JP2008001579A - 反応装置、その反応装置を用いた発電装置、及び、電子機器 - Google Patents

反応装置、その反応装置を用いた発電装置、及び、電子機器 Download PDF

Info

Publication number
JP2008001579A
JP2008001579A JP2006175152A JP2006175152A JP2008001579A JP 2008001579 A JP2008001579 A JP 2008001579A JP 2006175152 A JP2006175152 A JP 2006175152A JP 2006175152 A JP2006175152 A JP 2006175152A JP 2008001579 A JP2008001579 A JP 2008001579A
Authority
JP
Japan
Prior art keywords
reactor
wall surface
heat insulating
heat
insulating container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006175152A
Other languages
English (en)
Other versions
JP4155314B2 (ja
Inventor
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006175152A priority Critical patent/JP4155314B2/ja
Priority to US11/811,791 priority patent/US7622208B2/en
Publication of JP2008001579A publication Critical patent/JP2008001579A/ja
Application granted granted Critical
Publication of JP4155314B2 publication Critical patent/JP4155314B2/ja
Priority to US12/424,459 priority patent/US8105723B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】断熱容器の壁を貫通する配管が内部の反応器へ接続される反応装置において、配管が貫通する部分の壁付近の急激な温度変化を抑制し、熱応力を低減させ、安全な反応装置、その反応装置を用いた発電装置、及び、電子機器を提供する。
【解決手段】反応器と、反応器を収容する断熱容器と、断熱容器の壁面を貫通し、反応器と断熱容器外部との間で反応物または生成物を送る配管と、を有する反応装置である。断熱容器の壁面が赤外線吸収率の異なる2種類以上の領域からなり、配管が貫通している壁面と同一壁面に、赤外線吸収率のより高い領域を配置しているので、配管が貫通する部分の壁付近の急激な温度変化を抑制することができ、熱応力が低減され、安全な反応装置、その反応装置を用いた発電装置、及び、電子機器を提供することができる。
【選択図】図2

