 62 are disposed in the middle thereof.

エンジンが低速低負荷で運転されている場合には、排気マニホールドに連結されたバイパス管路5のバイパスバルブ51を閉鎖する。これによって、排気ガスは主に高圧段タービンHTにおいて膨張して高圧段コンプレッサHCを駆動し、低圧段タービンLTで発生する仕事量は実質上ゼロとなる。高圧段コンプレッサHCは小流量域で高効率となっているので、エンジンの排気エネルギが効率よく利用され燃料消費率が低減する。エンジンの負荷が高まるにつれバイパスバルブ51の開度が増加し、高速高負荷の運転状態となると、排気ガスが低圧段タービンLTに直接導入されて実質的に低圧段コンプレッサLCによって吸入空気が圧縮されるようになり、エンジン1に大量の空気が効率的に供給されることとなる。
このような2段ターボ過給機の使用方法は、一例として実公平6−48119号公報に開示されている。また、特開2002−276382号公報には、高圧タービンをバイパスさせるバイパスバルブの制御方法についての開示がなされている。
When the engine is operated at a low speed and a low load, the bypass valve 51 of the bypass line 5 connected to the exhaust manifold is closed. As a result, the exhaust gas expands mainly in the high-pressure stage turbine HT to drive the high-pressure stage compressor HC, and the amount of work generated in the low-pressure stage turbine LT becomes substantially zero. Since the high-pressure compressor HC is highly efficient in a small flow rate region, the exhaust energy of the engine is used efficiently and the fuel consumption rate is reduced. As the engine load increases, the opening degree of the bypass valve 51 increases, and when the engine enters a high speed and high load operation state, the exhaust gas is directly introduced into the low pressure turbine LT and the intake air is substantially compressed by the low pressure compressor LC. As a result, a large amount of air is efficiently supplied to the engine 1.
A method of using such a two-stage turbocharger is disclosed in Japanese Utility Model Publication No. 6-48119 as an example. Japanese Patent Laid-Open No. 2002-276382 discloses a method for controlling a bypass valve that bypasses a high-pressure turbine.

ところで、ディーゼルエンジンの技術分野では、2段ターボ過給機と、予混合圧縮自己着火燃焼方式(HCCI<Homogeneous Charge Compression Ignition>)とを組み合わせる技術が最近注目されている。HCCIは、排気ガス規制の対象となる粒子状物質(PM)等を燃焼過程で抑制する燃焼方法であって、エンジンシリンダ内に早めに燃料を噴射し、空気と予め混合した状態で圧縮を行い、圧縮着火した後には急速に燃焼を完了させる燃焼方式である。この燃焼方式においては、予め空気と混合した燃料の過早着火を防ぐ必要があり、そのため高率のEGRが実施される。HCCI燃焼方式のディーゼルエンジンに2段ターボ過給機を適用し、高圧段ターボ過給機を実質的に作動させると、大量の排気ガスを含むエンジンシリンダ内でも高過給により効率的に空気が供給され、良好な燃焼を行わせることができる。
実公平6−48119号公報 特開2002−276382号公報
Incidentally, in the technical field of diesel engines, a technology that combines a two-stage turbocharger and a premixed compression self-ignition combustion system (HCCI <Homogeneous Charge Compression Ignition>) has recently attracted attention. HCCI is a combustion method that suppresses particulate matter (PM) and the like that are subject to exhaust gas regulations in the combustion process, and injects fuel early into the engine cylinder and compresses it in a premixed state with air. This is a combustion method in which combustion is rapidly completed after compression ignition. In this combustion method, it is necessary to prevent pre-ignition of the fuel previously mixed with air, and therefore, a high rate of EGR is performed. When a two-stage turbocharger is applied to an HCCI combustion type diesel engine and the high-pressure stage turbocharger is substantially operated, air is efficiently generated even in an engine cylinder containing a large amount of exhaust gas due to high supercharging. It is supplied and good combustion can be performed.
No. 6-48119 JP 2002-276382 A

2段ターボ過給機を装備する車両用のエンジンでは、低速低負荷の運転において小流量域で高効率な高圧段ターボ過給機を作動させる。このときは高圧段コンプレッサの圧力比を高めることにより、エンジンに供給される空気の圧力、つまりブーストを上昇させることが望ましい。例えば、2段ターボ過給機をHCCI燃焼方式のエンジンに適用した場合においては、ブーストを上昇させることによってエンジンシリンダ内への空気の供給状況が改善され、HCCI燃焼を実施する運転領域を拡大することが可能となる。   In a vehicle engine equipped with a two-stage turbocharger, a high-efficiency high-pressure turbocharger is operated in a small flow rate range at low speed and low load operation. At this time, it is desirable to increase the pressure of the air supplied to the engine, that is, boost by increasing the pressure ratio of the high-pressure compressor. For example, when a two-stage turbocharger is applied to an HCCI combustion type engine, the supply state of air into the engine cylinder is improved by increasing the boost, and the operating range in which HCCI combustion is performed is expanded. It becomes possible.

高圧段コンプレッサの圧力比を高めると、ブーストが増大して供給空気量を増加することができる反面、高圧段ターボ過給機に作用する圧力差も増加してエンジン排圧の上昇を招く。エンジン排圧の上昇は、エンジンシリンダのガス交換に伴う損失であるいわゆるポンピングロスを増大させる結果となり、燃料消費率を悪化させる。殊に、2段ターボ過給機では、高圧段タービンの下流に低圧段タービンが接続されており、排気ガスが低圧段タービンを通過するときに圧力損失が生じるので、エンジン排圧はさらに増加することとなる。   Increasing the pressure ratio of the high-pressure compressor can increase the boost and increase the amount of supplied air, but also increases the pressure difference acting on the high-pressure turbocharger, leading to an increase in engine exhaust pressure. An increase in engine exhaust pressure results in an increase in so-called pumping loss, which is a loss associated with engine cylinder gas exchange, and deteriorates the fuel consumption rate. In particular, in a two-stage turbocharger, a low-pressure stage turbine is connected downstream of the high-pressure stage turbine, and pressure loss occurs when exhaust gas passes through the low-pressure stage turbine, so that the engine exhaust pressure further increases. It will be.

低圧段タービンの流体抵抗に起因する排気ガスの圧力損失を除去するには、低圧段タービンをバイパスする排気管路とこれを開閉する低圧バイパスバルブを設け、エンジンの低負荷運転中には低圧タービンをバイパスさせることが考えられる。つまり、図6に破線で示すように、低圧段タービンLTをバイパスする低圧バイパス管7により低圧段タービンLTの入口部と出口部を連結し、その途中に設置した低圧バイパスバルブ71を低速低負荷運転中に開放する。このようにすると低圧段タービンLTの流体抵抗で生じる圧力損失を回避することはできるが、高圧段タービンHTをバイパスするバイパス管5及び低圧バイパス管7の2本の管路が必要になるとともに、それぞれの管路を開閉する2個のバルブが必要となる。車両用のエンジンは搭載スペースが制約されており、かつ、軽量化の要請も強いので、複雑な管路のレイアウト等を極力回避しなければならない。
本発明は、2段ターボ過給機を装備し運転状態に応じて高圧・低圧段のターボ過給機の作動を制御する過給エンジンにおいて、低圧段タービンをバイパスする管路及びバルブを設け、かつ、その構成を簡易なものとし、コンパクトなレイアウトによって両方のターボ過給機を効率的に作動させることを課題とする。
In order to eliminate the pressure loss of the exhaust gas caused by the fluid resistance of the low-pressure turbine, an exhaust pipe that bypasses the low-pressure turbine and a low-pressure bypass valve that opens and closes the exhaust pipe are provided. It is conceivable to bypass. That is, as shown by a broken line in FIG. 6, the low pressure bypass pipe 71 that bypasses the low pressure stage turbine LT is connected to the inlet and the outlet of the low pressure stage turbine LT, and the low pressure bypass valve 71 installed in the middle is connected to the low speed and low load. Open during operation. In this way, it is possible to avoid the pressure loss caused by the fluid resistance of the low-pressure turbine LT, but two pipe lines of the bypass pipe 5 and the low-pressure bypass pipe 7 that bypass the high-pressure turbine HT are required, Two valves are required to open and close each pipeline. A vehicle engine has a limited mounting space and is strongly demanded to be light in weight. Therefore, it is necessary to avoid a complicated layout of pipes as much as possible.
The present invention is a supercharged engine equipped with a two-stage turbocharger and controlling the operation of a high-pressure / low-pressure stage turbocharger according to an operating state, and is provided with a pipe line and a valve for bypassing the low-pressure stage turbine, And it makes it the subject to make the structure simple and to operate both turbochargers efficiently by a compact layout.

上記の課題に鑑み、本発明は、2段ターボ過給機を備えたエンジンの排気通路において、高圧段タービンをバイパスする高圧バイパス管の出口が接続される排気通路の接続部から、低圧段タービンをバイパスする低圧バイパス管を分岐させ、その接続部に設置した1個のバイパスバルブによって両方のタービンの作動状態を制御するようにしたものである。すなわち、本発明は、
「2段ターボ過給機を備えた過給エンジンであって、
エンジンの吸気通路に低圧段コンプレッサ及び高圧段コンプレッサが直列に配置され、前記高圧段コンプレッサを駆動する高圧段タービンと前記低圧段コンプレッサを駆動する低圧段タービンとがエンジンの排気通路に配置されており、
前記エンジンの排気通路には、前記高圧段タービンの出口と前記低圧段タービンの入口とを連結する連結排気管路、前記高圧段タービンをバイパスし出口が前記連結排気管路に接続される高圧バイパス管及び前記低圧段タービンをバイパスする低圧バイパス管が設けられ、さらに、
前記低圧バイパス管の入口は、前記高圧バイパス管の出口が接続される前記連結排気管路の接続部に連結され、前記接続部には、前記高圧バイパス管及び前記低圧バイパス管の流量を制御するバイパスバルブが設置されている」
ことを特徴とする過給エンジンとなっている。
In view of the above problems, the present invention provides a low-pressure turbine in an exhaust passage of an engine provided with a two-stage turbocharger, from a connection portion of an exhaust passage to which an outlet of a high-pressure bypass pipe that bypasses the high-pressure turbine is connected. The low-pressure bypass pipe that bypasses the turbine is branched, and the operating state of both turbines is controlled by a single bypass valve installed at the connecting portion. That is, the present invention
“A supercharged engine with a two-stage turbocharger,
A low-pressure compressor and a high-pressure compressor are arranged in series in the engine intake passage, and a high-pressure turbine that drives the high-pressure compressor and a low-pressure turbine that drives the low-pressure compressor are arranged in the exhaust passage of the engine. ,
In the exhaust passage of the engine, a connected exhaust pipe connecting the outlet of the high-pressure stage turbine and the inlet of the low-pressure stage turbine, a high-pressure bypass bypassing the high-pressure stage turbine and connecting the outlet to the connected exhaust pipe A low-pressure bypass pipe for bypassing the pipe and the low-pressure turbine, and
An inlet of the low pressure bypass pipe is connected to a connection portion of the connection exhaust pipe to which an outlet of the high pressure bypass pipe is connected, and the connection portion controls the flow rates of the high pressure bypass pipe and the low pressure bypass pipe. Bypass valve is installed "
The supercharged engine is characterized by this.

請求項2に記載のように、前記バイパスバルブは弁軸を中心にして回転する弁体を有し、前記弁体が、前記高圧バイパス管の出口を閉鎖して前記低圧バイパス管の入口を開放する高圧段タービン作動位置、前記高圧バイパス管の出口を開放して前記低圧バイパス管の入口を閉鎖する低圧段タービン作動位置及び前記高圧バイパス管の出口の開度を変化させる調整位置に移動可能に構成することが好ましい。   The bypass valve has a valve body that rotates about a valve shaft, and the valve body closes an outlet of the high-pressure bypass pipe and opens an inlet of the low-pressure bypass pipe. The high pressure stage turbine operating position, the high pressure bypass pipe outlet is opened and the low pressure bypass pipe outlet is closed, and the high pressure bypass pipe outlet opening is adjustable. It is preferable to configure.

請求項3に記載のように、本発明の過給エンジンは、排気ガス再循環装置を有するとともに、所定の負荷よりも小さい負荷領域においては燃料噴射時期を早める燃料噴射制御装置を有するディーゼルエンジンに好適なものである。   According to a third aspect of the present invention, there is provided a supercharged engine according to the present invention having an exhaust gas recirculation device and a diesel engine having a fuel injection control device for advancing fuel injection timing in a load region smaller than a predetermined load. Is preferred.

2段ターボ過給機を備えた本発明の過給エンジンにおいては、高圧段タービンをバイパスする高圧バイパス管が設けられ、さらに、低圧段タービンをバイパスする低圧バイパス管が設けられている。エンジンが低速低負荷の運転状態である場合には、高圧バイパス管を閉鎖し、小流量域で高効率な高圧段ターボ過給機を作動させてエンジンのブーストを上昇させるが、このとき、低圧バイパス管を開放することにより、排気ガスは低圧段タービンをバイパスして流れる。したがって、低圧段タービンの流体抵抗に基づく圧力損失が回避されてエンジン排圧の上昇を抑制することができ、エンジン低負荷時における燃料消費率を低減することが可能となる。ちなみに、本出願人は、低圧バイパス管を設置して高圧段タービンの背圧をほぼ大気圧とすることにより、数%程度の燃料消費率の低下が可能であることを実験等により確認している。   In the supercharged engine of the present invention including the two-stage turbocharger, a high-pressure bypass pipe that bypasses the high-pressure turbine is provided, and a low-pressure bypass pipe that bypasses the low-pressure turbine is further provided. When the engine is operating at low speed and low load, the high pressure bypass pipe is closed and a high efficiency turbocharger is operated in a small flow rate range to increase the engine boost. By opening the bypass pipe, the exhaust gas flows bypassing the low-pressure turbine. Therefore, pressure loss based on the fluid resistance of the low-pressure turbine can be avoided to suppress an increase in engine exhaust pressure, and the fuel consumption rate at the time of engine low load can be reduced. By the way, the applicant has confirmed through experiments and the like that a fuel consumption rate can be reduced by several percent by installing a low-pressure bypass pipe and setting the back pressure of the high-pressure turbine to almost atmospheric pressure. Yes.

また、2段ターボ過給機を備えた過給エンジンの排気通路には、高圧段タービンの出口と低圧段タービンの入口とを連結する連結排気管路が設置されるが、本発明の排気通路では、高圧バイパス管の出口が接続される連結排気管路の接続部に、低圧段タービンをバイパスする低圧バイパス管の入口を連結する。このように構成することにより、連結排気管路の接続部にバイパスバルブを設置して、高圧バイパス管及び低圧バイパス管の両方を流れる排気ガスの流量を共通の1個のバイパスバルブによって制御することが可能となる。その結果、バイパス管及びバイパスバルブの構成がコンパクトなものとなり、設置スペースも縮小される。   The exhaust passage of a supercharged engine equipped with a two-stage turbocharger is provided with a connected exhaust pipe that connects the outlet of the high-pressure turbine and the inlet of the low-pressure turbine. Then, the inlet of the low-pressure bypass pipe that bypasses the low-pressure turbine is connected to the connection portion of the connection exhaust pipe to which the outlet of the high-pressure bypass pipe is connected. By comprising in this way, a bypass valve is installed in the connection part of a connection exhaust pipe line, and the flow volume of the exhaust gas which flows through both a high pressure bypass pipe and a low pressure bypass pipe is controlled by one common bypass valve. Is possible. As a result, the configuration of the bypass pipe and the bypass valve becomes compact, and the installation space is also reduced.

請求項2の発明のように、バイパスバルブとして弁軸を中心にして回転する弁体を有する回転弁を採用し、その弁体が回転する回転両端において、高圧バイパス管の出口を閉鎖して低圧バイパス管の入口を開放する高圧段タービン作動位置及び高圧バイパス管の出口を開放して低圧バイパス管の入口を閉鎖する低圧段タービン作動位置を占め、弁体の回転の中間領域では、高圧バイパス管の出口の開度(開口面積)を変化させる調整位置となるようにすることができる。こうするとバイパスバルブの構成がより一層コンパクトなものとなる。   According to a second aspect of the present invention, a rotary valve having a valve body that rotates around a valve shaft is adopted as a bypass valve, and the outlet of the high-pressure bypass pipe is closed at both ends of rotation of the valve body to reduce the pressure. The high pressure stage turbine operating position for opening the inlet of the bypass pipe and the low pressure stage turbine operating position for opening the outlet of the high pressure bypass pipe and closing the inlet of the low pressure bypass pipe occupy the high pressure bypass pipe in the middle region of the valve body rotation. It can be made to be an adjustment position for changing the opening degree (opening area) of the outlet. In this way, the configuration of the bypass valve becomes even more compact.

請求項3の発明のように、低負荷時にHCCI燃焼を行わせるディーゼルエンジン、つまり、排気ガス再循環装置を有するとともに、低負荷領域においては燃料噴射時期を早める燃料噴射制御装置を有するディーゼルエンジンに、本発明の過給エンジンを適用したときは、低負荷時の燃料経済性を向上させるとともに、HCCI燃焼の運転領域を広げることができる。   According to a third aspect of the present invention, a diesel engine that performs HCCI combustion at a low load, that is, a diesel engine that has an exhaust gas recirculation device and a fuel injection control device that accelerates fuel injection timing in a low load region. When the supercharged engine of the present invention is applied, the fuel economy at the time of low load can be improved and the operating range of HCCI combustion can be expanded.

以下、図面に基づいて、2段ターボ過給機を備え、本発明を実施した過給エンジンについて説明する。図1は本発明の過給エンジンを概略的に示すものであるが、2段ターボ過給機を備えた従来例のエンジンを示す図6の部品や装置と対応するものについては、同一の符号が付してある。   Hereinafter, a supercharged engine equipped with a two-stage turbocharger and embodying the present invention will be described with reference to the drawings. FIG. 1 schematically shows a supercharged engine according to the present invention. However, components corresponding to the parts and apparatus of FIG. 6 showing a conventional engine equipped with a two-stage turbocharger are denoted by the same reference numerals. Is attached.

過給エンジンの低圧段及び高圧段ターボ過給機の構成、エンジン吸気通路の構成等は、本発明においても基本的に図6の従来例のエンジンと変わりはない。すなわち、エンジン1には、大容量の低圧段ターボ過給機LTC及び小容量の高圧段ターボ過給機HTCが直列に設置され、エンジンの吸気通路において、低圧段コンプレッサLCの出口は高圧段コンプレッサHCの入口に接続される。吸気マニホールド3と高圧段コンプレッサHCとの間には空気冷却器2が置かれ、また、EGR管路6が接続されている。なお、高圧段コンプレッサHCには、これをバイパスする吸気バイパス通路8とバイパス絞り弁81が設けられている。   The configuration of the low-pressure stage and high-pressure stage turbocharger of the supercharged engine, the configuration of the engine intake passage, and the like are basically the same as those of the conventional engine shown in FIG. That is, the engine 1 is provided with a large-capacity low-pressure turbocharger LTC and a small-capacity high-pressure turbocharger HTC in series, and the outlet of the low-pressure compressor LC in the intake passage of the engine is a high-pressure compressor. Connected to HC inlet. An air cooler 2 is placed between the intake manifold 3 and the high-pressure compressor HC, and an EGR pipe 6 is connected. The high-pressure compressor HC is provided with an intake bypass passage 8 and a bypass throttle valve 81 that bypass the high-pressure compressor HC.

本発明の過給エンジンでは、排気マニホールド4に高圧段タービンHTと低圧段タービンLTとが直列に接続され、高圧段タービンHTをバイパスする高圧バイパス管5が設けられると同時に、高圧バイパス管5の出口部から分岐し低圧段タービンLTをバイパスする低圧バイパス管9が設置される。つまり、高圧バイパス管5の出口は、高圧段タービンHTの出口と低圧段タービンLTの入口とを接続する連結排気管路10に接続されるが、その接続部11に低圧バイパス管9の入口が連結され、低圧バイパス管9は接続部11から分岐して排気ガスを低圧段タービンLTの下流に導くよう構成されている。   In the supercharged engine of the present invention, the high-pressure stage turbine HT and the low-pressure stage turbine LT are connected in series to the exhaust manifold 4, and the high-pressure bypass pipe 5 that bypasses the high-pressure stage turbine HT is provided. A low-pressure bypass pipe 9 that branches from the outlet and bypasses the low-pressure turbine LT is installed. That is, the outlet of the high-pressure bypass pipe 5 is connected to a connection exhaust pipe 10 that connects the outlet of the high-pressure stage turbine HT and the inlet of the low-pressure stage turbine LT. The low-pressure bypass pipe 9 is connected and branched from the connection portion 11 so as to guide the exhaust gas downstream of the low-pressure stage turbine LT.

接続部11には、バイパスバルブ12が置かれており、その具体的な構造を図2に示す。図2(a)から分かるように、バイパスバルブ12は断面が矩形形状をなす弁ケーシング121を有し、弁ケーシング121の4個の外面のそれぞれには、高圧段タービンHTの出口の配管、高圧バイパス管5、低圧段タービンLTの入口の配管及び低圧バイパス管9が連結される。これらの管路の連結状況は、図1の接続部11におけるそれぞれの管の配置状況に対応したものであって、高圧段タービンHTの出口の配管と低圧段タービンLTの入口の配管とは、連結排気管路10を構成するものである。   A bypass valve 12 is placed in the connection portion 11, and its specific structure is shown in FIG. As can be seen from FIG. 2 (a), the bypass valve 12 has a valve casing 121 having a rectangular cross section, and each of the four outer surfaces of the valve casing 121 has a high-pressure turbine HT outlet pipe, The bypass pipe 5, the pipe of the inlet of the low pressure turbine LT and the low pressure bypass pipe 9 are connected. The connection state of these pipe lines corresponds to the arrangement state of each pipe in the connection portion 11 of FIG. 1, and the piping of the outlet of the high-pressure turbine HT and the piping of the inlet of the low-pressure turbine LT are: The connected exhaust pipe 10 is configured.

弁ケーシング121の内部には断面が円筒形の弁室122が形成され、弁室122には連結された管路に対応する4個の円孔が開口している。そして、弁室**にはこれらの開口を閉鎖する円弧状の弁体123が回転可能に設置される。円弧状の弁体123の両端には、図2(b)に示すとおり、軸124に取付けられた扇形の連結板125が固着されている。軸124は、リンク機構等を介して図示しないアクチュエータに連結されており、エンジンの制御装置からの指令に応じて回転し、排気ガスの流れが制御される。図2の弁体123の位置においては、高圧バイパス管5が全閉であって低圧バイパス管9が開放され、排気ガスは高圧段タービンHTを作動させ低圧段タービンLTをバイパスして流れることとなる。   A valve chamber 122 having a cylindrical cross section is formed inside the valve casing 121, and four circular holes corresponding to the connected pipelines are opened in the valve chamber 122. In the valve chamber **, an arcuate valve body 123 that closes these openings is rotatably installed. As shown in FIG. 2B, fan-shaped connecting plates 125 attached to the shaft 124 are fixed to both ends of the arc-shaped valve body 123. The shaft 124 is connected to an actuator (not shown) via a link mechanism or the like, and rotates in response to a command from an engine control device to control the flow of exhaust gas. At the position of the valve body 123 in FIG. 2, the high pressure bypass pipe 5 is fully closed and the low pressure bypass pipe 9 is opened, and the exhaust gas flows through the high pressure stage turbine HT and bypasses the low pressure stage turbine LT. Become.

次いで、本発明の2段ターボ過給機を備えた過給エンジンの作動及びバイパスバルブ等の制御方法について、図3〜図5により説明する。これらの図は、エンジンの運転状態に対応するバイパスバルブ12の位置及びエンジンの吸入空気と排気ガスの流れを示すものである。   Next, the operation of the supercharged engine equipped with the two-stage turbocharger of the present invention and the control method of the bypass valve and the like will be described with reference to FIGS. These figures show the position of the bypass valve 12 corresponding to the operating state of the engine and the flow of intake air and exhaust gas of the engine.

エンジン1が低速低負荷で運転中のときは、図3に示されるとおり、バイパスバルブ12は、高圧バイパス管5を閉鎖するとともに低圧バイパス管9を開放する位置に置かれる。エンジン1の排気ガスは、その全量が高圧段タービンHTを通過してここで仕事を発生して高圧段コンプレッサHCを駆動する。このときには低圧バイパス管9が開放されており、高圧段タービンHTから排出される排気ガスは実質上全て低圧バイパス管9を通過して流れる。排気ガスは低圧段タービンLTによる流体抵抗を受けることはなく、高圧段タービンHTの背圧はほぼ大気圧となる。つまり、高圧タービンHTの膨張比が高まり発生する仕事量も増大して、高圧段コンプレッサHCは効率よく駆動される結果となる。   When the engine 1 is operating at a low speed and a low load, as shown in FIG. 3, the bypass valve 12 is placed at a position where the high pressure bypass pipe 5 is closed and the low pressure bypass pipe 9 is opened. The entire amount of exhaust gas of the engine 1 passes through the high-pressure turbine HT and generates work to drive the high-pressure compressor HC. At this time, the low pressure bypass pipe 9 is opened, and substantially all exhaust gas discharged from the high pressure turbine HT flows through the low pressure bypass pipe 9. The exhaust gas is not subjected to fluid resistance by the low-pressure turbine LT, and the back pressure of the high-pressure turbine HT is almost atmospheric pressure. That is, the expansion ratio of the high-pressure turbine HT increases and the amount of work generated increases, resulting in efficient driving of the high-pressure compressor HC.

吸入空気は、低圧段コンプレッサLCを経て高圧段コンプレッサHCに入り、ここで圧縮されてブーストが上昇し、空気冷却器2で冷却された後エンジンシリンダ内に供給される。高圧段コンプレッサHCは小流量で高効率なものであるから、エンジン1が低速低負荷のときには、排気エネルギの有効な利用を図ることが可能であり、また、低圧段タービンLCのバイパスに基づき排気エネルギの利用が一段と効率化するので、エンジンの燃料消費率は一層低減される。   The intake air enters the high-pressure compressor HC via the low-pressure compressor LC, where it is compressed and boosted. After being cooled by the air cooler 2, it is supplied into the engine cylinder. Since the high-pressure compressor HC has a small flow rate and high efficiency, when the engine 1 is at a low speed and a low load, it is possible to effectively use the exhaust energy, and exhaust based on the bypass of the low-pressure turbine LC. Since the use of energy becomes more efficient, the fuel consumption rate of the engine is further reduced.

HCCI燃焼を実施するディーゼルエンジンにおいては、低速低負荷時の運転中に燃料の予混合のため早期の燃料噴射、例えば上死点前20°よりも以前の時点で燃料噴射が行われ、かつ、EGR管路6から高率のEGRが行われる。本発明の過給エンジンでは、高圧タービンHTの発生する仕事量が増大して高圧段コンプレッサHCの圧力比が大きくなるので、このようなときにもエンジンシリンダ内に十分な空気を供給することが可能であり、HCCI燃焼を実施する運転領域を拡大することができる。   In a diesel engine that performs HCCI combustion, early fuel injection is performed for fuel premixing during operation at low speed and low load, for example, fuel injection is performed at a time earlier than 20 ° before top dead center, and A high rate of EGR is performed from the EGR line 6. In the supercharged engine of the present invention, the amount of work generated by the high-pressure turbine HT increases and the pressure ratio of the high-pressure compressor HC increases, so that sufficient air can be supplied into the engine cylinder even in such a case. This is possible, and the operating range in which HCCI combustion is performed can be expanded.

エンジン1が高速高負荷で運転されるときは、図4に示されるとおり、バイパスバルブ12は、高圧バイパス管5を開放して低圧バイパス管9を閉鎖する位置に置かれる。高圧段タービンHTの流体抵抗により、エンジン1の排気ガスは、基本的にはその全量が高圧段タービンHTをバイパスして直接低圧段タービンLTに導かれ、ここで仕事を発生し低圧段コンプレッサLCを駆動する。低圧段コンプレッサLCは大流量で高効率なものであって、エンジン高負荷時の吸入空気量に対応して効率的に作動し、エンジン1の出力が確保される。このときは、低圧段コンプレッサLCで圧縮された空気は、吸気バイパス管8を通り高圧段コンプレッサHCをバイパスしてエンジン1に供給される。高圧段コンプレッサHCをバイパスさせることによって、小容量の高圧段コンプレッサHCの流体抵抗に起因するポンピングロスを回避することができる。   When the engine 1 is operated at a high speed and a high load, as shown in FIG. 4, the bypass valve 12 is placed at a position where the high pressure bypass pipe 5 is opened and the low pressure bypass pipe 9 is closed. Due to the fluid resistance of the high-pressure turbine HT, the entire exhaust gas of the engine 1 is basically led directly to the low-pressure turbine LT, bypassing the high-pressure turbine HT, where it generates work and the low-pressure compressor LC Drive. The low-pressure compressor LC is a high-efficiency compressor with a large flow rate, and operates efficiently in accordance with the intake air amount when the engine is heavily loaded, and the output of the engine 1 is ensured. At this time, the air compressed by the low pressure compressor LC passes through the intake bypass pipe 8 and bypasses the high pressure compressor HC and is supplied to the engine 1. By bypassing the high-pressure compressor HC, a pumping loss due to the fluid resistance of the small-capacity high-pressure compressor HC can be avoided.

エンジン1の運転状態が、低速低負荷と高速高負荷との中間の遷移域にあるときは、図5に示されるとおり、バイパスバルブ12は、低圧バイパス管9を閉鎖しつつ高圧バイパス管5を部分的に開放する位置に置かれ、高圧バイパス管5の開口面積(開度)は、エンジン制御装置により運転状態に応じて制御される。排気ガスは、高圧バイパス管5の入口部において高圧段タービンHTと低圧段タービンLTとに分岐して流れ、両方のタービンで仕事が発生される。両タービンの仕事量の配分は、高圧バイパス管5の開口面積に対応して変化し、その結果、低圧段コンプレッサLCの圧力比及び高圧段コンプレッサHC圧力比が調整される。バイパスバルブ12における高圧バイパス管5の開口部の形状等を変更すると、遷移域での開度の特性を変化させることが可能となる。また、遷移域では高圧段ターボ過給機HTCの作動状態、つまり高圧段タービンHTの仕事量に応じて、高圧段コンプレッサHCをバイパスする空気量が調整される。   When the operating state of the engine 1 is in an intermediate transition region between the low speed and low load and the high speed and high load, the bypass valve 12 closes the low pressure bypass pipe 9 and closes the high pressure bypass pipe 5 as shown in FIG. The opening area (opening degree) of the high pressure bypass pipe 5 is controlled according to the operating state by the engine control device. The exhaust gas branches and flows into the high-pressure stage turbine HT and the low-pressure stage turbine LT at the inlet of the high-pressure bypass pipe 5, and work is generated in both turbines. The distribution of work of both turbines changes corresponding to the opening area of the high-pressure bypass pipe 5, and as a result, the pressure ratio of the low-pressure stage compressor LC and the high-pressure stage compressor HC pressure ratio are adjusted. When the shape or the like of the opening of the high-pressure bypass pipe 5 in the bypass valve 12 is changed, the characteristics of the opening degree in the transition region can be changed. In the transition region, the amount of air that bypasses the high-pressure compressor HC is adjusted according to the operating state of the high-pressure turbocharger HTC, that is, the work amount of the high-pressure turbine HT.

ちなみに、エンジン制御装置には、車両運転者が操作するアクセルペダルの踏み込み量とエンジン回転数とによって、エンジンの燃料供給量(負荷)を決定するマップが格納されている。エンジン制御装置は、エンジンの運転状態を表すアクセルペダルの踏み込み量及びエンジン回転数の入力信号により、マップに基づいて、ディーゼルエンジンであれば、燃料噴射量や噴射時期等を制御するが、本発明の上記の実施例における低速低負荷、高速高負荷及び遷移域の運転領域も、このマップに基づいて決定されるものである。   Incidentally, the engine control device stores a map for determining the fuel supply amount (load) of the engine based on the depression amount of the accelerator pedal operated by the vehicle driver and the engine speed. The engine control device controls the fuel injection amount, the injection timing, and the like in the case of a diesel engine based on the map based on the input signal of the accelerator pedal depression amount and the engine speed representing the operating state of the engine. The operation areas of the low speed and low load, the high speed and high load, and the transition area in the above embodiment are also determined based on this map.

以上詳述したように、本発明は、2段ターボ過給機を装備した過給エンジンにおいて、排気通路に、高圧タービンをバイパスする高圧バイパス管と低圧タービンをバイパスする低圧バイパス管とを設けるとともに、その接続部に設置した1個のバイパスバルブによって両方のタービンの作動状態を制御するようにし、コンパクトなレイアウトによってターボ過給機を効率的に作動させたものである。上記の実施例では、主に車両用のディーゼルエンジンについて述べているが、本発明はガソリンエンジンにも適用可能なものである。また、バイパスバルブとして実施例の回転弁以外のものを適用するなど、実施例の構成に対し各種の変形が可能であることは明らかである。   As described above in detail, in the supercharged engine equipped with the two-stage turbocharger, the present invention is provided with a high-pressure bypass pipe that bypasses the high-pressure turbine and a low-pressure bypass pipe that bypasses the low-pressure turbine in the exhaust passage. The operation state of both turbines is controlled by a single bypass valve installed at the connection portion, and the turbocharger is efficiently operated by a compact layout. In the above embodiment, a diesel engine for a vehicle is mainly described, but the present invention can also be applied to a gasoline engine. Further, it is obvious that various modifications can be made to the configuration of the embodiment, such as applying a valve other than the rotary valve of the embodiment as a bypass valve.

本発明による2段過給エンジンの管路構成等を示す概要図である。It is a schematic diagram which shows the pipe line structure etc. of the two-stage supercharging engine by this invention. 本発明バイパスバルブの一例を示す図である。It is a figure which shows an example of this invention bypass valve. 本発明の2段過給エンジンの低速低負荷時における作動を示す図である。It is a figure which shows the action | operation at the time of the low speed low load of the two-stage supercharged engine of this invention. 本発明の2段過給エンジンの高速高負荷時における作動を示す図である。It is a figure which shows the action | operation at the time of the high-speed high load of the two-stage supercharged engine of this invention. 本発明の2段過給エンジンの遷移域における作動を示す図である。It is a figure which shows the operation | movement in the transition area of the two-stage supercharging engine of this invention. 従来の2段過給エンジンの管路構成等を示す概要図である。It is a schematic diagram which shows the pipe line structure etc. of the conventional 2-stage supercharged engine.

符号の説明Explanation of symbols

HTC 高圧段ターボ過給機
HC 高圧段コンプレッサ、 HT 高圧段タービン
LTC 低圧段ターボ過給機
LC 低圧段コンプレッサ、 LT 低圧段タービン
5 高圧バイパス管
9 低圧バイパス管
12 バイパスバルブ
HTC High-pressure stage turbocharger HC High-pressure stage compressor, HT High-pressure stage turbine LTC Low-pressure stage turbocharger LC Low-pressure stage compressor, LT Low-pressure stage turbine 5 High-pressure bypass pipe 9 Low-pressure bypass pipe 12 Bypass valve

Claims (3)

2段ターボ過給機を備えた過給エンジンであって、
エンジンの吸気通路に低圧段コンプレッサ(LC)及び高圧段コンプレッサ(HC)が直列に配置され、前記高圧段コンプレッサ(HC)を駆動する高圧段タービン(HT)と前記低圧段コンプレッサ(LC)を駆動する低圧段タービン(LT)とがエンジンの排気通路に配置されており、
前記エンジンの排気通路には、前記高圧段タービン(HT)の出口と前記低圧段タービン(LT)の入口とを連結する連結排気管路(10)、前記高圧段タービン(HT)をバイパスし出口が前記連結排気管路に接続される高圧バイパス管(5)及び前記低圧段タービン(LT)をバイパスする低圧バイパス管が設けられ、さらに、
前記低圧バイパス管(9)の入口は、前記高圧バイパス管(5)の出口が接続される前記連結排気管路の接続部(11)に連結され、前記接続部(11)には、前記高圧バイパス管(5)及び前記低圧バイパス管(9)の流量を制御するバイパスバルブ(12)が設置されていることを特徴とする過給エンジン。
A supercharged engine with a two-stage turbocharger,
A low-pressure compressor (LC) and a high-pressure compressor (HC) are arranged in series in the intake passage of the engine to drive the high-pressure turbine (HT) that drives the high-pressure compressor (HC) and the low-pressure compressor (LC). A low-pressure stage turbine (LT) that is disposed in the exhaust passage of the engine,
The exhaust passage of the engine is connected to an exhaust pipe (10) connecting the outlet of the high-pressure stage turbine (HT) and the inlet of the low-pressure stage turbine (LT), and bypasses the high-pressure stage turbine (HT) and exits. Is provided with a high pressure bypass pipe (5) connected to the connection exhaust pipe and a low pressure bypass pipe for bypassing the low pressure stage turbine (LT),
An inlet of the low-pressure bypass pipe (9) is connected to a connection part (11) of the connection exhaust pipe to which an outlet of the high-pressure bypass pipe (5) is connected, and the connection part (11) includes the high-pressure bypass pipe (9). A supercharged engine comprising a bypass pipe (5) and a bypass valve (12) for controlling a flow rate of the low-pressure bypass pipe (9).
前記バイパスバルブ(12)は弁軸(124)を中心にして回転する弁体(123)を有し、前記弁体(123)が、前記高圧バイパス管(5)の出口を閉鎖して前記低圧バイパス管(9)の入口を開放する高圧段タービン作動位置、前記高圧バイパス管(5)の出口を開放して前記低圧バイパス管(9)の入口を閉鎖する低圧段タービン作動位置及び前記高圧バイパス管(5)の出口の開度を変化させる調整位置に移動可能に構成された、請求項1に記載の過給エンジン。 The bypass valve (12) has a valve body (123) that rotates about a valve shaft (124), and the valve body (123) closes an outlet of the high-pressure bypass pipe (5) to thereby reduce the low pressure. A high pressure turbine operating position for opening the inlet of the bypass pipe (9), a low pressure turbine operating position for opening the outlet of the high pressure bypass pipe (5) and closing the inlet of the low pressure bypass pipe (9), and the high pressure bypass The supercharged engine according to claim 1, wherein the supercharged engine is configured to be movable to an adjustment position for changing an opening degree of an outlet of the pipe (5). 前記エンジンはディーゼルエンジンであって、排気ガス再循環装置を有するとともに、所定の負荷よりも小さい負荷領域においては燃料噴射時期を早める燃料噴射制御装置を有する請求項1又は請求項2に記載の過給エンジン。 3. The engine according to claim 1, wherein the engine is a diesel engine, has an exhaust gas recirculation device, and has a fuel injection control device that advances fuel injection timing in a load region smaller than a predetermined load. Supply engine.
JP2005347809A 2005-12-01 2005-12-01 Two-stage supercharging type engine Withdrawn JP2007154684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347809A JP2007154684A (en) 2005-12-01 2005-12-01 Two-stage supercharging type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347809A JP2007154684A (en) 2005-12-01 2005-12-01 Two-stage supercharging type engine

Publications (1)

Publication Number Publication Date
JP2007154684A true JP2007154684A (en) 2007-06-21

Family

ID=38239391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347809A Withdrawn JP2007154684A (en) 2005-12-01 2005-12-01 Two-stage supercharging type engine

Country Status (1)

Country Link
JP (1) JP2007154684A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111223A3 (en) * 2008-02-29 2009-12-03 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
US7748218B2 (en) * 2006-06-26 2010-07-06 International Engine Intellectual Property Company, Llc System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger
US20110000208A1 (en) * 2007-09-05 2011-01-06 Robinson Lee J Multi-stage turbocharger system
JP2011058426A (en) * 2009-09-10 2011-03-24 Ihi Corp Adjusting valve and supercharging apparatus
GB2475534A (en) * 2009-11-21 2011-05-25 Cummins Turbo Tech Ltd Sequential two-stage turbocharger system
US8011186B2 (en) * 2006-07-29 2011-09-06 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US8201406B2 (en) 2007-11-06 2012-06-19 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN105392974A (en) * 2013-06-11 2016-03-09 洋马株式会社 Engine
GB2533351A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Internal combustion engine having a two stage turbocharger
WO2016126237A1 (en) * 2015-02-03 2016-08-11 Borgwarner Inc. Rotatable diverter valve
WO2017073525A1 (en) * 2015-10-29 2017-05-04 株式会社Ihi Variable flow rate valve mechanism and supercharger
JP2017125431A (en) * 2016-01-13 2017-07-20 日野自動車株式会社 Two-stage turbocharger system
JP2017155795A (en) * 2016-02-29 2017-09-07 三菱重工業株式会社 Rotary valve device, super charger, and multistage supercharging system
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve
KR101947833B1 (en) 2011-09-01 2019-02-13 로베르트 보쉬 게엠베하 Method and device for performing a cotrol, in particular for use in a motor vehicle
JP2020197198A (en) * 2019-06-05 2020-12-10 ヤンマーパワーテクノロジー株式会社 Engine system
US11319906B2 (en) 2020-10-06 2022-05-03 Ford Global Technologies, Llc Methods and systems for an exhaust gas recirculation system
CN115292934A (en) * 2022-08-08 2022-11-04 上海交通大学 Design method for eccentric intersection of bypass branch and main pipe of two-stage turbocharging system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748218B2 (en) * 2006-06-26 2010-07-06 International Engine Intellectual Property Company, Llc System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger
US8316642B2 (en) * 2006-07-29 2012-11-27 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US8011186B2 (en) * 2006-07-29 2011-09-06 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US20110000208A1 (en) * 2007-09-05 2011-01-06 Robinson Lee J Multi-stage turbocharger system
US9903267B2 (en) 2007-09-05 2018-02-27 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US8307650B2 (en) 2007-09-05 2012-11-13 Cummins Turbo Technologies Limited Multi-stage turbocharger system with exhaust control valve
US9003794B2 (en) 2007-09-05 2015-04-14 Cummins Turbo Technologies Limited Multi-stage turbocharger system with exhaust control valve
US20120328411A1 (en) * 2007-09-05 2012-12-27 Robinson Lee J Multi-stage turbocharger system with exhaust control valve
US8201406B2 (en) 2007-11-06 2012-06-19 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
EP2271832A2 (en) * 2008-02-29 2011-01-12 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
EP2271832A4 (en) * 2008-02-29 2013-05-01 Borgwarner Inc Multi-stage turbocharging system with thermal bypass
US8511066B2 (en) 2008-02-29 2013-08-20 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
WO2009111223A3 (en) * 2008-02-29 2009-12-03 Borgwarner Inc. Multi-stage turbocharging system with thermal bypass
JP2011058426A (en) * 2009-09-10 2011-03-24 Ihi Corp Adjusting valve and supercharging apparatus
GB2475534A (en) * 2009-11-21 2011-05-25 Cummins Turbo Tech Ltd Sequential two-stage turbocharger system
US9062594B2 (en) 2009-11-21 2015-06-23 Cummins Turbo Technologies Limited Multi-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve
GB2475534B (en) * 2009-11-21 2014-11-12 Cummins Turbo Tech Ltd Sequential two-stage turbocharger system
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
KR101947833B1 (en) 2011-09-01 2019-02-13 로베르트 보쉬 게엠베하 Method and device for performing a cotrol, in particular for use in a motor vehicle
CN105392974A (en) * 2013-06-11 2016-03-09 洋马株式会社 Engine
US10054068B2 (en) 2014-12-17 2018-08-21 GM Global Technology Operations LLC Internal combustion engine having a two stage turbocharger
GB2533351A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Internal combustion engine having a two stage turbocharger
WO2016126237A1 (en) * 2015-02-03 2016-08-11 Borgwarner Inc. Rotatable diverter valve
US9926840B2 (en) 2015-02-03 2018-03-27 Borgwarner Inc. Rotatable diverter valve
CN108138971A (en) * 2015-10-29 2018-06-08 株式会社Ihi Flow variable valve mechanism and booster
WO2017073525A1 (en) * 2015-10-29 2017-05-04 株式会社Ihi Variable flow rate valve mechanism and supercharger
JPWO2017073525A1 (en) * 2015-10-29 2018-02-22 株式会社Ihi Variable flow rate valve mechanism and turbocharger
CN108138971B (en) * 2015-10-29 2019-11-05 株式会社Ihi Flow variable valve mechanism and booster
JP2017125431A (en) * 2016-01-13 2017-07-20 日野自動車株式会社 Two-stage turbocharger system
JP2017155795A (en) * 2016-02-29 2017-09-07 三菱重工業株式会社 Rotary valve device, super charger, and multistage supercharging system
JP2020197198A (en) * 2019-06-05 2020-12-10 ヤンマーパワーテクノロジー株式会社 Engine system
JP7305436B2 (en) 2019-06-05 2023-07-10 ヤンマーパワーテクノロジー株式会社 Engine system and engine system control method
US11319906B2 (en) 2020-10-06 2022-05-03 Ford Global Technologies, Llc Methods and systems for an exhaust gas recirculation system
CN115292934A (en) * 2022-08-08 2022-11-04 上海交通大学 Design method for eccentric intersection of bypass branch and main pipe of two-stage turbocharging system
CN115292934B (en) * 2022-08-08 2024-01-26 上海交通大学 Design method for eccentric intersecting of bypass branch and main pipe of two-stage turbocharging system

Similar Documents

Publication Publication Date Title
JP2007154684A (en) Two-stage supercharging type engine
KR101518013B1 (en) Controlling exhaust gas flow divided between turbocharging and exhaust gas recirculating
US20070074513A1 (en) Turbo charging in a variable displacement engine
JP5342146B2 (en) Engine braking method for an internal combustion engine having two exhaust turbochargers connected in series
US20080216474A1 (en) Internal Combustion Engine
US9109546B2 (en) System and method for operating a high pressure compressor bypass valve in a two stage turbocharger system
EP3179079B1 (en) Engine system
CN108612583B (en) Engine system
JP2001295701A (en) Internal combustion engine with turbo charger
JP2007518019A (en) Turbocharger supercharged internal combustion engine
US20070223352A1 (en) Optical disc assemblies for performing assays
GB2352272A (en) Forced exhaust gas recirculation (EGR) system for i.c. engines
US8099957B2 (en) Dual-inlet supercharger for EGR flow control
CN102425488A (en) Adjustable two-stage supercharging sequential system applied to V-shaped diesel engine
US20070220884A1 (en) Divided housing turbocharger for an engine
CN105840355A (en) All-working-condition EGR rate adjustable two-stage booster system of internal combustion engine and control method thereof
CN111287839A (en) Engine system and method of controlling the same
JPH07293262A (en) Sequential supercharger for diesel engine
JP2007263040A (en) Three stage supercharging system for engine
JP3674254B2 (en) EGR device for supercharged engine
JPS5982526A (en) Supercharger for internal-combustion engine
JP2598060B2 (en) Method for controlling the working cycle of an internal combustion engine and its implementation
JP2005009314A (en) Supercharger for engine
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP2009191667A (en) Supercharging device and supercharging engine system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203