JP2007515139A - マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法 - Google Patents

マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法 Download PDF

Info

Publication number
JP2007515139A
JP2007515139A JP2006545698A JP2006545698A JP2007515139A JP 2007515139 A JP2007515139 A JP 2007515139A JP 2006545698 A JP2006545698 A JP 2006545698A JP 2006545698 A JP2006545698 A JP 2006545698A JP 2007515139 A JP2007515139 A JP 2007515139A
Authority
JP
Japan
Prior art keywords
carrier
power
signal
data
voice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006545698A
Other languages
English (en)
Other versions
JP4481998B2 (ja
Inventor
モントジョ、ジュアン
ブシャン、ナガ
ブラック、ピーター・ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2007515139A publication Critical patent/JP2007515139A/ja
Application granted granted Critical
Publication of JP4481998B2 publication Critical patent/JP4481998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2637Modulators with direct modulation of individual subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Small-Scale Networks (AREA)
  • Radio Relay Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Amplifiers (AREA)

Abstract

【課題】マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法。
【解決手段】単一のパワー増幅器を持った送信機を有するマルチ−キャリア アクセス端末伝送パワーは、優先権ベースで複数のキャリアの間で分配される。分配に続いて、キャリアはマルチ−キャリア信号に結合され、パワー増幅器によって増幅され、伝送される。
【選択図】 図4

Description

本発明は概して電気通信に関連し、より具体的にはマルチ−キャリア通信(multi-carrier communications)に関連するものである。
無線通信システムにおいて、ヂュアル−キャリアまたはマルチ−キャリアの端末(terminals)が、音声トラフィックおよび非音声データトラフィックを同時に搬送するためにますます使用されてきている。この関連で、マルチ−キャリア端末(a multi-carrier terminal)は、同時に1つよりも多いキャリア上で情報を伝送する機能(the capability of transmitting information)を有する端末である。多くのそのような端末は、符号分割多元接続(CDMA)無線通信システムにおいて使用されるかもしれない。例えば、高速データや音声トラフィックの同時に伝送される(transmitted simultaneously)ことを必要とするアプリケーションにおいては、音声トラフィックのCDMA2000_lx標準規格に対応する1つのキャリアと、データトラフィックの伝送のために最適化されているCDMA2000_lxEv−DO標準規格に対応する別のキャリアとを用いた、マルチ−キャリア端末を利用することが可能であろう。送信端末(the transmitting terminal)は、データトラフィックの伝送のために、1つのキャリア、「DO」に指定されているキャリア、を使用し、音声トラフィックの伝送のために、「lx」キャリアとして指定された別のキャリアを使用するであろう。これらのシステムの説明は、それらの対応する「第3世代パートナーシッププロジェクト2」(3rd Generation Partnership Project 2)(3GPP2)標準規格の中で見つけられることが出来る。CDMA2000_1xシステムは、「cdma2000紹介 リリース C(cdma2000 Introduction Release C)」3GPP2 C.S0001−C v1.0、May 2002に規定されている。CDMA2000_1xEv−DOシステムは、「cdma2000高速レート パケットデータ エア インタフェース仕様(cdma2000 High Rate Packet Data Air Interface Specification)」3GPP2 C.S0024−0 v4.0、October 2002に規定されている。
マルチ−キャリア端末のための効果的な送信機設計(transmitter design)は、複数のパワー増幅回路(multiple power amplification circuits)を取り入れることができ、各々1つのキャリアに専用となり、また各々パワー増幅器を含む。しかしながら、場所の制限、製造コスト、電力消費、および他の要因が、パワー増幅回路を含むキャリア間でリソースを共用する必要性を決める。従って、マルチ−キャリア端末によって伝送される(transmitted)複数のキャリアの伝送(transmission)のために単一のパワー増幅器を利用することは有益である。
パワー増幅器は、アンテナによる伝送のために変調されたキャリア信号を増幅する送信機(a transmitter)のRFエレメントである。パワー増幅器は、単一エレメント(element)であるかのように描かれ参照され得るけれども、当業者は、そのようなデバイス(device)は1若しくはそれよりも多いステージから構成される得ることを理解するであろう。
マルチ−キャリア端末が、異なるタイプのキャリア信号の同時伝送(simultaneous transmission)のための単一のパワー増幅器を有する場合は、前記パワー増幅器は、スペクトルエミッション条件(spectral emission requirements)によって、搭載バッテリ容量(on-board battery capacity)によって、またキャリア間での何らかの優先権(any priority among the carriers)によって課せられるパワー制限に支配され得る。例えば、統合された(combined)CDMA2000_lx_/_CDMA2000_lxEV−DOの無線通信システムにおいて、音声セルサービスエリア(the voice cell coverage)における劣化を避けるために、lxキャリアは送信機パワー(transmitter power)の割り当てにおいてDOキャリアよりも優先度が高いと仮定する。lxキャリアがDOキャリアよりも高い優先権を有するので、パワー増幅器の最大出力以外にlxキャリアに課される唯一のパワー制限は、移動局の送信パワー(the transmit power)を制限するバッテリ容量とスペクトラムエミッション(spectrum emission)制御スキーム(schemes)である。そのため、DOキャリアがlxキャリアより低い優先権を有する場合は、lxキャリアによって使われない送信機パワー(transmitter power)のある部分だけをDOキャリアに分配することが望ましい。
更に、lxおよびDOキャリアが同時に伝送される時は、マルチ−キャリア端末によって伝送されるマルチ−キャリア波形のパワーは、スペクトルエミッション目標が損なわれないようなレベルに制限されることが望ましい。既存の通信システムの機材と操作にほとんど修正を要求せずに、これらのパワー制約を保持することとが更に望ましい。
従って、当技術分野では、複数のキャリア信号を同時に伝送するために単一のパワー増幅器が使用されるマルチ−キャリア端末において、優先権に従ったキャリアの送信パワーを割り当てるスキームに対する必要性がある。
[要約]
ここに開示される実施例は、単一のパワー増幅器を使用する(served by a single power amplifier)複数のキャリアを有するマルチ−キャリア送信機の第1キャリアに優先権を割り当てること(assigning precedence)によって、また前記第1キャリアを使用するチャネルがアクティブ状態にあるかどうかに応じ、1つまたは複数の他のキャリアに、限度に従い(subject to a limit)、伝送パワーを割り当てること(allocating transmission power)によって、上記に述べられた必要性に応える。これは、第1キャリアが、トータルな利用可能な伝送パワー(the total available transmission power)の内のそれが必要とするものを、その限度まで利用できることを確実にし、また、その次のキャリアが、その必要のために利用可能な、トータルな利用可能な伝送パワーから第1キャリアによって使用されるトータルなパワーを差し引いたパワーを有していることを確実にする。このパワーの順序付けられた分配(this ordered apportioning)は、パワー増幅器を使う複数のキャリアのために使用されることができ、優先権において次のキャリアが、その必要のために利用可能な、トータルな利用可能伝送パワーから優先権において優先する全てのキャリアによって使われたトータルなパワーを差し引いたパワーを有する。
[詳細な説明]
ここで使用される用語「例示的(exemplary)」は、「例(an example)、実例(instance)、または例証(illustration)として機能する」ことを意味する。ここに「例示的」と説明されているどの実施例も、必ずしも他の実施例よりも望ましい又は有利であると解釈されるものではない。この記載において説明される全ての実施例は、当業者が本発明を作り又は使用することを可能にするために提供される例示的な実施例であり、特許請求の範囲によって定義される本発明の範囲を限定するものではない。
加入者ステーション(a subscriber station)は、ここではアクセス端末(an access terminal)(AT)と呼ばれ、可動または固定であるかもしれない、また、1以上の基地局トランシーバー(BTSs)と通信できる。アクセス端末は、基地局コントローラ(BSC)と結合された基地局トランシーバーサブシステムを通して、音声およびデータトラフィックを伝送し(transmits)、受信する(receives)。基地局トランシーバーと基地局コントローラは、アクセスネットワークと呼ばれるネットワークの一部である。アクセスネットワークは、複数のアクセス端末(multiple access terminals)への、及び、からの、音声およびデータの通信を伝達する。アクセスネットワークは、アクセスネットワークの外の更なるネットワーク、例えば公衆交換電話網(PSTN)、企業内イントラネットまたはインターネットなど、に更に接続されることが出来、また各アクセス端末とそのような外のネットワークとの間で音声およびデータの通信を伝達出来る。1つまたは複数の基地局トランシーバーとのアクティブトラフィックチャンネル接続(an active traffic channel connection)を確立したアクセス端末はアクティブアクセス端末と呼ばれ、アクティブ(または「トラフィック」)状態にあると言われる。同様に、前記トラフィックチャンネル自体はアクティブ状態にあると言われる。1つまたは複数の基地局トランシーバーとのアクティブトラフィックチャンネル接続を確立する過程のアクセス端末は、接続設定状態(a connection setup state)にあると言われる。同様に、前記トラフィックチャンネル自体は、接続設定状態にあると言われる。アクティブ状態でもなく接続設定状態でもないトラフィックチャンネルは、アイドル状態(an idle state)にあると言われる。アクセス端末は、無線チャンネルを通じて、又は例えば、光ファイバーや同軸のケーブルを使った有線チャンネルを通じて通信する、任意のデバイスでもよい。アクセス端末は、更に、PCカード、コンパクトフラッシュ(登録商標)、外部または内部モデム、または無線またはワイヤーライン電話などを含むが、それに限定されない、多くのタイプのデバイスの内の何れでもよい。
図1は、ワイドエリアシステム(a wide area system)10を例示しており、そのネットワークアーキテクチャは、1つまたは複数のパケット交換網例えばインターネット20への、又、1つまたは複数の公衆交換電話網(PSTN)例えばPSTN22への、アクセスを持ったアクセス端末(an access terminal)12を提供する。これは説明することを意図されたものであり、本説明において詳述された原理の使用やアプリケーションに限定することを意図されてはいないのであるが、ワイドエリアシステム10は、例えば、ワイドエリア無線システムであるかもしれないし、またアクセス端末12は無線デバイスであるかもしれない。ワイドエリア無線システムとして、システム10は、各々がパケット制御機能を持った1つまたは複数の統合された(integrated)基地局コントローラ(BSC)16に接続された複数の基地局を有する基地局トランシーバーサブシステム(BTS)14のような、ネットワークインフラストラクチャ(network infrastructure)を含むであろう。基地局コントローラで、データは、パケットデータサービングノード(PDSN)18を経由して、インターネット20に及びから、送られ、そして音声は、モバイル交換局(MSC)19を経由して、PSTNに及びから、送られる。アクセス端末12がサブシステム14に信号を送る通信リンクは、リバースリンク(a reverse link)と呼ばれる。サブシステム14がアクセス端末に信号を送る通信リンクは、フォワードリンク(a forward link)と呼ばれる。フォワードおよびリバースリンクは、複数のチャンネル(multiple channel)を含むことが出来る。例えばフォワードリンクは、トラフィック、コントロールおよびパイロットのチャンネルを含むことができる。リバースリンクは、トラフィック、オーバーヘッドおよびパイロットのチャンネルを含むことができる。
例示的ワイドエリア無線システムにおいて、アクセス端末12は、BTS14と無線で通信する無線デバイスにおいて具現化されることができるであろう。アクセス端末12は、複数のキャリアを経由し、リバースリンクで情報をワイドエリアシステムに送信することが可能であり、複数のキャリアの内の二つは、キャリア1およびキャリア2と示される。アクセス端末12はまた、この図に示されていないフォワードリンク上で、ワイドエリアシステム10から情報を受信する機能も有する。アクセス端末が音声信号を送る場合、例えばキャリア1上で、音声信号はBTSに伝送され、そしてBSCに転送される。BSCは、MSCを通してPSTNに音声信号を転送する。アクセス端末はまた、データを、データパケットの形式で、例えばキャリア2上で、パケットをBSCに転送する、BTSに伝送することができる。BSCに結合されまたは統合されたパケットコントロール機能は、データパケットをパケットデータネットワークに転送するPDSNに、データパケットを転送する。
無線ワイドエリアネットワークのネットワークアーキテクチャとアクセス端末との間の双方向信号伝送(bidirectional signal transmission)は、最多数のアクセス端末に所定の品質基準で通信アクセスを提供するために管理される。この点について、例えば、CDMAシステムは、アクセス端末伝送パワ(access terminal transmission power)を、アクセス端末とネットワークの間の通信品質を保つ、しかし、そのような通信全てが引き起こす総干渉を制限するレベルに、制限する。CDMAシステムにおける伝送パワー制御は、オープンループおよびクローズドループ手順の組み合わせ(a combination of open loop and closed loop procedures)を通し実行される。アクセス端末送信機のオープンループパワー制御は、フォワードリンク信号のアクセス端末での受信を必要とし、また、受信されたフォワードリンク信号レベルをもとにして、端末によるリバースリンク伝送パワーレベルの計算を必要とする。クローズドループパワー制御は、フォワードリンク上のアクセス端末への、パワーレベル設定命令(power level setting commands)の伝送によって実行される。このことについては、例えば、本願と共に全て本願譲渡人に譲渡され、又言及することにより組み込まれる、米国特許第5,056,109号、第5,267,262号、第5,933,781号、第6,035,209号、第6,101,179号、および第6,609,008号を見てください。
図2は、フォワードおよびリバースリンク通信のためのアクセス端末に使われることが出来るトランシーバー(a transceiver)190のブロック図である。トランシーバー190は、受信機(a receiver)192、ダイプレクサ(a diplexer)199、送信機(a transmitter)200、およびアンテナ(an antenna)202を含む。受信機192および送信機200は、ダイプレクサ199を通して、アンテナ202に接続される。送信機200がリバースリンク通信のために使われる間、受信機192はフォワードリンク通信をサポートする。他のアクセス端末コンポーネントは示されていないが、組み込まれた特許を参照することにより理解されることができる。図2において、音声(「lx」)モデムは、受信機192からダイプレクサ199を介してフォワードリンク拡散通信(forward link spread communications)を受信し、そして逆拡散し(despreads)、そしてフォワードリンクチャンネルを復調する(demodulates)。モデム203はまた、リバースリンク上で伝送するために、エンコーダ204からの符号化された音声信号を受信する。リバースリンク音声トラフィックをサポートするために、モデム203は音声トラフィックシンボル信号(a voice traffic symbol signal)、パイロットシンボル信号(a pilot symbol signal)、および1つまたは複数のオーバーヘッドシンボル信号(overhead symbol signals)を生成する変調器(modulators)(示されていない)を含む。モデム203は、異なったチャンネル符号に従ってこれらの信号を拡散し(spreads)、総計信号(an aggregate signal)を生成するためにこれらの信号を総計し(sums)、そして拡散符号で総計信号を変調し(modulates)、出力信号パス205に拡散ベースバンド信号を生成する(producing)。出力信号パス205は、自動利得制御(TxAGC)増幅器207、およびミキサー(a mixer)211を含むかもしれない音声伝送回路に、モデム203を接続する。拡散ベースバンド信号は、それが制御されたレベルに増幅される増幅器207
に入力される。増幅器207がベースバンドサンプルを増幅する利得の量は、信号パス209上の増幅器207の制御入力に供給されるAGC利得信号によって決定される。増幅された拡散ベースバンド信号は、ミキサー211の入力への信号パス210上に、出力される。ミキサー211はまた、第1ミキシング信号ej2πfltを受信し、増幅されたベースバンド信号と第1ミキシング信号との積(the product)である信号を生成する。当業者は、ミキシングは数ステップで実行されるかもしれないことを理解するであろう。ミキシングの積(the product)は、所望(desired)のRF周波数への拡散ベースバンド信号のアップコンバージョン(the upconversion)である。便宜上、この積は、「音声キャリア信号(the voice carrier signal)」と呼ばれることが出来る。音声キャリア信号は、ミキサー211をパワー増幅器(PA)215に接続する信号パス213上で提供される。パワー増幅器215は、音声キャリア信号を増幅し、増幅された音声キャリア信号を、ダイプレクサ199を通してパワー増幅器215をアンテナ202に接続する信号パス217上で生成する。アンテナ202から、増幅された音声キャリア信号は、リバースリンク上で基地局トランシーバーサブシステム(示されていない)に伝送される。増幅された音声信号のパワーレベルは、パワー検出器221によって測定され(measured)、信号パス222によってパワー増幅器215の出力に接続される。パワーレベルを測定されている信号は、送信機200から伝送されるアナログ信号であるので、その測定されたパラメータ(the measured parameter)は「伝送パワー(transmission power)」と呼ばれ、その測定値を意味する信号(the signal denoting the measurement)がTxAnalogPowerとして図2に示されている。
送信機200を含むアクセス端末における伝送パワー制御(transmission power control)は、オープンおよびクローズドループパワー制御機能同様に、以下に説明されるものを含む、パワー制御機能を実行できる能力を与えられたパワー制御システムによって実施されることができる。この後者については、組み込まれた米国特許第5,933,781号および第6,609,008号を見てください。パワー制御機能は、例として、システムパワー制御動作を実行するようにプログラムまたは設計されたデジタル信号プロセッサ(DSP)225において具現化されることができる。プロセッサ225は、トランシーバーエレメントとの信号パス接続を備えたスタンドアローン回路基板搭載エレメントかもしれないし、或いは、それは単一の集積回路またはチップセットにおいてトランシーバーエレメントと一体化されているかもしれない。プロセッサ225は、これらパワー制御機能を実施するために必要とされるアクションをとり計算を実行するための、オープンループおよびクローズドループのパワーレベル信号を受け取る。プロセッサ225はまた、信号パス223を経由して、パワー検出器221からTxAnalogPower信号を受け取る。(パワー検出器221は別個のエレメントとして示されているが、プロセッサ225に組み込まれる可能性があることに注意してください。)TxAnalogPower信号は、プロセッサ225が増幅された音声キャリア信号のパワーレベルをセンスすることを可能にし、これに応じ、それは、増幅器207の制御入力にプロセッサ225を接続する信号パス209上で供給されるAGC利得信号によって、音声キャリア信号のパワーレベルを制御または調整することが出来る。明らかに、この時点での音声キャリア信号のパワーレベルの制御は、パワー増幅器215によって生成された増幅した音声キャリア信号のパワーレベルを効率よく制御する。プロセッサ225は、増幅器207の利得量を設定するためにAGC利得信号を調節し、それにより増幅された音声キャリア信号のパワーレベルを保持、増加、または減少させる。プロセッサが作動し実施する、増幅された音声キャリア信号パワーレベルに関する二つの例示的な制約は、バッテリ容量考慮事項によって決定される端末の最大伝送パワー容量(the maximum transmission power capacity)と、ライセンス使用上の実際のまたは提案された規定上の制限である。この後者に関しては、いくつかの無線コンフィギュレーション(radio configurations)用の最大伝送パワーエミッションレベル(maximum transmission power emission levels)を設定する、提案された標準規格TIA/EIA−IS−98Dを参照してください。伝送パワーレベルが最大伝送パワーレベルに達するか超過した場合は、プロセッサ225が増幅器207の利得を制限または減少させ、それは次に、エミッション仕様を損なうことを回避するために、増幅された音声キャリア信号のパワーレベルを制限しまたは減少させる。
マルチ−キャリア端末における伝送パワーの優先分配(PRIORITIZED APPORTIONMENT OF TRANSMISSION POWER IN A MULTI- CARRIER TERMINAL)
ここで、リバースリンク通信用アクセス端末のトランシーバーに使われるマルチ−キャリア送信機(a multi-carrier transmitter)300の全体的ブロック図である、図3を参照する。送信機300は、マルチ−キャリアクセス端末における伝送パワーの、優先分配に利用されることができる。送信機は、音声(「lx」)モデム303から音声入力を受けとる。音声モデム303は、受信機(a receiver)(示されていない)からフォワードリンク拡散音声通信を受信し(receives)、そして逆拡散し(despreads)、そしてフォワードリンク音声チャンネルを復調する(demodulates)。音声モデム303はまた、音声トラフィックシンボル信号、パイロットシンボル信号、および1つまたは複数のオーバーヘッドシンボル信号を生成する変調器(示されていない)を含む。音声モデム303は、異なったチャンネルコードに従ってこれらの信号を拡散し(spreads)、総計音声チャンネル信号(an aggregate voice channel signal)を生成するためにそれらの信号を総計し(sums)、そして拡散符号で総計音声チャンネル信号を変調し(modulates)、出力信号パス305のベースバンドで音声チャンネル信号を生成する。出力信号パス305は、自動利得制御(TxAGC)増幅器307、およびミキサー(a mixer)311を含むことが出来る音声伝送回路(a voice transmission circuits)に、音声モデム303を接続する。音声チャンネル信号は、増幅器307に入力され、そこでこれは制御されたレベルに増幅される。増幅器307が音声チャンネル信号を増幅する利得の量は、信号パス309上の増幅器307の制御入力に供給されるAGC利得信号によって決定される。増幅された音声信号は、ミキサー311の入力への信号パス上に、出力される。ミキサー311はまた、第1ミキシング信号ej2πfltを受信し、増幅された音声チャンネル信号と第1ミキシング信号との積(the product)である信号を生成する。積は、所望のRF周波数への音声チャンネル信号のアップコンバージョンである。便宜上、この積は、「音声キャリア信号(the voice carrier sigmal)」、または単に「音声キャリア(the voice carrier)」と呼ばれるかもしれない。音声キャリア信号は、ミキサー311を信号結合器または加算器(a signal combiner or summer)314に接続する信号パス313上に提供される。
図3の説明を続けると、送信機300は、データ(「DO」)モデム323からのデータ入力を受信する。データモデム323は、受信機(示されていない)からフォワードリンク拡散データ通信を受信し、そして逆拡散し、そしてフォワードリンクデータチャンネルを復調する。データモデム323はまた、データトラフィックシンボル信号、パイロットシンボル信号、確認応答(ACK)シンボル信号、およびデータレートコントロール(DRC)シンボル信号を生成する変調器(示されていない)を含む。データモデム323は、異なったチャンネル符号に従ってそれらの信号を拡散し、総計データチャンネル信号を生成するためにこれらの信号を総計し、そして拡散符号で総計データチャンネル信号を変調し、出力信号パス325上のベースバンドにデータチャンネル信号(a data channel signal)を生成する。出力信号パス325は、自動利得制御(TxAGC)増幅器327、およびミキサー331を含むことが出来るデータ伝送回路(a data transmission circuits)に、データモデム323を接続する。データチャンネル信号は増幅器327に入力され、そこで、それは制御されたレベルに増幅される。増幅器327がデータチャンネル信号を増幅する利得の量は、信号パス329上の増幅器327の制御入力に供給されるAGC利得信号によって決定される。増幅されたデータ信号は、ミキサー331の入力への信号パス330上に、出力される。ミキサー331はまた、第2ミキシング信号ej2πfltを受信し、増幅されたデータチャンネル信号と第2ミキシング信号との積である信号を生成する。積は、所望のRF周波数へのデータチャンネル信号のアップコンバージョンである。更なるデータキャリアを生成するために送信機の更なるセクションがあり得るので、便宜上、この積は、「第1データキャリア信号(the first data carrier signal)」(または「第1データキャリア(the first data carrier)」)と呼ばれるかもしれない。第1データキャリア信号は、ミキサー331を信号結合器または加算器314に接続する信号パス333上に提供される。
信号結合器314は、音声キャリアと、第1データキャリアと、パワー増幅器(PA)345に入力されるマルチ−キャリア信号を生成するために別の送信機回路(示されていない)によって生成されるかもしれない他のキャリアとを総計する(sums)。パワー増幅器345は、マルチ−キャリア信号を増幅し、ダイプレクサ355を通してパワー増幅器345をアンテナ357に接続する信号パス347上に増幅されたマルチ−キャリア信号を生成する。アンテナ357から、増幅されたマルチ−キャリア信号は、リバースリンク上で基地局トランシーバーサブシステム(示されていない)に伝送される。増幅されたマルチ−キャリア信号のパワーレベルは、パワー検出器361によって測定され、信号パス362によってパワー増幅器345の出力に接続される。パワーレベルが測定されている信号は、送信機300によって伝送されるアナログ信号であるので、その測定されたパラメータは「伝送パワー(transmission power)」と呼ばれ、その測定値を意味する信号がTxAnalogPowerとして図3に示されている。
送信機300のためのパワー制御機能は、例として、オープンおよびクローズドループアルゴリズムに従ってシステムパワー制御動作を実行するようにプログラムされた又は設計された、デジタル信号プロセッサ(DSP)365において具現化されることができる。プロセッサ365は、トランシーバーエレメントとの信号パス接続を備えたスタンドアローンエレメントであるかもしれないし、または単一の集積回路またはチップセットにおいてトランシーバーエレメントと一体化されているかもしれない。プロセッサ365は、それらのパワー制御機能を実施するために必要とされるアクションをとり計算を実行するために、オープンループおよびクローズドループのパワーレベル信号を受信する。プロセッサ365はまた、信号パス363を経由して、パワー検出器361からTxAnalogPower信号を受信する。(パワー検出器361は別個のエレメントとして示されているが、プロセッサ365に組み込まれる可能性があることに注意してください。)TxAnalogPower信号は、プロセッサ365が増幅されたマルチ−キャリア信号のパワーレベルをセンスすることを可能にし、これに応じ、それが、増幅器307の制御入力にプロセッサ365を接続する信号パス309上に供給されるAGC利得信号によって、音声キャリア信号のパワーレベルを制御または調整出来る。プロセッサはまた、プロセッサ365を増幅器327の制御入力と接続する信号パス329上に供給されるAGC利得信号によって、第1データキャリア信号のパワーレベルを制御または調節することによって、TxAnalogPower信号に応答する。プロセッサ365は、増幅器307および327の利得量を設定するためにAGC利得信号を調節し、それにより音声および少なくとも1つのデータキャリアのパワーレベルを保持、増加、または減少させる。明らかに、キャリアのパワーレベルの制御が、パワー増幅器215によって生成された増幅したマルチ−キャリア信号のパワーレベルの制御を与える。
1つより多いキャリアの同時伝送をサポートするマルチ−キャリアクセス端末の送信機が、図3の送信機におけるケースのように、1つのパワー増幅器を使用することに制限されていると仮定する。更に、端末からのマルチ−キャリアの同時伝送が次の制約に従うと仮定する:
・マルチ−キャリア信号が有することが出来るパワーの量に関し予め定められた限度(a predetermined limit)がある(「最大伝送パワー(maximum transmission power)」)。予め定められた限度は、例えば、端末パワー容量およびスペクトルエミッション制約(terminal power capacity and spectral emission constrains)から結果として生じるかもしれない。それ故に、伝送パワーはキャリアの間で分配されなければならない。
・伝送パワーの分配について、キャリアの間で優先権(a priority)がある。したがって、最も高い優先権を有するキャリアは、それが達するパワーレベルに関し、予め定められた限度までは、制限がない。その次でより低い優先権のキャリアは、より高い優先権のキャリアへの分配による最大伝送パワーレベルの減少後に残るのと同量の伝送パワーを割り当てられるであろう。
図2を参照すると、パワー検出器221は、パワー増幅器215の出力で、アナログ信号パワーの測定を提供し、プロセッサ225が、規制措置によって、例えば上記IS−98Dに規定されているエミッション制限(emission limitations)によって要求されるかもしれない、伝送パワーレベルのバックオフ(back-off of the transmission power level)を実行することを可能にする。パワー検出器は、マルチ−キャリア、シングルパワー増幅送信機の中で使用されることが出来、例えば、図3において例示されるものであって、上記に説明された制約の強制(imposition of the constraints)を可能にするために、データキャリアパワーを制限する。以下の説明は例示的な実施例であり、ここでは伝送パワーが二つのキャリアの間で分配され、第1キャリア(この例においては、音声トラフィック用)が最も高い優先権を有し、第2キャリア(この例においては、データトラフィック用)が次の優先権を有する。伝送パワーの優先分配の原理を教える上での補助として使われるこの例は、これらの原理のアプリケーションを、二つのキャリアに、音声キャリアが常に最優先順位を与えられる優先スキームに、限定するように意図されておらず、実際に、以下に説明される優先権アルゴリズムは、その優先権の根拠が設計上の選択事項である、二つより多いキャリアの間での分配伝送パワー(apportion transmission power)に、も適合されることが出来る。更に、例は、単一のパワー増幅器を有する端末で、原理を説明する。この説明は、これらの原理のアプリケーションを、単一のパワー増幅器を有する端末に限定することを意図されておらず、寧ろ原理は、同時に伝送されるかもしれない複数のキャリアに単一のパワー増幅器が対応しなければならない状況に、適用する。
パワー増幅器ヘッドルームアルゴリズム(a power amplifier headroom algorithm)は、端末がリバースリンク上で伝送出来る最大データレート(a maximum data rate)を計算するために、データキャリア端末において実施されることが出来る。アルゴリズムは、図3におけるプロセッサ365のようなDSPによって実行されることが出来る。アルゴリズムは最初に、リバースリンクデータチャンネルパイロット信号に対するパワーの上限(an upper bound)を検討する:
PilotPowerUpperBound(dB)
=LPFTxOpenLoop
+PeakFilterTxClosedLoop
+Margin
(1)
式(1)は、パイロットチャンネルに分配されるデータリバースリンク中で利用できる伝送パワーの量の上限を定義する。LPFTxOpenLoop コントリビューション(contribution)は、オープンループパワー制御処理の間に測定される、ローパスフィルタで処理された値である(a low pass filtered value)。PeakFilterTxClosedLoop コントリビューションは、クローズドループパワー制御処理の間に得られる、ピークフィルタで処理された値(a peak filtered value)である。Marginコントリビューションは、データパケットがリバースリンク上で伝送されている全期間の間、パイロットチャンネルに上限を提供し、この数値は、予め定められたレベルに設定されることができ、或いは、チャンネル状態に対応するため動的に変えられることもできる。オープンループおよびクローズドループコントリビューションを得るために使われるフィルターのタイプは別のものである。瞬時値のローパスフィルタは、オープンループパワー制御値を得るために使われ、一方、長い減衰時間を有するピークフィルタは、クローズドループパワー制御値を得るために使われる。
利用できる伝送パワーは、制限されており、そして、パイロット、データ、確認応答(ACK)、およびデータレート制御(DRC)チャンネルの間で分配されなければならない、という事実を考慮して、リバースリンクデータチャンネルは、データチャンネルが利用できる伝送パワーレベルに比例したレートでデータを伝送する(transmit)。これらのチャンネルが利用できる伝送パワーは、パイロットチャンネルのパワーレベルに参照されるチャンネル利得の手段(means of channel gains referenced to the power level)によって決定されることが出来る。従って、チャンネル状態が変わるとき、パワーが再分配されることが出来、データレートの変更が必要になることもある。次の表は、データチャンネル(データチャンネル利得)で利用できるパイロットチャンネルに関し、関連パワー利得に関した必要リンクデータレートを要約したものである。
RL データレート データチャンネル利得
9.6kbs 3.75dB
19.2kbs 6.75dB
38.4kbs 9.75dB
76.8kbs 13.25dB
153.6kbs 18.50dB
さて、パワー増幅器(PA)ヘッドルームアルゴリズムは、実際の値が線形ドメイン(lin)にある場合に、特定のデータレートの伝送のためのパワー増幅器ヘッドルームを与える。
PAHeadroom(レート)
=MaxPower(lin)−
[PilotPowerUpperBound(lin)*T2P(レート)]
(2)
式(1)は、非線形項(dB)で表わされているが、式(2)および続く式は、示された概念の理解を助けるものとして、線形項で表わされていることに注意が必要である。式(2)を参照して理解されることができるように、端末が伝送できる伝送パワーを制限する最大パワーレベル(MaxPower(lin))を参照して、PAヘッドルームは計算される。上記のように、この制限は、単にバッテリ容量から、或いは要因の組み合わせから、生じ得る。どの状況においても、パイロットチャンネルパワーは、データトラフィックと関連して伝送される他のチャンネル(データ、ACK、およびDRC)の根拠となるように(to account for)スケール変更される(be scaled)ことができる。これらの他のチャンネルは、特定データレートのためのパイロットチャンネルに関し、それらのチャンネルの各々の相対的利得を取り入れている、比率T2P(レート)によって考慮される。
従って、
T2P(レート)
=[l+DRCChGain
+ACKChGain
+DataChGain(レート)]
(3)
式(3)は、パイロットチャンネルパワーを、全データトラフィックチャンネルに対する全体的な信号パワーに変換する利得である。明らかに、PAHeadroom(レート)>0であれば、データレートは伝送可能である。この例ではデータトラフィックは音声トラフィックよりも低い優先権を有するので、このヘッドルームアルゴリズムは、マルチ−キャリアの単一パワー増幅器送信機(a multi- carrier, single power amplifier transmitter)における音声キャリアによって使用される伝送パワーの部分に関して、第1データキャリア(音声キャリアに対し第2優先権)がいつでも取ることが出来る最大パワーを計算するためにわずかに変更される。
マルチ−キャリアの単一のパワー増幅器端末(a multi-carrier, single power amplifier terminal)におけるデータキャリアパワー制限は、例えば、最大伝送パワーが制限され、また音声キャリアがどのデータキャリアにも優先して利用できる伝送パワーを与えられているという制約を満たすアルゴリズムに従ったプロセッサ365のようなDSPによって、計算される。言い換えれば、伝送パワーを必要とする任意のデータキャリアは、音声キャリアにそれが必要とする利用可能な伝送パワーのどのような部分であっても与えた後に残っている伝送パワーを割り当てられるであろう。アルゴリズムは、ユーザーおよび操作モードのシステム選択(図3においてプロセッサへのOPコード入力によって示される)の可能性を考慮に入れ、選択に応じ、少なくとも三つのモードが可能である:音声チャンネルおよび最低1つのデータチャンネルがアクティブである(音声/データ);音声チャンネルのみがアクティブである(音声―only);そして、データチャンネルのみがアクティブである(データ−only)。アルゴリズムによって観測されたキャリアの優先権に従って、音声キャリアのパワー制御は、どのデータキャリアの状態も考慮に入れない。しかしながら、どのデータキャリアのパワー制御も、音声キャリアの状態を考慮に入れる。すなわち、音声キャリアは、伝送パワー分配において、どのデータキャリアよりも高い優先権を有する。
音声/データ操作モードにおいて、音声キャリアに対し割り当てられる最大伝送パワーがある(MaxTxPowerAnalog)。ルールとして、音声キャリアは、利用できる伝送パワーの全てを使わない、そして未使用の部分は、データパイロットチャンネルの現在のパワーレベルに従い、データキャリアに提供される。データキャリアに対するパワー分配の最大量の数式は:
MaxDataPower(lin)
=[MaxTxPowerAnalog
−TxAnalogPower]
+[TxPilotPower(lin)*T2P(レート)]
−MarginForVoice
(4)
この計算では、変数MaxTxPowerAnalogはマルチ−キャリア信号が利用できる最大伝送パワーであり、そして、音声チャンネルがアクティブにあるかまたは接続設定モードにある場合に音声キャリアに優先権ベースで、そして、音声キャリアへの、もしあれば、分配に続いて、二次的なベースで1つまたは複数のデータキャリアに、分配されるのは、このパワーである。この変数は、固定値、例えば、最悪のケースの予想される音声キャリアに対する伝送パワー(the worst case expected transmission power for the voice carrier)であるかもしれない、或いは、現在の操作モードに基づき値を生み出す関数(a function that yields a value)であるかもしれない。例えば、音声チャンネルがアクティブであるという条件下で、音声およびデータのチャンネルの両方がアクティブである時に、マルチ−キャリア信号の伝送パワーレベルに関する直接的なチェックとして、MaxTxPowerAnalogを200mW(23dBm)に制限することが必要かもしれない。更に精密な手法に従えば、MaxTxPowerAnalogの値は、音声キャリアのパワーレベルの関数として変更されるかもしれない。例えば、アクティブ音声キャリアのパワーレベルが23dBmよりも大幅に下回る場合、アクティブな二つ以上のチャンネルを有するマルチ−キャリア信号に対するスペクトル伝送レベルが満たされる(can be met)限り、トータルな伝送パワーに関する制約を緩和することは有効かもしれない。データトラフィックが利用できる伝送パワーの量は、MaxTxPowerAnalogから音声キャリアパワーを単に引き算することによって計算されることが出来るであろうと、人は思うであろう。しかしながら、変数TxAnalogPowerは、例えば、図3のパワー増幅器345の出力での検出器361によって測定された伝送パワーであり、そしてこの測定値は音声キャリアおよびデータキャリア(もしあれば)によって使われている伝送パワーのトータル量(the total amount)を表すものである。従って、データキャリアによって使われる伝送パワーの量は、より高い優先権のキャリアに分配された伝送パワーによってのみ減少される(diminished)伝送パワーの量に計算を限定するために、
項[TxPilotPower(lin)*T2P(レート)]によって追加戻しされる(added back)。変数TxPilotPowerは、データパイロットチャンネルの現在のパワーレベルであり、そしてT2Pは、現在の全体的なトラフィック対パイロット比(the current overall traffic to pilot ratio)である。MarginForVoice変数は、音声キャリアの周波数において予想される、または知られている伝送障害に対する防御としての、音声キャリアへの追加伝送パワーの増加割り当てであり、この値は、固定または関数によって定められる。一旦この計算が完了されると、データキャリアのパワーレベルは、増幅器327に供給されるAGC利得信号を経由してプロセッサ365によって設定されることが出来、そしてデータレートは、MaxPowerの代わりにMaxDataPowerを用いたPAHeadroom式を解くことによって決定されることが出来る。
音声−only操作モードでは、音声キャリアパワー制御計算はプロセッサ365によって計算され、その結果は、増幅器307の制御入力に供給されるAGC利得信号を経由して増幅器307の利得を設定することによって実行される。端末が音声onlyモードで動作している間は、端末ユーザーは、Eメールプログラムを呼び出すことができる。一旦、Eメールメッセージが作成され、ユーザーが「メール送信(Send Mail)」命令を作動させると、Eメールトラフィックを搬送するリバースリンクデータチャンネルは接続設定状態に入り、ここでは、1つまたは複数のアクセスプローブ(access probes)がデータチャンネルをアクティブ状態にするためにリバースリンク上に送られるであろう。一旦チャンネルがアクティブ状態にされると、音声/データモードに入り、Eメールメッセージが送信される。このようにデータチャンネルが、第1データキャリアを経由してデータ伝送を開始する準備のために接続設定状態に入るようなそのような時に、データモデム323は、リバースリンクの第1データチャンネル上のアクセスプローブの伝送を起こさせることを開始する。プロセッサはここで、データキャリアが現在のアクセスプローブを伝達するパワーレベルを計算し設定しなければならない。この場合、MaxDataPowerは次のとおりに計算される:
MaxDataPower(lin)
=[MaxTxPowerAnalog−TxAnalogPower]
−MarginForVoice
(5)
MaxDataPower用に計算された値は、現在のアクセスプローブが設定される最大パワーであり、それは、増幅器327のためのAGC利得用に適切な値を設定する、プロセッサ365によるのかもしれない。
データ−only操作モードでは、データチャンネルは、アクティブである。接続設定状態の音声チャンネルがなければ、プロセッサ365が、ゼロに設定されたMarginForVoiceコンポーネントを用いて、上記の式(4)に従ってデータキャリアのパワーを設定する。端末がデータonlyモードで動作している間、端末ユーザーは電話番号を入力しているかもしれないが、それが、音声チャンネルを接続設定状態に入らせ、ここでは、1つまたは複数のアクセスプローブが、音声チャンネルをアクティブ状態にするために送られる。しかしながら、この例示的ケースでは、ユーザーが「呼送信(Send Call)」命令を作動させるまで、端末は音声/データモードに入らないであろう。音声チャンネルが設定モードに入る時、音声モデム303がアクセスフラグ(図3のプロセッサ365に入力されるフラグ(FLAG))を発行し、そして音声チャンネル上でアクセスプローブを送信する準備をする。アクセスフラグに応答して、プロセッサ365は、式(4)におけるMarginForVoiceを最大値に設定し、その式を解き、そして増幅器327の利得を適切に調節することによって、データキャリアに割り当てられる伝送パワーの部分を調節する。データキャリアパワーが音声キャリアに対応する(accommodate)ために減らされる場合、プロセッサ365がPAHeadroom式(2)を使い、データチャンネルのデータレートが変えられるべきかどうかを決定する。変更が必要であれば、データモデム323にリバースリンクデータキャリア上のデータレートを変更するように信号が送られる。
マルチ−キャリアクセス端末における伝送パワーの優先分配の方法が、図4に於いて示されている。この方法の全体的な流れと個別の動作(individual acts)は、図3のマルチ−キャリア送信機を参照して説明されるが、これは、理解の容易さのためだけになされるものであり、実際、この方法は、多くの他のマルチ−キャリア端末において実施されることが出来る。図4では、アクセス端末は、電源が入れられており、プロセッサ365へのOPモード入力で定義されたある初期操作モードにあると仮定する。この状態を、この方法の開始(START)と定義することにする。OPコードがブロック402で変わる時、端末がアイドル状態に入ったか、なおここでは、音声またはデータの何れのトラフィックも開始されていない、または、端末のユーザーが、音声、データ、または音声およびデータのトラフィックが開始された操作モードを選択した場合である。第1ケースでは、方法(the method)は、決定404、406、および408を経由して、ブロック410のアイドル(IDLE)状態に遷移し、そこから、方法は、操作コードがユーザーによって入力される時に、ブロック402へと遷移する。操作コードが入力された時に、方法は、ブロック402から遷移し、決定404で先ずコードをテストする。コードが音声/データ操作モードを示す場合は、決定404からのポジティブ出口から出て(the positive exit is taken)、上記に説明された優先権に従ってブロック405において伝送パワーが分配される。すなわち、増幅器307の利得が、音声トラフィックをサポートするために必要であるのと同程度のMaxTxPowerAnalogの多くの量を音声キャリアに与えるレベルに設定される。同時に、マックスデータパワーは、式(4)に従って計算され、データキャリアは、増幅器327の利得を設定することによって、計算されたパワーレベルに設定される。方法は、操作モードが変わるまでこの状態にとどまり、ユーザーによる操作を通してか、または、何らかのシステム始動の遷移(some system-initiated transition)を通して、いずれのケースにおいても、方法は再びブロック402に入る。決定404でのテストで、操作モードが音声/データでないことを示していると仮定すると、方法は、決定404からネガティブ出口(the negative exit)を通って決定406に入る。操作モードが音声onlyであれば、決定406からのポジティブ出口から出て、方法はブロック407にはいる。ブロック407では、増幅器307の利得が、音声トラフィックをサポートするために必要であるのと同程度のMaxTxPowerAnalogの多くの量を音声キャリアに与えるレベルに設定される。そして、データアクセスプローブが発生すると、式(5)に従ってMaxDataPowerが計算され、そして増幅器327の利得は、計算の結果生じるMaxDataPowerレベルをデータキャリアに提供するために必要に応じて調節される。そうでなければ、方法はブロック407にとどまり、必要に応じて(if and as needed)、方法がブロック402に戻る場合で操作モードが変わるまで、データアクセスプローブに応対する。決定406でのテストで、操作モードが音声onlyでないことを示す場合は、方法は決定408に入り、操作状態がデータonlyであるかどうかをテストする。テストの結果がポジティブであれば、方法はブロック409に遷移し、ゼロに設定されたMarginForVoiceを用いて、式(4)に従ってMaxDataPowerを決定し、その計算から結果として生じるMaxDataPowerをデータキャリアに提供するために、必要に応じ増幅器327の利得を調節する。そして、音声アクセスプローブが発生すると、MarginDatePowerが,最大値に設定されたMarginForVoiceを用い、式(4)に従って計算され、その計算から結果として生じるMaxDataPowerレベルをデータキャリアに提供するために、必要に応じ増幅器327の利得が調節される。そうでなければ、方法はブロック409にとどまり、必要に応じて、方法がブロック402に戻る場合で操作モードが変わるまで、音声アクセスプローブに応答する。
単一のパワー増幅器を使用する複数のキャリア間の伝送パワーの優先分配の一般的な適用を示す図5を参照する。図5では、送信機500は、少なくとも1つのマルチ−キャリア伝送セクション501を含み、その中において、複数のキャリア(キャリア1、キャリア2、・・・、キャリアn)が、パワー増幅器(PA)504に入力されるマルチ−キャリア信号を生成するためにキャリアを総計する、信号結合器502によって総計される。パワー増幅器504はマルチ−キャリア信号を増幅し、パワー増幅器504をアンテナ506に接続する信号パス505上に、増幅されたマルチ−キャリア信号を生成する。アンテナ506から、増幅されたマルチ−キャリア信号は、伝送リンク上で1つまたは複数の受信器(示されていない)に伝送される。増幅されたマルチ−キャリア信号のパワーレベルは、信号パス509によってパワー増幅器504の出力に接続されたパワー検出器508によって測定される。パワーレベルを測定されている信号は、マルチ−キャリア伝送セクションによって伝送されたアナログ信号であるため、測定されたパラメータは「伝送パワー」と呼ばれ、測定値を意味する信号が図5においてTxAnalogPowerとして示されている。プロセッサ510は、パワー検出器508から信号パス511を経由してTxAnalogPower信号を受信する。(パワー検出器508は別個のエレメントとして示されているが、それはプロセッサ510に一体化される可能性がある、ということに注意する。)TxAnalogPower信号は、プロセッサ510が、増幅されたマルチ−キャリア信号のパワーレベルをセンスすることを、そして、各キャリア516の情報ビットストリームの伝送のために変調器514に提供される各キャリア(キャリア1、キャリア2、・・・、キャリアn)のための最大利用可能伝送パワー(MaxPowerCarrier i)を間接的に得ることを、可能にする。これに関して、各MaxPowerCarrier信号は、対応して番号付けされたキャリア信号の最大利用可能パワーレベルを変調器514に示し、それによって、優先権リスト512と伝送に利用できる全部の(overall)最大パワー(MaxTxPowerAnalog)とに整合をとって(in agreement with)、パワーキャリア分配を実行する。各キャリアは、変調器514の入力517の夫々の1つに応じて、情報信号またはチャンネルの伝送のために提供される。明らかに、キャリアの最大パワーレベルの制御は、パワー増幅器504によって生成された増幅したマルチ−キャリア信号のパワーレベルの制御を与える。プロセッサ510は、メモリや保存場所(示されていない)において維持されるデータ構造であり得る、優先権リスト512にアクセスする。優先権リスト512は、キャリア優先権を確立し、それに従い、アンテナ506に提供される増幅されたマルチ−キャリア信号に対する最大伝送パワーの最大量の分配のために、キャリア間で優先順位が確立される。説明のため、キャリアの番号付けが優先権におけるそれらの位置を識別すると仮定する。従って、キャリア1は最も優先権が高いキャリアであり、キャリア2は2番目に高い、など。また、キャリアは、その情報信号またはチャンネルがアクティブである少なくとも1つのアクティブ状態と、その情報信号またはチャンネルがアイドルであるアイドル状態とを含む、多数の状態の中のいずれかの1つであり得ると仮定する。最大伝送パワーは、MaxTxPowerAnalogとして表示される。何れのキャリアに割り当てられる伝送パワーの量も、アクティブである何れのより高い優先権のキャリアに割り当てられるMaxTxPowerAnalogの量、MaxTxPowerAnalogの値に依存する。優先権分配スキームに従って、最も高い優先権のキャリアは、それに適用するどんな伝送条件も満たすために必要であるのと同程度のMaxTxPowerAnalogの多くの量が割り当てられる。何れのより低い優先権のキャリア(例えば、キャリアy)も、より高い優先権を持ったアクティブキャリアへの割り当て後のMaxTxPowerAnalogの内の残っているものが与えられるであろう。アクティブなより高い優先権のキャリアに分配されるトータルなパワー分配は、TxAnalogPowerから、また各キャリアの伝送レベルの変調器514の認識(the knowledge of the modulator)から、確認できるため、キャリアyが利用できる伝送パワーの最大量は、通常プロセッサ510によって次の式に従い決定される:
MaxPowerCarrier y
=MaxTxPowerAnalog
−Σy−1 i=1(PowerCarrier i)
−Margin
(6)
この式において、Marginは、予測された、予想された、計算された、または測定された状況に対し準備される。その値は、もちろん、ゼロにもなりえる。
当業者は、上記で与えられた説明に関連して記述された情報及び信号は、様々な技術や技法の何れかを使用して表現されることができることを理解するであろう。例えば、上記説明全体を通して参照され得るデータ、指示、命令、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場または磁性粒子、光場または光学粒子、またはそれらの任意の組み合わせ、によって表わされることが出来る。
当業者は更に、上記に説明された様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピューターソフトウェア、またはそれらの組み合わせとして実施され得ることを理解するであろう。このハードウェアとソフトウェアの互換性を明白に説明するために、様々な例示的なコンポーネント、ブロック、モジュール、回路、およびステップが、概してそれらの機能性の観点から上記に説明されている。このような機能性がハードウェアまたはソフトウェアとして実施されるかどうかは、システム全体に課される特定のアプリケーションおよび設計上の制約に依存する。当技術に精通する者なら、説明された機能性を様々な方法で各特定のアプリケーションに実施するかもしれないが、そのような実施決定は、本発明の範囲から逸脱する原因として解釈されるべきではない。
上記に与えられた開示に関連して説明された、様々な例示的な論理ブロック、モジュール、及び回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブルロジック装置、個別ゲートまたはトランジスター論理、ディスクリートハードウェア部品、またはここに記載された機能を実行するために設計されたそれらの任意の組み合わせ、を使って実施または実行されることができる。汎用プロセッサは、マイクロプロセッサでもよいが、代替として、プロセッサは、従来のプロセッサ、コントローラ、マイクロコントローラ、または、状態機械でもよい。プロセッサはまた、計算装置の組み合わせ、例えば、DSPとマイクロプロセッサ、複数のマイクロプロセッサ、DSコアと併用された1つまたは複数のマイクロプロセッサ、または任意の他のそのようなコンフィギュレーション、として実施されてもよい。
ここで開示された実施例に関連して説明された、アルゴリズムと方法のステップは、ハードウェアで直接的に、プロセッサによって実行されるソフトウェアモジュールで、または、上記2つの組み合わせで、具現化されることができる。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、リードオンリーメモリ(ROM)、消去可能プログラマブルリードオンリーメモリ(EPROM)、電気的消去可能プログラマブルリードオンリーメモリ(EEPROM)、レジスタ、ハードディスク、取り出し可能ディスク、コンパクトディスクリードオンリーメモリ(CD−ROM)、または当技術分野において知られている他の形態の記憶媒体に存在し得る。例示的記憶媒体は、プロセッサが記憶媒体、から情報を読み出し、また、へ情報を書き込むことが出来るように、プロセッサと結合される。あるいは、記憶媒体は、プロセッサに内蔵されてもよい。プロセッサおよび前記記憶媒体は、例えば、単一のASIC(特定用途向け集積回路)の中に、または、ベーストランシーバーステーションにおいて別々の部品として存在し得る。
開示された実施例の以上の説明は、当業者の誰もが本発明を作りまたは使用出来るように提供されている。これらの実施例に対する様々な変更は、当業者には容易に理解され、そして、ここで定義される包括的な原理は、本発明の精神および範囲から逸脱することなく、他の実施例に適用されることができる。従って本発明は、ここに示された実施例に制限されることを意図されてはおらず、ここに開示された原理および新規な特徴と矛盾しない、最も広い範囲が与えられるべきものである。
図1は、マルチ−キャリアシステムの例示的ブロック図である。 図2は、シングルキャリア端末用のトランシーバーの例示的ブロック図である。 図3は、マルチ−キャリア端末用の送信機の例示的ブロック図である。 図4は、マルチ−キャリア端末における伝送パワーの優先割り当ての方法を示すフローチャートである。 図5は、単一のパワー増幅器を使用する複数のキャリア間における伝送パワーの優先分配の一般的な適用を示すブロック図である。

Claims (22)

  1. 第1チャンネルに第1キャリアを提供する第1伝送回路と、
    第2チャンネルに少なくとも第2キャリアを提供する少なくとも第2伝送回路と、
    前記第1キャリアと少なくとも前記第2キャリアとをマルチ−キャリア信号に結合するための、前記伝送回路に接続された結合器と、
    前記マルチ−キャリア信号を増幅するための、前記結合器に接続された増幅器と、
    キャリア優先権に従って、前記第1と前記第2のキャリアの間で、前記増幅されたマルチ−キャリア信号に利用できるパワーを分配するための、パワー検出器と前記伝送回路に接続されたプロセッサと、
    を備える、マルチ−キャリア端末のための送信機。
  2. 前記キャリア優先権において、前記第1キャリアが前記第2キャリアよりも高い優先権を有する、請求項1に記載の送信機。
  3. 前記キャリア優先権が、前記第1キャリアに前記伝送パワーの第1キャリア部分を割り当て、前記第2キャリアに前記伝送パワーの第2キャリア部分を割り当て、前記第2キャリア部分は、前記第1キャリア部分減少された前記マルチ−キャリア信号に利用できるパワーに基づく、請求項1に記載の送信機。
  4. 前記プロセッサが、前記第1チャンネルがアクティブ状態にあるか否かを示す操作モード信号を受信するための入力を有し、前記第1チャンネルがアクティブ状態にあれば、前記キャリア優先権は前記第1キャリア部分を割り当てる、請求項3に記載の送信機。
  5. 前記キャリア優先権は更に、前記第1チャンネルが接続設定状態にあれば前記第1キャリア部分を割り当てる、請求項4の送信機。
  6. 前記マルチ−キャリア信号に利用できる前記パワーは、端末エミッション制約により最大値に制限される、請求項5に記載の送信機。
  7. 音声チャンネルに音声キャリアを提供するための音声伝送回路と、
    データチャンネルに少なくとも1つのデータキャリアを提供するための、少なくとも1つのデータ伝送回路と、
    前記音声キャリアと少なくとも前記1つのデータキャリアとをマルチ−キャリア信号に結合するための、前記音声伝送回路と前記少なくとも1つのデータ伝送回路とに接続された結合器と、
    前記結合器に接続されパワー増幅器と、
    前記パワー増幅器によって生成された、増幅されたマルチ−キャリア信号のパワーレベルを測定するための、前記パワー増幅器に接続されたパワー検出器と、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnalogPower]
    +[TxPilotPower*T2P(レート)]
    −MarginForVoice
    (但し、MaxDataPowerは、前記1つのデータキャリアに割り当てられる最大パワーであり、
    MaxTxPowerAnalogは、前記音声キャリアに利用できるパワーの最大レベルであり、
    TxAnalogPowerは、前記パワー検出器によって測定された、増幅されたマルチ−キャリア信号パワーの前記パワーレベルであり、
    TxPilotPowerは、前記データチャンネルのパイロット信号の前記パワーレベルであり、
    T2P(レート)は、前記パイロット信号の前記パワーを全信号パワーに変換する利得であり、
    MarginForVoiceは、前記音声キャリアのために確保される、パワーのマージンである)
    によって、最初に前記音声キャリアに前記伝送パワーの音声キャリア部分を割り当て、次に前記伝送パワーのデータキャリア部分を割り当てることにより、前記端末の第1操作モードにおいて、前記音声キャリアと前記1つのデータキャリアとの間で、前記マルチ−キャリア信号に利用できる伝送パワーの最大量を分配するための、前記パワー検出器、前記音声伝送回路、および前記少なくとも1つのデータ伝送回路に接続されたプロセッサと、
    を備える、マルチ−キャリア端末のための送信機。
  8. 前記音声チャンネルと前記データチャンネルとは、前記第1操作モードにおいて共にアクティブであり、前記プロセッサは更に、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnalogPower]
    −MarginForVoice
    (但し、第2操作モードにおいて、前記音声チャンネルはアクティブ状態にあり、前記データチャンネルは接続設定状態にある)
    によって、前記端末の第2操作モードに従い、前記音声キャリアと前記1つのデータキャリアとの間で前記マルチ−キャリア信号に利用できる伝送パワーの前記最大量を分配するためのものである、
    請求項7に記載の送信機。
  9. 前記プロセッサは更に、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnaloagPower]
    +[TxPilotPower*T2P(レート)]
    −MarginForVoice
    (但し、MarginForVoiceは、前記音声チャンネルがアイドル状態にある間はゼロに設定され、前記音声チャンネルが接続設定状態にある時は最大値に設定される)
    によって、前記データチャンネルが前記アクティブ状態にある、前記端末の第3操作モードに従い、前記音声キャリアと前記1つのデータキャリアとの間で前記マルチ−キャリア信号に利用できる伝送パワーの前記最大量を分配するためのものである、請求項8に記載の送信機。
  10. MaxTxPowerAnalogがスペクトルエミッション制約に基づく最大値を有する、請求項9に記載の送信機。
  11. 端末によって伝送されるマルチ−キャリア信号に伝送パワーの最大量を提供することと、
    第1情報を伝送するために第1キャリアを提供することと、
    第2情報を伝送するために少なくとも第2キャリアを提供することと、
    前記第1キャリアと少なくとも前記第2キャリアをマルチ−キャリア信号に結合することと、
    キャリア優先権に従って、前記第1及び第2キャリア間で前記マルチ−キャリア信号のための伝送パワーを分配することと、
    前記最大量よりも大きくないパワーで前記マルチ−キャリア信号を伝送することと、
    を含む、ワイドエリアネットワークのためのマルチ−キャリア アクセス端末の操作方法。
  12. 前記キャリア優先権において、前記第1キャリアが前記第2キャリアよりもより高い優先権を有する、請求項11に記載の方法。
  13. 前記キャリア優先権が、前記第1キャリアに前記伝送パワーの第1キャリア部分を割り当て、前記第2キャリアに前記伝送パワーの第2キャリア部分を割り当て、前記第2キャリア部分は、前記第1キャリア部分減少された前記マルチ−キャリア信号に利用できるパワーに基く、請求項11の方法。
  14. 前記端末が、前記第1キャリアがアクティブ状態にあるか否かを示す操作モードを有し、前記第1チャンネルがアクティブ状態にあれば、前記キャリア優先権は前記第1キャリア部分を割り当てる、請求項13に記載の方法。
  15. 前記キャリア優先権は更に、前記第2キャリアがアクティブ状態にあれば前記第2キャリア部分を割り当てる、請求項14に記載の方法。
  16. 前記マルチ−キャリア信号に利用できる前記パワーは、端末エミッション制約により最大値に制限される、請求項15に記載の方法。
  17. 音声チャンネルに音声キャリアを提供することと、
    データチャンネルに少なくとも1つのデータキャリアを提供することと、
    前記音声キャリアと少なくとも前記1つのデータキャリアをマルチ−キャリア信号に結合することと、
    前記マルチ−チャンネルキャリア信号を増幅することと、
    前記増幅されたマルチ−キャリア信号のパワーレベルを測定することと、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnalogPower]
    +[TxPilotPower*T2P(レート)]
    −MarginForVoice
    (但し、MaxDataPowerは、前記1つのデータキャリアに割り当てられる最大パワーであり、
    MaxTxPowerAnalogは、前記音声キャリアに利用できるパワーの最大レベルであり、
    TxAnalogPowerは、増幅されたマルチ−キャリア信号パワーの前記測定されたパワーレベルであり、
    TxPilotPowerは、前記データチャンネルのパイロット信号の前記パワーレベルであり、
    T2P(レート)は、前記パイロット信号の前記パワーを全信号に変換する利得であり、
    MarginForVoiceは、前記音声キャリアのために確保される、パワーのマージンである)
    によって、最初に前記音声キャリアに前記伝送パワーの音声キャリア部分を割り当て、次に前記伝送パワーのデータキャリア部分を割り当てることにより、前記端末の第1操作モードにおいて、前記音声キャリアと前記1つのデータキャリアとの間で、前記マルチ−キャリア信号に利用できる伝送パワーの最大量を分配することと、
    を含む、マルチ−キャリア端末において伝送パワーを制御する方法。
  18. 前記音声チャンネルと前記データチャンネルは、前記第1操作モードにおいて共にアクティブであり、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnalogPower]
    −MarginForVoice
    (但し、第2操作モードにおいて、前記音声チャンネルはアクティブ状態にあり、前記データチャンネルは接続設定状態にある)
    によって、前記端末の前記第2操作モードに従い、前記音声キャリアと前記1つのデータキャリアとの間で前記マルチ−キャリア信号に利用できる伝送パワーの前記最大量を分配することを更に含む、
    請求項17に記載の方法。
  19. 更に、
    MaxDataPower=[MaxTxPowerAnalog
    −TxAnaloagPower]
    +[TxPilotPower*T2P(レート)]
    −MarginForVoice
    (但し、MarginForVoiceは、前記音声チャンネルがアイドル状態にある間はゼロに設定され、前記音声チャンネルが接続設定状態にある時は最大値に設定される)
    によって、前記データチャンネルが前記アクティブ状態にある、前記端末の第3操作モードに従い、前記音声キャリアと前記1つのデータキャリアとの間で前記マルチ−キャリア信号に利用できる伝送パワーの前記最大量を分配することを含む、請求項18に記載の方法。
  20. MaxTxPowerAnalogがスペクトルエミッション制約に基づく最大値を有する、請求項19に記載の送信機。
  21. 送信機によって伝送されるマルチ−キャリア信号に伝送パワーの最大量を提供することと、
    情報を伝送するために複数のキャリアを提供することと、
    キャリア優先権に従って、前記キャリア間でマルチ−キャリア信号のための前記伝送パワーを分配することと、
    前記複数のキャリアのうちのキャリアをマルチ−キャリア信号に結合することと、
    前記マルチ−キャリア信号を前記パワー増幅器によって増幅することと、
    前記最大量よりも大きくないパワーで前記マルチ−キャリア信号を伝送することと、
    を含む、パワー増幅器を有する送信機を操作する方法。
  22. 伝送パワーの前記最大量(MaxTxPower)が、
    MaxPowerCarrier y=MaxTxPowerAnalog
    −Σy−1 i=1(PowerCarrier i)
    −Margin
    (但し、MaxPowerCarrier yは、キャリアy が利用できるパワーの最大量であり、
    Marginは、ゼロ以上の値を有すパワーのマージンであり、
    Σy−1 i=1(PowerCarrier i)は、前記キャリアy よりも高い優先権を有する、前記複数のキャリアのうちのキャリアに分配されるトータルの伝送パワーである)
    に従って、前記複数のキャリアのうちのキャリア y に分配される、請求項21に記載の方法。
JP2006545698A 2003-12-17 2004-11-30 マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法 Active JP4481998B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/739,964 US7411930B2 (en) 2003-12-17 2003-12-17 Apparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal
PCT/US2004/040164 WO2005062492A1 (en) 2003-12-17 2004-11-30 Apparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal

Publications (2)

Publication Number Publication Date
JP2007515139A true JP2007515139A (ja) 2007-06-07
JP4481998B2 JP4481998B2 (ja) 2010-06-16

Family

ID=34677756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545698A Active JP4481998B2 (ja) 2003-12-17 2004-11-30 マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法

Country Status (15)

Country Link
US (1) US7411930B2 (ja)
EP (2) EP1698070B1 (ja)
JP (1) JP4481998B2 (ja)
KR (1) KR100816307B1 (ja)
CN (2) CN100583672C (ja)
AT (1) ATE484110T1 (ja)
BR (1) BRPI0417676A (ja)
CA (1) CA2548401C (ja)
DE (1) DE602004029495D1 (ja)
ES (1) ES2351698T3 (ja)
HK (1) HK1099430A1 (ja)
MX (1) MXPA06006915A (ja)
PL (1) PL1698070T3 (ja)
TW (1) TWI375417B (ja)
WO (1) WO2005062492A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311988A (ja) * 2006-05-17 2007-11-29 Softbank Bb Corp ピーク電力低減システム及び方法
JP2010109617A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 無線通信端末
JP2013509098A (ja) * 2009-10-21 2013-03-07 クゥアルコム・インコーポレイテッド アップリンク・マルチ電力増幅器/アンテナ動作およびチャネル優先付け
JP2014171252A (ja) * 2009-06-11 2014-09-18 Qualcomm Incorporated ワイヤレス通信システムにおける電力制限型ueのためのデータ優先順位付け

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8090857B2 (en) 2003-11-24 2012-01-03 Qualcomm Atheros, Inc. Medium access control layer that encapsulates data from a plurality of received data units into a plurality of independently transmittable blocks
US7411930B2 (en) * 2003-12-17 2008-08-12 Qualcomm, Incorporated Apparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal
US7899419B2 (en) * 2004-01-16 2011-03-01 Research In Motion Limited Method and apparatus for compensating code channel power in a transmitter
EP1555764B1 (en) * 2004-01-16 2006-04-12 Research In Motion Limited Method and apparatus for compensating code channel power in a transmitter
US7616711B2 (en) * 2004-07-20 2009-11-10 Qualcomm Incorporated Frequency domain filtering to improve channel estimation in multicarrier systems
US7564828B2 (en) * 2005-04-18 2009-07-21 Via Telecom Co., Ltd. Power-efficient signaling for asymmetric multi-carrier communications
US7672286B2 (en) * 2005-04-18 2010-03-02 Via Telecom Co., Ltd. Reverse-link structure for a multi-carrier communication system
US8175190B2 (en) 2005-07-27 2012-05-08 Qualcomm Atheros, Inc. Managing spectra of modulated signals in a communication network
JP2008072381A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 基地局、移動体通信システム、及びチャネル割当方法
US8665778B2 (en) * 2006-11-30 2014-03-04 Motorola Mobility Llc Monitoring and control of transmit power in a multi-modem wireless communication device
US8744519B2 (en) 2006-12-14 2014-06-03 Motorola Mobility Llc Multimodal phone data session management enhancement that alleviates dual transmission problems
US7904021B2 (en) * 2006-12-21 2011-03-08 Atheros Communications, Inc. Selecting carriers for modulating signals in a communication network
US20080207140A1 (en) * 2007-02-26 2008-08-28 Broadcom Corporation, A California Corporation Integrated circuit with contemporaneous transmission and reception of realtime and non-realtime data and methods for use therewith
CN101056129B (zh) * 2007-05-18 2011-04-13 华为技术有限公司 同一功放中载波功率分配方法及系统
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
US8635335B2 (en) 2009-01-28 2014-01-21 Headwater Partners I Llc System and method for wireless network offloading
US8340634B2 (en) 2009-01-28 2012-12-25 Headwater Partners I, Llc Enhanced roaming services and converged carrier networks with device assisted services and a proxy
US8391834B2 (en) 2009-01-28 2013-03-05 Headwater Partners I Llc Security techniques for device assisted services
US8346225B2 (en) 2009-01-28 2013-01-01 Headwater Partners I, Llc Quality of service for device assisted services
US8626115B2 (en) 2009-01-28 2014-01-07 Headwater Partners I Llc Wireless network service interfaces
US8402111B2 (en) 2009-01-28 2013-03-19 Headwater Partners I, Llc Device assisted services install
US8548428B2 (en) 2009-01-28 2013-10-01 Headwater Partners I Llc Device group partitions and settlement platform
US8832777B2 (en) 2009-03-02 2014-09-09 Headwater Partners I Llc Adapting network policies based on device service processor configuration
US8589541B2 (en) 2009-01-28 2013-11-19 Headwater Partners I Llc Device-assisted services for protecting network capacity
US8275830B2 (en) 2009-01-28 2012-09-25 Headwater Partners I Llc Device assisted CDR creation, aggregation, mediation and billing
US8406748B2 (en) 2009-01-28 2013-03-26 Headwater Partners I Llc Adaptive ambient services
US8839387B2 (en) 2009-01-28 2014-09-16 Headwater Partners I Llc Roaming services network and overlay networks
US8184599B2 (en) * 2008-06-23 2012-05-22 Qualcomm Incorporated Management of UE operation in a multi-carrier communication system
WO2010027223A1 (en) * 2008-09-05 2010-03-11 Electronics And Telecommunications Research Institute Apparatus and method for managing multi-carrier
WO2010027216A1 (en) * 2008-09-05 2010-03-11 Electronics And Telecommunications Research Institute Apparatus and method for transmitting data and apparatus and method for receiving data of multi-carrier communication system
KR101199572B1 (ko) * 2008-09-05 2012-11-12 삼성전자주식회사 다중 반송파 통신 시스템의 데이터 송신 장치 및 방법과 데이터 수신 방법 및 장치
KR101593662B1 (ko) * 2008-09-05 2016-02-12 한국전자통신연구원 다중 반송파 관리 장치 및 방법
US8378732B2 (en) * 2008-09-22 2013-02-19 California Institute Of Technology Octave-range, watt-level, fully-integrated CMOS switching power mixer array for linearization and back-off-efficiency improvement
JP5357260B2 (ja) * 2008-10-07 2013-12-04 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 送信装置
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8565170B2 (en) * 2009-01-14 2013-10-22 Qualcomm Incorporated Method and apparatus for scheduling data transmission on multiple carriers
US10484858B2 (en) 2009-01-28 2019-11-19 Headwater Research Llc Enhanced roaming services and converged carrier networks with device assisted services and a proxy
US9351193B2 (en) 2009-01-28 2016-05-24 Headwater Partners I Llc Intermediate networking devices
US10264138B2 (en) 2009-01-28 2019-04-16 Headwater Research Llc Mobile device and service management
US9270559B2 (en) 2009-01-28 2016-02-23 Headwater Partners I Llc Service policy implementation for an end-user device having a control application or a proxy agent for routing an application traffic flow
US9572019B2 (en) 2009-01-28 2017-02-14 Headwater Partners LLC Service selection set published to device agent with on-device service selection
US10237757B2 (en) 2009-01-28 2019-03-19 Headwater Research Llc System and method for wireless network offloading
US10783581B2 (en) 2009-01-28 2020-09-22 Headwater Research Llc Wireless end-user device providing ambient or sponsored services
US9858559B2 (en) 2009-01-28 2018-01-02 Headwater Research Llc Network service plan design
US11985155B2 (en) 2009-01-28 2024-05-14 Headwater Research Llc Communications device with secure data path processing agents
US10779177B2 (en) 2009-01-28 2020-09-15 Headwater Research Llc Device group partitions and settlement platform
US9571559B2 (en) 2009-01-28 2017-02-14 Headwater Partners I Llc Enhanced curfew and protection associated with a device group
US9955332B2 (en) 2009-01-28 2018-04-24 Headwater Research Llc Method for child wireless device activation to subscriber account of a master wireless device
US10064055B2 (en) 2009-01-28 2018-08-28 Headwater Research Llc Security, fraud detection, and fraud mitigation in device-assisted services systems
US9578182B2 (en) 2009-01-28 2017-02-21 Headwater Partners I Llc Mobile device and service management
US10326800B2 (en) 2009-01-28 2019-06-18 Headwater Research Llc Wireless network service interfaces
US10715342B2 (en) 2009-01-28 2020-07-14 Headwater Research Llc Managing service user discovery and service launch object placement on a device
US11218854B2 (en) 2009-01-28 2022-01-04 Headwater Research Llc Service plan design, user interfaces, application programming interfaces, and device management
US9706061B2 (en) 2009-01-28 2017-07-11 Headwater Partners I Llc Service design center for device assisted services
US9557889B2 (en) 2009-01-28 2017-01-31 Headwater Partners I Llc Service plan design, user interfaces, application programming interfaces, and device management
US9565707B2 (en) 2009-01-28 2017-02-07 Headwater Partners I Llc Wireless end-user device with wireless data attribution to multiple personas
US10057775B2 (en) 2009-01-28 2018-08-21 Headwater Research Llc Virtualized policy and charging system
US10248996B2 (en) 2009-01-28 2019-04-02 Headwater Research Llc Method for operating a wireless end-user device mobile payment agent
US10200541B2 (en) 2009-01-28 2019-02-05 Headwater Research Llc Wireless end-user device with divided user space/kernel space traffic policy system
US9253663B2 (en) 2009-01-28 2016-02-02 Headwater Partners I Llc Controlling mobile device communications on a roaming network based on device state
US9392462B2 (en) 2009-01-28 2016-07-12 Headwater Partners I Llc Mobile end-user device with agent limiting wireless data communication for specified background applications based on a stored policy
US10492102B2 (en) 2009-01-28 2019-11-26 Headwater Research Llc Intermediate networking devices
US11973804B2 (en) 2009-01-28 2024-04-30 Headwater Research Llc Network service plan design
US9954975B2 (en) 2009-01-28 2018-04-24 Headwater Research Llc Enhanced curfew and protection associated with a device group
US9647918B2 (en) 2009-01-28 2017-05-09 Headwater Research Llc Mobile device and method attributing media services network usage to requesting application
US9980146B2 (en) 2009-01-28 2018-05-22 Headwater Research Llc Communications device with secure data path processing agents
US8793758B2 (en) 2009-01-28 2014-07-29 Headwater Partners I Llc Security, fraud detection, and fraud mitigation in device-assisted services systems
US10841839B2 (en) 2009-01-28 2020-11-17 Headwater Research Llc Security, fraud detection, and fraud mitigation in device-assisted services systems
US9755842B2 (en) 2009-01-28 2017-09-05 Headwater Research Llc Managing service user discovery and service launch object placement on a device
US8745191B2 (en) 2009-01-28 2014-06-03 Headwater Partners I Llc System and method for providing user notifications
US10798252B2 (en) 2009-01-28 2020-10-06 Headwater Research Llc System and method for providing user notifications
KR101697596B1 (ko) * 2009-01-29 2017-01-18 엘지전자 주식회사 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2010089284A2 (en) * 2009-02-03 2010-08-12 Nokia Siemens Networks Oy Uplink power control for multiple component carriers
EP2399344A4 (en) * 2009-02-20 2012-08-29 Ericsson Telefon Ab L M EMISSION POWER CONTROL FOR BASE STATIONS USING MULTI-CARRIER POWER AMPLIFIERS (MCPA)
EP2401883B1 (en) * 2009-02-27 2016-02-03 Nokia Solutions and Networks Oy Methods, apparatuses, and computer program products for prioritizing uplink carriers
WO2010101508A1 (en) * 2009-03-05 2010-09-10 Telefonaktiebolaget L M Ericsson (Publ) A method of power control
JP5148746B2 (ja) * 2009-03-10 2013-02-20 シャープ株式会社 無線通信システム、無線送信装置および無線送信方法
US8891448B2 (en) * 2009-03-17 2014-11-18 Nokia Corporation Interference control
WO2010125635A1 (ja) * 2009-04-27 2010-11-04 株式会社日立製作所 無線通信システム、統合基地局および端末
US9585108B2 (en) * 2009-05-04 2017-02-28 Qualcomm Incorporated Method and apparatus for uplink power control in a multicarrier wireless communication system
KR20110007026A (ko) * 2009-07-15 2011-01-21 엘지전자 주식회사 무선통신 시스템에서의 상향링크 전력제어 방법 및 장치
US20120182948A1 (en) * 2009-07-20 2012-07-19 Commonwealth Scientific And Industrial Research Organisation Wireless Data Communications
US9113491B2 (en) * 2009-07-22 2015-08-18 Qualcomm Incorporated Uplink control and data transmission in a mixed single and multiple carrier network
WO2011019653A1 (en) * 2009-08-14 2011-02-17 Research In Motion Limited Method and apparatus for configuring a power sharing carrier set in the context of carrier aggregation
KR101603584B1 (ko) * 2009-08-18 2016-03-15 삼성전자주식회사 반송파 결합을 지원하는 셀룰러 무선 통신시스템에서 단말의 초기 전송전력 설정 방법 및 장치
WO2011082145A2 (en) * 2010-01-04 2011-07-07 Atheros Communications, Inc. Transmit power control
EP2346175B1 (en) * 2010-01-15 2015-03-11 Telefonaktiebolaget L M Ericsson A method and apparatuses for transmitter to multi-carrier power amplifier configuration
CN102158942B (zh) * 2010-02-12 2013-11-06 华为技术有限公司 功率控制方法、网络设备和终端
WO2011119079A1 (en) * 2010-03-24 2011-09-29 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for controlling uplink transmit power
CN101808396B (zh) 2010-03-24 2014-04-16 华为技术有限公司 功率共享方法和基站
TWI555419B (zh) * 2010-04-02 2016-10-21 聯發科技股份有限公司 管理多成分載波、緩存器狀態報告以及功率餘裕回報方法
EP2403302B1 (en) * 2010-06-29 2017-01-04 Lg Electronics Inc. User equipment apparatus for transmitting a plurality of signals simultaneously using at least two wireless communication schemes and method thereof
KR101718018B1 (ko) * 2010-06-30 2017-03-20 엘지전자 주식회사 이종 모뎀을 구비하는 단말에서의 송신 전력 검출 장치 및 방법
CN102340824B (zh) * 2010-07-22 2015-04-01 中兴通讯股份有限公司 一种多载波高速数据业务调度的方法和装置
CN102487544B (zh) * 2010-12-06 2014-10-08 华为技术有限公司 实现功率放大处理的方法和装置
US8737330B2 (en) 2011-06-24 2014-05-27 Motorola Mobility Llc Multi-cluster uplink transmission in wireless communication network
CN102740441B (zh) * 2012-06-14 2015-07-08 大唐移动通信设备有限公司 一种td-scdma小区的载波间功率分配方法和系统
US9241339B2 (en) * 2013-01-07 2016-01-19 Google Technology Holdings LLC Methods and apparatus for emphasizing frequency blocks containing priority data
WO2014159862A1 (en) 2013-03-14 2014-10-02 Headwater Partners I Llc Automated credential porting for mobile devices
US9237581B2 (en) * 2013-03-14 2016-01-12 Cavium, Inc. Apparatus and method for media access control scheduling with a sort hardware coprocessor
US9706564B2 (en) 2013-03-14 2017-07-11 Cavium, Inc. Apparatus and method for media access control scheduling with a priority calculation hardware coprocessor
US10015749B2 (en) * 2015-09-25 2018-07-03 Intel IP Corporation Closed-loop power control in multi-transmission wireless systems
US10524264B2 (en) 2017-03-20 2019-12-31 Samsung Electronics Co., Ltd. Wireless communication device including memory de-allocator for efficient memory usage and method of operating the same
CN109803366A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 通信方法和装置
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US11290172B2 (en) 2018-11-27 2022-03-29 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CA3175361A1 (en) 2020-04-15 2021-10-21 Tamer Adel Kadous Wireless network multipoint association and diversity

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5267262A (en) * 1989-11-07 1993-11-30 Qualcomm Incorporated Transmitter power control system
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
TW347616B (en) * 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
US5933781A (en) * 1997-01-31 1999-08-03 Qualcomm Incorporated Pilot based, reversed channel power control
US6101179A (en) * 1997-09-19 2000-08-08 Qualcomm Incorporated Accurate open loop power control in a code division multiple access communication system
US6545989B1 (en) * 1998-02-19 2003-04-08 Qualcomm Incorporated Transmit gating in a wireless communication system
US6694148B1 (en) * 1999-07-26 2004-02-17 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power control for MCPA-equipped based stations
EP1199814B1 (en) * 1999-07-28 2006-09-13 Fujitsu Limited Radio device with distortion compensation
SE9902984L (sv) 1999-08-24 2001-02-25 Ericsson Telefon Ab L M Förfarande och anordning relaterande till ett radiokommunikationsnät
GB2357670A (en) * 1999-12-24 2001-06-27 Nokia Networks Oy Controlling a base station transmitter comprising a multi-carrier power amplifier
US7003044B2 (en) * 2000-02-01 2006-02-21 Sasken Communication Technologies Ltd. Method for allocating bits and power in multi-carrier communication system
US6609008B1 (en) * 2000-11-09 2003-08-19 Qualcomm Incoporated Method and apparatus for controlling signal power level in a communication system
BR0111736A (pt) * 2001-04-17 2003-07-01 Nokia Corp Método para determinar os ganhos de radiofrequência separados para portadoras diferentes em um transmissor de multi-portadora de uma unidade de radiotransmissão de um sistema de radiocomunicação, uso de um método, unidade de radiotransmissão para uma rede de radiocomunicação, módulo para uma unidade de radiotransmissão de um sistema de radiocomunicação, e, rede de radiocomunicação
JP3637323B2 (ja) * 2002-03-19 2005-04-13 株式会社東芝 受信装置、送受信装置及び受信方法
CA2479684C (en) * 2002-03-19 2011-06-21 Powerwave Technologies, Inc. System and method for eliminating signal zero crossings in single and multiple channel communication systems
KR100519165B1 (ko) * 2002-10-17 2005-10-05 엘지전자 주식회사 이동 통신 시스템에서 트래픽 처리 방법
US6937669B2 (en) * 2002-12-03 2005-08-30 Motorola, Inc. Digital predistortion system for linearizing a power amplifier
KR100474311B1 (ko) * 2002-12-05 2005-03-10 엘지전자 주식회사 멀티캐리어 송신기의 출력레벨 조정회로 및 방법
US7409010B2 (en) * 2003-06-10 2008-08-05 Shared Spectrum Company Method and system for transmitting signals with reduced spurious emissions
US7026873B2 (en) * 2003-11-07 2006-04-11 Scintera Networks LMS-based adaptive pre-distortion for enhanced power amplifier efficiency
US7411930B2 (en) * 2003-12-17 2008-08-12 Qualcomm, Incorporated Apparatus and method for prioritized apportionment of transmission power in a multi-carrier terminal
KR100720633B1 (ko) * 2005-12-26 2007-05-21 엘지노텔 주식회사 컴바인 트랙킹기능이 구비된 이동통신시스템의 송신장치 및그 제어방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311988A (ja) * 2006-05-17 2007-11-29 Softbank Bb Corp ピーク電力低減システム及び方法
JP4629611B2 (ja) * 2006-05-17 2011-02-09 ソフトバンクBb株式会社 ピーク電力低減システム及び方法
JP2010109617A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 無線通信端末
JP2014171252A (ja) * 2009-06-11 2014-09-18 Qualcomm Incorporated ワイヤレス通信システムにおける電力制限型ueのためのデータ優先順位付け
JP2013509098A (ja) * 2009-10-21 2013-03-07 クゥアルコム・インコーポレイテッド アップリンク・マルチ電力増幅器/アンテナ動作およびチャネル優先付け
JP2014042301A (ja) * 2009-10-21 2014-03-06 Qualcomm Incorporated アップリンク・マルチ電力増幅器/アンテナ動作およびチャネル優先付け
US11012947B2 (en) 2009-10-21 2021-05-18 Qualcomm Incorporated Uplink multi-power amplifier/antenna operation and channel prioritization

Also Published As

Publication number Publication date
JP4481998B2 (ja) 2010-06-16
MXPA06006915A (es) 2006-09-04
CN1894867A (zh) 2007-01-10
HK1099430A1 (en) 2007-08-10
US7411930B2 (en) 2008-08-12
US20050135312A1 (en) 2005-06-23
TW200539594A (en) 2005-12-01
WO2005062492A1 (en) 2005-07-07
EP1698070A1 (en) 2006-09-06
DE602004029495D1 (de) 2010-11-18
CN101715230A (zh) 2010-05-26
CN101715230B (zh) 2014-08-20
PL1698070T3 (pl) 2011-04-29
KR20060121937A (ko) 2006-11-29
ES2351698T3 (es) 2011-02-09
ATE484110T1 (de) 2010-10-15
TWI375417B (en) 2012-10-21
EP2246990A2 (en) 2010-11-03
KR100816307B1 (ko) 2008-03-24
CA2548401A1 (en) 2005-07-07
EP2246990B1 (en) 2018-09-26
BRPI0417676A (pt) 2007-03-20
CN100583672C (zh) 2010-01-20
CA2548401C (en) 2011-07-19
EP1698070B1 (en) 2010-10-06
EP2246990A3 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP4481998B2 (ja) マルチ−キャリア端末における伝送パワーの優先分配のための装置および方法
US8660095B2 (en) Reverse link transmit power control in a wireless communication system
JP4213346B2 (ja) ワイヤレス通信システムにおいて通信モード品質を推定するための方法およびシステム
US7990855B2 (en) Method and system for joint reverse link access and traffic channel radio frequency overload control
US7734262B2 (en) Method and apparatus for reverse link throttling in a multi-carrier wireless communication system
RU2325033C2 (ru) Управление множеством модемов в терминале беспроводной связи с использованием определяемых значений энергии на бит
US7058421B2 (en) Wireless terminal operating under an aggregate transmit power limit using multiple modems having fixed individual transmit power limits
JP2006518176A (ja) 無線通信システムのためのアウターループ出力制御
KR20080021817A (ko) 무선 통신에서 액세스 터미널들 사이의 역방향 링크 간섭을제어하는 장치 및 방법
JP2009515373A5 (ja)
CN113647155B (zh) 用于管理辅载波上的最大功率的方法和装置
RU2419210C2 (ru) Регулирование мощности мобильного устройства для двойственного режима передачи (dtm)
CN101180812B (zh) 用于缩放e-dch信道的方法
CN101299885B (zh) 通信方法
JP2004172941A (ja) 無線基地局装置および折り返し試験方法
JP2003318820A (ja) パワー制御方法および通信システム
CN101197766A (zh) 一种高速分组接入系统的接纳控制方法
CN101273651A (zh) 移动站和通信方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4481998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250