Description

本発明は、燃料電池装置等に用いる改質器、CO除去器等の高温の動作温度が要求される反応器が断熱容器に収容された反応装置、その反応装置を用いた発電装置、及び、電子機器に関する。
近年では、エネルギー変換効率の高いクリーンな電源として、水素を燃料とする燃料電池が自動車や携帯機器などに応用され始めている。燃料電池は、燃料と大気中の酸素を電気化学的に反応させて、化学エネルギーから電気エネルギーを直接取り出す装置である。
燃料電池に用いる燃料としては水素が挙げられるが、常温で気体であることによる取り扱い・貯蔵に問題がある。アルコール類及びガソリンといった液体燃料を用いる場合には、液体燃料を気化させる気化器、液体燃料と高温の水蒸気を反応させることによって、発電に必要な水素を取り出す改質器、改質反応の副産物である一酸化炭素を除去するCO除去器等が必要となる。
この改質器やCO除去器の動作温度が高温であるため、これらを断熱容器に収納し、放熱を抑制することが行われている。さらに、断熱容器の内壁面に赤外線(波長が0.7μm〜1mm)を反射する反射膜を形成し、外部への熱エネルギーの損失を低減させることも行われている(例えば、特許文献1参照)。
また、CO除去器から断熱容器外部への、燃料の入りや改質ガスの出は、CO除去器に接続された配管を通して行われる。そのため、CO除去器や真空容器と配管との接合部分は接合剤(ガラス同士の場合フリットガラス、金属同士の場合、より低融点の金属や合金)で充填、接合される(例えば、特許文献2参照)。
特開2004−6265号公報 特開2005−259354号
ところで、改質器やCO除去器の配管が貫通する断熱容器の壁には、高温側の配管から熱が伝導するため、断熱容器の壁には配管近傍と外周部との間に大きな温度差が生じ、大きな熱応力が作用し、配管の接合部の強度が低下してしまう。
本発明の課題は、断熱容器の壁を貫通する配管が内部の反応器へ接続される反応装置において、配管が貫通する部分の壁付近の急激な温度変化を抑制し、熱応力を低減させ、安全な反応装置、その反応装置を用いた発電装置、及び、電子機器を提供することである。
以上の課題を解決するため、請求項1に記載の発明は、反応器と、前記反応器を収容する断熱容器と、前記断熱容器の壁面を貫通し、前記反応器と前記断熱容器外部との間で反応物または生成物を送る配管と、を有し、前記断熱容器の壁面は赤外線吸収率の異なる2種類以上の領域からなり、前記断熱容器の壁面の赤外線吸収率のより高い領域を前記配管が貫通していることを特徴とする反応装置である。
請求項2に記載の発明は、反応器と、前記反応器を収容する断熱容器と、前記断熱容器の壁面を貫通し、前記反応器と前記断熱容器外部との間で反応物または生成物を送る配管と、を有し、前記断熱容器の壁面は赤外線吸収率の異なる2種類以上の領域からなり、前記断熱容器の壁面の赤外線吸収率のより高い領域が、前記配管が貫通するのと同一壁面において、貫通部分と離間して配置されることを特徴とする反応装置である。
請求項3に記載の発明は、請求項1または2に記載の反応装置であって、前記赤外線吸収率のより高い領域よりも赤外線吸収率の低い領域には、赤外線反射膜が設けられていることを特徴とする。
請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の反応装置であって、前記赤外線吸収率のより高い領域には、赤外線吸収膜が設けられていることを特徴とする。
請求項5に記載の発明は、請求項4に記載の反応装置であって、前記赤外線吸収膜の吸収係数と膜厚の積は2.3以上であることを特徴とする。
請求項6に記載の発明は、請求項4または5に記載の反応装置であって、前記赤外線吸収膜はC,Fe,Co,Pt,Crのいずれかを主成分とすることを特徴とする。
請求項7に記載の発明は、請求項4または5に記載の反応装置であって、前記赤外線吸収膜はTa−Si−O−N系のアモルファス半導体で、吸収係数は100000/cm以上であることを特徴とする。
請求項8に記載の発明は、請求項7に記載の反応装置であって、Ta−Si−O−N系のアモルファス半導体のモル比が0.6<Si/Ta<1.0かつ0.15<N/O<4.1の範囲であることを特徴とする。
請求項9に記載の発明は、請求項1〜8のいずれか一項に記載の反応装置であって、前記反応器は水素を発生させる改質器を含むことを特徴とする。
請求項10に記載の発明は、発電装置において、請求項1〜9のいずれか一項に記載の前記反応装置により生成される改質ガスから電気化学反応により電力を取り出す発電セルをさらに備えることを特徴とする。
請求項11の発明は、電子機器において、請求項10に記載の前記発電装置を電力供給源として備えることを特徴とする。
本発明によれば、断熱容器の壁面が赤外線吸収率の異なる2種類以上の領域からなり、配管が貫通している壁面と同一壁面に、赤外線吸収率のより高い領域を配置しているので、配管が貫通する部分の壁付近の急激な温度変化を抑制することができ、熱応力が低減され、安全な反応装置、その反応装置を用いた発電装置、及び、電子機器を提供することができる。
以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
図1は、本発明が適用される発電装置1のブロック図である。この発電装置1は、ノート型パーソナルコンピュータ、携帯電話機、PDA(Personal Digital Assistant)、電子手帳、腕時計、デジタルスチルカメラ、デジタルビデオカメラ、ゲーム機器、遊技機、その他の電子機器に備え付けられたものであり、電子機器本体を動作させるための電源として用いられる。
発電装置1は、燃料容器2と、気化器3と、反応装置10と、発電セル(燃料電池セル)4と、発電セル4により生成された電気エネルギーを適切な電圧に変換するDC/DCコンバータ51と、DC/DCコンバータ51に接続される2次電池52と、それらを制御する制御部53と、を備える。燃料容器2は、メタノール、エタノール、ブタン等の燃料と水を別々に又は混合した状態で貯留し、図示しないマイクロポンプにより燃料及び水の混合液を気化器3にて気化させた後に、反応装置10に供給する。
DC/DCコンバータ51は発電セル4により生成された電気エネルギーを適切な電圧に変換したのちに電子機器6に供給する機能の他に、発電セル4により生成された電気エネルギーを2次電池52に充電し、発電セル4側が運転されていない時に、電子機器6に2次電池側から電気エネルギーを供給する機能も果たせるようになっている。制御部53は反応装置10、発電セル4を運転するために必要な図示しないポンプやバルブ類、そして、ヒータ類、DC/DCコンバータ51等を制御し、電子機器6に安定して電気エネルギーが供給されるような制御を行なう。
なお、以下の説明では燃料としてメタノールを使用する場合について説明する。
反応装置10は、高温反応器11と、低温反応器12とを有し、高温反応器11は改質器14、触媒燃焼器16及び図示しない高温ヒータを有し、低温反応器12はCO除去器15及び図示しない低温ヒータを有する。
気化器3は、燃料容器2から供給された燃料と水を気化させる。改質器14は、気化器3から供給された燃料と水の混合気を化学反応式(1)、(2)のように反応させ、主生成物である水素ガス、二酸化炭素ガス及び副生成物である一酸化炭素の混合気体を生成する。CO除去器15は、一酸化炭素を化学反応式(3)のように酸化させることで混合気体から除去する。以下、この一酸化炭素を除去した混合気体を改質ガスという。改質ガスは発電セル4の燃料極側に供給される。
CH3OH+H2O→3H2+CO2 …(1)
2+CO2→H2O+CO …(2)
2CO+O2→2CO2 …(3)
発電セル4の燃料極側にはCO除去器15から改質ガスが供給される。改質ガスのうちの水素ガスは電気化学反応式(4)に示すように、燃料極に設けられた触媒により水素イオンと電子とに分離される。水素イオンは電解質膜を通過して酸素極側へ移動し、電子は外部回路を経て酸素極に移動する。酸素極側では、電気化学反応式(5)に示すように、電解質膜を通過した水素イオンと、外部回路を経て酸素極から供給される電子と、外気から供給される酸素ガスとの化学反応により水を生成する。この燃料極と酸素極の電極電位の差から電気エネルギーを取り出すことができる。
2→2H++2e- …(4)
2H++2e-+1/2O2→H2O …(5)
上記電気化学反応せずに残った水素ガス(以下、オフガスという)は、触媒燃焼器16に供給される。
触媒燃焼器16は、燃料容器2から供給された燃料と水、または、オフガスに、酸素を混在させて燃焼し高温反応器11を250℃以上、例えば約250〜400℃に加熱する。高温ヒータは起動時に触媒燃焼器16の代わりに高温反応器11を加熱し、低温ヒータは起動時に低温反応器12を約110〜190℃に加熱する。
高温反応器11及び低温反応器12は後述する断熱容器30に収納される。高温反応器11と低温反応器12との間には反応物や生成物の流路となる配管21が設けられている(図2参照)。また、低温反応器12には断熱容器30外から反応物を流入させたり断熱容器30外へ生成物を流出させたりするための配管22が設けられている(図2参照)。
具体的には、図1に示すような構成の場合、配管22は6本(ポート)よりなる。気化器3から気化燃料を供給する入力ポート、一酸化炭素除去器15に空気(O)を供給する入力ポート、一酸化炭素除去器15からの改質ガスを発電セル4に供給する出力ポート、発電セル4で未反応のオフガスを触媒燃焼器16に供給する入力ポート、触媒燃焼器16に空気(O)を供給する入力ポート、触媒燃焼器16から排ガスが排出される出力ポートである。
高温反応器11、低温反応器12や配管21,22は、例えばステンレス(SUS304)やコバール合金等の金属板を貼り合わせて形成してもよいし、あるいはガラス基板等を貼り合わせて形成してもよい。
次に、反応装置10を収納する断熱容器30について説明する。図2は反応装置10を収納する断熱容器30の断面図である。断熱容器30は直方体形状をしており、内部に高温反応器11及び低温反応器12が収納されている。高温反応器11と低温反応器12とは配管21で接続されており、低温反応器12は断熱容器30を貫通する配管22により固定されている。
なお、配管21の高温反応器11及び低温反応器12との接合部分、配管22に低温反応器12及び断熱容器30とは、接合部分の隙間に接合剤を充填することで接合される。接合剤としては、配管21,22と、高温反応器11、低温反応器12及び断熱容器30とがガラス同士の場合はフリットガラス、金属同士の場合は、より低融点の金属や合金を用いることができる。
断熱容器30は、ステンレス(SUS304)やコバール合金等の金属板や、ガラス基板等を貼り合わせて形成することができる。これらの金属板の反射率は概ね80%以下、ガラスの反射率は10%程度と低い値である。断熱容器30の内部空間は気体分子による熱伝導や対流を防ぐため、低圧(0.03Pa以下)に維持されている。
また、断熱容器30の内壁面には、反応装置10からの輻射による熱損失を抑制するために、赤外線を反射する反射膜31が形成されている。反射膜31には、例えば金(Au)等の赤外線反射率が高い金属を用いることができる。具体的な反射率については後述する。
これらにより、反応装置10から断熱容器30外部への熱損失を抑えることができる。
断熱容器30には配管22を介して反応装置10から熱量が伝導するので、この部分の断熱効果を他の部分と同様に上げると、配管22の貫通部分の温度と外周部との間に大きな温度差が生じ、大きな熱応力が作用するおそれがある。そこで、本実施形態の断熱容器30の内壁面には、赤外線吸収率の異なる2種類以上の領域が形成され、そのうち赤外線吸収率のより高い領域(放熱促進部)を配管22が貫通するようにしている。
放熱促進部は、断熱容器30の内壁面の他の領域と比較して、赤外線の吸収率がより高い領域であり、この放熱促進部が設けられた壁付近の急激な温度変化を抑制し、熱応力を低減することができる。
例えば、図2(a)に示すように、配管22が貫通された断熱容器30の内壁面に設けられた反射膜31の内側に、赤外線を吸収する吸収膜32をさらに設けることで放熱促進部40aを形成することができる。反射膜31により断熱効果を確保し、放熱促進部40aにより放熱促進部40aが設けられた配管22の接合部付近の急激な温度変化を抑制し、熱応力を低減することができる。
また、図2(b)に示すように、配管22の貫通部分の近傍に吸収膜32を設けずに、配管22が貫通されたのと同一の内壁面において、貫通部分から少し離れた壁面に、吸収膜32を設けることで放熱促進部40bを形成してもよい。吸収膜32は、例えば貫通部分を間に挟むように2箇所に設けてもよいし、あるいは貫通部分を囲むように設けてもよい。
このように吸収膜32を配置することで、配管22を介して反応装置10から断熱容器30に熱量が伝導するとともに、配管22の貫通部分から少し離れた壁面に設けられた吸収膜32により反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わる。したがって、放熱促進部40bが設けられた壁全体の温度をより均一に上昇させることができ、急激な温度変化がより抑制され、熱応力を低減することができる。
以下、吸収膜32として用いる材料や膜厚等について検討する。
〔1〕反射率の検討
まず、放熱促進部40の反射率について検討する。
図3は赤外線に対する放熱促進部40の反射率を10%〜90%の間で10%ずつ変化させた場合の、放熱促進部40の面積と、熱リーク(計算値)との関係を示すグラフである(20%〜90%時のグラフは10%時の値を元に計算)。ここで、吸収膜32の吸収係数を充分大きいと仮定し、吸収膜32を透過し、下地または反射膜31で反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線はないものとした。
なお、低温反応器12の大きさを1.0cm×2.5cm×0.3cmとし、低温反応器12と断熱容器30との距離を0.5cmとした。また、配管21からの熱流入と配管22からの熱流出をともに0.90Wとし、低温反応器12の初期温度を120℃とした。
例えば、放熱促進部40の反射率が10%の場合には、放熱促進部40の面積が4.0cm2の場合、熱リークが約0.35Wであり、低温反応器12の温度が約40℃下がり、約80℃になるということがわかる。
〔2〕吸収係数及び膜厚の検討
次に、放熱促進部40に用いる吸収膜32の吸収係数及び膜厚について検討する。
ここで、図4に示すように、吸収膜32に入射する赤外線の強度をI、吸収膜32の表面で反射する赤外線の強度をR、吸収膜32の吸収係数をα、吸収膜32の表面からの距離(深さ)をtとすると、距離(深さ)tの位置での吸収膜32を透過する赤外線の強度I(t)は、以下の式で表される。
I(t)=(I−R)exp(−αt)
図5にαを10000/cm,30000/cm,60000/cm,100000/cmとしたときの、tとI(t)/(I−R)(=exp(−αt))との関係を示す。
α=100000/cm、t=約230nmの場合、吸収膜32を透過する赤外線の強度は、10%未満となっている。すなわち、αt>約2.3であれば、吸収膜32を透過する赤外線の強度は10%未満となり、さらに下地または反射膜31により反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線は1%未満となる。したがって、膜厚TがαT>約2.3となる膜は吸収膜32として適している。
一方、α=100000/cm、t=25nmの場合、すなわちαt=0.25の場合、吸収膜32を透過する赤外線の強度は、約78%となり、さらに下地または反射膜31により反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線は約61%となるため、吸収膜32として適していない。
〔3〕輻射波長の検討
次に、反応装置10から輻射される波長について検討する。図6は、300K(27℃)、600K(327℃)、900K(627℃)における黒体輻射の波長と輻射密度の関係を示すグラフである。600Kでは波長2μm以上(0.6eV以下)で輻射密度が高くなり、900Kでは波長1.24μm以上(1eV以下)で輻射密度が高くなることがわかる。したがって、放熱促進部40は、波長1.24μm以上の赤外線の反射率が低いことが求められる。
〔4〕金属材料、半金属材料の検討
金属材料、半金属材料は一般に反射率が高いが、ほとんどの波長で吸収係数が105/cm以上であり、膜厚を230nmとすることで吸収膜32の候補とすることができる。そこで、金属材料、半金属材料の反射率について検討する。
図7にAu,Al,Ag,Cu,Rhの波長に対する反射率を示す。この中では、1.24μm以上の波長領域でRhの反射率が比較的低く、吸収膜32の材料の候補とすることができる。
この他に1.24μmの波長で反射率が低い金属として、Fe(反射率75%),Co(反射率78%),Pt(反射率78%),Cr(反射率63%)などが吸収膜32の材料とすることができる。
また、半金属で低反射率の材料としては、グラファイト(層状炭素)がある。グラファイトの反射率は、波長1.24μmで42%、2μmで47%と小さく、吸収膜32の材料とすることができる。また、活性炭と呼ばれる炭素材料は、結晶性が悪く、層状構造も乱れているが、これも吸収膜32の材料の候補となる可能性がある。
〔5〕非金属材料の検討
半導体の多くは、光の波長1.24μm以上の波長領域で、反射率が10〜20%あるいはそれ以下であり、吸収膜32として適した材料と思えるが、ほとんどの場合、吸収係数が1/cm未満と極端に小さい。
しかしながら、ダングリングボンドを持つアモルファス半導体は吸収係数が高く、吸収膜32の材料として用いることができると考えられる。例えば、数多くのダングリングボンドを持つアモルファスシリコンでは、吸収係数は1000/cm以上となり、吸収膜32の材料とすることができる。
また、吸収膜32として、よりふさわしいアモルファス半導体材料に、Ta−Si−O−N系の膜がある。図8に抵抗率が1.0mΩ・cm,5.5mΩ・cmのTa−Si−O−N系膜について、0.5〜3.5eV(波長約2.48μm〜350nm)における吸収係数(cm-1)を測定した結果を示す。抵抗率が1.0mΩ・cmの膜は、この測定範囲内で吸収係数が100000/cm以上となっており、吸収膜32の材料とすることができる。
さらに、本出願人は、モル比が0.6<Si/Ta<1.0,0.15<N/O<4.1の範囲の組成のTa−Si−O−N系膜について、抵抗率が2.5mΩ・cm以下では、吸収係数が100000/cm以上となることを見出した。したがって、上記材料も吸収膜32の材料とすることができる。
<変形例1>
上記実施形態においては、断熱容器30の配管22が貫通された内壁面に放熱促進部40を設けたが、例えば図9(a)に示すように、断熱容器30の内壁面のうち配管22が貫通された部分を反射膜31で覆わずに、下地を露出させることで放熱促進部41aとしてもよい。反射膜31により断熱効果を確保し、放熱促進部41aにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わることで、この付近の急激な温度変化を抑制し、熱応力を低減することができる。
また、図9(b)に示すように、配管22が貫通されていない内壁面の全面に反射膜31aを設けるとともに、配管22が貫通されたのと同一の内壁面において、配管22の貫通部分の近傍に反射膜31bを設け、貫通部分から離れた位置の下地を露出させることで放熱促進部41bとしてもよい。
このように放熱促進部41bを設けることで、配管22を介して反応装置10から断熱容器30に熱量が伝導するとともに、配管22の貫通部分から離れた壁面に設けられた放熱促進部41bにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わる。したがって、放熱促進部41bが設けられた壁全体の温度をより均一に上昇させることができ、急激な温度変化がより抑制され、熱応力を低減することができる。
<変形例2>
また、図10(a)に示すように、断熱容器30の内壁面の全面に吸収膜32を設けるとともに、配管22が貫通されたのと同一の内壁面を除き、吸収膜32の上に反射膜31を設け、この吸収膜32が露出する部分を放熱促進部42aとしてもよい。反射膜31により断熱効果を確保し、放熱促進部42aにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わることで、放熱促進部42aが設けられた壁付近の急激な温度変化を抑制し、熱応力を低減することができる。
また、図10(b)に示すように、断熱容器30の内壁面の全面に吸収膜32を設け、次いで、配管22が貫通されていない内壁面の全面に反射膜31aを設けるとともに、配管22が貫通されたのと同一の内壁面において、配管22の貫通部分の近傍に反射膜31bを設け、配管22の貫通部分から少し離れた位置に吸収膜32が露出した部分を設け、放熱促進部42bとしてもよい。このように放熱促進部42bを設けることで、配管22を介して反応装置10から断熱容器30に熱量が伝導するとともに、配管22の貫通部分から少し離れた壁面に設けられた放熱促進部42bにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わる。したがって、放熱促進部42bが設けられた壁全体の温度をより均一に上昇させることができ、急激な温度変化がより抑制され、熱応力を低減することができる。
<変形例3>
また、図11(a)に示すように、断熱容器30の配管22が貫通されたのと同一の内壁面に吸収膜32を設けるとともに、断熱容器の内壁面の他の部分に反射膜31を設けることで、吸収膜32の部分を放熱促進部43aとしてもよい。この場合、吸収膜32の外周部と反射膜31とが重なってもよい。反射膜31により断熱効果を確保し、放熱促進部43aにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わることで、放熱促進部43aが設けられた壁付近の温度を緩やかに上昇させることができ、急激な温度変化を抑制し、熱応力を低減することができる。
また、図11(b)に示すように、配管22が貫通されていない内壁面の全面に反射膜31aを設け、配管22が貫通されたのと同一の内壁面において、配管22の貫通部分の近傍に反射膜31bを設けるとともに、配管22の貫通部分から少し離れた位置に吸収膜32を設け、この吸収膜32の部分を放熱促進部43bとしてもよい。このように放熱促進部43bを設けることで、配管22を介して反応装置10から断熱容器30に熱量が伝導するとともに、配管22の貫通部分から少し離れた壁面に設けられた放熱促進部43bにより反応装置10から輻射される赤外線が吸収され、輻射熱として断熱容器30に伝わる。したがって、放熱促進部43bが設けられた壁全体の温度をより均一に上昇させることができ、急激な温度変化がより抑制され、熱応力を低減することができる。
<変形例4>
また、反応装置10の反応温度が600℃を超えると、輻射密度の増加が顕著となる(図3参照)。したがって、反射膜31が1重では充分でなくなり、2重にする必要がある。すなわち、図12に示すように、外側の反射膜31の内側に空隙33をあけて第2の反射膜34を設ける必要がある。空隙33は例えば断熱容器30と同じ材料からなる支持部材50により形成される。空隙33をあけることで、第2の反射膜34から第1の反射膜31への熱伝導を防ぎ、断熱効率を高めることができる。
この場合、図13(a)に示すように、第2の反射膜34の配管22が設けられる側に放熱窓35(放熱促進部)を設けてもよい。2重の反射膜31,34により輻射が防止される一方、放熱窓35を設けることで、配管22が貫通された内壁面の壁付近の温度を上昇させ、急激な温度変化を抑制し、熱応力を低減することができる。
また、図13(b)に示すように、第2の反射膜34の配管22が設けられる側に、配管22の周囲から少し離れた位置に放熱窓36(放熱促進部)を設けてもよい。配管22が貫通された貫通部付近は2重の反射膜31,34により輻射が防止される一方、放熱窓36を設けることで、配管22を介して反応装置10から断熱容器30に熱量が伝導するとともに、反応装置10から輻射され放熱窓36を通過し、輻射熱として断熱容器30に伝わる。したがって、配管22が貫通された壁全体の温度をより均一に上昇させることができ、急激な温度変化がより抑制され、熱応力を低減することができる。
本発明が適用される発電装置1のブロック図である。 (a)、(b)は本発明の反応装置10を示す断面図である。 放熱促進部40の反射率及び面積と熱リークとの関係を示すグラフである。 吸収膜32に入射、反射、透過する赤外線の関係を示す模式図である。 tとI(t)/(I−R)との関係を示すグラフである。 黒体輻射の波長と輻射密度の関係を示すグラフである。 Au,Al,Ag,Cu,Rhの波長に対する反射率を示すグラフである。 Ta−Si−O−N系膜の吸収係数を測定した結果を示すグラフである。 (a)、(b)は本発明の反応装置10の変形例(<変形例1>)を示す断面図である。 (a)、(b)は本発明の反応装置10の変形例(<変形例2>)を示す断面図である。 (a)、(b)は本発明の反応装置10の変形例(<変形例3>)を示す断面図である。 本発明の反応装置10の変形例に当たる従来の実施形態を示す断面図である。 (a)、(b)は本発明の反応装置10の変形例(<変形例4>)を示す断面図である。
符号の説明
1 発電装置
3 気化器
4 発電セル(燃料電池セル)
6 電子機器
10 反応装置
11,12 反応器
21,22 配管
30 断熱容器
31,34 反射膜
32 吸収膜
35,36 放熱窓
40a,40b,41a,41b,42a,42b,43a,43b 放熱促進部
14 改質器

Claims (11)

  1. 反応器と、
    前記反応器を収容する断熱容器と、
    前記断熱容器の壁面を貫通し、前記反応器と前記断熱容器外部との間で反応物または生成物を送る配管と、を有し、
    前記断熱容器の壁面は赤外線吸収率の異なる2種類以上の領域からなり、
    前記断熱容器の壁面の赤外線吸収率のより高い領域を前記配管が貫通していることを特徴とする反応装置。
  2. 反応器と、
    前記反応器を収容する断熱容器と、
    前記断熱容器の壁面を貫通し、前記反応器と前記断熱容器外部との間で反応物または生成物を送る配管と、を有し、
    前記断熱容器の壁面は赤外線吸収率の異なる2種類以上の領域からなり、
    前記断熱容器の壁面の赤外線吸収率のより高い領域が、前記配管が貫通するのと同一壁面において、貫通部分と離間して配置されることを特徴とする反応装置。
  3. 前記赤外線吸収率のより高い領域よりも赤外線吸収率の低い領域には、赤外線反射膜が設けられていることを特徴とする請求項1または2に記載の反応装置。
  4. 前記赤外線吸収率のより高い領域には、赤外線吸収膜が設けられていることを特徴とする請求項1〜3のいずれか一項に記載の反応装置。
  5. 前記赤外線吸収膜の吸収係数と膜厚の積は2.3以上であることを特徴とする請求項4に記載の反応装置。
  6. 前記赤外線吸収膜はC,Fe,Co,Pt,Crのいずれかを主成分とすることを特徴とする請求項4または5に記載の反応装置。
  7. 前記赤外線吸収膜はTa−Si−O−N系のアモルファス半導体で、吸収係数は100000/cm以上であることを特徴とする請求項4または5に記載の反応装置。
  8. Ta−Si−O−N系のアモルファス半導体のモル比が0.6<Si/Ta<1.0かつ0.15<N/O<4.1の範囲であることを特徴とする請求項7に記載の反応装置。
  9. 前記反応器は水素を発生させる改質器を含むことを特徴とする請求項1〜8のいずれか一項に記載の反応装置。
  10. 請求項1〜9のいずれか一項に記載の前記反応装置により生成される改質ガスから電気化学反応により電力を取り出す発電セルをさらに備えることを特徴とする発電装置。
  11. 請求項10に記載の前記発電装置を電力供給源として備えることを特徴とする電子機器。
JP2006175152A 2006-06-26 2006-06-26 反応装置、その反応装置を用いた発電装置、及び、電子機器 Expired - Fee Related JP4155314B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006175152A JP4155314B2 (ja) 2006-06-26 2006-06-26 反応装置、その反応装置を用いた発電装置、及び、電子機器
US11/811,791 US7622208B2 (en) 2006-06-26 2007-06-12 Reaction device, and fuel cell device and electronic apparatus using the reaction device
US12/424,459 US8105723B2 (en) 2006-06-26 2009-04-15 Reaction device, and fuel cell device and electronic apparatus using the reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175152A JP4155314B2 (ja) 2006-06-26 2006-06-26 反応装置、その反応装置を用いた発電装置、及び、電子機器

Publications (2)

Publication Number Publication Date
JP2008001579A true JP2008001579A (ja) 2008-01-10
JP4155314B2 JP4155314B2 (ja) 2008-09-24

Family

ID=39006272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175152A Expired - Fee Related JP4155314B2 (ja) 2006-06-26 2006-06-26 反応装置、その反応装置を用いた発電装置、及び、電子機器

Country Status (2)

Country Link
US (2) US7622208B2 (ja)
JP (1) JP4155314B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238603A (ja) * 2008-03-27 2009-10-15 Casio Comput Co Ltd 反応装置及び電子機器
JP2009274032A (ja) * 2008-05-16 2009-11-26 Casio Comput Co Ltd 反応装置及び電子機器
JP2009286638A (ja) * 2008-05-27 2009-12-10 Casio Comput Co Ltd 反応装置及び電子機器
JP2010076965A (ja) * 2008-09-25 2010-04-08 Casio Computer Co Ltd 反応装置、発電システム及び反応装置の製造方法
US8641979B2 (en) 2007-12-17 2014-02-04 Casio Computer Co., Ltd. Reaction device and electronic equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182559B2 (en) * 2004-10-27 2012-05-22 Kyocera Corporation Fuel reformer housing container and fuel reforming apparatus
US20090246576A1 (en) * 2008-03-27 2009-10-01 Casio Computer Co., Ltd. Reaction device and electronic equipment
FR2952756B1 (fr) * 2009-11-18 2011-11-25 Commissariat Energie Atomique Generateur electrique par effet thermoelectrique avec mise en oeuvre de deux reactions chimiques, exothermique et endothermique, pour respectivement generer et dissiper de la chaleur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891131B2 (ja) 2002-03-29 2007-03-14 カシオ計算機株式会社 化学反応装置及び電源システム
JP2005259354A (ja) 2004-03-09 2005-09-22 Nippon Sheet Glass Co Ltd 断熱容器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8641979B2 (en) 2007-12-17 2014-02-04 Casio Computer Co., Ltd. Reaction device and electronic equipment
JP2009238603A (ja) * 2008-03-27 2009-10-15 Casio Comput Co Ltd 反応装置及び電子機器
JP4544329B2 (ja) * 2008-03-27 2010-09-15 カシオ計算機株式会社 反応装置及び電子機器
JP2009274032A (ja) * 2008-05-16 2009-11-26 Casio Comput Co Ltd 反応装置及び電子機器
JP2009286638A (ja) * 2008-05-27 2009-12-10 Casio Comput Co Ltd 反応装置及び電子機器
JP2010076965A (ja) * 2008-09-25 2010-04-08 Casio Computer Co Ltd 反応装置、発電システム及び反応装置の製造方法

Also Published As

Publication number Publication date
US8105723B2 (en) 2012-01-31
US7622208B2 (en) 2009-11-24
US20080113233A1 (en) 2008-05-15
US20090202875A1 (en) 2009-08-13
JP4155314B2 (ja) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4155314B2 (ja) 反応装置、その反応装置を用いた発電装置、及び、電子機器
JP3941632B2 (ja) 改質装置、改質装置の製造方法及び発電システム
JP2004288573A (ja) 改質装置
JP4315193B2 (ja) 反応装置、発電装置及び電子機器
US8177869B2 (en) Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
JP5023716B2 (ja) 蒸発型ゲッター材、ゲッターポンプ、減圧構造、反応装置、発電装置及び電子機器
JP4687455B2 (ja) 断熱容器
US7662349B2 (en) Reactor
US7867297B2 (en) Reactor, fuel cell system and electronic equipment
JP4636028B2 (ja) 燃料電池装置及び電子機器
TWI338410B (en) Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
JP5263275B2 (ja) 断熱容器
US7867298B2 (en) Reacting apparatus comprising a plurality of reactors
JP4258554B2 (ja) 改質装置の封止方法
JP2008171745A (ja) 輻射防止膜、反応装置、燃料電池装置、電子機器、熱線反射膜、及び断熱容器
JP4305432B2 (ja) 反応装置
JP5233410B2 (ja) 反応装置及び電子機器
JP4586700B2 (ja) 反応装置
JP5229269B2 (ja) 反応装置
JP5082533B2 (ja) 反応装置
JP2007070184A (ja) 反応装置
JP2008180170A (ja) ゲッターポンプ、減圧構造、反応装置、発電装置及び電子機器
JP2007084404A (ja) 反応装置
JP2007091546A (ja) 反応装置
JP2007091499A (ja) 反応装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees