JP3674254B2 - EGR device for supercharged engine - Google Patents

EGR device for supercharged engine Download PDF

Info

Publication number
JP3674254B2
JP3674254B2 JP22511397A JP22511397A JP3674254B2 JP 3674254 B2 JP3674254 B2 JP 3674254B2 JP 22511397 A JP22511397 A JP 22511397A JP 22511397 A JP22511397 A JP 22511397A JP 3674254 B2 JP3674254 B2 JP 3674254B2
Authority
JP
Japan
Prior art keywords
egr
passage
engine
intake
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22511397A
Other languages
Japanese (ja)
Other versions
JPH1162715A (en
Inventor
隆広 植田
瓏 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP22511397A priority Critical patent/JP3674254B2/en
Publication of JPH1162715A publication Critical patent/JPH1162715A/en
Application granted granted Critical
Publication of JP3674254B2 publication Critical patent/JP3674254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、過給機付きディーゼルエンジンなどにおいて、NOxの排出量を低減するために、排気ガスの一部を吸気側に還流する過給式エンジンのEGR装置に関するものである。
【0002】
【従来の技術】
ディーゼルエンジン等の排気ガス対策において、排気ガス中のNOxの排出量を低減するために、不活性ガスである排気ガスの一部を吸気側に還流することによって、燃焼温度を低く抑えて、NOxの生成を抑制するEGR(排気再循環)が有効であることが知られており、広く実用化されている。
【0003】
このEGR装置は過給式エンジンにも適用され、図5に示すように排気マニホールド12aから排気ガスGを取り出し、EGRクーラー7を配設したEGR通路9を経由して、吸気通路11の新気Aに混入して吸気マニホールド11aへ還流させてEGRを行っている。
しかし、過給式エンジンにおいては、エンジン負荷の上昇に伴い、吸気圧(ブート圧)が高くなり、排気圧より高圧になってくるので、EGRガスGを吸気通路11へ還流させることができなくなる。
【0004】
そのため、排気通路12に通じるウェイストゲート12bを開いて排気圧力を下げ、それによってタービン2の回転数を低下させることにより吸気圧力を低減して、EGRガスGを吸気通路11に還流させる方法がある。しかし、この方法を取ると新気Aの量が減少し、スモークの増大を引き起こすので、EGRできる領域Eは、図4(a)に示すように、低負荷でかつ中回転以下のエンジンの運転領域に限られてしまうという問題がある。
【0005】
また、タービン2の入口の断面積を可変にした可変容量型ターボチャージャ(VGターボ)では、入口の断面積をコントロールすることでタービン回転数を変化させて、排気圧と吸気圧を制御してEGR可能な領域を拡大している。この場合においては、図4(b)に示すような中負荷のEで示すエンジン運転領域までEGR可能となるが、更にNOxを低減して排気ガスを浄化するために、エンジンの高負荷運転領域でもEGR可能にしたいという要求がある。
【0006】
この要求に関して、特開平3−117665号、特開平5−180089号、特開平5−89859号等に、EGRガスをコンプレッサによって圧縮して昇圧し、この昇圧したEGRガスを吸気通路側に還流するように構成することによって、EGR領域を拡大するEGR装置が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平3−117665号の装置は、エンジンによって駆動されるコンプレッサによりEGRガスを圧縮し、アキュムレータタンク内に蓄圧してから供給しているために、エンジンの駆動力がこのコンプレッサに使用されるのでその分エンジン出力のロスが大きくなる。このロスは、エンジンが高回転、高負荷になるほど大きくなるので、高出力が必要な時程ロスが大きくなるという問題がある。更に、高回転、高負荷領域においてEGRを行うために、容量の大きいコンプレッサ、アキュムレータが必要になるという問題がある。
【0008】
また、特開平5−180089号の装置は、排気ガスで駆動されるタービンを排気通路に設けてこのタービンに連結したEGRガスコンプレッサでEGRガスを加圧して、吸気通路に還流させている。しかし、この装置においては排気通路に直列に排気ガスのパワーを回収するパワータービンを含めて3つのタービンを設けているため、EGR作動時に排気マニホールドの排気圧が大幅に上昇するので、ポンピングロスが大きくなって燃費が悪化するという問題と、高負荷運転において新気の減少を招き黒煙が発生してEGRを行うことのできる領域が限定されるという問題がある。
【0009】
そして、特開平5−89859号の装置は、第1のターボチャージャで得られた圧縮空気を分岐して第2のターボチャージャを駆動し、この第2のターボチャージャのコンプレッサでEGRガスを昇圧し、それと共に、このコンプレッサから圧縮空気を逃がして吸気圧を下げてEGRを行っている。しかし、この装置では、圧縮空気を分岐するため、シリンダへ供給される圧縮吸気量が減少するので、EGRガス量に対する吸気量が減少してスモークが発生するという問題がある。
【0010】
本発明は、上述の問題を解決するためになされたものであり、その目的は、エンジンの高負荷運転時でもEGRが可能で、しかも、シリンダへの吸気量を十分に確保できてスモークの発生や燃料消費の悪化を防止できると共に、更に、エンジンの運転状態に応じてEGRガスを昇圧して、効率よくEGRを行うことができて、エンジンの全運転領域で排気ガス中のNOxの排出量を低減できる過給式エンジンのEGR装置を提供することにある。
【0011】
【課題を解決するための手段】
以上のような目的を達成するための過給式エンジンのEGR装置は、エンジンの排気通路に設けたタービンによって、吸気通路に設けたコンプレッサを駆動する過給式エンジンにおいて、排気通路と吸気通路とを接続して第1EGR通路を設けると共に、該第1EGR通路に、EGRガスを昇圧して吸気通路に還流するEGRガスコンプレッサを設け、該EGRガスコンプレッサと前記タービンとの間をクラッチ機構を介して継脱自在に連結して構成したものであり、排気通路にEGRガスコンプレッサ用のタービンを新たに設ける必要がなくなるので、排気圧の上昇を防ぐことができ、燃料消費の悪化を防止できる。しかも、吸気の分岐及び逃がしによる吸気量の減少がないので、シリンダに供給される吸気量を十分に確保でき、スモークの発生を防止しながら、EGRを行うことができる。
【0012】
また、前記排気通路の前記タービンより下流側と吸気通路とを、前記EGRガスコンプレッサを配設した前記第1EGR通路で連結すると共に、前記排気通路の前記タービンより上流側と吸気通路とを第2EGR通路で連結する。
更に、前記第1EGR通路と前記第2EGR通路に、第1EGR弁と第2EGR弁をそれぞれ配設すると共に、エンジンの回転数を検出する回転数センサーとエンジンの負荷を検出する負荷センサーを設け、更に、前記回転数センサーの出力と前記負荷センサーの出力とを入力して前記クラッチ機構と前記第1EGR弁と前記第2EGR弁の制御を行うコントローラを設けて構成する。
【0013】
この構成により、エンジンの回転数や負荷を入力してEGRガス圧と吸気圧を推定し、この大小関係に対応して2つのEGR通路を使い分けできるので、エンジンのロスを防止しながら効率よくEGRを行うことができ、エンジンの運転領域全体において排気ガス中のNOxの低減を図ることができる。
【0014】
【発明の実施の形態】
以下、図面を用いて、本発明に係る過給式エンジンのEGR装置の実施の形態を説明する。
図1に示すように、第1の実施の形態の過給式エンジン1においては、タービン2を排気通路12に設けて、吸気通路11に設けたコンプレッサ3を駆動して、新気Aを圧縮して、この新気Aをインタークーラ6を経由して、吸気マニホールド11aに供給している。
【0015】
このエンジン1の排気通路12と吸気通路11とを第1EGR通路9で連結し、更に、この第1EGR通路9にEGRガスコンプレッサ5を設け、このEGRガスコンプレッサ5とタービン2との間をクラッチ機構4を介して継脱自在に連結し、EGRガスコンプレッサ5がタービン2の駆動力を受けて駆動されるように構成する。
【0016】
また、エンジン1の回転数を検出する回転数センサー14とエンジンの負荷を検出する負荷センサー15とコントローラ20を設ける。このコントローラ20が回転数センサー14の出力と負荷センサー15の出力とを入力して、クラッチ機構4の制御を行うように構成する。
つまり、通常の新気A用のコンプレッサ3に加えてEGRガスGを圧縮するEGRガスコンプレッサ5を第1EGR通路9に設けて、エンジン1が高負荷運転状態で排気ガス圧<吸気圧(ブースト圧)のときに、クラッチ機構4を連結してEGRガスコンプレッサ5を駆動し、EGRガスの圧縮及び昇圧を行って、昇圧したEGRガスGを吸気通路11に供給するように構成する。
【0017】
以上の構成により、第1EGR通路9に設けたEGRガスコンプレッサ5により、EGRガスGの圧力を過給機のコンプレッサ3によって圧縮された新気Aの吸気圧よりも高圧にすることができるので、エンジン1の高負荷運転領域でもEGRを行うことができる。
また、図2に示す、第2の実施の形態では、排気通路13のタービン2より下流側と吸気通路11とを、EGRガスコンプレッサ5を配設した第1EGR通路9で連結すると共に、排気通路12のタービン2より上流側と吸気通路11とを、第2EGR通路19で連結する。
【0018】
このEGRガスコンプレッサは、タービン2の駆動力を受けて駆動できるように、図1の第1の実施の形態と同様に、EGRガスコンプレッサ5とタービン2との間をクラッチ機構4を介して継脱自在に連結して構成する。
そして、更に、第1EGR通路9に第1EGR弁8を、また、第2EGR通路19に、第2EGR弁18をそれぞれ配設し、また、エンジン1の回転数を検出する回転数センサー14とエンジンの負荷を検出する負荷センサー15とコントローラ20を設ける。このコントローラ20が回転数センサー14の出力と負荷センサー15の出力とを入力して、クラッチ機構4と第1EGR弁8と第2EGR弁18の制御を行うように構成する。
【0019】
以上の構成により、図3のN部分で示すエンジン1の低・中負荷運転領域では、吸気圧が排気圧より低いので、第1EGR弁8を閉弁し、クラッチ機構4をオフにすると共に、第2EGR弁を開弁して、EGRガスGを第2EGR通路19を経由させて、EGRガスGを昇圧せずにそのまま吸気通路11に供給してEGRを行う。これにより、比較的低温・低圧の排気ガスGが持つ少ない排気エネルギーをEGRガスの昇圧に使用することなく、タービン2でコンプレッサ3だけを駆動して、吸気側に十分利用できるので、シリンダへの十分な圧縮空気量を確保することができる。
【0020】
また、この第2EGR通路19の入口をタービン2より上流側に設けて構成したので、タービン2の上流側の比較的圧力の高い部分の排気ガスGをEGRに使用できるので、円滑にかつ効率的にEGRガスを吸気通路に還流できる。
また、図3のC部分で示す高負荷運転領域では、吸気圧が排気圧よりも高いので、第1EGR弁8を開弁し、クラッチ機構4をオンにして駆動力を伝達すると共に、第2EGR弁18を閉弁して、EGRガスGを第1EGR通路9に導いて、EGRガスGをEGRガスコンプレッサ5で昇圧して吸気通路11に供給してEGRを行う。
【0021】
この高負荷運転領域Cでは、排気ガスGのエネルギーも大きくなるので、EGRガスコンプレッサ5を駆動しても、コンプレッサ3で新気Aを十分に圧縮でき、しかも、圧縮された吸気Aを全量シリンダへ供給して、シリンダへの圧縮吸気量を確保できるので、適切なEGR率を確保して、効率よくEGRを行うことができる。
【0022】
即ち、ウェイストゲート12bを開けて排気ガスGの一部逃がして吸気圧を下げる必要がなくなるので、排気ガスGのエネルギーをタービン2で十分に利用できる。
また、この第1EGR通路9の入口をタービン2より下流側に設けて構成したので、EGRガスGが吸気通路11側に還流される前に、タービン2を通過させて排気ガスGのエネルギーを回収できるので、効率よくコンプレッサ3を駆動できる。
【0023】
従って、EGRガスGの経路を、エンジン1の回転数や負荷の状況に応じて、EGRガスGを昇圧する第1EGR通路9とEGRガスGを昇圧しない第2EGR通路19を選択して、エンジンの運転状況に適したEGRを効率よく行うことができる。
【0024】
【発明の効果】
以上の説明したように、請求項1に係る本発明の過給式エンジンのEGR装置によれば、EGRガスコンプレッサで昇圧したEGRガスを吸気通路側に供給してEGRを行うので、EGR可能なエンジンの運転領域を高負荷領域にまで拡大することができる。
【0025】
そして、EGRガスコンプレッサをクラッチ機構を介して、排気通路に設けた吸気コンプレッサ用のタービンで駆動するように構成したので、排気通路にEGRガスコンプレッサ用のタービンを新たに設ける必要がなくなり、排気圧の上昇を防止できるので、ポンピングロスを抑制でき、燃料消費の悪化を防止できる。
また、請求項2及び請求項3に係る本発明の過給式エンジンのEGR装置によれば、EGRガスを昇圧せずに吸気側へ還流させるEGR通路を加えて、EGR通路を2系列にしたので、排気圧が吸気圧より高い運転領域では第2EGR通路を経由して吸気側へ還流させ、また、排気圧が吸気圧より低い運転領域ではEGRガスコンプレッサを設けた第1EGR通路を経由させて昇圧したEGRガスを還流させることができるので、エンジンの回転数や負荷の状況に応じて、エンジン出力のロスを防止しながら、効率よくEGRを行うことができる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態の過給式エンジンのEGR装置の構成図である。
【図2】本発明に係る第2の実施の形態の過給式エンジンのEGR装置の構成図である。
【図3】本発明に係る過給式エンジンのEGR装置のEGR領域とEGR運転方法を示す模式図である。
【図4】従来技術のEGR領域を示す模式図で、(a)は、過給式エンジンのEGR装置のEGR領域を、(b)はVGターボエンジンにおけるEGR装置のEGR領域を示す。
【図5】従来技術の過給式エンジンのEGR装置の構成図である。
【符号の説明】
1 エンジン 2 過給機のタービン
3 過給機のコンプレッサ 4 クラッチ機構
5 EGRガスコンプレッサ 6 インタークーラ
7 EGRクーラ 8 第1EGR弁
9 第1EGR通路 11 吸気通路
11a 吸気マニホールド 12 上流側排気通路
12a 排気マニホールド 12b ウェイストゲート
13 下流側排気通路 14 回転数センサー
15 負荷センサー 18 第2EGR弁
19 第2EGR通路 20 コントローラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an EGR device for a supercharged engine that recirculates a part of exhaust gas to an intake side in order to reduce NOx emission in a turbocharged diesel engine or the like.
[0002]
[Prior art]
In exhaust gas countermeasures for diesel engines and the like, in order to reduce the amount of NOx emissions in the exhaust gas, a part of the exhaust gas that is an inert gas is recirculated to the intake side, thereby suppressing the combustion temperature to a low level. It is known that EGR (exhaust gas recirculation) that suppresses the generation of is effective, and is widely put into practical use.
[0003]
This EGR device is also applied to a supercharged engine. As shown in FIG. 5, the exhaust gas G is taken out from the exhaust manifold 12a, and the fresh air in the intake passage 11 is passed through the EGR passage 9 in which the EGR cooler 7 is disposed. EGR is performed by mixing with A and returning to the intake manifold 11a.
However, in the supercharged engine, as the engine load increases, the intake pressure (boot pressure) increases and becomes higher than the exhaust pressure, so that the EGR gas G cannot be recirculated to the intake passage 11. .
[0004]
Therefore, there is a method of reducing the intake pressure by opening the waste gate 12b leading to the exhaust passage 12 and lowering the exhaust pressure, thereby reducing the intake pressure and returning the EGR gas G to the intake passage 11. . However, if this method is used, the amount of fresh air A decreases and smoke increases, so the region E where EGR can be performed is the operation of the engine with a low load and a medium rotation or less as shown in FIG. There is a problem that it is limited to the area.
[0005]
Further, in a variable capacity turbocharger (VG turbo) in which the cross-sectional area of the inlet of the turbine 2 is variable, the turbine rotational speed is changed by controlling the cross-sectional area of the inlet to control the exhaust pressure and the intake pressure. The area where EGR is possible is expanded. In this case, EGR is possible up to the engine operating range indicated by E of medium load as shown in FIG. 4B, but in order to further reduce NOx and purify the exhaust gas, the engine high-load operating range. However, there is a demand to make EGR possible.
[0006]
Regarding this requirement, in Japanese Patent Laid-Open No. 3-117665, Japanese Patent Laid-Open No. 5-180089, Japanese Patent Laid-Open No. 5-89859, etc., the EGR gas is compressed and compressed by a compressor, and the pressurized EGR gas is returned to the intake passage side An EGR device that expands the EGR region by configuring as described above has been proposed.
[0007]
[Problems to be solved by the invention]
However, since the apparatus disclosed in Japanese Patent Laid-Open No. 3-117665 compresses EGR gas by a compressor driven by an engine and stores it after accumulating in an accumulator tank, the driving force of the engine is used for this compressor. Therefore, the loss of engine output increases accordingly. Since this loss increases as the engine speed increases and the load increases, there is a problem that the loss increases as high output is required. Further, there is a problem that a compressor and an accumulator having a large capacity are required to perform EGR in a high rotation and high load region.
[0008]
In the apparatus disclosed in Japanese Patent Laid-Open No. 5-180089, a turbine driven by exhaust gas is provided in an exhaust passage, and EGR gas is pressurized by an EGR gas compressor connected to the turbine and is recirculated to the intake passage. However, since this apparatus has three turbines including a power turbine that recovers the exhaust gas power in series with the exhaust passage, the exhaust pressure of the exhaust manifold significantly increases during EGR operation, so that the pumping loss is reduced. There is a problem that the fuel consumption increases and the fuel consumption deteriorates, and there is a problem that the area where the EGR can be performed due to the generation of black smoke due to a decrease in fresh air in a high load operation is limited.
[0009]
The device disclosed in Japanese Patent Laid-Open No. 5-89859 branches the compressed air obtained by the first turbocharger to drive the second turbocharger, and boosts the EGR gas by the compressor of the second turbocharger. At the same time, EGR is performed by releasing the compressed air from the compressor and lowering the intake pressure. However, in this apparatus, since the compressed air is branched, the amount of compressed intake air supplied to the cylinder is reduced, so there is a problem that the amount of intake air with respect to the amount of EGR gas is reduced and smoke is generated.
[0010]
The present invention has been made to solve the above-described problems, and its purpose is to enable EGR even during high-load operation of the engine, and also to ensure a sufficient amount of intake air to the cylinder to generate smoke. As well as preventing deterioration of fuel consumption, the EGR gas can be boosted according to the operating state of the engine to efficiently perform EGR, and the amount of NOx in the exhaust gas in the entire operating range of the engine It is an object to provide an EGR device for a supercharged engine that can reduce the engine.
[0011]
[Means for Solving the Problems]
An EGR device for a supercharged engine for achieving the above-described object is a supercharged engine in which a compressor provided in an intake passage is driven by a turbine provided in the exhaust passage of the engine. Are connected to each other to provide a first EGR passage, and an EGR gas compressor is provided in the first EGR passage to increase the pressure of EGR gas and return to the intake passage. A clutch mechanism is provided between the EGR gas compressor and the turbine. Since it is configured to be connected and disengaged freely, there is no need to newly provide a turbine for an EGR gas compressor in the exhaust passage, so that an increase in exhaust pressure can be prevented and fuel consumption can be prevented from deteriorating. In addition, since there is no decrease in the intake air amount due to the branching and escape of the intake air, the intake air amount supplied to the cylinder can be sufficiently secured, and EGR can be performed while preventing the occurrence of smoke.
[0012]
Further, the downstream side of the exhaust passage from the turbine and the intake passage are connected by the first EGR passage provided with the EGR gas compressor, and the upstream side of the exhaust passage from the turbine and the intake passage are connected by a second EGR. Connect by aisle.
Furthermore, a first EGR valve and a second EGR valve are provided in the first EGR passage and the second EGR passage, respectively, and a rotation speed sensor for detecting the rotation speed of the engine and a load sensor for detecting the load of the engine are further provided. And a controller for controlling the clutch mechanism, the first EGR valve, and the second EGR valve by inputting the output of the rotational speed sensor and the output of the load sensor.
[0013]
With this configuration, the EGR gas pressure and intake pressure can be estimated by inputting the engine speed and load, and the two EGR passages can be used properly according to this magnitude relationship, so EGR can be performed efficiently while preventing engine loss. NOx in the exhaust gas can be reduced over the entire engine operating range.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an EGR device for a supercharged engine according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, in the supercharged engine 1 of the first embodiment, the turbine 2 is provided in the exhaust passage 12, and the compressor 3 provided in the intake passage 11 is driven to compress the fresh air A. The fresh air A is supplied to the intake manifold 11a via the intercooler 6.
[0015]
The exhaust passage 12 and the intake passage 11 of the engine 1 are connected by a first EGR passage 9. Further, an EGR gas compressor 5 is provided in the first EGR passage 9, and a clutch mechanism is provided between the EGR gas compressor 5 and the turbine 2. The EGR gas compressor 5 is configured to be driven by receiving the driving force of the turbine 2.
[0016]
Further, a rotational speed sensor 14 for detecting the rotational speed of the engine 1, a load sensor 15 for detecting the engine load, and a controller 20 are provided. The controller 20 is configured to control the clutch mechanism 4 by inputting the output of the rotation speed sensor 14 and the output of the load sensor 15.
That is, an EGR gas compressor 5 that compresses the EGR gas G in addition to the normal fresh air A compressor 3 is provided in the first EGR passage 9 so that the exhaust gas pressure <intake pressure (boost pressure) when the engine 1 is in a high-load operation state. ), The clutch mechanism 4 is connected to drive the EGR gas compressor 5, the EGR gas is compressed and boosted, and the boosted EGR gas G is supplied to the intake passage 11.
[0017]
With the above configuration, the EGR gas compressor 5 provided in the first EGR passage 9 can make the pressure of the EGR gas G higher than the intake pressure of the fresh air A compressed by the compressor 3 of the supercharger. EGR can also be performed in the high load operation region of the engine 1.
In the second embodiment shown in FIG. 2, the downstream side of the exhaust passage 13 from the turbine 2 and the intake passage 11 are connected by the first EGR passage 9 provided with the EGR gas compressor 5, and the exhaust passage The upstream side of the 12 turbines 2 and the intake passage 11 are connected by a second EGR passage 19.
[0018]
This EGR gas compressor is connected between the EGR gas compressor 5 and the turbine 2 via the clutch mechanism 4 as in the first embodiment of FIG. 1 so that it can be driven by the driving force of the turbine 2. Removably connected.
Further, a first EGR valve 8 is disposed in the first EGR passage 9 and a second EGR valve 18 is disposed in the second EGR passage 19, respectively, and a rotational speed sensor 14 for detecting the rotational speed of the engine 1 and the engine A load sensor 15 for detecting the load and a controller 20 are provided. The controller 20 is configured to input the output of the rotation speed sensor 14 and the output of the load sensor 15 to control the clutch mechanism 4, the first EGR valve 8, and the second EGR valve 18.
[0019]
With the above configuration, the intake pressure is lower than the exhaust pressure in the low / medium load operation region of the engine 1 indicated by N in FIG. 3, so that the first EGR valve 8 is closed and the clutch mechanism 4 is turned off. The second EGR valve is opened, and the EGR gas G is supplied to the intake passage 11 as it is without increasing the pressure through the second EGR passage 19 to perform EGR. As a result, the turbine 2 can drive only the compressor 3 without using the low exhaust energy of the relatively low temperature / low pressure exhaust gas G for boosting the EGR gas, and can be fully utilized on the intake side. A sufficient amount of compressed air can be secured.
[0020]
Further, since the inlet of the second EGR passage 19 is provided on the upstream side of the turbine 2, the exhaust gas G in a relatively high pressure portion on the upstream side of the turbine 2 can be used for EGR, so that it is smooth and efficient. In addition, the EGR gas can be returned to the intake passage.
Further, in the high load operation region indicated by C portion in FIG. 3, since the intake pressure is higher than the exhaust pressure, the first EGR valve 8 is opened, the clutch mechanism 4 is turned on to transmit the driving force, and the second EGR is transmitted. The valve 18 is closed, the EGR gas G is guided to the first EGR passage 9, and the EGR gas G is boosted by the EGR gas compressor 5 and supplied to the intake passage 11 to perform EGR.
[0021]
In this high load operation region C, the energy of the exhaust gas G also increases, so that even if the EGR gas compressor 5 is driven, the compressor 3 can sufficiently compress the fresh air A, and the compressed intake air A can be fully compressed in the cylinder. Since the compressed intake air amount to the cylinder can be secured, an appropriate EGR rate can be secured and EGR can be performed efficiently.
[0022]
That is, it is not necessary to open the waste gate 12b to release a part of the exhaust gas G to lower the intake pressure, so that the energy of the exhaust gas G can be sufficiently utilized by the turbine 2.
Further, since the inlet of the first EGR passage 9 is provided downstream of the turbine 2, the energy of the exhaust gas G is recovered by passing through the turbine 2 before the EGR gas G is recirculated to the intake passage 11 side. Therefore, the compressor 3 can be driven efficiently.
[0023]
Therefore, the EGR gas G path is selected according to the rotational speed of the engine 1 and the load condition by selecting the first EGR passage 9 for boosting the EGR gas G and the second EGR passage 19 for not boosting the EGR gas G. EGR suitable for the driving situation can be performed efficiently.
[0024]
【The invention's effect】
As described above, according to the EGR device of the supercharged engine of the present invention according to claim 1, EGR is performed by supplying the EGR gas boosted by the EGR gas compressor to the intake passage side, so that EGR is possible. The engine operating range can be expanded to a high load range.
[0025]
Since the EGR gas compressor is configured to be driven by the turbine for the intake compressor provided in the exhaust passage via the clutch mechanism, it is not necessary to newly provide the turbine for the EGR gas compressor in the exhaust passage. As a result, the pumping loss can be suppressed and the deterioration of fuel consumption can be prevented.
Further, according to the EGR device of the supercharged engine of the present invention according to claim 2 and claim 3, the EGR passage is recirculated to the intake side without increasing the pressure of EGR gas, and the EGR passage is made into two series. Therefore, in the operation region where the exhaust pressure is higher than the intake pressure, it is recirculated to the intake side via the second EGR passage, and in the operation region where the exhaust pressure is lower than the intake pressure, it is passed through the first EGR passage provided with the EGR gas compressor Since the boosted EGR gas can be recirculated, EGR can be performed efficiently while preventing loss of engine output in accordance with the engine speed and load conditions.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an EGR device for a supercharged engine according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of an EGR device for a supercharged engine according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram showing an EGR region and an EGR operation method of an EGR device for a supercharged engine according to the present invention.
4A and 4B are schematic views showing an EGR region of the prior art, in which FIG. 4A shows an EGR region of an EGR device of a supercharged engine, and FIG. 4B shows an EGR region of an EGR device in a VG turbo engine.
FIG. 5 is a block diagram of a conventional supercharged engine EGR device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 2 Supercharger turbine 3 Supercharger compressor 4 Clutch mechanism 5 EGR gas compressor 6 Intercooler 7 EGR cooler 8 First EGR valve 9 First EGR passage 11 Intake passage
11a Intake manifold 12 Upstream exhaust passage
12a Exhaust manifold 12b Waste gate
13 Downstream exhaust passage 14 Speed sensor
15 Load sensor 18 2nd EGR valve
19 2nd EGR passage 20 Controller

Claims (3)

エンジンの排気通路に設けたタービンによって、吸気通路に設けたコンプレッサを駆動する過給式エンジンにおいて、排気通路と吸気通路とを接続して第1EGR通路を設けると共に、該第1EGR通路に、EGRガスを昇圧して吸気通路に還流するEGRガスコンプレッサを設け、該EGRガスコンプレッサと前記タービンとの間をクラッチ機構を介して継脱自在に連結した過給式エンジンのEGR装置。In a supercharged engine that drives a compressor provided in an intake passage by a turbine provided in an exhaust passage of the engine, the exhaust passage and the intake passage are connected to provide a first EGR passage, and an EGR gas is provided in the first EGR passage. An EGR device for a supercharged engine in which an EGR gas compressor that boosts the pressure to the intake passage is provided, and the EGR gas compressor and the turbine are detachably connected via a clutch mechanism. 前記排気通路の前記タービンより下流側と吸気通路とを、前記EGRガスコンプレッサを配設した前記第1EGR通路で連結すると共に、前記排気通路の前記タービンより上流側と吸気通路とを第2EGR通路で連結した請求項1記載の過給式エンジンのEGR装置。The downstream side of the exhaust passage from the turbine and the intake passage are connected by the first EGR passage provided with the EGR gas compressor, and the upstream side of the exhaust passage from the turbine and the intake passage are connected by a second EGR passage. The supercharged engine EGR device according to claim 1, which is connected. 前記第1EGR通路と前記第2EGR通路に、第1EGR弁と第2EGR弁をそれぞれ配設すると共に、エンジンの回転数を検出する回転数センサーとエンジンの負荷を検出する負荷センサーを設け、更に、前記回転数センサーの出力と前記負荷センサーの出力とを入力して前記クラッチ機構と前記第1EGR弁と前記第2EGR弁の制御を行うコントローラを設けた請求項2記載の過給式エンジンのEGR装置。The first EGR passage and the second EGR passage are provided with a first EGR valve and a second EGR valve, respectively, provided with a rotation speed sensor for detecting the rotation speed of the engine and a load sensor for detecting the load of the engine, The supercharged engine EGR device according to claim 2, further comprising a controller that inputs an output of a rotational speed sensor and an output of the load sensor to control the clutch mechanism, the first EGR valve, and the second EGR valve.
JP22511397A 1997-08-21 1997-08-21 EGR device for supercharged engine Expired - Fee Related JP3674254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22511397A JP3674254B2 (en) 1997-08-21 1997-08-21 EGR device for supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22511397A JP3674254B2 (en) 1997-08-21 1997-08-21 EGR device for supercharged engine

Publications (2)

Publication Number Publication Date
JPH1162715A JPH1162715A (en) 1999-03-05
JP3674254B2 true JP3674254B2 (en) 2005-07-20

Family

ID=16824187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22511397A Expired - Fee Related JP3674254B2 (en) 1997-08-21 1997-08-21 EGR device for supercharged engine

Country Status (1)

Country Link
JP (1) JP3674254B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145313A (en) * 1997-03-03 2000-11-14 Allied Signal Inc. Turbocharger incorporating an integral pump for exhaust gas recirculation
JP2002332919A (en) * 2001-02-26 2002-11-22 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system
JP4207695B2 (en) 2003-07-02 2009-01-14 マツダ株式会社 EGR control device for engine
EP2087223A1 (en) * 2006-11-23 2009-08-12 Renault Trucks Internal combustion engine comprising an exhaust gas recirculation system
KR101014068B1 (en) 2008-07-15 2011-02-14 현대자동차주식회사 Turbo Charger of Engine
GB2457326B (en) * 2008-10-17 2010-01-06 Univ Loughborough An exhaust arrangement for an internal combustion engine
JP2010096161A (en) * 2008-10-20 2010-04-30 Toyota Motor Corp Exhaust emission control device
US8250865B2 (en) 2008-11-05 2012-08-28 Ford Global Technologies, Llc Using compressed intake air to clean engine exhaust gas recirculation cooler
JP2010121469A (en) * 2008-11-17 2010-06-03 Toyota Motor Corp Exhaust emission control device
CN103306804B (en) * 2013-05-31 2016-06-01 长城汽车股份有限公司 A kind of supercharging turbine of automobile engine device
US9556824B2 (en) 2014-03-25 2017-01-31 Hanon Systems Integration of forced EGR/EGR-pump into EGR-cooler
GB2540758A (en) * 2015-07-23 2017-02-01 Gm Global Tech Operations Llc A long route EGR system for a turbocharged automotive system
WO2020001780A1 (en) * 2018-06-29 2020-01-02 Volvo Truck Corporation An internal combustion engine
US11448168B2 (en) 2018-12-28 2022-09-20 Weichai Power Co., Ltd. Exhaust gas recirculation system and engine
CN109356752A (en) * 2018-12-28 2019-02-19 潍柴动力股份有限公司 A kind of gas recirculation system and engine
CN114263551A (en) * 2021-12-21 2022-04-01 天津大学 EGR system

Also Published As

Publication number Publication date
JPH1162715A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6354084B1 (en) Exhaust gas recirculation system for a turbocharged internal combustion engine
JP3674254B2 (en) EGR device for supercharged engine
US20190186390A1 (en) Method and system for a boosted engine
US20180163616A1 (en) Engine system
US11007998B1 (en) Hybrid vehicle
JP2013170455A (en) Internal combustion engine, exhaust circulating method therefor, and control method therefor
JP2010255525A (en) Internal combustion engine and method for controlling the same
JP3664181B2 (en) EGR supercharging system
JP2005009314A (en) Supercharger for engine
JP2009191668A (en) Supercharging device and supercharging engine system
JP2009191667A (en) Supercharging device and supercharging engine system
JP3510438B2 (en) Turbocharged engine
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
US20210262419A1 (en) Boosted engine
JPH11229885A (en) Diesel engine
JP3627470B2 (en) EGR device for supercharged engine
KR102463199B1 (en) Engine system
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JPH05180089A (en) Exhaust gas recirculating device for supercharge engine
JP3387257B2 (en) Supercharged internal combustion engine with exhaust gas recirculation control device
JP2001342839A (en) Turbo supercharging system
JPH10103165A (en) Exhaust gas recirculating device for engine with supercharger
JP4136262B2 (en) Turbocharger system
JP2010249022A (en) Egr system for internal combustion engine, and method for controlling the same
JP5811577B2 (en) Internal combustion engine and EGR method for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees