JP2007521462A - 軸外干渉計測における誤差に対する補償 - Google Patents

軸外干渉計測における誤差に対する補償 Download PDF

Info

Publication number
JP2007521462A
JP2007521462A JP2005507934A JP2005507934A JP2007521462A JP 2007521462 A JP2007521462 A JP 2007521462A JP 2005507934 A JP2005507934 A JP 2005507934A JP 2005507934 A JP2005507934 A JP 2005507934A JP 2007521462 A JP2007521462 A JP 2007521462A
Authority
JP
Japan
Prior art keywords
stage
axis
wafer
measurement
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005507934A
Other languages
English (en)
Other versions
JP4633624B2 (ja
Inventor
エイ. ヒル、ヘンリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zygo Corp
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/630,361 external-priority patent/US20040061869A1/en
Application filed by Zygo Corp filed Critical Zygo Corp
Publication of JP2007521462A publication Critical patent/JP2007521462A/ja
Application granted granted Critical
Publication of JP4633624B2 publication Critical patent/JP4633624B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一般的に、第1の態様において、本発明の特徴は、ステージ上のアライメント・マークの箇所を決定するための方法であって、干渉計とミラーとの間の経路に沿って測定ビームを送ることであって、少なくとも干渉計またはミラーがステージ上に載置される、測定ビームを送ること、測定ビームを他のビームと組み合わせて、ステージの箇所についての情報を含む出力ビームを生成すること、出力ビームから、第1の測定軸に沿って、ステージの箇所xを測定すること、第1の測定軸に実質的に平行な第2の測定軸に沿って、ステージの箇所xを測定すること、ミラーの表面変化を異なる空間周波数に対して特徴付ける所定の情報から補正項Ψを計算することであって、補正項に対する異なる空間周波数からの寄与を、異なる仕方で重み付けする、補正項Ψを計算すること、第1の測定軸に平行な第3の軸に沿って、アライメント・マークの箇所を、x、x、および補正項に基づいて決定すること、を含む方法である。

Description

本発明は、干渉分光法および干渉計測における誤差に対する補償に関する。
変位測定干渉計では、光学的干渉信号に基づいて、基準物体に対する測定物体の位置の変化をモニタする。干渉計では、測定物体から反射された測定ビームを、基準物体から反射される基準ビームと重ね合わせて干渉させることによって、光学的干渉信号を生成する。
多くの応用例において、測定および基準ビームは、直交偏光であるとともに周波数が異なっている。異なる周波数の生成は、たとえば、レーザ・ゼーマン分裂によって、音響光学的な変調によって、またはレーザ内部において復屈折素子を用いて等によって、行なうことができる。直交偏光しているため、偏光ビーム・スプリッタによって、測定および基準ビームを測定および基準物体に、それぞれ送ることができ、また反射された測定および基準ビームを組み合わせて、重なり合う出射側測定および基準ビームを形成することができる。重なり合う出射側ビームによって出力ビームが形成される。出力ビームはその後、偏光子を通過する。偏光子によって、出射側測定および基準ビームが混合されて、混合ビームが形成される。混合ビーム内の出射側測定および基準ビームの成分が互いに干渉する結果、混合ビームの強度が、出射側測定および基準ビームの相対的な位相とともに変化する。
混合ビームの時間依存性の強度は、検出器によって測定されて、その強度に比例する電気的干渉信号が生成される。測定および基準ビームは周波数が異なるため、電気的干渉信号には、出射側測定および基準ビームの周波数間の差に等しいビート周波数を有する「ヘテロダイン」信号が含まれる。測定および基準経路の長さが、たとえば測定物体を含むステージの平行移動によって、互いに対して変化している場合には、測定されるビート周波数には、2vnp/λに等しいドップラ・シフトが含まれる。ここで、vは測定および基準物体の相対速度、λは測定および基準ビームの波長、nは光ビームが通過する媒体たとえば空気または真空の屈折率、pは基準および測定物体までの光路数である。測定される干渉信号の位相変化は、測定物体の相対位置の変化に対応する。たとえば、2πの位相の変化は、実質的にλ/(2np)の距離変化Lに対応する。距離2Lは、往復の距離変化、または測定物体を含むステージとの間の距離の変化である。言い換えれば、位相Φは、理想的には、Lに正比例しており、平面ミラー干渉計、たとえば高安定性平面ミラー干渉計に対して、Φ=2pkLcosθと表現することができる。ここで、k=2πn/λであり、θは、干渉計の公称軸に対する測定物体の方位である。この軸は、Φが最大になる測定物体の方位から決定することができる。Φが小さい場合、Φは、Φ=2pkL(1−θ)によって近似することができる。
いくつかの実施形態においては、複数の距離測定干渉計を用いて、測定物体の複数の自由度をモニタすることができる。たとえば、複数の変位干渉計を含む干渉分光法システムを用いて、リソグラフィ・ツールにおける平面ミラー測定物体の箇所をモニタする。2本の平行な測定軸に対するステージ・ミラーの箇所をモニタすることによって、2本の測定軸が配置される平面に垂直な軸に対するステージ・ミラーの角度方向についての情報が得られる。このような測定によって、ユーザは、リソグラフィ・ツールの他のコンポーネントに対するステージの箇所および方位を、比較的高い正確度でモニタすることができる。
干渉分光法システムの平面ミラー測定物体における不完全性に起因する表面変化によって、干渉分光法システムを用いてなされる変位および角度測定に誤差が導入される。これらの誤差の影響は、干渉計の測定軸から離れて位置するマークの箇所を決定するときに、増幅される場合がある。しかし軸外測定に対するこれらの誤差の影響は、ミラー表面のプロファイルが分かっているならば、減らすことかまたは取り除くことができる。
干渉分光法システムとして、2つの干渉計を利用して平面ミラー測定物体を2本の平行な測定軸に沿ってモニタするシステムを用いて、ミラー表面プロファイルを走査線に沿ってマッピングすることができる。これは、2本の測定軸のそれぞれにおいて基準点に対するミラー表面の変位をモニタすることを、測定軸に直交する方向にミラーを走査しながら行なうことによって、実現される。ミラーが載置されるステージが干渉計に対して回転しないか、またはわずかなステージ回転も独立にモニタされ対処される場合には、変位測定値間の差から、2本の測定軸間におけるミラー表面の平均勾配の測定値が得られる。さらに、走査線上で勾配を積分することによって、ミラー表面の完全に平坦な表面からのずれ(ミラー「不均一さ」とも言われる)の測定値が得られる。
しかし前述のミラー・マッピングを用いて、ミラー表面の局所的な勾配変化および不均一さに対する干渉計測の補正を行なっても、d−1(dは測定軸の離隔距離)に比例する空間周波数を有するミラー表面変化には対処しない。このような空間周波数を有する変化は、両方の変位測定値に等しく寄与するため、この変化は、変位測定値間の差とはならず、ミラー表面データともならない。
このような変化に対して感度がないことは、少なくとも部分的に軽減することができる。これは、ミラー表面データを空間周波数ドメインに変換すること、および誤差補正項に対するある特定の周波数成分の寄与を、他の周波数成分の場合よりも大きく重み付けすることによって、行なわれる。特に、K=2π/d(およびその高調波)に近い周波数成分を他の成分誤差よりも大きく重み付けすることにより、ミラー・マッピング方法の感度がないことによる誤差の影響を小さくすることができる。
一般的に、第1の態様においては、本発明の特徴は、ステージ上のアライメント・マークの箇所を決定するための方法であって、干渉計とミラーとの間の経路に沿って測定ビームを送ることであって、少なくとも干渉計またはミラーがステージ上に載置される、測定ビームを送ること、測定ビームを他のビームと組み合わせて、ステージの箇所についての情報を含む出力ビームを生成すること、出力ビームから、第1の測定軸に沿って、ステージの箇所xを測定すること、第1の測定軸に実質的に平行な第2の測定軸に沿って、ステージの箇所xを測定すること、ミラーの表面変化を異なる空間周波数に対して特徴付ける所定の情報から補正項Ψを計算することであって、補正項に対する異なる空間周波数からの寄与を、異なる仕方で重み付けする、補正項Ψを計算すること、第1の測定軸に平行な第3の軸に沿って、アライメント・マークの箇所を、x、x、および補正項に基づいて決定すること、を含む方法である。
本方法の実施形態には、以下の特徴および/または他の態様の特徴の1つまたは複数が含まれていても良い。
およびxは、第1および第2の測定軸におけるミラーの箇所に、それぞれ対応することができる。補正項Ψは、第1の測定軸におけるミラー表面の直線からのずれに関係づけることができる。いくつかの実施形態においては、補正項Ψは、X−Xの積分変換に関係づけられる。XおよびXは、第1および第2の測定軸に実質的に直交する方向にステージを走査する間にモニタされるxおよびxに対応する。積分変換は、フーリエ変換とすることができる。Ψに対する、ミラー表面の変化の異なる空間周波数成分からの寄与を、KおよびKの高調波付近の空間周波数成分に対するΨの感度が増加するように重み付けすることができる。ここでKは、2π/d(dは、第1および第2の測定軸間の離隔距離)に対応する。アライメント・マーク箇所は、以下のように与えられる第3の軸上の箇所xに関係づけることができる。
=x+η(x−x)−Ψ
ここでηは、第1の測定軸と第3の軸との間の離隔距離に関係づけられる。
所定の情報は、第1および第2の測定軸に実質的に直交する方向にステージを走査する間に、xおよびxをモニタすることによって、集めることができる。
本方法にはさらに、第1の測定軸に実質的に直交するy軸に沿って、ステージの箇所をモニタすることを含めることができる。第3の軸に沿ったアライメント・マークの箇所は、y軸に沿ったステージの箇所に依存することができる。
測定ビームは、ミラーから2回以上反射することができる。
一般的に、他の態様においては、本発明の特徴は、干渉分光法システムを用いて得られる第1の軸に対するミラーの自由度の測定値を、異なる空間周波数に対してミラーの表面変化に対処する情報に基づいて補正することを含む方法である。補正に対する異なる空間周波数からの寄与を、異なる仕方で重み付けする。
本方法の実施形態には、以下の特徴および/または他の態様の特徴の1つまたは複数が含まれていても良い。
干渉分光法システムは、第2の軸および第3の軸に沿って、ミラーの自由度をモニタすることができる。第2および第3の軸は、第1の軸に平行かつこの軸からずれている。補正に対する、ミラー表面の変化の異なる空間周波数成分からの寄与を、KおよびKの高調波付近の空間周波数成分に対する補正の感度が増加するように重み付けすることができる。ここでKは、2π/d(dは、第2および第3の軸間の離隔距離)に対応する。
一般的に、さらなる態様においては、本発明の特徴は、個別の平行な軸に対するミラー表面の箇所XおよびXを、平行な軸に実質的に直交する経路に沿ってミラー表面を平行移動させる間に、干渉分光法的にモニタすること、モニタされたミラー箇所から、ミラーの表面不完全性に対する異なる空間周波数からの寄与を決定すること、を含む方法である。
本方法の実施形態には、他の態様の特徴が含まれていても良い。
一般的に、他の態様においては、本発明の特徴は、2つのビーム経路間の光路差に関係づけられる位相を含む出力ビームを生成するように構成された干渉計であって、少なくとも一方のビーム経路がミラー表面に接触する干渉計と、干渉計に結合された電子コントローラであって、動作中に電子コントローラは、第1の測定軸に対するミラーの位置xを、出力ビームと、異なる空間周波数に対してミラーの表面変化に対処する誤差補正項とから導き出される情報に基づいて決定し、誤差補正項に対する異なる空間周波数からの寄与は、異なる仕方で重み付けされる、電子コントローラと、を備える装置である。
本装置の実施形態には、以下の特徴の1つまたは複数および/または他の態様の特徴を含むことができる。
装置は、2つのビーム経路間の光路差に関係づけられる位相を含む第2の出力ビームを生成するように構成された第2の干渉計を備えることができ、少なくとも一方のビーム経路がミラー表面に接触し、動作中に電子コントローラは、第2の測定軸に対するミラーの位置xを、出力ビームから導き出される情報に基づいて決定することができる。第1の測定軸は、第2の測定軸と平行にすることができる。装置の動作中に、電子コントローラは、第3の軸に対するマークの位置xを、x、x、および誤差補正項に基づいて決定することができ、第3の軸は第1および第2の測定軸に平行かつこれらの軸からずれていることができる。
他の態様においては、本発明の特徴は、ウェハ上の集積回路の製造において用いるためのリソグラフィ・システムであって、ウェハを支持するためのステージと、空間的にパターニングされた放射線をウェハ上に結像するための照明システムと、結像された放射線に対してステージの位置を調整するための位置合わせシステムと、結像された放射線に対するウェハの位置をモニタするための前述の装置と、を備えるリソグラフィ・システムである。
さらなる態様においては、本発明の特徴は、ウェハ上の集積回路の製造において用いるためのリソグラフィ・システムであって、ウェハを支持するためのステージと、放射線源、マスク、位置合わせシステム、レンズ・アセンブリ、および前述の装置を含む照明システムであって、動作中に、放射線源によって放射線がマスクを通して送られて、空間的にパターニングされた放射線が生成され、位置合わせシステムによって、ウェハの箇所に対してマスクの位置が調整され、レンズ・アセンブリによって、空間的にパターニングされた放射線がウェハ上に結像され、および装置によって、ウェハの箇所に対するマスクの位置がモニタされる照明システムと、を備えるリソグラフィ・システムである。
またさらなる態様においては、本発明の特徴は、リソグラフィ・マスクの製造において用いるためのビーム書き込みシステムであって、基板をパターニングするための書き込みビームを与える供給源と、基板を支持するステージと、基板に書き込みビームを送出するためのビーム送りアセンブリと、ステージおよびビーム送りアセンブリを、互いに対して位置合わせするための位置合わせシステムと、ビーム送りアセンブリに対するステージの位置をモニタするための前述の装置と、を備えるビーム書き込みシステムである。
他の態様においては、本発明の特徴は、ウェハ上の集積回路の製造において用いるためのリソグラフィ方法であって、可動ステージ上にウェハを支持すること、空間的にパターニングされた放射線をウェハ上に結像すること、ステージの位置を調整すること、前述の方法を用いてステージの位置をモニタすること、を含むリソグラフィ方法である。
さらに他の態様においては、本発明の特徴は、集積回路の製造において用いるためのリソグラフィ方法であって、入力放射線をマスクを通して送って、空間的にパターニングされた放射線を生成すること、基準フレームに対してマスクを位置合わせすること、前述の方法を用いて、基準フレームに対するマスクの位置をモニタすること、空間的にパターニングされた放射線をウェハ上に結像すること、を含むリソグラフィ方法。
さらなる態様においては、本発明の特徴は、ウェハ上に集積回路を製造するためのリソグラフィ方法であって、リソグラフィ・システムの第1のコンポーネントをリソグラフィ・システムの第2のコンポーネントに対して位置合わせして、空間的にパターニングされた放射線にウェハを露出すること、前述の方法を用いて、第2のコンポーネントに対する第1のコンポーネントの位置をモニタすること、を含むリソグラフィ方法である。
さらなる態様においては、本発明の特徴は、集積回路の製造方法であって、前述のリソグラフィ方法を含む方法である。
他の態様においては、本発明の特徴は、集積回路の製造方法であって、前述のリソグラフィ・システムを用いることを含む方法である。
さらなる態様においては、本発明の特徴は、リソグラフィ・マスクの製造方法であって、基板をパターニングするために基板に書き込みビームを送ること、書き込みビームに対して基板を位置合わせすること、前述の方法を用いて、書き込みビームに対する基板の位置をモニタすること、を含む方法である。
本発明の実施形態には、以下の優位性の1つまたは複数が含まれていても良い。
平面ミラー測定物体における不完全性に起因する、軸外マーカーの箇所を決定する際の誤差、特に空間周波数≒2π/dおよびその高調波を有するミラー表面変化に付随する誤差を、小さくすることができる。開示される方法は、軸上測定値の誤差を減らすために用いることもできる。
ステージ・ミラー測定物体は、最終的に干渉分光法システムが使用される応用例において使用される干渉分光法システムを用いて、特徴付けることができる。このミラー・マッピングは、その場で行なうことができる。システムの存続時間に渡って起こり得る変化に対処するために、マッピングを繰り返すことができる。
開示される誤差補正方法により、干渉計および/または他のコンポーネントの誤差許容範囲を、測定の正確度を損なうことなく緩和することができる。したがって、いくつかの実施形態においては、システムは、測定の正確度を損なうことなく、安価なコンポーネント(たとえばミラー)を用いることができる。
本発明の1つまたは複数の実施形態の詳細を、添付図面および以下の説明において述べる。本発明の他の特徴、目的、および優位性は、説明および図面から、ならびに請求項から明らかである。
種々の図面における同様の参照符号は、同様の要素を示す。
距離測定干渉計を用いて軸外マーカーの箇所を決定する応用の一例は、リソグラフィ・ツール(リソグラフィ・スキャナとも言われる)においてアライメント・マークの箇所を決定するためのものである。アライメント・マークは、ウェハおよび/またはステージ上の基準マークであり、光学的なアライメント・スコープ(多くの場合に、ツールの露光システムの主光軸から離れて位置する)によって位置決めされるものである。
図1および図2に示すように、典型的なリソグラフィ・ツール100には、ウェハ130の露光領域上にレチクル120を結像するように位置する露光システム110が含まれる。ウェハ130は、ステージ140によって支持されている。ステージ140は、露光システム110の軸112に直交する平面内で、ウェハ130を走査する。ステージ140上には、ステージ・ミラー180が載置されている。ステージ・ミラー180には、公称上は直交する2つの反射表面182および184が含まれている。
干渉分光法システムによって、直交するx測定軸およびy測定軸に沿って、ステージ140の位置がモニタされる。x軸およびy軸は、露光システム110の軸112と交差している。干渉分光法システムには、4つの干渉計210、220、230、および240が含まれている。干渉計210および220は、測定ビーム215および225をそれぞれy軸に平行に送って、ミラー表面182から反射させる。同様に、干渉計230および240は、測定ビーム235および245をそれぞれx軸に平行に送って、ミラー表面184から2回反射させる。各測定ビームは、ミラー表面から反射した後、基準ビームと組み合わされて出力ビームを形成する。各出力ビームの位相は、測定および基準ビーム経路間の光路長差に関係づけられる。検出器212、222、232、および242は、干渉計210、220、230、および240からの出力ビームをそれぞれ検出して、光路長差の情報を電子コントローラ170に伝達する。電子コントローラ170では、情報からステージ位置を決定して、レチクル120に対してステージ140の位置を相応に調整する。
各干渉計に対する入力ビームは、共通の供給源であるレーザ光源152から得られる。ビーム・スプリッタ211、221、231、ならびにミラー241および251は、光源152からの光を干渉計に送る。各干渉計では、その入力ビームを分割して、測定ビームおよび基準ビームにする。本実施形態においては、各干渉計は、その個々の測定ビームを、ミラー180の表面に2回接触する経路に沿って送る。
干渉計230および210は、x軸およびy軸に沿って、ミラー表面184および182の箇所の座標xおよびyをそれぞれモニタする。さらに干渉計240および220は、第2の組の軸(x軸およびy軸から、それぞれずれているがこれらに平行である)に沿って、ステージ140の箇所をモニタする。第2の測定によって、ミラー表面184および182の座標xおよびyが、それぞれ得られる。これらの第2の測定軸のx軸およびy軸からの離隔距離は分かっており、図2においてdおよびd’として示されている。
いくつかの実施形態においては、干渉計210、220、230、および240は、高安定性平面ミラー干渉計(HSPMI)である。図3に示すように、HSPMI300には、偏光ビーム・スプリッタ(PBS)310、レトロリフレクタ320、および基準ミラー330が含まれている。またHSPMI300には、4分の1波長プレート340および350も含まれている。これらは、PBS310とミラー表面184または基準ミラー330との間に、それぞれ位置している。
動作中、PBS310によって、入力ビーム(図3においてビーム360として示される)が、直交偏光成分に分割される。一方の成分である測定ビーム335Aは、PBS310を透過した後、ミラー表面184から反射して、PBS310の方へと戻る。そのPBS310までの戻りにおいて、測定ビームの偏光状態は、4分の1波長プレート340を2回通ることによって、ここではその本来の偏光状態に直交している。そして測定ビームは、PBS310によってレトロリフレクタ320に向けて反射される。レトロリフレクタ320によって、測定ビームはPBS310の方へ戻される。PBS310は、測定ビームをミラー表面184の方へ反射する。ミラー表面184までの第2の進みにおいて、測定ビームをビーム335Bとして示す。再び、ミラー表面184において、ビーム335Bは反射して、PBS310の方へ向かう。4分の1波長プレート340を2回通ることによって、測定ビームの偏光状態が変えられてその本来の状態に戻る。そして測定ビームは、PBS310を透過して、出力ビーム370の成分としてHSPMI300を出て行く。
基準ビームは、PBS310によって最初に反射された入力ビーム360の成分である。基準ビームは、PBS310と基準ミラー330との間を2回通る。各進みにおいて、基準ビームの偏光状態は、4分の1波長プレート350によって90°だけ変えられる。こうして、基準ビームの基準ミラー330までの第1の進みの後に、基準ビームがPBS310を透過する。基準ビームの基準ミラー330までの第2の進みの後に、基準ビームはPBS310によって反射される。基準ビームは、干渉計300から出力ビーム370の成分として出て行く。
HSPMI以外の変位測定干渉計を、システム100において用いることも可能である。他の変位測定干渉計の例としては、単一ビームの干渉計および/または高正確度の平面ミラー干渉計(測定ビームは測定物体まで3回以上、たとえば4回進むことができる)が挙げられる。さらに、前述の説明には、ヘテロダイン干渉分光法の説明が含まれていたが、ホモダイン検出方式を用いることもできる。
再び図1および図2を参照して、リソグラフィ・ツール100には、アライメント・スコープ160(軸112から軸外に位置する)も含まれている。アライメント・スコープ160は、x軸から量ηdだけずれたy軸上の位置にある物体を位置決めするように配置されている。本実施形態においては、ユーザは、アライメント・スコープ160を用いてアライメント・マークを位置決めすることができる。露光システム110に対するアライメント・スコープ180の位置およびx軸およびy軸は明らかであるため、いったんユーザがスコープを用いてアライメント・マーク165を位置決めすれば、露光システムに対するアライメント・マークの箇所は既知となる。いったんユーザがアライメント・マーク165を位置決めすると測定されるx、x、y、およびyの値によって、ステージ上のアライメント・マークの箇所を示す基準座標の組が得られる。これらの基準座標に基づいて、ユーザは、ステージ上のウェハを露光システムに対して正確に平行移動させて、ウェハのターゲット領域を軸112上に位置決めすることができる。
基準座標に基づいてステージの再位置合わせを行なう際には常に、アライメント・スコープ160によってアライメント・マーク165が位置決めされるときのステージの角度方向に対処しなければならない。図4に、ステージ方位の効果を例示する。図4では、第1および第2の測定軸だけでなく、x軸に平行な軸400も示している。軸400上に、アライメント・スコープが配置される。これらの軸に沿ったミラーの箇所は、x、x、およびxによって、それぞれ与えられる。θがゼロの場合、x=x=xである。しかし非ゼロのθの場合、x−x=ηdtanθ≡εである。オフセットεは、アッベ(Abbe)・オフセットと言われる。
完全に平坦なミラーおよび小さいθに対して、以下のようになる。
Figure 2007521462
しかし前述したように、ミラー表面に不完全性(たとえば、表面不均一さおよび/または局所的な勾配変化)があると、xおよびxの干渉分光法的に観察される値に誤差が導入される。以後、観察可能なパラメータを、チルダによって示す。その後、干渉計230および240によって、x およびx が、それぞれ測定される。ここで、x =x+Ψ、およびx =x+Ψであり、ΨおよびΨは、測定値の完全なミラーに対する測定値からのずれを表わす。式(1)において、x およびx を、xおよびxに対して代入すると、以下のようになる。
Figure 2007521462
したがってθが小さい場合、アッベ・オフセットは以下のようになる。
Figure 2007521462
これは、以下のように再計算することができる。
Figure 2007521462
ここでΨは、ミラー表面における不完全性に対処する誤差補正項である。
誤差補正項Ψは、ミラー特徴付けモードにおいて測定されるミラー・マップから決定することができる。ミラー特徴付けモードでは、ステージ140をy−方向に平行移動させることにより、干渉計230および240の測定ビーム235および245がそれぞれ、ミラー表面184をデータ・ラインに沿って走査して、次のものを示す情報を含む信号を生成するようにする。すなわち、ミラー表面184の、x方向の平面からのx−y平面内での角度方向および見かけ上の表面のずれ(すなわち、表面不均一さ)とともに、ステージ140を移動させるための平行移動メカニズムにおける変化に起因する任意の寄与と、他の誤差源(たとえば、周期的な非線形性、ならびに干渉計230および240のビームの測定経路内でのガスの静止および非静止効果)とである。走査によって、X (y)およびX (y)が生成される。これらは、干渉計230および240から得られる変位測定値にそれぞれ対応する。
y−方向にステージ140が平行移動するのと同時に、干渉計210および220が、ミラー表面182の方位を、表面182によって与えられる測定ビーム215および225の固定遮断点に対して、モニタする。このステップにより、ステージ140の、その平行移動メカニズム(たとえばベアリング、駆動メカニズムなど)の機械的な寄与による回転を、測定することができる。ミラー表面182の角度方向を測定することで、走査中にステージ140の角度方向θ(y)の測定値が重複して得られることになる。この値を用いれば、X (y)およびX (y)データから、ステージ140の角度回転の寄与を取り除くことができる。
ステージ140の角度回転に対していったん補正がなされれば、X (y)およびX (y)によって、データ・ラインに沿ったミラー表面184の平均勾配の測定値が得られる。ステージ回転からの寄与がない場合、平均勾配である〈dx/dy〉Mapは、次式によって与えられる。
Figure 2007521462
ここで添え字Mapは、ミラー・マッピング・モードの間に取得されるデータであることを示す。〈dx/dy〉Mapデータに対する線形フィットによって、〈dx/dy〉fitが得られ、これによって公称上の基準表面が得られる。次に誤差関数Ψを、ミラー表面の〈dx/dy〉fitからのずれに従って、以下の形式に基づいて決定する。
平均勾配〈dx/dy〉Mapのフーリエ変換は、以下のように書いても良い。
Figure 2007521462
ここで、
Figure 2007521462
Ψ(x,y,〈dx/dy〉fit)とX (x,y,〈dx/dy〉fit)との間の関係は、以下のようになる。
Figure 2007521462
また次のことにも注意されたい。
Figure 2007521462
式(7)および(9)を、y方向における空間周波数の関数としてのX (x,y,〈dx/dy〉fit)のフーリエ変換に対する以下の手順の数学的操作に従って、解く。以下の手順の数学的操作では、X (x,y,〈dx/dy〉fit)および/またはX (x,y,〈dx/dy〉fit)を、簡単化された表記法で現して、パラメータの数を減らし、たとえばそれぞれ、X および/またはX として、またはそれぞれ、X (x,y)および/またはX (x,y)として、示す場合がある。
Figure 2007521462
Figure 2007521462
Figure 2007521462
Figure 2007521462
Figure 2007521462
フーリエ変換F[Ψ(x,y,〈dx/dy〉fit)]は、式(8)によるF[X (x,y)]に、以下のように関係づけられる。
Figure 2007521462
式(8)を用いて得られるΨ(x,y)−Ψ(x,y)に対する式と、Ψに対する対応する式と、式Ψ=η(Ψ−Ψ)+Ψとを用いて、Ψに対して以下の式が得られる。
Figure 2007521462
Figure 2007521462
したがって、
Figure 2007521462
ここで、
Figure 2007521462
K=2π/dおよびその高調波に近い空間周波数からのΨに対するカーナルI(y,y’)重み寄与は、他の空間周波数の場合よりもはるかに大きい。しかしカーナルI(y,y’)は、以下の場合に特異性がある。
Figure 2007521462
したがって、特異性のわずかな悪影響も抑制するために、乗法的重み関数をカーナルに導入しなければならない。乗法的重み関数のデザインは、信号対ノイズ比を空間周波数の関数として考慮することに基づいて、行なうことができる。乗法的重み関数の一例は、以下である。
Figure 2007521462
ここで、mは整数であり、δK<<2π/dである。他の乗法的重み関数を用いることもできる。
前の導出結果では、Ψに対して、重み関数sin−1(Kd/2)を含む特定のカーナルが得られているが、他の実施形態においては他の重み関数を用いても良い。一般的に、重み関数によって、ミラー特徴付け方法が最も不敏感であるミラー表面プロファイルの成分に対する感度が、増加しなければならない。重み関数の例としては、Kの線形で、幾何学的で、かつ指数的な関数が挙げられる。
いくつかの実施形態においては、ミラー特徴付けモードの間に得られるミラーに関する情報は、軸上測定値を補正するために用いることもできる。さらに、副次的な表面182についても、同様のミラー特徴付けモードを用いて特徴付けを行なうことができる。この情報を用いれば、y軸に沿って、軸上および/または軸外測定値の両方において誤差を減らすことができる。
加えて、いくつかの実施形態においては、干渉分光法システム内の種々のコンポーネントによって導入されるその他の誤差を、他の方法を用いて低減することができる。たとえば、干渉計における非周期誤差は、以下の文献に開示される技術を用いて小さくすることができる。米国特許出願第10/366,587号明細書、発明の名称「干渉分光法システムにおける非周期誤差の特徴付けおよび補償」(2003年2月12日出願)。なお、この文献の内容開示は、本明細書において参照により全体として取り入れられている。
いくつかの実施形態においては、ステージ140の方位を制御する制御システムに、軸外の位置情報を送る前に、軸外測定値を、ミラー表面不完全性に付随する誤差に対して補正する。この結果、これらの誤差がステージ位置に転移することが防止される。
リソグラフィ・ツール(たとえばツール100)は、大規模集積回路たとえばコンピュータ・チップなどの製造に用いられるリソグラフィ応用例において、特に有用である。リソグラフィは、半導体製造業界におけるキー・テクノロジ・ドライバである。オーバーレイの向上は、100nmライン幅(デザイン・ルール)に至るまでおよびそれより下において最も困難な5つの課題の1つである。これについては、たとえば、半導体業界ロードマップ(Semiconductor Industry Roadmap)、p.82(1997)を参照されたい。
オーバーレイは、ウェハおよびレチクル(またはマスク)ステージの位置合わせに用いられる距離測定干渉計の性能、すなわち正確度および精度に、直接依存する。リソグラフィ・ツールによって5000万〜1億ドル/年の製品が生産されることが考えられるため、距離測定干渉計の性能が向上することによって得られる経済的な値は、相当なものになる。リソグラフィ・ツールの歩留まりが1%増加するごとに、約100万ドル/年の経済的利益が集積回路製造業者にもたらされるとともに、実質的な競争力のある優位性がリソグラフィ・ツール供給メーカにもたらされる。
リソグラフィ・ツールの機能は、空間的にパターニングされた放射線を、フォトレジスト・コーティングされたウェハ上に送ることである。プロセスには、ウェハのどの箇所が放射線を受け取るべきかを決定すること(アラインメント)、および放射線をフォトレジストのその箇所に当てること(露光)が伴う。
前述したように、ウェハの位置を正確に合わせるために、ウェハ上には、専用のセンサによって測定可能なアラインメント・マークが含まれる。アラインメント・マークの測定位置によって、ツール内でのウェハの箇所が規定される。この情報によって、ウェハ表面の所望するパターニングの仕様とともに、空間的にパターニングされた放射線に対するウェハのアラインメントが、ガイドされる。このような情報に基づいて、フォトレジスト・コーティングされたウェハを支持する平行移動可能なステージが、ウェハを移動させて、ウェハの正確な箇所が放射線によって露光されるようにする。
露光時、放射線源が、パターニングされたレチクルを照明し、レチクルによって放射線が散乱されて、空間的にパターニングされた放射線が生成される。レチクルはマスクとも言われる。以下では、これらの用語は交換可能に用いる。縮小リソグラフィの場合、散乱された放射線は縮小レンズによって集められて、レチクル・パターンの縮小画像が形成される。あるいは、近接印刷の場合には、散乱された放射線は、ウェハに接触する前に短い距離(通常はミクロンのオーダ)を伝搬して、レチクル・パターンの1:1画像を生成する。放射線によって、レジスト内で光化学的なプロセスが始まり、放射線パターンがレジスト内の潜像に変換される。
干渉分光法システムは、位置合わせメカニズムの重要なコンポーネントである。位置合わせメカニズムによって、ウェハおよびレチクルの位置が制御されて、ウェハ上のレチクル画像が位置合わせされる。このような干渉分光法システムに、前述した特徴が含まれれば、距離測定値に対する周期誤差の寄与が最小になるため、システムが測定する距離の正確度が増加する。
一般的に、リソグラフィ・システム(露光システムとも言われる)には通常、照明システムおよびウェハ位置合わせシステムが含まれる。照明システムには、紫外線、可視、X線、電子、またはイオン放射線などの放射線を供給するための放射線源、および放射線にパターンを与えるためのレチクルまたはマスクが含まれており、この結果、空間的にパターニングされた放射線が生成される。加えて、縮小リソグラフィの場合には、空間的にパターニングされた放射線をウェハ上に結像するためのレンズ・アセンブリを、照明システムに含めることができる。結像された放射線によって、ウェハ上にコーティングされたレジストが、露光される。また照明システムには、マスクを支持するためのマスク・ステージと、マスクを通して送られる放射線に対してマスク・ステージの位置を調整するための位置合わせシステムとが、含まれる。ウェハ位置合わせシステムには、ウェハを支持するためのウェハー・ステージと、結像された放射線に対してウェハー・ステージの位置を調整するための位置合わせシステムとが、含まれる。集積回路の製造には、複数の露光ステップを含むことができる。リソグラフィについての概略的な参考文献としては、たとえば、以下のものを参照されたい。J.R.シーツ(Sheats)およびB.W.スミス(Smith)、マイクロリソグラフィ:科学および技術(Microlithography:Science and Technology)(マーセル・デッカ(Marcel Dekker)社、ニューヨーク、1998)。なお、この文献の内容は本明細書において参照により取り入れられている。
前述した干渉分光法システムを用いれば、ウェハー・ステージおよびマスク・ステージのそれぞれの位置を、露光システムの他のコンポーネント、たとえばレンズ・アセンブリ、放射線源、または支持構造に対して、正確に測定することができる。このような場合、干渉分光法システムを静止構造に取り付けて、測定物体を可動要素たとえばマスクおよびウェハー・ステージの一方に取り付けることができる。あるいは、状況を逆にして、干渉分光法システムを可動物体に取り付けて、測定物体を静止物体に取り付けることもできる。
より一般的には、このような干渉分光法システムを用いて、露光システムの任意の1つのコンポーネントの位置を、露光システムの任意の他のコンポーネントに対して、測定することができる。すなわち干渉分光法システムを、1つのコンポーネントに取り付けるかまたはこれによって支持し、測定物体を、他のコンポーネントに取り付けるかまたはこれによって支持する。
図5に、干渉分光法システム1126を用いたリソグラフィ・ツール1100の他の例を示す。干渉分光法システムを用いて、露光システム内のウェハ(図示せず)の位置を正確に測定する。ここでは、ステージ1122を用いて、露光ステーションに対してウェハを位置合わせして支持する。スキャナ1100には、フレーム1102が含まれている。フレーム1102には、他の支持構造およびこの構造上に保持される種々のコンポーネントが保持されている。露光ベース1104の上部には、レンズ・ハウジング1106が載置されている。レンズ・ハウジング1106の上部には、レチクルまたはマスク・ステージ1116が載置されている。レチクルまたはマスク・ステージ1116は、レチクルまたはマスクを支持するために用いられる。露光ステーションに対してマスクを位置合わせするための位置合わせシステムを、要素1117によって概略的に示す。位置合わせシステム1117には、たとえば、圧電性のトランスデューサ素子および対応する制御エレクトロニクスを含めることができる。説明したこの実施形態には含まれていないが、前述した干渉分光法システムの1つまたは複数を用いて、マスク・ステージの位置だけでなく、リソグラフィ構造の製造プロセスにおいて位置を正確にモニタしなければならない他の可動素子も正確に測定することができる(上記のシーツおよびスミスのマイクロリソグラフィ:科学および技術を参照のこと)。
露光ベース1104の下には、支持ベース1113が吊るされており、この支持ベース1113にはウェハー・ステージ1122が保持されている。ステージ1122には、平面ミラー1128が含まれている。平面ミラー1128は、干渉分光法システム1126によってステージに送られる測定ビーム1154を、反射するためのものである。干渉分光法システム1126に対してステージ1122を位置合わせするための位置合わせシステムを、要素1119によって概略的に示す。位置合わせシステム1119には、たとえば、圧電性のトランスデューサ素子および対応する制御エレクトロニクスを含めることができる。測定ビームは反射されて、露光ベース1104上に載置された干渉分光法システムまで戻る。干渉分光法システムは、前述した実施形態のどれであっても良い。
動作時、放射線ビーム1110、たとえばUVレーザ(図示せず)からの紫外線(UV)ビームが、ビーム成形オプティクス・アセンブリ1112を通過して、ミラー1114によって反射された後に、下方に進む。その後、放射線ビームは、マスク・ステージ1116が保持するマスク(図示せず)を通過する。マスク(図示せず)は、ウェハー・ステージ1122上のウェハ(図示せず)上に、レンズ・ハウジング1106内に保持されるレンズ・アセンブリ1108を介して、結像される。ベース1104およびこれによって支持される種々のコンポーネントは、バネ1120によって表わされる制動システムによって、環境の振動から隔離されている。
リソグラフィ・スキャナの他の実施形態においては、前述した干渉分光法システムの1つまたは複数を用いて、たとえばウェハおよびレチクル(またはマスク)ステージ(しかしこれに限定されない)に付随する複数の軸に沿って、距離および角度を測定することができる。またUVレーザ・ビームではなくて、他のビームを用いてウェハを露光することもできる。たとえば、X線ビーム、電子ビーム、イオン・ビーム、および可視の光学ビームなどが挙げられる。
いくつかの実施形態においては、リソグラフィ・スキャナには、当該技術分野においてカラム基準として知られるものを含めることができる。このような実施形態においては、干渉分光法システム1126から、基準ビーム(図示せず)が外部の基準経路に沿って送られる。外部の基準経路は、放射線ビームを送るある構造(たとえばレンズ・ハウジング1106)上に載置される基準ミラー(図示せず)に接触する。基準ミラーによって、基準ビームは反射されて、干渉分光法システムまで戻る。干渉分光法システム1126によって干渉信号が生成されるのは、干渉信号ステージ1122から反射される測定ビーム1154と、レンズ・ハウジング1106上に載置される基準ミラーから反射される基準ビームとが組み合わされるときである。干渉信号は、放射線ビームに対するステージ位置の変化を示す。さらに他の実施形態においては、干渉分光法システム1126の位置を、レチクル(またはマスク)ステージ1116またはスキャナ・システムの他の可動コンポーネントの位置の変化を測定するような箇所にすることができる。最後に、干渉分光法システムは、同様の方法で、スキャナに加えてまたはスキャナの代わりにステッパを含むリソグラフィ・システムとともに、用いることができる。
当該技術分野において良く知られているように、リソグラフィは、半導体デバイスを作る製造方法の重要な部分である。たとえば米国特許5,483,343号明細書には、このような製造方法のためのステップの概要が述べられている。以下、図6aおよび6bを参照して、これらのステップについて説明する。図6aは、半導体チップ(たとえばICまたはLSI)などの半導体デバイス、液晶パネル、またはCCDの製造手順のフロー・チャートである。ステップ1151は、半導体デバイスの回路を設計するための設計プロセスである。ステップ1152は、回路パターン設計に基づいてマスクを製造するためのプロセスである。ステップ1153は、シリコンなどの材料を用いることによってウェハを製造するためのプロセスである。
ステップ1154は、前工程と呼ばれるウェハ・プロセスである。ここでは、前述のように用意されたマスクおよびウェハを用いて、リソグラフィを通してウェハ上に回路が形成される。ウェハ上に、十分な空間分解能でマスク上のパターンに対応する回路を形成するためには、リソグラフィ・ツールをウェハに対して干渉分光法的に位置合わせする必要がある。本明細書で説明した干渉分光法およびシステムは、ウェハ・プロセスにおいて用いられるリソグラフィの有効性を向上させるのに特に有用であり得る。
ステップ1155は、組み立てステップであり、後工程と呼ばれる。ここでは、ステップ1154によって処理されたウェハが、半導体チップに形成される。このステップには、組み立て(ダイシングおよびボンディング)とパッケージング(チップ封止)とが含まれる。ステップ1156は、検査ステップである。ここでは、ステップ1155によって形成された半導体デバイスの操作性チェック、耐久性チェックなどが行なわれる。これらのプロセスを用いて、半導体デバイスは完成され、出荷される(ステップ1157)。
図6bは、ウェハ・プロセスの詳細を示すフロー・チャートである。ステップ1161は、ウェハ表面を酸化させるための酸化プロセスである。ステップ1162は、ウェハ表面上に絶縁膜を形成するためのCVDプロセスである。ステップ1163は、蒸着によってウェハ上に電極を形成するための電極形成プロセスである。ステップ1164は、ウェハにイオンを注入するためのイオン注入プロセスである。ステップ1165は、ウェハにレジスト(感光性材料)を塗布するためのレジスト・プロセスである。ステップ1166は、前述した露光装置を通して、ウェハ上に、マスクの回路パターンを露光(すなわち、リソグラフィ)によって印刷するための露光プロセスである。この場合も、前述したように、本明細書で説明した干渉分光法システムおよび方法を用いることによって、このようなリソグラフィ・ステップの正確度および分解能が改善される。
ステップ1167は、露光されたウェハを現像するための現像プロセスである。ステップ1168は、現像されたレジスト画像以外の部分を取り除くためのエッチング・プロセスである。ステップ1169は、エッチング・プロセスを受けた後にウェハ上に残るレジスト材料を剥離するためのレジスト剥離プロセスである。これらのプロセスを繰り返すことによって、ウェハ上に回路パターンが形成されて重ね合わせられる。
前述した干渉分光法システムは、物体の相対位置を正確に測定する必要がある他の用途においても使用できる。たとえば、書き込みビームたとえばレーザ、X線、イオン、または電子ビームが、基板またはビームが移動したときに、基板上にパターンをマークする応用例において、干渉分光法システムを用いて、基板と書き込みビームとの間の相対移動を測定することができる。
一例として、図7に、ビーム書き込みシステム1200の概略図を示す。供給源1210によって書き込みビーム1212が生成され、ビーム・フォーカシング・アセンブリ1214から、放射線ビームが、可動ステージ1218によって支持される基板1216に送られる。ステージの相対位置を決定するために、干渉分光法システム1220から、基準ビーム1222が、ビーム・フォーカシング・アセンブリ1214上に載置されるミラー1224に送られ、測定ビーム1226が、ステージ1218上に載置されるミラー1228に送られる。基準ビームが、ビーム・フォーカシング・アセンブリ上に載置されるミラーに接触するため、ビーム書き込みシステムは、カラム基準を用いるシステムの例である。干渉分光法システム1220は、前述した干渉分光法システムのどれであっても良い。干渉分光法システムによって測定される位置変化は、基板1216上での書き込みビーム1212の相対位置の変化に対応する。干渉分光法システム1220は、コントローラ1230に、基板1216上での書き込みビーム1212の相対位置を示す測定信号1232を送る。コントローラ1230からは、出力信号1234が、ステージ1218を支持および位置合わせするベース1236に送られる。加えて、コントローラ1230から信号1238が供給源1210に送られて、書き込みビーム1212の強度を変えるかまたはこれを遮蔽して、書き込みビームが、基板の選択位置のみにおいて、光物理または光化学変化を起こすのに十分な強度で基板に接触するようにする。
さらに、いくつかの実施形態においては、コントローラ1230によって、ビーム・フォーカシング・アセンブリ1214に、基板のある領域上に対して書き込みビームを走査させることができる。走査は、たとえば信号1244を用いて行なわれる。結果として、コントローラ1230から、システムのその他のコンポーネントに命令が出されて、基板がパターニングされる。パターニングは通常、コントローラ内に記憶される電子デザイン・パターンに基づいている。いくつかの応用例では、書き込みビームによって、基板上にコーティングされたレジストがパターニングされ、他の応用例では、書き込みビームによって、基板が直接パターニング、たとえばエッチングされる。
このようなシステムの重要な応用例は、前述したリソグラフィ方法において用いられるマスクおよびレチクルの製造である。たとえば、リソグラフィ・マスクを製造するために、電子ビームを用いて、クロム・コーティングされたガラス基板をパターニングすることができる。書き込みビームが電子ビームである場合、ビーム書き込みシステム内では、真空中に電子ビーム経路が形成されている。また書き込みビームが、たとえば電子またはイオン・ビームである場合には、ビーム・フォーカシング・アセンブリには、真空下で荷電粒子をフォーカスして基板上に送るための電界発生器たとえば四重極レンズが含まれる。書き込みビームが、放射線ビーム、たとえばX線、UV、または可視光線である他の場合には、ビーム・フォーカシング・アセンブリには、放射線をフォーカスして基板に送るための対応するオプティクスが含まれる。
本発明の多くの実施形態について、説明してきた。それにもかかわらず、本発明の趣旨および範囲から逸脱することなく種々の変更を行なっても良いことが理解される。したがって他の実施形態は、添付請求項の範囲内である。
リソグラフィ・ツールの実施形態を示す斜視図。 図1に示すリソグラフィ・ツールのステージおよび干渉分光法システムを示す平面図。 高安定性平面ミラー干渉計を示す概略図。 アッベ・オフセットを示す概略図。 干渉計を含むリソグラフィ・ツールの実施形態を示す概略図。 集積回路を作るためのステップを記述するフロー・チャートを示す図。 集積回路を作るためのステップを記述するフロー・チャートを示す図。 干渉分光システムを含むビーム書き込みシステムを示す概略図。

Claims (31)

  1. ステージ上のアライメント・マークの箇所を決定するための方法であって、
    干渉計とミラーとの間の経路に沿って測定ビームを送ることであって、少なくとも前記干渉計または前記ミラーが前記ステージ上に載置されている、測定ビームを送ること、
    前記測定ビームを他のビームと組み合わせて、前記ステージの箇所についての情報を含む出力ビームを生成すること、
    前記出力ビームから、第1の測定軸に沿って、前記ステージの箇所xを測定すること、
    前記第1の測定軸に実質的に平行な第2の測定軸に沿って、前記ステージの箇所xを測定すること、
    前記ミラーの表面変化を異なる空間周波数に対して特徴付ける所定の情報から補正項Ψを計算することであって、該補正項に対する異なる空間周波数からの寄与を、異なる仕方で重み付けする、補正項Ψを計算すること、
    前記第1の測定軸に平行な第3の軸に沿って、アライメント・マークの箇所を、x、x、および前記補正項に基づいて決定すること、
    を備える方法。
  2. 請求項1に記載の方法において、xおよびxが、前記第1および第2の測定軸における前記ミラーの箇所にそれぞれ対応する、方法。
  3. 請求項1に記載の方法において、前記補正項Ψを、前記第1の測定軸におけるミラー表面の直線からのずれに関係づける、方法。
  4. 請求項1に記載の方法において、前記補正項ΨをX−Xの積分変換に関係づけ、XおよびXが、前記第1および第2の測定軸に実質的に直交する方向に前記ステージを走査する間にモニタされるxおよびxに対応する、方法。
  5. 請求項4に記載の方法において、前記積分変換がフーリエ変換である、方法。
  6. 請求項4に記載の方法において、ミラー表面の変化の異なる空間周波数成分からのΨに対する寄与を、KおよびKの高調波付近の空間周波数成分に対するΨの感度を増加させるように重み付けし、Kは、2π/d(dは、前記第1および第2の測定軸間の離隔距離)に対応する、方法。
  7. 請求項3に記載の方法において、前記アライメント・マーク箇所を、
    =x+η(x−x)−Ψ
    によって与えられる前記第3の軸上の箇所xに関係づけ、
    ηを、前記第1の測定軸と前記第3の軸との間の離隔距離に関係づける、方法。
  8. 請求項1に記載の方法において、前記所定の情報が、前記第1および第2の測定軸に実質的に直交する方向にステージを走査する間にxおよびxをモニタすることによって集められる、方法。
  9. 請求項1に記載の方法であって、さらに、
    前記第1の測定軸に実質的に直交するy軸に沿って、前記ステージの箇所をモニタすること、
    を備える方法。
  10. 請求項9に記載の方法において、前記第3の軸に沿った前記アライメント・マークの箇所が、前記y軸に沿った前記ステージの箇所に依存する、方法。
  11. 請求項1に記載の方法において、測定ビームが、前記ミラーから2回以上反射する、方法。
  12. 方法であって、
    干渉分光法システムを用いて得られる第1の軸に対するミラーの自由度の測定値を、異なる空間周波数に対してミラーの表面変化に対処する情報に基づいて補正することであって、補正に対する異なる空間周波数からの寄与を異なる仕方で重み付けする、補正すること、
    を備える方法。
  13. 請求項12に記載の方法において、干渉分光法システムが、第2の軸および第3の軸に沿ってミラーの自由度をモニタし、該第2および第3の軸は、前記第1の軸に対して平行かつこの軸からずれている、方法。
  14. 請求項13に記載の方法において、ミラー表面の変化の異なる空間周波数成分からの補正寄与を、KおよびKの高調波付近の空間周波数成分に対する補正の感度を増加させるように重み付けし、Kは、2π/d(dは、前記第2および第3の軸間の離隔距離)に対応する、方法。
  15. 方法であって、
    個別の平行な軸に対するミラー表面の箇所xおよびXを、前記平行な軸に実質的に直交する経路に沿ってミラー表面を平行移動させる間に、干渉分光法的にモニタすること、
    前記モニタされたミラー箇所から、ミラーの表面不完全性に対する異なる空間周波数からの寄与を決定すること、
    を備える方法。
  16. 装置であって、
    2つのビーム経路間の光路差に関係づけられる位相を含む出力ビームを生成するように構成された干渉計であって、少なくとも一方のビーム経路がミラー表面に接触する、干渉計と、
    前記干渉計に結合された電子コントローラであって、動作中に該電子コントローラは、第1の測定軸に対するミラーの位置xを、前記出力ビームと、異なる空間周波数に対してミラーの表面変化に対処する誤差補正項とから導き出される情報に基づいて決定し、該誤差補正項に対する異なる空間周波数からの寄与は、異なる仕方で重み付けされる、電子コントローラと、
    を備える装置。
  17. 請求項16に記載の装置であって、さらに、
    2つのビーム経路間の光路差に関係づけられる位相を含む第2の出力ビームを生成するように構成された第2の干渉計、
    を備え、前記2つのビーム経路のうちの少なくとも一方がミラー表面に接触し、動作中に前記電子コントローラは、第2の測定軸に対するミラーの位置xを、前記出力ビームから導き出される情報に基づいて決定する、装置。
  18. 請求項16に記載の装置において、前記第1の測定軸が前記第2の測定軸と平行である、装置。
  19. 請求項18に記載の装置において、動作中に前記電子コントローラが、第3の軸に対するマークの位置xを、x、x、および前記誤差補正項に基づいて決定し、前記第3の軸は前記第1および第2の測定軸に平行かつこれらの軸からずれている、装置。
  20. ウェハ上の集積回路の製造において用いるためのリソグラフィ・システムであって、
    ウェハを支持するためのステージと、
    空間的にパターニングされた放射線を前記ウェハ上に結像するための照明システムと、
    前記結像された放射線に対して前記ステージの位置を調整するための位置合わせシステムと、
    前記結像された放射線に対する前記ウェハの位置をモニタするための請求項16に記載の装置と、
    を備えるリソグラフィ・システム。
  21. ウェハ上の集積回路の製造において用いるためのリソグラフィ・システムであって、
    ウェハを支持するためのステージと、
    放射線源、マスク、位置合わせシステム、レンズ・アセンブリ、および請求項16に記載の装置を含む照明システムであって、動作中に、前記放射線源によって放射線が前記マスクを通して送られて、空間的にパターニングされた放射線が生成され、前記位置合わせシステムによって、前記放射線源からの放射線に対する前記マスクの位置が調整され、前記レンズ・アセンブリによって、前記空間的にパターニングされた放射線が前記ウェハ上に結像され、前記装置によって、前記放射線源からの放射線に対する前記マスクの位置がモニタされる、照明システムと、
    を備えるリソグラフィ・システム。
  22. リソグラフィ・マスクの製造において用いるためのビーム書き込みシステムであって、
    基板をパターニングするための書き込みビームを与える供給源と、
    前記基板を支持するステージと、
    前記基板に前記書き込みビームを送出するためのビーム送りアセンブリと、
    前記ステージおよび前記ビーム送りアセンブリを、互いに対して位置合わせするための位置合わせシステムと、
    前記ビーム送りアセンブリに対する前記ステージの位置をモニタするための請求項16に記載の装置と、
    を備えるビーム書き込みシステム。
  23. ウェハ上の集積回路の製造において用いるためのリソグラフィ方法であって、
    可動ステージ上にウェハを支持すること、
    空間的にパターニングされた放射線を前記ウェハ上に結像すること、
    前記ステージの位置を調整すること、
    請求項12に記載の方法を用いて前記ステージの位置をモニタすること、
    を備えるリソグラフィ方法。
  24. 集積回路の製造において用いるためのリソグラフィ方法であって、
    入力放射線をマスクを通して送って、空間的にパターニングされた放射線を生成すること、
    前記入力放射線に対して前記マスクを位置合わせすること、
    請求項12に記載の方法を用いて、前記入力放射線に対する前記マスクの位置をモニタすること、
    前記空間的にパターニングされた放射線をウェハ上に結像すること、
    を備えるリソグラフィ方法。
  25. ウェハ上に集積回路を製造するためのリソグラフィ方法であって、
    リソグラフィ・システムの第1のコンポーネントをリソグラフィ・システムの第2のコンポーネントに対して位置合わせして、空間的にパターニングされた放射線にウェハを露出すること、
    請求項12に記載の方法を用いて、前記第2のコンポーネントに対する前記第1のコンポーネントの位置をモニタすること、
    を備えるリソグラフィ方法。
  26. 請求項23に記載のリソグラフィ方法を含む集積回路の製造方法。
  27. 請求項24に記載のリソグラフィ方法を含む集積回路の製造方法。
  28. 請求項25に記載のリソグラフィ方法を含む集積回路の製造方法。
  29. 請求項20に記載のリソグラフィ・システムを用いることを含む集積回路の製造方法。
  30. 請求項21に記載のリソグラフィ・システムを用いることを含む集積回路の製造方法。
  31. リソグラフィ・マスクの製造方法であって、
    基板をパターニングするために基板に書き込みビームを送ること、
    前記書き込みビームに対して基板を位置合わせすること、
    請求項12に記載の方法を用いて、前記書き込みビームに対する基板の位置をモニタすること、
    を備える方法。
JP2005507934A 2003-07-29 2003-12-03 軸外干渉計測における誤差に対する補償 Expired - Fee Related JP4633624B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/630,361 US20040061869A1 (en) 2002-07-29 2003-07-29 Compensation for errors in off-axis interferometric measurements
US51742603P 2003-11-04 2003-11-04
PCT/US2003/038215 WO2005017449A1 (en) 2003-07-29 2003-12-03 Compensation for errors in off-axis interferometric measurements

Publications (2)

Publication Number Publication Date
JP2007521462A true JP2007521462A (ja) 2007-08-02
JP4633624B2 JP4633624B2 (ja) 2011-02-16

Family

ID=34426338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005507934A Expired - Fee Related JP4633624B2 (ja) 2003-07-29 2003-12-03 軸外干渉計測における誤差に対する補償

Country Status (2)

Country Link
JP (1) JP4633624B2 (ja)
AU (1) AU2003300806A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522668A (ja) * 2004-02-11 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 製造物の位置決めシステム
EP2554942A1 (fr) * 2011-08-05 2013-02-06 Thales Système optique de mesure d'orientation à coin de cube et masque
EP2554941A1 (fr) * 2011-08-05 2013-02-06 Thales Système optique de mesure d'orientation de casque à coins de cube et optique d'émission télécentrique
JP2013046059A (ja) * 2011-08-23 2013-03-04 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法、および、変位測定システムの較正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310105A (ja) * 1989-06-08 1991-01-17 Nikon Corp 位置測定方法、位置測定装置、位置決め方法、位置決め装置、および露光装置
JPH0361810A (ja) * 1989-07-31 1991-03-18 Kawasaki Steel Corp 円筒状物体の断面プロフィール測定方法
JPH10260009A (ja) * 1997-03-21 1998-09-29 Nikon Corp 座標測定装置
WO2000022376A1 (fr) * 1998-10-14 2000-04-20 Nikon Corporation Procede et dispositif de mesure de forme, procede de commande de position, dispositif a etage, appareil d'exposition et procede de production dudit appareil d'exposition et dispositif et procede de fabrication du dispositif
JP2002365016A (ja) * 2001-06-07 2002-12-18 Nikon Corp 干渉計を用いた位置測定方法、干渉式位置測定装置、露光装置及び露光方法
JP2003534541A (ja) * 2000-05-19 2003-11-18 ザイゴ コーポレイション インサイチュミラー特徴付け

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310105A (ja) * 1989-06-08 1991-01-17 Nikon Corp 位置測定方法、位置測定装置、位置決め方法、位置決め装置、および露光装置
JPH0361810A (ja) * 1989-07-31 1991-03-18 Kawasaki Steel Corp 円筒状物体の断面プロフィール測定方法
JPH10260009A (ja) * 1997-03-21 1998-09-29 Nikon Corp 座標測定装置
WO2000022376A1 (fr) * 1998-10-14 2000-04-20 Nikon Corporation Procede et dispositif de mesure de forme, procede de commande de position, dispositif a etage, appareil d'exposition et procede de production dudit appareil d'exposition et dispositif et procede de fabrication du dispositif
JP2003534541A (ja) * 2000-05-19 2003-11-18 ザイゴ コーポレイション インサイチュミラー特徴付け
JP2002365016A (ja) * 2001-06-07 2002-12-18 Nikon Corp 干渉計を用いた位置測定方法、干渉式位置測定装置、露光装置及び露光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
清野慧、外1名: "混合法による大形鏡面形状のオン・マシン測定に関する研究", 日本機械学会論文集(C編), vol. 第58巻,第550号, JPN6009066766, June 1992 (1992-06-01), JP, pages 301 - 306, ISSN: 0001499103 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522668A (ja) * 2004-02-11 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 製造物の位置決めシステム
EP2554942A1 (fr) * 2011-08-05 2013-02-06 Thales Système optique de mesure d'orientation à coin de cube et masque
EP2554941A1 (fr) * 2011-08-05 2013-02-06 Thales Système optique de mesure d'orientation de casque à coins de cube et optique d'émission télécentrique
FR2978825A1 (fr) * 2011-08-05 2013-02-08 Thales Sa Systeme optique de mesure d'orientation de casque a coins de cube et optique d'emission telecentrique
FR2978826A1 (fr) * 2011-08-05 2013-02-08 Thales Sa Systeme optique de mesure d'orientation a coin de cube et masque
US8854612B2 (en) 2011-08-05 2014-10-07 Thales Optical system for measuring orientation with cubic wedge and mask
US9046347B2 (en) 2011-08-05 2015-06-02 Thales Optical system for measuring the orientation of a helmet using corner cubes and a telecentric emission lens
JP2013046059A (ja) * 2011-08-23 2013-03-04 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法、および、変位測定システムの較正方法
KR101396389B1 (ko) 2011-08-23 2014-05-27 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 디바이스 제조방법, 및 변위 측정 시스템 캘리브레이트 방법
US8937707B2 (en) 2011-08-23 2015-01-20 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and method of calibrating a displacement measuring system

Also Published As

Publication number Publication date
JP4633624B2 (ja) 2011-02-16
AU2003300806A1 (en) 2005-03-07

Similar Documents

Publication Publication Date Title
JP4790632B2 (ja) 多軸干渉計ならびに多軸干渉計を用いる方法およびシステム
JP5276595B2 (ja) リソグラフィツールにおいて使用される距離測定干渉計及びエンコーダ測定システム
JP4546255B2 (ja) フォトリソグラフィック露光サイクルの間のステージ・ミラー歪の工程内補正
JP4216728B2 (ja) 干渉計内のガスの時変光学的性質を補償するための方法および装置
JP2004530869A (ja) 平均干渉位置測定におけるサイクリック・エラーの低減
US7365857B2 (en) Precompensation of polarization errors in heterodyne interferometry
WO2003064968A1 (en) Multiple-pass interferometry
JP2007534941A (ja) 光学干渉計システムおよび光学干渉計システムを用いる方法
US20050134862A1 (en) Characterization and compensation of errors in multi-axis interferometry systems
JP4279679B2 (ja) 干渉法システムにおける非サイクリック・エラーの特性評価および補償
US6791693B2 (en) Multiple-pass interferometry
JP2005525548A (ja) 平面ミラー干渉計におけるビーム・ミスアライメントの幾何学的影響の補償
US7321432B2 (en) Measurement and compensation of errors in interferometers
US7262860B2 (en) Compensation for errors in off-axis interferometric measurements
US20040061869A1 (en) Compensation for errors in off-axis interferometric measurements
JP5340730B2 (ja) 干渉分光法における非周期性の非線形誤差を軽減するための装置および方法
JP2007526450A (ja) 平面ミラー干渉計測定システムにおけるビーム・ミスアライメントの幾何学的な影響に対する補償
JP4633624B2 (ja) 軸外干渉計測における誤差に対する補償
US7274462B2 (en) In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems
JP4469609B2 (ja) マルチパス干渉計
WO2005047974A2 (en) Measurement and compensation of errors in interferometers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100818

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees