JP2007507555A - Gasification method and apparatus - Google Patents

Gasification method and apparatus Download PDF

Info

Publication number
JP2007507555A
JP2007507555A JP2006515398A JP2006515398A JP2007507555A JP 2007507555 A JP2007507555 A JP 2007507555A JP 2006515398 A JP2006515398 A JP 2006515398A JP 2006515398 A JP2006515398 A JP 2006515398A JP 2007507555 A JP2007507555 A JP 2007507555A
Authority
JP
Japan
Prior art keywords
chamber
gasification
raw material
fluid medium
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006515398A
Other languages
Japanese (ja)
Other versions
JP4589311B2 (en
Inventor
敬久 三好
誠一郎 豊田
由貴 岩楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JP2007507555A publication Critical patent/JP2007507555A/en
Application granted granted Critical
Publication of JP4589311B2 publication Critical patent/JP4589311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1637Char combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Abstract

ガス化方法は、バイオマス等の原料をガス化して高効率・低コストで可燃性ガスを生成するために利用される。ガス化方法において、原料は前処理工程で前処理され、前処理された原料はガス化室でガス化され、可燃性ガスと残渣を生成する。ガス化室(4-1)で生成された熱分解残渣は燃焼室(4-2)で燃焼され、燃焼ガス(107)を生成し、生成された燃焼ガスは前処理工程に供給され、揮発成分の一部を原料から分離する。
The gasification method is used for gasifying raw materials such as biomass to generate combustible gas with high efficiency and low cost. In the gasification method, the raw material is pretreated in a pretreatment step, and the pretreated raw material is gasified in a gasification chamber to generate a combustible gas and a residue. The pyrolysis residue generated in the gasification chamber (4-1) is combusted in the combustion chamber (4-2) to generate combustion gas (107). The generated combustion gas is supplied to the pretreatment process and volatilized. A part of the components is separated from the raw material.

Description

本発明はバイオマス等の原料をガス化して高効率・低コストで可燃性ガスを生成するガス化方法及び装置に関するものである。   The present invention relates to a gasification method and apparatus for generating a combustible gas with high efficiency and low cost by gasifying a raw material such as biomass.

バイオマス等の原料をガス化して利用価値の高い可燃性ガスを高効率・低コストで生成することが求められている。バイオマス等の低発熱量原料から高効率でエネルギーを回収するには、乾燥工程を設け、低発熱量原料を該乾燥工程を経て含水率を下げて低い発熱量を高めることが重要である。このような乾燥工程で用いる原料乾燥機は、大量の熱が必要であり、従来は重油、灯油等の化石燃料を燃焼させ、その燃焼熱で低発熱量原料に含まれる水分を蒸発させるものが主流であった。   There is a demand for gasification of raw materials such as biomass to generate combustible gas with high utility value at high efficiency and low cost. In order to recover energy from a low calorific value raw material such as biomass with high efficiency, it is important to provide a drying step and lower the water content of the low calorific value raw material through the drying step to increase the low calorific value. A material dryer used in such a drying process requires a large amount of heat, and conventionally, a fossil fuel such as heavy oil or kerosene is burned, and the moisture contained in the low heating value raw material is evaporated by the combustion heat. It was mainstream.

上記のように化石燃料を燃焼させて低発熱量原料を乾燥させる手法は、ランニングコストが高くつくだけでなく、重油、灯油等の化石燃料を燃焼させることにより、二酸化炭素(CO2)の排出による地球温暖化等の問題もある。 The method of burning low-calorific value raw materials by burning fossil fuel as described above is not only expensive to run, but also emits carbon dioxide (CO 2 ) by burning fossil fuels such as heavy oil and kerosene. There are also problems such as global warming caused by

本発明は上述の点に鑑みてなされたもので、バイオマス等の原料から高効率、低コストで可燃性ガスを生成するガス化方法及び装置を提供することを目的とする。   This invention is made | formed in view of the above-mentioned point, and it aims at providing the gasification method and apparatus which produce | generate a combustible gas from raw materials, such as biomass, with high efficiency and low cost.

上記目的を達成するため、本発明の第1の態様によれば、原料の前処理工程と、ガス化室で、前処理された原料をガス化して可燃性ガスおよび残渣を生成するガス化工程と、燃焼室で残渣を燃焼し燃焼ガスを発生する燃焼工程と、燃焼ガスを前記前処理工程に供給し原料から揮発分の一部を分離する供給工程とを備えたことを特徴とするガス化方法を提供する。   In order to achieve the above object, according to the first aspect of the present invention, a raw material pretreatment step and a gasification step in which a pretreated raw material is gasified to produce a combustible gas and a residue in a gasification chamber. And a combustion step of burning residue in the combustion chamber to generate combustion gas, and a supply step of supplying the combustion gas to the pretreatment step and separating a part of volatile matter from the raw material. Provide a method

バイオマス等の原料を前処理してからガス化工程に供給することで、原料の発熱量を高くして原料がガス化されるので、効率よく可燃性ガス(生成ガス)が得られる。また原料の前処理により原料中の有害揮発性元素を除去してから、原料をガス化工程に送ることで、製品ガス(可燃性ガス)中に有害物質が混入することを回避できる。例えば、前処理工程によって除去する有害物質として、ヒ素が挙げられる。   By supplying the raw material such as biomass to the gasification step after pretreatment, the raw material is gasified by increasing the calorific value of the raw material, so that a combustible gas (generated gas) can be obtained efficiently. Further, by removing harmful volatile elements in the raw material by pretreatment of the raw material and then sending the raw material to the gasification step, it is possible to avoid mixing harmful substances in the product gas (combustible gas). For example, arsenic can be cited as a harmful substance that is removed in the pretreatment process.

本発明の好ましい態様において、該ガス化方法は該前処理工程から排出されたガス状物質を冷却しヒ素化合物及び/又は木酢成分を回収する冷却工程を備えたことを特徴とする。   In a preferred embodiment of the present invention, the gasification method includes a cooling step of cooling the gaseous substance discharged from the pretreatment step and recovering an arsenic compound and / or a wood vinegar component.

上記目的を達成するため、本発明の第2の態様によれば、原料を乾燥装置で乾燥し、乾燥した原料をガス化室でガス化して可燃性ガスと残渣を生成し、燃焼室で残渣を燃焼し燃焼ガスを発生し、燃焼ガスを前記乾燥装置に供給し原料を乾燥することを特徴とするガス化方法を提供する。   In order to achieve the above object, according to the second aspect of the present invention, the raw material is dried by a drying device, the dried raw material is gasified in a gasification chamber to produce a combustible gas and a residue, and the residue in the combustion chamber The gasification method is characterized in that combustion gas is generated to generate combustion gas, and the combustion gas is supplied to the drying device to dry the raw material.

原料乾燥機で乾燥させた低発熱量の原料をガス化室に供給することにより、そこで低発熱量の原料に含まれる水分は蒸発し、且つ水素成分の殆どは揮発成分として生成ガスとなってガス化室から放出されるから、燃焼室から排出される燃焼ガスには高級な水素含有燃料を燃焼して得られるガスを大量の空気で稀釈して得る乾燥用ガスと同等の乾燥能力を有する。従って、燃焼室から排出された燃焼ガスを乾燥用ガスとして原料乾燥機に供給することにより、バイオマス、都市固形廃棄物、又は有機汚泥等の低発熱量原料を効率よく乾燥できる。   By supplying the low calorific value raw material dried by the raw material dryer to the gasification chamber, the water contained in the low calorific value raw material is evaporated, and most of the hydrogen component is generated as a volatile component. Since it is discharged from the gasification chamber, the combustion gas discharged from the combustion chamber has a drying capacity equivalent to a drying gas obtained by diluting a gas obtained by burning high-grade hydrogen-containing fuel with a large amount of air. . Therefore, by supplying the combustion gas discharged from the combustion chamber to the raw material dryer as a drying gas, a low calorific value raw material such as biomass, municipal solid waste, or organic sludge can be efficiently dried.

さらに、含水率の高い原料がガス化炉でガス化される場合は、可燃性ガスを熱効率良く生成する燃焼室を有する流動床ガス化炉(例えば内部循環型流動床ガス化炉)であっても、冷ガス効率が下がる。即ち、原料を燃焼させる割合が増えるので、燃焼室から排出される単位原料当たりの燃焼ガスの量が増え、原料乾燥機での乾燥能力も高まる。その結果、ガス化室に供給される前の原料の含水率を常に安定させることができ、単位原料当たりの生成ガスの発生量を安定させることができる。   Further, when a raw material having a high water content is gasified in a gasification furnace, a fluidized bed gasification furnace (for example, an internal circulation type fluidized bed gasification furnace) having a combustion chamber that generates a combustible gas with high thermal efficiency. However, cold gas efficiency is reduced. That is, since the rate of burning the raw material increases, the amount of combustion gas per unit raw material discharged from the combustion chamber increases, and the drying capacity in the raw material dryer also increases. As a result, the moisture content of the raw material before being supplied to the gasification chamber can always be stabilized, and the amount of generated gas per unit raw material can be stabilized.

また、燃焼ガスの顕熱を低発熱量の原料の乾燥に用いることにより、冷ガス効率が向上させられ、エネルギー回収効率を高められるだけでなく、ボイラを用いて熱回収、動力回収をする必要がなくなるので、設備コストを抑えることができ、高効率・低コストでエネルギーを回収できる。   Also, by using the sensible heat of combustion gas to dry raw materials with low calorific value, not only can the efficiency of cold gas be improved and the energy recovery efficiency can be improved, but it is also necessary to recover heat and recover power using a boiler. This eliminates the need to reduce equipment costs and recover energy with high efficiency and low cost.

本発明の好ましい態様において、該ガス化方法は更に該乾燥装置から排出されたガス状物質を冷却し精油成分及び/又は木酢成分を回収することを特徴とする。   In a preferred embodiment of the present invention, the gasification method is further characterized in that the gaseous substance discharged from the drying apparatus is cooled to recover an essential oil component and / or a wood vinegar component.

バイオマス原料には精油成分や木酢成分が含まれているので、燃焼ガスをバイオマス原料を乾燥させるために原料乾燥機に導入する際に燃焼ガスを適切な温度に調節し、バイオマス原料中の精油成分や木酢成分を選択的に燃焼ガス中に抽出することができる。抽出された精油成分や木酢成分は原料を乾燥させた燃焼ガスを冷却させることで容易に凝縮回収することができる。   Since the biomass material contains essential oil components and wood vinegar components, when introducing the combustion gas into the material dryer to dry the biomass material, the combustion gas is adjusted to an appropriate temperature, and the essential oil component in the biomass material And wood vinegar components can be selectively extracted into the combustion gas. The extracted essential oil component and wood vinegar component can be easily condensed and recovered by cooling the combustion gas obtained by drying the raw material.

本発明の好ましい態様において、該ガス化方法は更に該燃焼室から排出された燃焼ガスから熱を回収した後に燃焼ガスを該乾燥装置に供給することを特徴とする。   In a preferred aspect of the present invention, the gasification method is further characterized in that after recovering heat from the combustion gas discharged from the combustion chamber, the combustion gas is supplied to the drying device.

本発明の好ましい態様において、該ガス化室および該燃焼室は、流動媒体が該ガス化室および該燃焼室との間で循環することが可能であるように流動床ガス化炉に設けられていることを特徴とする。   In a preferred embodiment of the present invention, the gasification chamber and the combustion chamber are provided in a fluidized bed gasification furnace so that a fluidized medium can circulate between the gasification chamber and the combustion chamber. It is characterized by being.

本発明の好ましい態様において、該ガス化方法は、流動媒体を沈降させて流動媒体を該ガス化室および該燃焼室の少なくとも一方に送る少なくとも一つの流動媒体沈降室を備えたことを特徴とする。   In a preferred aspect of the present invention, the gasification method includes at least one fluidized medium settling chamber that sinks the fluidized medium and sends the fluidized medium to at least one of the gasified chamber and the combustion chamber. .

上記目的を達成するため、本発明の第3の態様によれば、原料の前処理を行う前処理室と、前処理された原料をガス化して可燃性ガスおよび残渣を生成するガス化室と、残渣を燃焼し燃焼ガスを発生する燃焼室とを備え、揮発分の一部は、燃焼ガスを前記燃焼室から前記前処理室に供給することによって原料から分離されることを特徴とするガス化装置を提供する。   In order to achieve the above object, according to the third aspect of the present invention, a pretreatment chamber for pretreating the raw material, a gasification chamber for gasifying the pretreated raw material to generate a combustible gas and a residue, And a combustion chamber that burns the residue and generates combustion gas, and a part of the volatile matter is separated from the raw material by supplying the combustion gas from the combustion chamber to the pretreatment chamber. A device is provided.

上述したように、このような構成よって、低発熱量原料は乾燥・前処理され、熱分解ガス化工程に供給されるので、生成ガスを高効率で得ることができ、有害な物質が生成ガスに混入されることはない。さらに、熱分解残渣の燃焼によって発生した熱は燃焼室から前処理室に移動する流動媒体及び前処理室に供給された可燃性ガスによって供給されるので、燃焼熱は乾燥及び前処理に効率的に用いることができる。   As described above, with such a configuration, the low calorific value raw material is dried and pretreated and supplied to the pyrolysis gasification step, so that the product gas can be obtained with high efficiency, and harmful substances are produced by the product gas. Is not mixed in. Furthermore, the heat generated by the combustion of the pyrolysis residue is supplied by the fluid medium moving from the combustion chamber to the pretreatment chamber and the combustible gas supplied to the pretreatment chamber, so that the combustion heat is efficient for drying and pretreatment. Can be used.

上記目的を達成するため、本発明の第4の態様によれば、原料を乾燥する乾燥装置と、乾燥した原料をガス化して可燃性ガスと残渣を生成するガス化室と、残渣を燃焼し燃焼ガスを発生する燃焼室とを備え、原料は、燃焼ガスを前記燃焼室から前記乾燥装置に供給することによって前記乾燥装置において乾燥されることを特徴とするガス化装置を提供する。   In order to achieve the above object, according to a fourth aspect of the present invention, a drying apparatus for drying a raw material, a gasification chamber for gasifying the dried raw material to generate a combustible gas and a residue, and burning the residue And a combustion chamber for generating combustion gas, wherein the raw material is dried in the drying device by supplying combustion gas from the combustion chamber to the drying device.

上述したように、内部循環型流動床ガス化炉の燃焼室で燃焼された燃焼ガスは、灯油等の高級な水素含有燃料を燃焼して得られるガスを大量の空気で稀釈して得る乾燥用ガスと同等の乾燥能力を有する。従って、燃焼ガスから熱を回収した後にこの燃焼ガスを乾燥用ガスとして原料乾燥機に供給することにより、低発熱量原料を効率よく乾燥できる。   As described above, the combustion gas burned in the combustion chamber of the internal circulation fluidized bed gasifier is obtained by diluting a gas obtained by burning high-grade hydrogen-containing fuel such as kerosene with a large amount of air. Has the same drying capacity as gas. Therefore, by recovering heat from the combustion gas and supplying this combustion gas as a drying gas to the raw material dryer, the low heating value raw material can be efficiently dried.

また、内部循環型流動床ガス化炉の場合は、上述したように、原料を燃焼させる割合が増えるので、燃焼室から排出される燃焼ガスの量が増え、原料乾燥機での乾燥能力も高まる。その結果、ガス化室に供給される前の原料の含水率を常に安定させることができ、単位原料当たりの生成ガスの発生量を安定させることができる。   Further, in the case of the internal circulation type fluidized bed gasification furnace, as described above, since the ratio of burning the raw material increases, the amount of combustion gas discharged from the combustion chamber increases and the drying capacity in the raw material dryer also increases. . As a result, the moisture content of the raw material before being supplied to the gasification chamber can always be stabilized, and the amount of generated gas per unit raw material can be stabilized.

また、燃焼ガスの顕熱を低発熱量の原料の乾燥に用いることにより、冷ガス効率が向上させられ、エネルギー回収効率を高められるだけでなく、ボイラを用いて熱回収、動力回収をする必要がなくなるので、設備コストを抑えることができ、高効率・低コストでエネルギーを回収できる。   Also, by using the sensible heat of combustion gas to dry raw materials with low calorific value, not only can the efficiency of cold gas be improved and the energy recovery efficiency can be improved, but it is also necessary to recover heat and recover power using a boiler. This eliminates the need to reduce equipment costs and recover energy with high efficiency and low cost.

本発明の好ましい態様において、該ガス化方法は、更に該乾燥室から排出されたガス状物質を冷却し精油成分及び/又は木酢成分を回収する冷却装置を備えたことを特徴とする。   In a preferred aspect of the present invention, the gasification method further includes a cooling device for cooling the gaseous substance discharged from the drying chamber and recovering the essential oil component and / or the wood vinegar component.

低発熱量の原料の一つであるバイオマス原料は精油成分及び木酢成分を含む。バイオマス原料中の精油成分及び木酢成分は乾燥工程における乾燥のためにガス中に抽出され、原料を乾燥させた燃焼ガスを冷却させることにより抽出された精油成分及び木酢成分は容易に凝縮回収することができる。   Biomass raw material, which is one of low calorific value raw materials, contains an essential oil component and a wood vinegar component. The essential oil component and the wood vinegar component in the biomass raw material are extracted into the gas for drying in the drying process, and the extracted essential oil component and the wood vinegar component are easily condensed and recovered by cooling the combustion gas that dried the raw material. Can do.

回収された精油成分及び木酢成分は比較的高価で売却できるので、バイオマス資源からの製品ガス及びエネルギー回収事業の収益性において重要な改善が期待される。   Since the recovered essential oil component and wood vinegar component are relatively expensive and can be sold, significant improvements are expected in the profitability of the product gas from biomass resources and energy recovery business.

以下、本発明の基本概念及び実施の形態を図1乃至図5を参照して説明する。同一又は相当する部分は、全ての図面において同一又は相当する符号を付し、重複した説明を省く。   The basic concept and embodiment of the present invention will be described below with reference to FIGS. The same or corresponding parts are denoted by the same or corresponding reference numerals in all drawings, and redundant description is omitted.

図1は、本発明のガス化方法及び装置の基本概念を示すブロック図である。図1に示すように、原料100は乾燥・前処理工程DPのための装置において乾燥前処理される。本発明において、前処理とは、原料をガス化室に供給する前にヒ素化合物などの有害な化合物を除去するために、原料が低温下で熱処理されることを意味する。乾燥・前処理済原料は熱分解・ガス化工程GPのための装置に供給されて熱分解・ガス化工程GPにおいて熱分解・ガス化され、生成ガス(可燃性ガス)101が生成される。熱分解・ガス化工程GPにおいて生成された熱分解残渣(主に炭素を含む)は、熱分解残渣燃焼工程CPのための装置に供給されて熱分解残渣燃焼工程CPにおいて燃焼され、燃焼ガス107が得られる。バイオマス、都市固形廃棄物、又は有機汚泥などの低発熱量原料100を乾燥、前処理してから熱分解・ガス化工程GPに供給することで、原料の発熱量を高くして原料100が熱分解・ガス化されるので、効率よく可燃性ガス(生成ガス)が得られる。また原料の前処理により原料中のヒ素、水銀、又はハロゲンなどの有害揮発性元素を除去してから、原料を熱分解・ガス化工程GPのための装置に送ることで、製品ガス(生成ガス)中に亜ヒ酸のようなヒ素化合物等の有害物質が混入することを回避できる。例えば、前処理、すなわち高温の燃焼ガスの導入による熱処理によって除去する有害物質として、ヒ素が挙げられる。建設廃材のように防腐や防蟻を目的としてCCA(銅クロムヒ素)等のヒ素化合物を塗布した木材等を原料とした場合、ヒ素が熱分解・ガス化工程GPで揮発して生成ガス(製品ガス)中に揮散することから、製品ガス中にヒ素が混入することになる。ヒ素化合物、とくに亜ヒ酸は猛毒であることから、製品ガスの用途に拘わらず製品ガス中にヒ素化合物が混入することを防止することが必要である。というのは、混合製品ガスを無害な製品ガスに変えることは、技術的困難性およびコスト上の不利ゆえに比較的より困難であるからである。本発明では乾燥・前処理工程DPで必要な熱として熱分解残渣燃焼工程CPで発生する燃焼ガスの顕熱を利用することで重油や石炭等の外部化石燃料を用いることなく、原料の発熱量の一部を原料の乾燥に利用するので、製品ガス製造におけるエネルギー効率を高くすることができる。乾燥・前処理工程DPで発生したガス115は冷却工程15で冷却され、精油成分及び/又は木酢成分及び/又はヒ素などの有害物質111を回収し、燃焼ガスは排ガス112としてシステムの外部に放出される。   FIG. 1 is a block diagram showing the basic concept of the gasification method and apparatus of the present invention. As shown in FIG. 1, the raw material 100 is pre-dried in an apparatus for the drying / pre-treatment process DP. In the present invention, the pretreatment means that the raw material is heat-treated at a low temperature in order to remove harmful compounds such as an arsenic compound before the raw material is supplied to the gasification chamber. The dried / pretreated raw material is supplied to an apparatus for the pyrolysis / gasification step GP, and is pyrolyzed / gasified in the pyrolysis / gasification step GP, thereby generating a product gas (combustible gas) 101. The pyrolysis residue (mainly containing carbon) generated in the pyrolysis and gasification step GP is supplied to an apparatus for the pyrolysis residue combustion step CP and burned in the pyrolysis residue combustion step CP. Is obtained. By drying and pretreating the low calorific value raw material 100 such as biomass, municipal solid waste, or organic sludge and supplying it to the pyrolysis / gasification process GP, the raw material 100 is heated by increasing the calorific value of the raw material. Since it is decomposed and gasified, a combustible gas (product gas) can be obtained efficiently. In addition, after removing harmful volatile elements such as arsenic, mercury, or halogen in the raw material by pre-treatment of the raw material, the raw material is sent to an apparatus for the pyrolysis / gasification process GP to produce a product gas (product gas) ) It can be avoided that harmful substances such as arsenic compounds are mixed in. For example, arsenic is mentioned as a harmful substance removed by pretreatment, that is, heat treatment by introducing high-temperature combustion gas. When wood such as construction waste is coated with arsenic compounds such as CCA (copper chromium arsenic) for the purpose of preserving and preventing ants, arsenic volatilizes in the pyrolysis and gasification process GP and the product gas (product) Gas), arsenic is mixed into the product gas. Since arsenic compounds, particularly arsenous acid, are extremely toxic, it is necessary to prevent arsenic compounds from being mixed into the product gas regardless of the use of the product gas. This is because changing the mixed product gas to a harmless product gas is relatively more difficult due to technical difficulties and cost disadvantages. In the present invention, by using the sensible heat of the combustion gas generated in the pyrolysis residue combustion process CP as the heat required in the drying / pretreatment process DP, the calorific value of the raw material without using external fossil fuel such as heavy oil or coal Since a part of is used for drying the raw material, the energy efficiency in product gas production can be increased. The gas 115 generated in the drying / pretreatment process DP is cooled in the cooling process 15 to recover the essential oil component and / or the vinegar component and / or arsenic and other harmful substances 111, and the combustion gas is discharged outside the system as the exhaust gas 112. Is done.

図1では、乾燥工程と前処理工程をまとめて一つの乾燥・前処理工程として記載しているが、後述のように乾燥工程と前処理工程を別にしてもよい。
原料の乾燥は、100〜280℃、好ましくは120〜150℃の温度で行うのがよい。というのは、原料中の水分を蒸発させるのには100℃以上の温度が必要であり、乾燥温度が高温であるほど乾燥時間は短くなるが、280℃を超えると原料の熱分解がはじまるため、乾燥温度は280℃よりも低くするのがよい。また、乾燥工程において、精油成分や木酢成分も揮発するが、これらの成分を選択的に抽出するには、乾燥工程は約150℃以下の温度で行うのがよい。
In FIG. 1, the drying process and the pretreatment process are collectively described as one drying / pretreatment process, but the drying process and the pretreatment process may be separated as described later.
The raw material is dried at a temperature of 100 to 280 ° C, preferably 120 to 150 ° C. This is because a temperature of 100 ° C. or higher is required to evaporate the water in the raw material, and the drying time becomes shorter as the drying temperature is higher. However, if the temperature exceeds 280 ° C., thermal decomposition of the raw material starts. The drying temperature should be lower than 280 ° C. In addition, although the essential oil component and the wood vinegar component are volatilized in the drying step, the drying step is preferably performed at a temperature of about 150 ° C. or lower in order to selectively extract these components.

CCA処理された建設廃材等からヒ素を回収するには、前処理工程は135〜280℃、好ましくは150〜200℃で行うのがよい。ヒ素の揮発温度は135℃以上であり、また280℃を超えると原料の熱分解がはじまることから、135〜280℃の間の温度で前処理工程を行うのがよい。ヒ素の放出は150〜200℃の温度で顕著に起こることからこの温度域にするのがより好ましい。   In order to recover arsenic from CCA-treated construction waste and the like, the pretreatment step is performed at 135 to 280 ° C, preferably 150 to 200 ° C. The volatilization temperature of arsenic is 135 ° C. or higher, and if it exceeds 280 ° C., thermal decomposition of the raw material starts, so the pretreatment step is preferably performed at a temperature between 135 ° C. and 280 ° C. Since arsenic release occurs remarkably at a temperature of 150 to 200 ° C., it is more preferable to use this temperature range.

乾燥工程と前処理工程を同じ原料乾燥機内で行ってもよいが、上述のように運転温度を調整することで、乾燥工程と前処理工程を独立して行うことも可能である。乾燥工程と前処理工程を独立して行うことで、精油成分及び木酢成分に有害揮発分が混入することを回避することも可能であり、特にCCA処理された建設廃材を原料とする場合には、120〜150℃の低温の乾燥工程により木酢液を回収し、150〜200℃の高温でヒ素を揮散させてヒ素を回収するようにすることも可能である。   Although the drying process and the pretreatment process may be performed in the same raw material dryer, the drying process and the pretreatment process can be performed independently by adjusting the operation temperature as described above. By carrying out the drying process and the pretreatment process independently, it is possible to avoid harmful volatile components from being mixed into the essential oil component and the wood vinegar component, especially when the construction waste material subjected to CCA treatment is used as a raw material. It is also possible to recover the pyroligneous acid solution at a low temperature drying step of 120 to 150 ° C. and volatilize arsenic at a high temperature of 150 to 200 ° C. to recover arsenic.

乾燥・前処理工程DPで乾燥され、前処理された原料は、熱分解ガス化工程GPに送られ、熱分解・ガス化される。熱分解・ガス化工程GPは350〜900℃の温度で行うのが好ましい。原料は、水素、一酸化炭素、メタン等の炭素数が3までの炭化水素ガス、炭素数4以上の炭化水素からなるタール分を含む生成ガス、原料の固定炭素分を主体とする熱分解残渣(チャーとも呼ばれる)、灰分とに分解される。生成ガス101は炉出口から排出され、ガス改質工程6のための装置に送られる。ガス改質工程6では、生成ガス101は、部分燃焼による高温化、水蒸気との反応(改質反応)、触媒(ゼオライト、シリカーアルミナ、石灰石、又は金属(Rh,Ru,Ni,Pd,Pt,Co,Mo,Ir,Re,Fe,Na,K)の少なくとも1つ又はNi/Al203等のこれらの金属の酸化物からなる触媒を含む)を利用した反応等により、生成ガス101中の高分子化合物の低分子化と水蒸気との反応による水素生成が起こる。改質ガスは熱回収工程7に供給されて減温されたのち、ガス洗浄・脱塵工程8に供給されて洗浄・除塵される。その後、洗浄された改質ガスはガス精製工程9のための装置において塩素化合物及び/又は硫黄化合物を除去された後、製品ガス106としてシステムの外部に排出され、予め定められた位置(施設、容器など)に供給される。   The raw material dried and pretreated in the drying / pretreatment process DP is sent to the pyrolysis gasification process GP, where it is pyrolyzed and gasified. The pyrolysis / gasification step GP is preferably performed at a temperature of 350 to 900 ° C. The raw material is hydrocarbon gas having up to 3 carbon atoms such as hydrogen, carbon monoxide, methane, etc., a product gas containing a tar content consisting of hydrocarbons having 4 or more carbon atoms, and a pyrolysis residue mainly composed of fixed carbon of the raw material It is broken down into ash (also called char). The product gas 101 is discharged from the furnace outlet and sent to the apparatus for the gas reforming process 6. In the gas reforming step 6, the product gas 101 is heated at a high temperature by partial combustion, reaction with water vapor (reforming reaction), catalyst (zeolite, silica-alumina, limestone, or metal (Rh, Ru, Ni, Pd, Pt). , Co, Mo, Ir, Re, Fe, Na, K) or a catalyst using a catalyst made of an oxide of these metals such as Ni / Al203). Hydrogen generation occurs due to the reduction of molecular compounds and the reaction with water vapor. The reformed gas is supplied to the heat recovery process 7 and reduced in temperature, and then supplied to the gas cleaning / dust removal process 8 to be cleaned / dedusted. Thereafter, the cleaned reformed gas is removed from the system as a product gas 106 after chlorine compounds and / or sulfur compounds are removed in an apparatus for the gas purification step 9, and is then discharged to a predetermined position (facility, facility, Container).

熱分解工程GPで発生した熱分解残渣は熱分解残渣燃焼工程CPのための装置に送られ、空気(予熱空気、燃焼排ガスを含む空気を含む)などの酸素を含むガスとの反応により燃焼される。熱分解残渣の燃焼によって発生した高温燃焼ガス107は熱回収工程11のための装置に送られて熱回収工程11において400−1000℃の範囲から150−500℃の範囲に減温された後、脱塵工程12に送られる。脱塵工程12において燃焼ガス107に含まれる灰分、ダストを除去した後、燃焼ガス107は脱塩工程13、脱硝工程14を通って燃焼ガス107から塩化水素および窒素酸化物が除去される。このように得たクリーンな燃焼ガス107の少なくとも一部を乾燥・前処理工程DPに供給し、原料の乾燥および前処理に必要な熱源として利用する。   The pyrolysis residue generated in the pyrolysis process GP is sent to an apparatus for the pyrolysis residue combustion process CP and burned by reaction with oxygen-containing gas such as air (including preheated air and air containing combustion exhaust gas). The The high-temperature combustion gas 107 generated by the combustion of the pyrolysis residue is sent to the apparatus for the heat recovery step 11 and is reduced in temperature from the range of 400-1000 ° C. to the range of 150-500 ° C. in the heat recovery step 11, It is sent to the dust removal process 12. After removing ash and dust contained in the combustion gas 107 in the dedusting step 12, the combustion gas 107 passes through the desalting step 13 and the denitration step 14 to remove hydrogen chloride and nitrogen oxides from the combustion gas 107. At least a part of the clean combustion gas 107 obtained in this way is supplied to the drying / pretreatment step DP and used as a heat source necessary for drying and pretreatment of the raw material.

次に、図1に示す本発明の基本概念をより具体化した本発明の実施形態について図2乃至図5を参照して説明する。
図2は本発明の第1の実施形態によるガス化装置を示すブロック図である。図2に示すように、ガス化装置は原料乾燥機1、原料乾燥機1の下端に配置された原料ホッパ2、原料ホッパ2の下端に配置された原料供給機3、内部循環型流動床ガス化炉4からなる。内部循環型流動床ガス化炉は一つの炉内に設けられたガス化室4-1と燃焼室4-2とからなる。原料乾燥機1内に投入されたバイオマス等の低発熱量原料100は後に詳述するように、内部循環型流動床ガス化炉4の燃焼室4-2から排出された燃焼ガスにより乾燥される。該乾燥された原料100は原料ホッパ2に投入され、プッシャ5で原料供給機3の原料入口に押し込まれ、原料供給機3で内部循環型流動床ガス化炉4のガス化室4-1に供給される。流動媒体が流動化される流動層4-1bはガス化室4−1に形成され、流動媒体が流動化される流動層4-2bは燃焼室4-2に形成される。
Next, an embodiment of the present invention that further embodies the basic concept of the present invention shown in FIG. 1 will be described with reference to FIGS.
FIG. 2 is a block diagram showing the gasifier according to the first embodiment of the present invention. As shown in FIG. 2, the gasifier includes a raw material dryer 1, a raw material hopper 2 disposed at the lower end of the raw material dryer 1, a raw material feeder 3 disposed at the lower end of the raw material hopper 2, and an internal circulation fluidized bed gas. It consists of a chemical reactor 4. The internal circulation type fluidized bed gasification furnace includes a gasification chamber 4-1 and a combustion chamber 4-2 provided in one furnace. The low calorific value raw material 100 such as biomass charged into the raw material dryer 1 is dried by the combustion gas discharged from the combustion chamber 4-2 of the internal circulation type fluidized bed gasification furnace 4, as will be described in detail later. . The dried raw material 100 is put into the raw material hopper 2, pushed into the raw material inlet of the raw material supply machine 3 by the pusher 5, and put into the gasification chamber 4-1 of the internal circulation type fluidized bed gasification furnace 4 by the raw material supply machine 3. Supplied. The fluidized bed 4-1b in which the fluidized medium is fluidized is formed in the gasification chamber 4-1, and the fluidized bed 4-2b in which the fluidized medium is fluidized is formed in the combustion chamber 4-2.

原料供給機3によりガス化室4-1の流動層4-1bの上部(濃厚流動層界面上部)に供給された原料100は、流動層4-1b内で熱分解ガス化され、生成ガス(可燃性ガス)101およびチャーなどの熱分解残渣を生成する。生成ガス101はフリーボード4-1aを通って、ガス改質工程6のガス改質器に送られ、ガス改質工程6で改質された生成ガス101は熱回収工程7に送られ、熱回収工程7で廃熱ボイラ(図示せず)により蒸気102を得、空気予熱器(図示せず)で予熱空気103を得て熱回収され、生成ガス101の温度は800℃〜1200℃の範囲から200℃〜500℃の範囲に低下する。温度の低下した生成ガス101はガス洗浄・脱塵工程8に送られ、該ガス洗浄・脱塵工程8で水噴射によるガス洗浄、排水104及び灰分105の除去が行われ、洗浄された生成ガス101はガス精製工程9を経て製品ガス106となる。   The raw material 100 supplied to the upper part of the fluidized bed 4-1b (the upper part of the dense fluidized bed interface) of the gasification chamber 4-1 by the raw material feeder 3 is pyrolyzed and gasified in the fluidized bed 4-1b to produce a product gas Combustible gas) 101 and pyrolysis residues such as char are generated. The product gas 101 passes through the free board 4-1a and is sent to the gas reformer in the gas reforming process 6, and the product gas 101 reformed in the gas reforming process 6 is sent to the heat recovery process 7 to generate heat. In the recovery process 7, steam 102 is obtained by a waste heat boiler (not shown), preheated air 103 is obtained by an air preheater (not shown), and heat is recovered. The temperature of the product gas 101 is in the range of 800 ° C to 1200 ° C. To 200 ° C to 500 ° C. The product gas 101 whose temperature has dropped is sent to the gas cleaning / dedusting process 8, and the gas cleaning and drainage 104 and ash 105 are removed by water injection in the gas cleaning / dedusting process 8, and the cleaned product gas is cleaned. 101 becomes the product gas 106 through the gas purification step 9.

ガス化室4-1の流動層4-1bと燃焼室4-2の流動層4-2bは隔壁4-3の下端下方の開口を通して連通しており、ガス化室4-1の流動層4-1bから流動媒体とチャー等の熱分解残渣が燃焼室4-2の流動層4-2bに移動する。燃焼室4-2でチャー等は燃焼し、燃焼ガス107を生成し、その生成された燃焼ガス107はフリーボード4-2aを通って熱回収工程11に送られ、熱回収工程11で廃熱ボイラ(図示せず)で蒸気108を得、空気予熱器(図示せず)で予熱空気109を得て熱回収され、燃焼ガス107の温度は400℃〜1000℃の範囲から150℃〜500℃の範囲に低下する。温度の低下した燃焼ガス107は脱塵工程12のための装置に送られ、該脱塵工程12で飛灰110が除去され、脱塩工程13の装置、脱硝工程14の装置を経て、脱塩、脱硝処理される。脱硝工程14を通った燃焼ガス107は、原料の乾燥用ガスとして原料乾燥機1に供給される。もちろん上記ガス改質工程6、熱回収工程7、ガス洗浄・脱塵工程8、ガス精製工程9は生成ガス101の性状や用途によって省略できる。例えば、ガス化室で生成した生成ガスをそのままボイラやセメント焼成炉、製紙プロセスにおける石灰石焼成炉(ライムキルンとも呼ばれる)などの燃料ガスとして使用する場合には、ガス改質工程6や、熱回収工程7あるいはガス精製工程9を設けず、生成ガスを、除塵処理を行った後ボイラや焼成炉に供給する。同様に熱回収工程11、脱塵工程12、脱塩工程13、脱硝工程14は燃焼ガス107の性状によって不要な場合は省略できる。例えば、原料に塩素が含まれない場合、脱塩工程13は必要ない。   The fluidized bed 4-1b in the gasification chamber 4-1 and the fluidized bed 4-2b in the combustion chamber 4-2 communicate with each other through an opening below the lower end of the partition wall 4-3, and the fluidized bed 4 in the gasification chamber 4-1 is connected. The thermal decomposition residue such as the fluidized medium and char moves from -1b to the fluidized bed 4-2b of the combustion chamber 4-2. In the combustion chamber 4-2, char or the like burns to generate combustion gas 107, and the generated combustion gas 107 is sent to the heat recovery step 11 through the free board 4-2a. Steam 108 is obtained with a boiler (not shown), preheated air 109 is obtained with an air preheater (not shown), and the heat is recovered. The temperature of the combustion gas 107 is in the range of 400 ° C. to 1000 ° C. to 150 ° C. to 500 ° C. Falls to the range. The combustion gas 107 whose temperature has been lowered is sent to an apparatus for the dust removal process 12, and the fly ash 110 is removed in the dust removal process 12, and passes through the apparatus for the desalination process 13 and the apparatus for the denitration process 14. Denitration treatment. The combustion gas 107 that has passed through the denitration process 14 is supplied to the raw material dryer 1 as a raw material drying gas. Of course, the gas reforming step 6, the heat recovery step 7, the gas cleaning / dedusting step 8, and the gas purification step 9 can be omitted depending on the properties and applications of the product gas 101. For example, when the product gas generated in the gasification chamber is used as it is as a fuel gas for a boiler, a cement firing furnace, a limestone firing furnace (also called a lime kiln) in a papermaking process, the gas reforming process 6 or the heat recovery process. 7 or the gas purification step 9 is not provided, and the generated gas is supplied to a boiler or a firing furnace after dust removal. Similarly, the heat recovery step 11, the dust removal step 12, the desalting step 13, and the denitration step 14 can be omitted if unnecessary due to the properties of the combustion gas 107. For example, when the raw material contains no chlorine, the desalting step 13 is not necessary.

原料乾燥機1は下端部から原料の乾燥用ガスを供給し、下降しながら原料乾燥に寄与し、上端部から排出するように構成した縦型の乾燥機である。原料乾燥機1に原料の乾燥用ガスとして供給された燃焼ガス107は原料100の乾燥に寄与した後、冷却工程15に送られ、燃焼ガス(乾燥用ガス)107に含まれる精油成分や木酢成分が凝縮回収される。該精油成分及び/又は木酢成分が除去され、燃焼ガスは排ガス112となってシステムの外部に放出される。   The raw material dryer 1 is a vertical dryer configured to supply a raw material drying gas from the lower end, contribute to the raw material drying while descending, and discharge from the upper end. The combustion gas 107 supplied to the raw material dryer 1 as a raw material drying gas contributes to the drying of the raw material 100 and is then sent to the cooling step 15 where the essential oil component and the wood vinegar component contained in the combustion gas (drying gas) 107 Is condensed and recovered. The essential oil component and / or the wood vinegar component are removed, and the combustion gas becomes exhaust gas 112 and is released to the outside of the system.

流動媒体113は流動層4-2b内に移動し、流動層4-2bの底部から排出され、流動媒体循環手段16を経て原料供給機3内に供給される。原料供給機3はケーシング3-1内にスクリュー3-2が回転自在に配置された構成であり、ケーシング3-1は、水平面に対して所定の角度でケーシング3−1の下流側が上方になるように傾斜させて配置されている。これにより、ケーシング3-1内に充満された原料と流動媒体113により高いマテリアルシール機能を発揮させることができる。一方、マテリアルシール機能がシール機能の欠如による問題が生じることなくシステムを操作するように得られれば、原料供給機3は傾斜させずに配置してもよい。   The fluidized medium 113 moves into the fluidized bed 4-2b, is discharged from the bottom of the fluidized bed 4-2b, and is supplied into the raw material feeder 3 through the fluidized medium circulating means 16. The raw material feeder 3 has a configuration in which a screw 3-2 is rotatably arranged in a casing 3-1, and the casing 3-1 has a predetermined angle with respect to a horizontal plane, and the downstream side of the casing 3-1 is upward. So as to be inclined. Thereby, a high material sealing function can be exhibited by the raw material and the fluid medium 113 filled in the casing 3-1. On the other hand, if the material seal function is obtained so as to operate the system without causing a problem due to the lack of the seal function, the raw material supplier 3 may be arranged without being inclined.

上記のように原料乾燥機1で乾燥させたバイオマス等の低発熱量の原料100をガス化室4-1に供給することにより、そこで原料100に含まれる水分は蒸発し、且つ水素成分の殆どは揮発成分として生成ガス101となってガス化室4-1から放出されるから、燃焼室4-2から排出された燃焼ガス107には水分がほとんど含まれておらず、灯油等の高級な水素含有燃料を燃焼して得られるガスを大量の空気で稀釈して得る乾燥用ガスと同等の乾燥能力を有する。従って、この燃焼ガス107を熱回収工程11、脱塵工程12、脱塩工程13、脱硝工程14を経て、熱回収、脱塵、脱塩、脱硝処理した後に原料乾燥機1に供給することにより、バイオマス、都市固形廃棄物、又は有機汚泥等の低発熱量原料を効率よく乾燥できる。従って、低発熱量の原料100から高効率、低コストで製品ガス106を回収できる。エネルギーも原料100から回収してもよい。   By supplying the raw material 100 having a low calorific value such as biomass dried by the raw material dryer 1 to the gasification chamber 4-1 as described above, the water contained in the raw material 100 evaporates and most of the hydrogen component is present. Is produced gas 101 as a volatile component and is discharged from gasification chamber 4-1, so that combustion gas 107 discharged from combustion chamber 4-2 contains almost no moisture and is high-grade such as kerosene. It has a drying capacity equivalent to a drying gas obtained by diluting a gas obtained by burning a hydrogen-containing fuel with a large amount of air. Accordingly, the combustion gas 107 is supplied to the raw material dryer 1 after being subjected to heat recovery, dedusting, desalting, and denitration processes through a heat recovery process 11, a dedusting process 12, a demineralization process 13, and a denitration process 14. , Low calorific value raw materials such as biomass, municipal solid waste, or organic sludge can be efficiently dried. Therefore, the product gas 106 can be recovered from the raw material 100 having a low calorific value with high efficiency and low cost. Energy may also be recovered from the raw material 100.

また、内部循環型流動床ガス化炉4で、含水率の高い原料をガス化する場合は、冷ガス効率が下がる。即ち、原料100を燃焼させる割合が増えるので、燃焼室4-2から排出される燃焼ガス107の量が増え、原料乾燥機1での乾燥能力も高まる。その結果、ガス化室4-1に供給される前の原料100の含水率を常に安定させることができ、単位原料当たりの生成ガス101の発生量を安定させることができる。   Further, when gasifying a raw material having a high water content in the internal circulation type fluidized bed gasification furnace 4, the cold gas efficiency is lowered. That is, since the rate of burning the raw material 100 increases, the amount of the combustion gas 107 discharged from the combustion chamber 4-2 increases, and the drying capacity in the raw material dryer 1 also increases. As a result, the moisture content of the raw material 100 before being supplied to the gasification chamber 4-1 can be constantly stabilized, and the amount of generated gas 101 per unit raw material can be stabilized.

また、バイオマス原料100には精油成分や木酢成分が含まれているので、燃焼ガス107をバイオマス原料を乾燥させるために原料乾燥機1に導入する際に燃焼ガス107を適切な温度に調節し、バイオマス原料中の精油成分や木酢成分を選択的に燃焼ガス中に抽出することができる。抽出された精油成分や木酢成分は燃焼ガスを冷却工程15に導き冷却させることで容易に凝縮回収することができる。この回収した精油成分や木酢成分111は比較的高価で売却できるので、バイオマス資源からの製品ガス及びエネルギー回収事業の採算性向上に寄与することが期待できる。   Further, since the biomass raw material 100 contains an essential oil component and a wood vinegar component, the combustion gas 107 is adjusted to an appropriate temperature when the combustion gas 107 is introduced into the raw material dryer 1 in order to dry the biomass raw material, The essential oil component and the wood vinegar component in the biomass raw material can be selectively extracted into the combustion gas. The extracted essential oil component and wood vinegar component can be easily condensed and recovered by introducing the combustion gas to the cooling step 15 and cooling it. Since the recovered essential oil component and the wood vinegar component 111 are relatively expensive and can be sold, it can be expected to contribute to improving the profitability of the product gas and energy recovery business from biomass resources.

また、燃焼ガス107の顕熱を低発熱量の原料100の乾燥に用いることにより、冷ガス効率が向上させられ、エネルギー回収効率を高められるだけでなく、ボイラを用いて熱回収、動力回収をする必要がなくなるので、設備コストを抑えることができ、高効率・低コストでエネルギーを回収できるエネルギー回収装置を構成できる。   Further, by using the sensible heat of the combustion gas 107 to dry the raw material 100 having a low calorific value, not only the cold gas efficiency can be improved and the energy recovery efficiency can be improved, but also the heat recovery and power recovery can be performed using a boiler. Therefore, the equipment cost can be suppressed, and an energy recovery device that can recover energy with high efficiency and low cost can be configured.

次に、本発明の第2の実施形態によるガス化方法及び装置を図3を参照して説明する。図3に示す第2の実施形態のガス化装置が、図2に示す第1の実施形態のガス化装置と異なる点は、図2に示す第1の実施形態では原料ホッパ2の上部に縦型の原料乾燥機1を配置し、乾燥させた原料100を直接原料ホッパ2に投入できるようにしているのに対して、図3に示す第2の実施形態では原料ホッパ2から離れた位置に、キルン型の原料乾燥機20を配置した点である。そして、図3に示す第2の実施形態では原料乾燥機20の端部の上部に設けた原料供給口20aから原料100を投入し、原料乾燥機20の他端部の下部に設けた原料排出口20bから乾燥した原料100’を排出するように構成されている。   Next, a gasification method and apparatus according to a second embodiment of the present invention will be described with reference to FIG. The gasifier of the second embodiment shown in FIG. 3 differs from the gasifier of the first embodiment shown in FIG. 2 in that the first embodiment shown in FIG. The mold material dryer 1 is arranged so that the dried material 100 can be directly fed into the material hopper 2, whereas in the second embodiment shown in FIG. The kiln type raw material dryer 20 is disposed. In the second embodiment shown in FIG. 3, the raw material 100 is introduced from the raw material supply port 20 a provided at the upper part of the end of the raw material dryer 20, and the raw material discharge provided at the lower part of the other end of the raw material dryer 20. The dried raw material 100 ′ is discharged from the outlet 20b.

乾燥用ガスである燃焼ガス107は原料乾燥機20の下流側一端から供給され、上流側他端から排出されるようになっている。即ち、内部循環型流動床ガス化炉4の燃焼室4-2から供給される燃焼ガス107は熱回収工程11、脱塵工程12、脱塩工程13、脱硝工程14を経た後、原料乾燥機20の下流側端部に供給され、原料の移動方向に対して反対方向に流れて原料100の乾燥に寄与し、上流側端部から出て、冷却工程15に供給されるようになっている。そして乾燥された原料100’は図示しない搬送手段で原料ホッパ2に供給されるようになっている。図3に示すガス化装置のその他の構造は図2の装置と同一であり、図2の装置と同一の作用効果を奏する。   The combustion gas 107 which is a drying gas is supplied from one end on the downstream side of the raw material dryer 20 and is discharged from the other end on the upstream side. That is, the combustion gas 107 supplied from the combustion chamber 4-2 of the internal circulation type fluidized bed gasification furnace 4 undergoes a heat recovery process 11, a dust removal process 12, a desalting process 13, and a denitration process 14, and then a raw material dryer. 20 is supplied to the downstream end of the material 20, flows in the direction opposite to the moving direction of the raw material, contributes to the drying of the raw material 100, exits from the upstream end, and is supplied to the cooling step 15. . The dried raw material 100 'is supplied to the raw material hopper 2 by a conveying means (not shown). The other structure of the gasification apparatus shown in FIG. 3 is the same as that of the apparatus of FIG. 2, and has the same effect as the apparatus of FIG.

図4は、本発明の第3の実施形態によるガス化方法及び装置を示すブロック図である。図4に示すように、本発明の第1および第2の実施形態による熱分解・ガス化工程および熱分解残渣燃焼工程を単一の一体の炉で行う内部循環型流動床ガス化炉4にさらに「乾燥・前処理工程」を行うための乾燥・前処理室4−4を設けている。   FIG. 4 is a block diagram showing a gasification method and apparatus according to the third embodiment of the present invention. As shown in FIG. 4, an internal circulation type fluidized bed gasification furnace 4 in which the pyrolysis / gasification process and the pyrolysis residue combustion process according to the first and second embodiments of the present invention are performed in a single integrated furnace is provided. Furthermore, a drying / pretreatment chamber 4-4 for performing the “drying / pretreatment step” is provided.

図4に示すように、ガス化炉は、流動床炉であり、濃厚な流動媒体の流動層がA、B、Cの3つの仕切壁で乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2を形成するように仕切られている。これらの3室4−1,4−2,4−3は3つの仕切壁A,B,Cによって流動層の上部から炉の頂部まで完全に仕切られた構造になっている。ここで流動層の上部とは、濃厚流動層を形成している層の表面部分よりも上の部分のことを指している。具体的にはこれら3つの仕切壁A,B,Cは、炉底の分散板4−6の近傍かつ濃厚流動層内に位置し隣の部屋から流動媒体の移動が可能な開口部を有しており、これらの開口以外では隣の部屋との流通がないような壁で構成されている。流動層を形成する流動媒体と原料および熱分解残渣はこれらの開口部を通じて隣の部屋に移動する。本実施例においては、流動媒体113は乾燥・前処理室4−4から乾燥・前処理の済んだ原料とともにガス化室4−1に移動し、ガス化室4−1から流動媒体113は熱分解残渣とともに燃焼室4−2に移動し、流動媒体113は燃焼室4−2から乾燥・前処理室4−4およびガス化室4−1に移動する。   As shown in FIG. 4, the gasification furnace is a fluidized bed furnace, and the fluidized bed of the rich fluid medium is divided into three partition walls A, B, and C, and the drying / pretreatment chamber 4-4 and the gasification chamber 4. -1 and the combustion chamber 4-2. These three chambers 4-1, 4-2 and 4-3 are structured to be completely partitioned from the upper part of the fluidized bed to the top of the furnace by three partition walls A, B and C. Here, the upper part of the fluidized bed refers to the part above the surface part of the layer forming the dense fluidized bed. Specifically, these three partition walls A, B, and C have openings in the vicinity of the dispersion plate 4-6 at the bottom of the furnace and located in the dense fluidized bed so that the fluidized medium can move from the adjacent chamber. In addition to these openings, the walls are constructed so that there is no circulation with the next room. The fluid medium, raw material and pyrolysis residue forming the fluidized bed move to the next room through these openings. In this embodiment, the fluid medium 113 moves from the drying / pretreatment chamber 4-4 to the gasification chamber 4-1 together with the dried / pretreated raw material, and the fluid medium 113 is heated from the gasification chamber 4-1. It moves to the combustion chamber 4-2 together with the decomposition residue, and the fluid medium 113 moves from the combustion chamber 4-2 to the drying / pretreatment chamber 4-4 and the gasification chamber 4-1.

このように構成することで、燃焼室4−2で熱分解残渣の燃焼によって高温化した流動媒体113を乾燥・前処理室4−4およびガス化室4−1に供給し、乾燥・前処理工程およびガス化工程に必要な熱を流動媒体113で移動させることが可能となる。仕切壁の下部に形成された開口部でこのように流動媒体113(および原料、熱分解残渣)を移動させるには、開口部の仕切壁両側での流動媒体の流動化状態、より具体的には流動化ガスの空塔速度を仕切壁の開口部の両側で変える。つまり、開口部の下流側の流動媒体の流動化状態を開口部の上流側の流動媒体の流動化状態よりも相対的に強くなるようにする。このようにすることで、仕切壁開口部の両側の流動層の密度差が生じること(上流側の流動層の方が下流側の流動層よりも高密度状態になる)、および下流側の流速が上流側の流速よりも速いことによる誘引効果により流動媒体が移動する。流動媒体の移動量は開口部両側の流動媒体の流動化状態の差、すなわち流動化ガスの空塔速度の差の大小によって制御可能である。   By comprising in this way, the fluidized medium 113 heated by combustion of the thermal decomposition residue in the combustion chamber 4-2 is supplied to the drying / pretreatment chamber 4-4 and the gasification chamber 4-1, and the drying / pretreatment is performed. Heat necessary for the process and the gasification process can be moved by the fluidized medium 113. In order to move the fluid medium 113 (and the raw material and pyrolysis residue) in this way through the opening formed in the lower part of the partition wall, the fluidized state of the fluid medium on both sides of the partition wall of the opening, more specifically, Changes the superficial velocity of the fluidizing gas on both sides of the opening of the partition wall. That is, the fluidized state of the fluid medium on the downstream side of the opening is made relatively stronger than the fluidized state of the fluid medium on the upstream side of the opening. By doing so, the density difference between the fluidized beds on both sides of the partition wall opening occurs (the upstream fluidized bed is in a higher density state than the downstream fluidized bed), and the downstream flow velocity. The fluid medium moves due to the attraction effect due to the fact that is faster than the upstream flow velocity. The moving amount of the fluidized medium can be controlled by the difference in the fluidized state of the fluidized media on both sides of the opening, that is, the difference in the superficial velocity of the fluidized gas.

さらに、D、E、Fのような炉床から濃厚流動層表面近傍までの高さの低い仕切壁を乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2の少なくとも1つに設けるのがよい。これらの低い仕切壁は、流動媒体の流れにあわせ、下流側の部屋へと連通している仕切壁の開口部の上流に設け、部屋を仕切る仕切り壁(A、B、C)と低い仕切壁(D、E、F)に挟まれた領域を形成する。この2種類の壁に挟まれた領域(例えば仕切壁BとE)では、その領域のある室内のそれ以外の領域(例えばガス化室4−1の仕切壁BとEに挟まれた領域以外の領域)から流動媒体が低い仕切壁(例えば仕切壁E)を超えて流入し、部屋を仕切る仕切壁(例えば仕切壁B)の下部開口を通って流動媒体は隣の室(例えば燃焼室4−2)に移動する。すなわち、この2種類の壁(例えば仕切壁BとE)で挟まれた領域は流動媒体を沈降させて隣室に送る機能を有しており、流動媒体沈降室とよぶ。例えば、流動媒体沈降室4−5は仕切壁BとEによって形成されている。流動媒体沈降室では相対的に弱い流動化状態である。低い仕切壁を設け、流動媒体沈降室を形成すると、流動媒体沈降室に飛び込む流動媒体は流動媒体沈降室の弱い流動化のために流動媒体沈降室に堆積する。低い仕切壁の高さを適切に設定することでガス化室4−1、燃焼室4−2、乾燥・前処理室4−4の本体流動層部分(流動媒体沈降室以外の部分)よりも高い層高にすることが可能である。流動媒体沈降室の層高を他の領域の層高よりも高くすることで、流動媒体の循環量を多くすることが可能となる。つまり、流動媒体沈降室の層高で流動媒体の循環量を制御することができる。さらに、流動媒体沈降室は相対的に弱い流動化状態であるため、他の領域よりも高密度な流動層となっている。高密度にできることから、流動媒体循環量の制御を可能にしている。また、高密度な層を形成するので、隣室(流動媒体の流れ方向下流側)からの流動媒体沈降室へのガスの流入を抑える良好なガスシール性を有する。   Furthermore, a partition wall having a low height from the hearth such as D, E, and F to the vicinity of the surface of the dense fluidized bed is provided at least in the drying / pretreatment chamber 4-4, the gasification chamber 4-1, and the combustion chamber 4-2. It is good to provide one. These low partition walls are provided upstream of the opening of the partition wall that communicates with the downstream room in accordance with the flow of the fluid medium, and the partition walls (A, B, C) that partition the room and the low partition walls A region sandwiched between (D, E, F) is formed. In the region sandwiched between these two types of walls (for example, partition walls B and E), the other region in the room where the region is located (for example, other than the region sandwiched between partition walls B and E of gasification chamber 4-1). From the lower partition wall (for example, partition wall E), and the fluid medium passes through the lower opening of the partition wall (for example, partition wall B) that partitions the room, and the fluid medium passes through the lower chamber (for example, combustion chamber 4). -2). That is, a region sandwiched between these two types of walls (for example, partition walls B and E) has a function of sinking a fluid medium and sending it to an adjacent chamber, and is called a fluid medium sedimentation chamber. For example, the fluid medium settling chamber 4-5 is formed by the partition walls B and E. The fluid medium settling chamber is in a relatively weak fluidized state. When a low partition wall is provided to form a fluid medium settling chamber, the fluid medium that jumps into the fluid medium settling chamber accumulates in the fluid medium settling chamber due to weak fluidization of the fluid medium settling chamber. By appropriately setting the height of the low partition wall, the main body fluidized bed portion (portion other than the fluidized medium settling chamber) of the gasification chamber 4-1, the combustion chamber 4-2, and the drying / pretreatment chamber 4-4. High layer heights are possible. By making the bed height of the fluid medium settling chamber higher than the bed height of other regions, it becomes possible to increase the circulation amount of the fluid medium. That is, the circulation amount of the fluid medium can be controlled by the bed height of the fluid medium sedimentation chamber. Furthermore, since the fluidized medium settling chamber is in a relatively weak fluidized state, it has a fluidized bed with a higher density than other regions. Since the density can be increased, the circulating amount of the fluid medium can be controlled. Moreover, since a high-density layer is formed, it has a good gas sealing property that suppresses the inflow of gas from the adjacent chamber (downstream in the flow direction of the fluid medium) to the fluid medium sedimentation chamber.

乾燥・前処理室4−4の流動化ガスには前述のように燃焼室4−2からの燃焼ガスを用い、燃焼ガスの顕熱を原料の乾燥・前処理に利用するのがよい。ガス化室4−1には、水蒸気等の酸素を含まないガス、もしくは酸素含有割合が5%以下、好ましくは3%以下のガス、例えば燃焼排ガスを用いるのがよい。酸素を含むガスをガス化室4−1に供給すると、熱分解によって発生した生成ガス(可燃性ガス)を燃焼させてしまうため、生成ガス中の可燃ガス成分の一部を失ってしまうので好ましくない。燃焼室4−2には空気や酸素富化空気などの酸素含有ガスを供給する。   As described above, the combustion gas from the combustion chamber 4-2 is used as the fluidizing gas in the drying / pretreatment chamber 4-4, and the sensible heat of the combustion gas is preferably used for the drying / pretreatment of the raw material. In the gasification chamber 4-1, it is preferable to use a gas not containing oxygen such as water vapor or a gas having an oxygen content ratio of 5% or less, preferably 3% or less, for example, combustion exhaust gas. If a gas containing oxygen is supplied to the gasification chamber 4-1, the generated gas (combustible gas) generated by thermal decomposition is burned, and therefore, a part of the combustible gas component in the generated gas is lost. Absent. An oxygen-containing gas such as air or oxygen-enriched air is supplied to the combustion chamber 4-2.

図5A及び図5Bは図4に示すガス化炉の各室の配置構成を示す水平断面概念図である。矩形のガス化炉の1炉内を乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2に仕切壁A、B、C−1およびC−2で仕切り、燃焼室4−2の中に低い仕切壁(F−1、F−2)で仕切られた流動媒体沈降室4−5A,4−5Bを2つ設けている。仕切壁A、B、C−1およびC−2は炉底から炉頂部まである仕切壁であり、炉底近傍に各室間を流動媒体および原料や熱分解残渣が移動可能な開口を設けてある。乾燥・前処理室4−4およびガス化室4−1は炉底部近傍に設けた流動媒体移動用の開口部を除いていずれの室からも独立するように壁で仕切られている。流動媒体移動用の開口は炉底近傍の濃厚流動層内に設けられているので、流動媒体および流動媒体とともに移動する原料および熱分解残渣は隣室へ開口を通じて移動できるが、乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2の各室で発生するガス、すなわち、乾燥・前処理発生ガス、生成ガス(可燃性ガス)および燃焼ガスは隣室に移動することなく各室の炉上部の排出口から独立して排出される。すなわち、各室で発生するガスは互いに混合することなく取り出すことができる構造となっている。燃焼室4−2内には2つの低い仕切壁(F−1、F−2)が設けられ、仕切壁F−1とC−1で仕切られた流動媒体沈降室4−5Aと仕切壁F−2とC−2で仕切られた流動媒体沈降室4−5Bが形成される。   5A and 5B are horizontal cross-sectional conceptual diagrams showing an arrangement configuration of each chamber of the gasification furnace shown in FIG. The inside of one rectangular gasification furnace is partitioned into a drying / pretreatment chamber 4-4, a gasification chamber 4-1, and a combustion chamber 4-2 by partition walls A, B, C-1 and C-2, and a combustion chamber Two fluid medium settling chambers 4-5A and 4-5B, which are partitioned by low partition walls (F-1, F-2), are provided in 4-2. Partition walls A, B, C-1 and C-2 are partition walls from the bottom of the furnace to the top of the furnace, and an opening is provided in the vicinity of the bottom of the furnace so that the fluid medium, raw material and pyrolysis residue can move between the chambers. is there. The drying / pretreatment chamber 4-4 and the gasification chamber 4-1 are partitioned by a wall so as to be independent from any chamber except for the fluid medium moving opening provided in the vicinity of the bottom of the furnace. Since the opening for moving the fluidized medium is provided in the dense fluidized bed near the furnace bottom, the raw material and pyrolysis residue moving together with the fluidized medium and the fluidized medium can move to the adjacent chamber through the opening, but the drying / pretreatment chamber 4 -4, gas generated in each chamber of the gasification chamber 4-1 and the combustion chamber 4-2, that is, the gas generated by drying / pretreatment, the generated gas (combustible gas) and the combustion gas without moving to the adjacent chamber It is discharged independently from the outlet at the top of the furnace in the chamber. That is, the gas generated in each chamber can be taken out without being mixed with each other. Two low partition walls (F-1, F-2) are provided in the combustion chamber 4-2, and the fluid medium settling chamber 4-5A and the partition wall F partitioned by the partition walls F-1 and C-1. -2 and C-2 are formed as a fluid medium settling chamber 4-5B.

次に流動層に供給する流動化ガスと流動媒体(流動媒体とともに移動する原料や熱分解残渣を含む)の移動(流れ)について説明する。図5A及び図5B中ハッチングした領域は隣接する白抜きの領域に比較して相対的に弱い流動化状態の領域である。流動媒体の弱い流動化状態とは、隣接する領域に供給する流動化ガスの空塔速度よりも遅い空塔速度の流動化ガスを供給することにより形成される。   Next, the movement (flow) of the fluidizing gas and the fluidized medium (including raw materials and pyrolysis residues that move with the fluidized medium) supplied to the fluidized bed will be described. The hatched areas in FIGS. 5A and 5B are fluidized areas that are relatively weaker than the adjacent white areas. The weak fluidized state of the fluidized medium is formed by supplying a fluidizing gas having a superficial velocity lower than the superficial velocity of the fluidizing gas supplied to the adjacent region.

例えば、図5A及び図5Bにおいて左側の領域が弱く、右側の領域が強いような流動化状態となるように、燃焼室4−2内の左側領域に供給する流動化ガスの空塔速度を右側領域に供給する流動化ガスの空塔速度よりも相対的に小さくする。このように速度の異なる流動化領域が1室内に共存すると、弱い流動化領域(燃焼室4−2の左側領域)で沈降し、強い領域(燃焼室4−2の右側領域)で上昇する流動媒体の流れが生じる。この流動媒体の流れを旋回流という。旋回流をガス化室4−1あるいは燃焼室4−2の室内に形成することで、原料や熱分解残渣を層内に均一に分散させることができ、層内での熱分解・ガス化反応(ガス化室4−1の場合)や燃焼反応(燃焼室4−2の場合)を十分に起こすことが可能となる。   For example, the superficial velocity of the fluidized gas supplied to the left region in the combustion chamber 4-2 is set to the right side so that the left region in FIGS. 5A and 5B is weak and the right region is strong. It is relatively smaller than the superficial velocity of the fluidized gas supplied to the region. When fluidization regions having different velocities coexist in one chamber in this way, the flow settles in the weak fluidization region (the left region of the combustion chamber 4-2) and rises in the strong region (the right region of the combustion chamber 4-2). A medium flow occurs. This flow of the fluid medium is called a swirl flow. By forming a swirl flow in the gasification chamber 4-1 or combustion chamber 4-2, the raw materials and pyrolysis residue can be uniformly dispersed in the layer, and the pyrolysis and gasification reaction in the layer (In the case of the gasification chamber 4-1) and the combustion reaction (in the case of the combustion chamber 4-2) can be sufficiently caused.

仕切壁で仕切られた2室間の流動媒体の移動は、仕切壁開口部の両側の圧力差によって起る。つまり、圧力の高いほうから低いほうへ流動媒体は移動する。領域の圧力とは、領域の流動層の密度と流動層高と重力加速度の積であるので、流動層の密度もしくは複数の領域の流動層の高さ(層高)を変えることで流動媒体の移動量を変えることができる。   Movement of the fluid medium between the two chambers partitioned by the partition wall is caused by a pressure difference between both sides of the partition wall opening. That is, the fluid medium moves from the higher pressure to the lower pressure. The pressure in the region is the product of the density of the fluidized bed in the region, the fluidized bed height and the gravitational acceleration, so changing the density of the fluidized bed or the height of the fluidized bed in multiple regions (layer height) The amount of movement can be changed.

例えばガス化室4−1と燃焼室4−2の間の仕切壁Bの開口を通るガス化室4−1から燃焼室4−2への流動媒体の移動は、次のようにして起る。仕切壁Bの開口部近傍の壁両側の流動化状態は、ガス化室4−1側が弱く、燃焼室4−2側が強い。これにより、ガス化室4−1側は流動媒体の沈降流が燃焼室4−2側は上昇流が形成される。さらに流動化ガスの空塔速度が異なると流動層の密度が異なる。すなわち、弱い流動化領域(空塔速度の相対的に遅い領域、ガス化室側)の流動層密度は、強い流動化領域(空塔速度の相対的に速い領域、燃焼室側)の流動層密度よりも高い。すなわち、開口部の仕切壁両側で流動層の密度が異なる。流動層密度の高いガス化室4−1側から流動層密度の低い燃焼室4−2側に流動媒体は移動する。このように仕切壁開口部の両側に流動化状態の異なる領域を設けることで弱い流動化状態の領域のある部屋から強い流動化領域のある部屋へ流動媒体を移動させることができる。また、ガス化室側の弱い流動化領域の空塔速度を遅くしていくと、流動層の粘性が大きくなり、流動媒体の移動量は減少する。この流動層の粘性の変化を利用することでも流動媒体の移動量を変化させることができる。この構成は、乾燥・前処理室4−4からガス化室4−1への流動媒体と原料の移動(ハッチングされた矢印a−1)、ガス化室4−1から燃焼室4−2への流動媒体と熱分解残渣の移動(ハッチングされた矢印b−1)、流動媒体沈降室4−5A,4−5Bからガス化室4−1への流動媒体の移動(ハッチングされた矢印c−1及びc−2)、および流動媒体沈降室4−5A,4−5Bから乾燥・前処理室4−4への移動(ハッチングされた矢印c−3及びc−4)のある場所にある。これらの場所では流動媒体の移動は起こすが、各室で発生したガスを隣室へ移動させない(ガスを互いに混合しない)ほうがのぞましいことから、このように仕切壁開口を使用した移動とするのがよい。このように仕切壁開口を通る流動媒体の移動量は、両室間の開口部近傍の流動化状態の差の大小で変えることができる。すなわち、開口部上流側の流動媒体の流動化状態と下流側の流動媒体の流動化状態の差を大きくするほど、移動する流動媒体量は多くなる。すなわち上流側の空塔速度を遅くするか、下流側の空塔速度を速くするか、もしくは上流側を遅くかつ下流側を速くすれば流動媒体の移動量は大きくなる。   For example, the movement of the fluid medium from the gasification chamber 4-1 to the combustion chamber 4-2 through the opening of the partition wall B between the gasification chamber 4-1 and the combustion chamber 4-2 occurs as follows. . The fluidization state on both sides of the partition wall B near the opening is weak on the gasification chamber 4-1 side and strong on the combustion chamber 4-2 side. Thereby, a sedimentation flow of the fluidized medium is formed on the gasification chamber 4-1 side, and an upward flow is formed on the combustion chamber 4-2 side. Furthermore, when the superficial velocity of the fluidized gas is different, the density of the fluidized bed is different. That is, the fluidized bed density in the weak fluidized region (region where the superficial velocity is relatively slow, the gasification chamber side) is the fluidized bed density in the strong fluidized region (region where the superficial velocity is relatively fast, the combustion chamber side). Higher than density. That is, the density of the fluidized bed is different on both sides of the partition wall of the opening. The fluid medium moves from the gasification chamber 4-1 side having a high fluidized bed density to the combustion chamber 4-2 side having a low fluidized bed density. In this way, by providing regions with different fluidization states on both sides of the partition wall opening, the fluid medium can be moved from a room with a weak fluidized region to a room with a strong fluidized region. Further, when the superficial velocity of the weak fluidization region on the gasification chamber side is decreased, the viscosity of the fluidized bed increases and the moving amount of the fluidized medium decreases. The moving amount of the fluidized medium can be changed by utilizing the change in the viscosity of the fluidized bed. In this configuration, the fluid medium and the raw material move from the drying / pretreatment chamber 4-4 to the gasification chamber 4-1 (hatched arrow a-1), and from the gasification chamber 4-1 to the combustion chamber 4-2. Of the fluidized medium and the pyrolysis residue (hatched arrow b-1), the fluidized medium from the fluidized medium sedimentation chambers 4-5A and 4-5B to the gasification chamber 4-1 (hatched arrow c- 1 and c-2), and the location where the fluid medium settling chambers 4-5A and 4-5B move to the drying and pretreatment chamber 4-4 (hatched arrows c-3 and c-4). In these places, the fluid medium moves, but it is better not to move the gas generated in each chamber to the adjacent chamber (the gases are not mixed with each other). . Thus, the amount of movement of the fluid medium passing through the partition wall opening can be changed depending on the difference in fluidization state in the vicinity of the opening between the two chambers. That is, the larger the difference between the fluidized state of the fluid medium on the upstream side of the opening and the fluidized state of the fluid medium on the downstream side, the larger the amount of fluid medium that moves. That is, if the upstream superficial velocity is decreased, the downstream superficial velocity is increased, or if the upstream side is slowed and the downstream side is accelerated, the amount of movement of the fluid medium increases.

例えば、燃焼室4−2と流動媒体沈降室4−5Aの間の低い仕切壁F−1を越える燃焼室4−2から流動媒体沈降室4−5Aへの流動媒体の移動は、次のようにして起る。仕切壁F−1の両側の流動媒体の流動化状態は、燃焼室側が相対的に強く、流動媒体沈降室側が弱い。これにより、燃焼室側には流動媒体の上昇流が、流動媒体沈降室側には流動媒体の下降流が形成される。燃焼室側の上昇流では、流動層の濃厚層表面近傍で気泡の破裂により流動媒体の飛び出しが起る。層上に飛び出した流動媒体の一部は仕切壁F−1を飛び越えて流動媒体沈降室4−5Aに入る。流動媒体沈降室4−5Aに飛び込む流動媒体の量は、燃焼室4−2の層高と仕切壁F−1の高さの関係と仕切壁F−1近傍の燃焼室側の流動化状態、すなわち流動化ガスの流速に依存する。まず、燃焼室側の層高が仕切壁F−1の高さに比べてかなり低い状態では、燃焼室4−2の仕切壁近傍の流動化ガスの空塔速度を速くしても仕切壁を飛び越えられる流動媒体量はわずかであるが、燃焼室4−2の層高が仕切壁F−1の高さに近い、仕切壁の高さよりも少し低い状態であれば、燃焼室4−2層上に飛び出した流動媒体の多くを仕切壁F−1を越えて流動媒体沈降室4−5Aに移動させることができ、層上への粒子の飛び出し量は流動化ガスの空塔速度が速いほど多くの流動媒体が飛び出すので、仕切壁F−1近傍の燃焼室4−2側の空塔速度の変更で流動媒体の移動量を変えることができる。   For example, the movement of the fluid medium from the combustion chamber 4-2 to the fluid medium sedimentation chamber 4-5A over the low partition wall F-1 between the combustion chamber 4-2 and the fluid medium sedimentation chamber 4-5A is as follows. To happen. The fluidized state of the fluid medium on both sides of the partition wall F-1 is relatively strong on the combustion chamber side and weak on the fluid medium sedimentation chamber side. Thereby, an upward flow of the fluid medium is formed on the combustion chamber side, and a downward flow of the fluid medium is formed on the fluid medium sedimentation chamber side. In the upward flow on the combustion chamber side, the fluid medium jumps out due to the burst of bubbles near the dense layer surface of the fluidized bed. Part of the fluid medium that has jumped out onto the bed jumps over the partition wall F-1 and enters the fluid medium sedimentation chamber 4-5A. The amount of the fluid medium that jumps into the fluid medium settling chamber 4-5A is the relationship between the layer height of the combustion chamber 4-2 and the height of the partition wall F-1, and the fluidization state on the combustion chamber side in the vicinity of the partition wall F-1. That is, it depends on the flow rate of the fluidizing gas. First, in a state where the bed height on the combustion chamber side is considerably lower than the height of the partition wall F-1, the partition wall is not changed even if the superficial velocity of the fluidized gas near the partition wall of the combustion chamber 4-2 is increased. The amount of the fluid medium that can be jumped over is small, but if the bed height of the combustion chamber 4-2 is close to the height of the partition wall F-1 and slightly lower than the height of the partition wall, the combustion chamber 4-2 layer Most of the fluid medium that has jumped up can be moved across the partition wall F-1 to the fluid medium sedimentation chamber 4-5A, and the amount of particles ejected onto the bed is higher as the superficial velocity of the fluidized gas is higher. Since a large amount of the fluid medium pops out, the amount of movement of the fluid medium can be changed by changing the superficial velocity on the combustion chamber 4-2 side near the partition wall F-1.

また、燃焼室4−2の層高が仕切壁F−1の高さを超える場合には、仕切壁F−1を超えて流動媒体が燃焼室4−2側から流動媒体沈降室4−5A側に溢流する。この場合には流動化状態のいかんにかかわらず、仕切壁F−1の高さよりも高い位置で双方の層高が同じになるか、燃焼室4−2の層高が仕切壁F−1と同じになるまで流動媒体は燃焼室4−2から流動媒体沈降室4−5Aに溢流により移動する。なお、仕切壁F−1には開口部はなく、炉底から仕切り壁上端までの濃厚流動層内では両室間の流動媒体の移動は起らない。   Moreover, when the bed height of the combustion chamber 4-2 exceeds the height of the partition wall F-1, the fluid medium passes through the partition wall F-1 and the fluid medium sedimentation chamber 4-5A from the combustion chamber 4-2 side. Overflow to the side. In this case, regardless of the fluidized state, both the bed heights are the same at a position higher than the height of the partition wall F-1, or the bed height of the combustion chamber 4-2 is the same as that of the partition wall F-1. The fluidized medium moves from the combustion chamber 4-2 to the fluidized medium settling chamber 4-5A by overflow until it becomes the same. Note that there is no opening in the partition wall F-1, and the fluid medium does not move between the two chambers in the dense fluidized bed from the furnace bottom to the upper end of the partition wall.

図5Aに示すガス化室では、乾燥・前処理室4−4とガス化室4−1の双方に2つの流動媒体沈降室4−5A,4−5Bの双方から流動媒体が供給される構造となっており、図5Bに示すガス化室では、一方の流動媒体沈降室4−5Bから乾燥・前処理室4−4に、もう一方の流動媒体沈降室4−5Aからガス化室4−1にそれぞれ流動媒体が供給される構造となっている。
以上のように各仕切壁部で流動媒体の移動が可能であるが、図5A及び図5Bに示すガス化炉での流動媒体の循環と循環量(移動量)の制御は以下のようにして行う。
In the gasification chamber shown in FIG. 5A, the fluid medium is supplied to both the drying / pretreatment chamber 4-4 and the gasification chamber 4-1, from both the fluid medium sedimentation chambers 4-5A, 4-5B. In the gasification chamber shown in FIG. 5B, from one fluid medium settling chamber 4-5B to the drying / pretreatment chamber 4-4 and from the other fluid medium settling chamber 4-5A to the gasification chamber 4- 1 has a structure in which a fluid medium is supplied to each.
As described above, the fluid medium can be moved in each partition wall, but the circulation of the fluid medium and the control of the circulation amount (movement amount) in the gasification furnace shown in FIGS. 5A and 5B are as follows. Do.

図5Aに示すガス化炉の場合、原料は乾燥・前処理室4−4に供給される。供給された原料は、乾燥・前処理室4−4の中央のハッチングされた部分が沈降し図5Aの乾燥・前処理室4−4の上下の白抜き部分が上昇する旋回流により流動層内に飲み込まれ均一に分散される。乾燥・前処理室4−4に供給される流動媒体沈降室4−5A,4−5Bからの流動媒体のもつ顕熱と流動化ガスである燃焼ガスの顕熱により、原料は加熱され、乾燥・前処理され、乾燥・前処理により発生するガスとその他の固形分に分けられる。乾燥・前処理用ガスと乾燥・前処理で原料から発生したガスの混合物は炉頂部に設けた排出口から排出され、冷却装置に送られ、冷却装置で冷却により精油成分及び/又は木酢成分及び/又はヒ素等の有害物質が回収される。その後、排ガスはシステムの外部に放出される。ガス成分以外の固形分は流動媒体とともに仕切壁Aの開口を通ってハッチングされた矢印a−1のように乾燥・前処理室4−4からガス化室4−1に移動する。   In the case of the gasifier shown in FIG. 5A, the raw material is supplied to the drying / pretreatment chamber 4-4. The supplied raw material is settled in the fluidized bed by the swirling flow in which the hatched portion at the center of the drying / pretreatment chamber 4-4 is settled and the upper and lower white portions of the drying / pretreatment chamber 4-4 in FIG. Swallowed and evenly dispersed. The raw material is heated and dried by the sensible heat of the fluidized medium from the fluidized medium sedimentation chambers 4-5A and 4-5B supplied to the drying / pretreatment chamber 4-4 and the sensible heat of the combustion gas that is the fluidizing gas. -Pre-treated and separated into gas and other solids generated by drying / pre-treatment. A mixture of the drying / pretreatment gas and the gas generated from the raw material in the drying / pretreatment is discharged from the discharge port provided at the top of the furnace, sent to the cooling device, and cooled by the cooling device, and the essential oil component and / or the wood vinegar component and Harmful substances such as arsenic are collected. Thereafter, the exhaust gas is discharged outside the system. Solid content other than the gas component moves from the drying / pretreatment chamber 4-4 to the gasification chamber 4-1 as indicated by the hatched arrow a-1 through the opening of the partition wall A together with the fluid medium.

ガス化室4−1に移動した固形分はガス化室4−1の中央部から仕切壁B側にかけて沈降し、その周辺部が上昇する流動媒体の旋回流により層内に均一に分散され、流動媒体沈降室4−5A,4−5Bからの流動媒体の顕熱により加熱され熱分解・ガス化され、熱分解・ガス化によって発生する生成ガスと、原料中の固定炭素を主成分とする熱分解残渣とに分けられる。ガス化室4−1で発生した生成ガスは炉頂部に設けた排出口から排出され、改質工程に送られ改質された後、熱回収、洗浄、脱塵、精製されて製品ガスとなる。ガス化室4−1で発生した熱分解残渣は流動媒体とともに仕切壁Bの開口を通ってハッチングされた矢印b−1のようにガス化室4−1から燃焼室4−2に移動する。   The solid content moved to the gasification chamber 4-1 settles from the central portion of the gasification chamber 4-1 to the partition wall B side, and its peripheral portion is uniformly dispersed in the layer by the swirling flow of the fluidized medium, The main components are the product gas generated by pyrolysis and gasification, which is heated and decomposed by sensible heat from the fluid medium settling chambers 4-5A and 4-5B, and fixed carbon in the raw material. Divided into pyrolysis residues. The product gas generated in the gasification chamber 4-1 is discharged from an exhaust port provided at the top of the furnace, sent to the reforming process and reformed, and then heat recovered, washed, dedusted and purified to become a product gas. . The pyrolysis residue generated in the gasification chamber 4-1 moves from the gasification chamber 4-1 to the combustion chamber 4-2 as indicated by the hatched arrow b-1 through the opening of the partition wall B together with the fluid medium.

燃焼室4−2に移動した熱分解残渣は燃焼室4−2に供給される酸素により燃焼し、熱分解残渣の燃焼熱により流動媒体が加熱される。熱分解残渣の燃焼によって発生する燃焼ガスは炉頂部に設けた排出口から排出され、熱回収、脱塵、脱塩、脱硝された後、燃焼ガスの一部は乾燥・前処理室4−4に乾燥・前処理熱源として供給される。加熱された流動媒体は仕切壁F−1およびF−2を飛び越えて白抜きの矢印f−1及びf−2のように流動媒体沈降室4−5A,4−5Bに移動する。   The pyrolysis residue moved to the combustion chamber 4-2 is combusted by oxygen supplied to the combustion chamber 4-2, and the fluid medium is heated by the combustion heat of the pyrolysis residue. Combustion gas generated by combustion of pyrolysis residue is discharged from an exhaust port provided at the top of the furnace, and after heat recovery, dedusting, demineralization, and denitration, a part of the combustion gas is dried and pretreated chamber 4-4. Supplied as a heat source for drying and pretreatment. The heated fluid medium jumps over the partition walls F-1 and F-2 and moves to the fluid medium sedimentation chambers 4-5A and 4-5B as indicated by the white arrows f-1 and f-2.

流動媒体沈降室4−5A,4−5Bに移動した流動媒体の一部は、仕切壁C−1およびC−2の開口を通ってハッチングされた矢印c−1及びc−2のように流動媒体沈降室4−5A、4−5Bからガス化室4−1へ移動し、残りの流動媒体は仕切壁C−1およびC−2の別の開口を通ってハッチングされた矢印c−3及びc−4のように流動媒体沈降室4−5A、4−5Bから乾燥・前処理室4−4に移動する。   Part of the fluid medium that has moved to the fluid medium sedimentation chambers 4-5A and 4-5B flows as indicated by the arrows c-1 and c-2 hatched through the openings of the partition walls C-1 and C-2. The media settling chambers 4-5A, 4-5B move to the gasification chamber 4-1, and the remaining fluid medium is hatched through the other openings of the partition walls C-1 and C-2 and the arrows c-3 and As in c-4, the fluid medium settling chambers 4-5A and 4-5B move to the drying / pretreatment chamber 4-4.

以上をまとめると、図5Aに示すガス化炉の場合の流動媒体の循環は、乾燥・前処理室4−4→ガス化室4−1→燃焼室4−2→流動媒体沈降室4−5A,4−5B→乾燥・前処理室4−4→ガス化室4−1という一方向のルートを形成している。すなわち、流動媒体は、前処理室4−4、乾燥・前処理室4−1、燃焼室4−2、流動媒体沈降室4−5A,4−5B、乾燥・前処理室4−4、そしてガス化室4−1の順番で流れる。この循環における流動媒体の循環量は、各室を仕切る仕切壁部それぞれの速度を変えるのではなく、流動媒体沈降室4−5A又は4−5Bの流速を変えることにより自由に変えることができる。まず、乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2はいずれも反応を行う場であることから、そこに供給されるガス、すなわち流動化ガスの量は投入される原料の種類と量が変わらなければ変えないほうが反応を一定条件で進める上でよい。原料の投入量が変化した場合にはその変化に応じて相対的にこれらの部屋に供給される流動化ガス(反応ガス)の量は増減するのが望ましい。つまり、乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2に供給する流動化ガスの量は原料の種類や投入量に応じて変化させるが、流動媒体の循環のために増減させることはしないほうが望ましい。   In summary, the circulation of the fluidized medium in the case of the gasification furnace shown in FIG. 5A is as follows: drying / pretreatment chamber 4-4 → gasification chamber 4-1 → combustion chamber 4-2 → fluid medium sedimentation chamber 4-5A. , 4-5B → drying / pretreatment chamber 4-4 → gasification chamber 4-1. That is, the fluidized media are pretreatment chamber 4-4, drying / pretreatment chamber 4-1, combustion chamber 4-2, fluid medium sedimentation chambers 4-5A, 4-5B, drying / pretreatment chamber 4-4, and It flows in the order of the gasification chamber 4-1. The circulation amount of the fluid medium in this circulation can be freely changed by changing the flow velocity of the fluid medium sedimentation chamber 4-5A or 4-5B, instead of changing the speed of each partition wall partitioning each chamber. First, since the drying / pretreatment chamber 4-4, the gasification chamber 4-1, and the combustion chamber 4-2 are all reaction sites, the amount of gas supplied to the chamber, that is, the amount of fluidized gas, is charged. If the type and amount of the raw material to be changed does not change, it is better to keep the reaction under certain conditions without changing it. When the input amount of the raw material changes, it is desirable to increase or decrease the amount of fluidized gas (reactive gas) supplied to these chambers relative to the change. In other words, the amount of fluidizing gas supplied to the drying / pretreatment chamber 4-4, gasification chamber 4-1, and combustion chamber 4-2 varies depending on the type of raw material and the input amount. Therefore, it is desirable not to increase or decrease.

流動媒体沈降室4−5A,4−5B以外の部屋の空塔速度がある一定条件の場合、流動媒体沈降室4−5A,4−5Bの空塔速度を遅くすれば、流動媒体沈降室4−5A,4−5Bと乾燥・前処理室4−4あるいはガス化室4−1との間の仕切壁C−1およびC−2を挟む空塔速度の差が大きくなることから、流動媒体沈降室4−5A,4−5Bから乾燥・前処理室4−4あるいはガス化室4−1へ移動する流動媒体の量は増加する。逆に、流動媒体沈降室4−5A,4−5Bの空塔速度を速くすれば、流動媒体沈降室4−5と乾燥・前処理室4−4あるいはガス化室4−1との間の仕切壁C−1およびC−2を挟む空塔速度の差が小さくなることから、流動媒体沈降室4−5A,4−5Bから乾燥・前処理室4−4あるいはガス化室4−1へ移動する流動媒体の量は減少する。乾燥・前処理室4−4あるいはガス化室4−1に流入する流動媒体の量が変化すると乾燥・前処理室4−4あるいはガス化室4−1の層高も変化する。先に説明したように流動媒体の移動量は層高にも依存することから、例えば流動媒体沈降室4−5A,4−5Bからガス化室4−1に流入する流動媒体量が多くなればガス化室4−1の層高が増し、ガス化室4−1から燃焼室4−2への流動媒体の移動量も増す。燃焼室4−2へ流入する流動媒体量が増せば燃焼室4−2の層高が増すので燃焼室4−2から流動媒体沈降室4−5A,4−5Bに流入する流動媒体量も増す。このように、流動媒体沈降室4−5A又は4−5Bの空塔速度を変えるだけで全ての部屋への流動媒体の循環量を変えることが可能である。   When the superficial velocity of the chambers other than the fluid medium sedimentation chambers 4-5A and 4-5B is constant, the fluid medium sedimentation chamber 4 can be obtained by reducing the superficial velocity of the fluid medium sedimentation chambers 4-5A and 4-5B. Since the difference in superficial velocity between the partition walls C-1 and C-2 between the -5A, 4-5B and the drying / pretreatment chamber 4-4 or the gasification chamber 4-1 increases, the fluid medium The amount of the fluid medium that moves from the settling chambers 4-5A and 4-5B to the drying / pretreatment chamber 4-4 or the gasification chamber 4-1 increases. On the contrary, if the superficial velocity of the fluid medium settling chambers 4-5A and 4-5B is increased, the flow medium settling chamber 4-5 and the drying / pretreatment chamber 4-4 or the gasification chamber 4-1 are arranged. Since the difference in the superficial velocity between the partition walls C-1 and C-2 is reduced, the fluid medium settling chambers 4-5A and 4-5B are moved to the drying / pretreatment chamber 4-4 or the gasification chamber 4-1. The amount of fluid medium that moves is reduced. When the amount of the flowing medium flowing into the drying / pretreatment chamber 4-4 or the gasification chamber 4-1 changes, the bed height of the drying / pretreatment chamber 4-4 or the gasification chamber 4-1 also changes. As described above, since the moving amount of the fluid medium also depends on the bed height, for example, if the amount of fluid medium flowing into the gasification chamber 4-1 from the fluid medium sedimentation chambers 4-5A and 4-5B increases. The bed height of the gasification chamber 4-1 is increased, and the amount of movement of the fluid medium from the gasification chamber 4-1 to the combustion chamber 4-2 is also increased. If the amount of flowing medium flowing into the combustion chamber 4-2 increases, the bed height of the combustion chamber 4-2 increases, so that the amount of flowing medium flowing from the combustion chamber 4-2 into the flowing medium settling chambers 4-5A and 4-5B also increases. . Thus, it is possible to change the circulation amount of the fluid medium to all the rooms only by changing the superficial velocity of the fluid medium sedimentation chamber 4-5A or 4-5B.

図5Bに示すガス化炉の場合、原料は乾燥・前処理室4−4に供給され、仕切壁側(仕切壁A側)で沈降し仕切壁側(仕切壁C−2側)が上昇する旋回流により流動層内に飲み込まれ均一に分散される。乾燥・前処理室4−4に供給される流動媒体沈降室4−5Bからの流動媒体のもつ顕熱と流動化ガスである燃焼ガスの顕熱により、原料は加熱され、乾燥・前処理され、乾燥・前処理により発生するガスとその他の固形分に分けられる。乾燥・前処理用ガスと乾燥・前処理で原料から発生したガスの混合物は炉頂部に設けた排出口から排出され、冷却装置に送られ、冷却装置で冷却により精油成分及び/又は木酢成分及び/又はヒ素等の有害物質を回収した後、排ガスはシステムの外部に放出される。ガス成分以外の固形分は流動媒体とともに仕切壁Aの開口を通ってハッチングされた矢印a−1のように乾燥・前処理室4−4からガス化室4−1に移動する。   In the case of the gasification furnace shown in FIG. 5B, the raw material is supplied to the drying / pretreatment chamber 4-4, settles on the partition wall side (partition wall A side), and rises on the partition wall side (partition wall C-2 side). It is swallowed into the fluidized bed by the swirling flow and uniformly dispersed. The raw material is heated, dried and pretreated by the sensible heat of the fluidized medium from the fluidized medium sedimentation chamber 4-5B supplied to the drying / pretreatment chamber 4-4 and the sensible heat of the combustion gas as the fluidizing gas. It is divided into gas generated by drying and pretreatment and other solid contents. A mixture of the drying / pretreatment gas and the gas generated from the raw material in the drying / pretreatment is discharged from the discharge port provided at the top of the furnace, sent to the cooling device, and cooled by the cooling device, and the essential oil component and / or the wood vinegar component and After collecting harmful substances such as arsenic, the exhaust gas is released outside the system. Solid content other than the gas component moves from the drying / pretreatment chamber 4-4 to the gasification chamber 4-1 as indicated by the hatched arrow a-1 through the opening of the partition wall A together with the fluid medium.

ガス化室4−1に移動した原料固形分はガス化室4−1の中央部で沈降し、上方及び下方の仕切壁側(上下の仕切壁A側と仕切壁C−1側)で上昇する流動媒体の旋回流により層内に均一に分散され、流動媒体沈降室4−5Aからの流動媒体の顕熱により加熱され熱分解・ガス化され、熱分解・ガス化によって発生する生成ガスと、原料中の固定炭素を主成分とする熱分解残渣とに分けられる。ガス化室4−1で発生した生成ガスは炉頂部に設けた排出口から排出され、改質工程に送られ改質された後、熱回収、洗浄、脱塵、精製されて製品ガスとなる。ガス化室4−1で発生した熱分解残渣は流動媒体とともに仕切壁Bの開口を通ってハッチングされた矢印b−1のようにガス化室4−1から燃焼室4−2に移動する。   The raw material solids moved to the gasification chamber 4-1 settle at the center of the gasification chamber 4-1, and rise on the upper and lower partition wall sides (upper and lower partition wall A side and partition wall C-1 side). And a product gas generated by pyrolysis and gasification, which is uniformly dispersed in the bed by the swirling flow of the fluid medium, heated by the sensible heat of the fluid medium from the fluid medium settling chamber 4-5A, and pyrolyzed and gasified. And pyrolysis residue mainly composed of fixed carbon in the raw material. The product gas generated in the gasification chamber 4-1 is discharged from an exhaust port provided at the top of the furnace, sent to the reforming process and reformed, and then heat recovered, washed, dedusted and purified to become a product gas. . The pyrolysis residue generated in the gasification chamber 4-1 moves from the gasification chamber 4-1 to the combustion chamber 4-2 as indicated by the hatched arrow b-1 through the opening of the partition wall B together with the fluid medium.

燃焼室4−2に移動した熱分解残渣は燃焼室4−2に供給される酸素により燃焼し、熱分解残渣の燃焼熱により流動媒体が加熱される。熱分解残渣の燃焼によって発生する燃焼ガスは炉頂部に設けた排出口から排出され、熱回収、脱塵、脱塩、脱硝された後、燃焼ガスの一部は乾燥・前処理室4−4に乾燥・前処理熱源として供給される。燃焼室4−2で加熱された流動媒体は仕切壁F−1およびF−2を飛び越えて白抜きの矢印f−1及びf−2のように流動媒体沈降室4−5A,4−5Bに移動する。   The pyrolysis residue moved to the combustion chamber 4-2 is combusted by oxygen supplied to the combustion chamber 4-2, and the fluid medium is heated by the combustion heat of the pyrolysis residue. Combustion gas generated by combustion of pyrolysis residue is discharged from an exhaust port provided at the top of the furnace, and after heat recovery, dedusting, demineralization, and denitration, a part of the combustion gas is dried and pretreated chamber 4-4. Supplied as a heat source for drying and pretreatment. The fluid medium heated in the combustion chamber 4-2 jumps over the partition walls F-1 and F-2 and enters the fluid medium sedimentation chambers 4-5A and 4-5B as indicated by the white arrows f-1 and f-2. Moving.

一方の流動媒体沈降室4−5Aに移動した流動媒体は、仕切壁C−1の開口を通ってハッチングされた矢印c−1のように流動媒体沈降室4−5Aからガス化室4−1へ移動する。流動媒体沈降室4−5Aに移動した流動媒体は仕切壁C−2の開口を通ってハッチングされた矢印c−3のように流動媒体沈降室4−5Bから乾燥・前処理室4−4に移動する。   The fluid medium that has moved to one fluid medium sedimentation chamber 4-5A passes from the fluid medium sedimentation chamber 4-5A to the gasification chamber 4-1, as indicated by the arrow c-1 that is hatched through the opening of the partition wall C-1. Move to. The flowing medium that has moved to the flowing medium settling chamber 4-5A is transferred from the flowing medium settling chamber 4-5B to the drying / pretreatment chamber 4-4 as indicated by an arrow c-3 that is hatched through the opening of the partition wall C-2. Moving.

以上をまとめると、図5Bに示すガス化炉の場合の流動媒体の循環は、乾燥・前処理室4−4→ガス化室4−1→燃焼室4−2→流動媒体沈降室4−5A,4−5B→乾燥・前処理室4−4およびガス化室4−1というルートを形成している。すなわち、流動媒体は、乾燥・前処理室4−4、ガス化室4−1、燃焼室4−2、流動媒体沈降室4−5A,4−5B、乾燥・前処理室4−4、そしてガス化室4−1の順番で流れる。この循環における流動媒体の循環量は、図5Aに示すガス化炉の場合と同様に制御することができる。   In summary, the circulation of the fluidized medium in the case of the gasification furnace shown in FIG. 5B is as follows: drying / pretreatment chamber 4-4 → gasification chamber 4-1 → combustion chamber 4-2 → fluid medium sedimentation chamber 4-5A. , 4-5B → drying / pretreatment chamber 4-4 and gasification chamber 4-1. That is, the fluidized medium comprises a drying / pretreatment chamber 4-4, a gasification chamber 4-1, a combustion chamber 4-2, a fluid medium sedimentation chamber 4-5A, 4-5B, a drying / pretreatment chamber 4-4, and It flows in the order of the gasification chamber 4-1. The circulation amount of the fluid medium in this circulation can be controlled in the same manner as in the gasification furnace shown in FIG. 5A.

以上本発明の好ましい実施形態を詳細に説明したが、本発明は上記実施形態に限定されるものではなく、添付の特許請求の範囲内において種々の変形が可能である。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the appended claims.

本発明は、バイオマス等の原料をガス化して高効率・低コストで可燃性ガスを生成するガス化方法及び装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a gasification method and apparatus for generating combustible gas with high efficiency and low cost by gasifying a raw material such as biomass.

図1は、本発明のガス化方法及び装置の基本概念を示すブロック図である。FIG. 1 is a block diagram showing the basic concept of the gasification method and apparatus of the present invention. 図2は、本発明の第1の実施形態によるガス化方法及び装置を示すブロック図である。FIG. 2 is a block diagram showing a gasification method and apparatus according to the first embodiment of the present invention. 図3は、本発明の第2の実施形態によるガス化方法及び装置を示すブロック図である。FIG. 3 is a block diagram showing a gasification method and apparatus according to the second embodiment of the present invention. 図4は、本発明の第3の実施形態によるガス化方法及び装置を示すブロック図である。FIG. 4 is a block diagram showing a gasification method and apparatus according to the third embodiment of the present invention. 図5A及び図5Bは、図4に示すガス化炉の各室の配置構成を示す水平断面概念図である。5A and 5B are horizontal cross-sectional conceptual diagrams showing an arrangement configuration of each chamber of the gasification furnace shown in FIG.

Claims (23)

原料の前処理工程と、
ガス化室で、前処理された原料をガス化して可燃性ガスおよび残渣を生成するガス化工程と、
燃焼室で残渣を燃焼し燃焼ガスを発生する燃焼工程と、
燃焼ガスを前記前処理工程に供給し原料から揮発分の一部を分離する供給工程とを備えたことを特徴とするガス化方法。
Raw material pretreatment process;
A gasification step in which a pretreated raw material is gasified in a gasification chamber to generate a combustible gas and a residue;
A combustion process for burning the residue in the combustion chamber and generating combustion gas;
A gasification method comprising: a supply step of supplying a combustion gas to the pretreatment step and separating a part of a volatile component from a raw material.
前記前処理工程から排出されたガス状物質を冷却しヒ素化合物及び/又は木酢成分を回収する冷却工程を備えたことを特徴とする請求項1記載のガス化方法。   The gasification method according to claim 1, further comprising a cooling step of cooling the gaseous substance discharged from the pretreatment step and recovering an arsenic compound and / or a pyroligneous component. 前記ガス化室および前記燃焼室は、流動媒体が前記ガス化室および前記燃焼室との間で循環することが可能であるように流動床ガス化炉に設けられていることを特徴とする請求項1記載のガス化方法。   The gasification chamber and the combustion chamber are provided in a fluidized bed gasification furnace so that a fluid medium can circulate between the gasification chamber and the combustion chamber. Item 2. The gasification method according to Item 1. 前記前処理工程は前処理室において行われ、前記前処理室は前記流動床ガス化炉に設けられていることを特徴とする請求項3記載のガス化方法。   The gasification method according to claim 3, wherein the pretreatment step is performed in a pretreatment chamber, and the pretreatment chamber is provided in the fluidized bed gasification furnace. 流動媒体を沈降させて流動媒体を前記ガス化室および前記燃焼室の少なくとも一方に送る少なくとも一つの流動媒体沈降室を備えたことを特徴とする請求項3又は4記載のガス化方法。   5. The gasification method according to claim 3, further comprising at least one fluid medium sedimentation chamber that sediments the fluid medium and sends the fluid medium to at least one of the gasification chamber and the combustion chamber. 前記原料はバイオマスからなることを特徴とする請求項1記載のガス化方法。   The gasification method according to claim 1, wherein the raw material is biomass. 原料を乾燥装置で乾燥し、
乾燥した原料をガス化室でガス化して可燃性ガスと残渣を生成し、
燃焼室で残渣を燃焼し燃焼ガスを発生し、
燃焼ガスを前記乾燥装置に供給し原料を乾燥することを特徴とするガス化方法。
The raw material is dried with a drying device,
The dried raw material is gasified in the gasification chamber to produce combustible gas and residue,
The residue is burned in the combustion chamber to generate combustion gas,
A gasification method characterized by supplying combustion gas to the drying device and drying the raw material.
前記乾燥装置から排出されたガス状物質を冷却し精油成分及び/又は木酢成分を回収することを特徴とする請求項7記載のガス化方法。   The gasification method according to claim 7, wherein the gaseous substance discharged from the drying device is cooled to recover an essential oil component and / or a wood vinegar component. 前記燃焼室から排出された燃焼ガスから熱を回収した後に燃焼ガスを前記乾燥装置に供給することを特徴とする請求項7記載のガス化方法。   The gasification method according to claim 7, wherein the combustion gas is supplied to the drying device after recovering heat from the combustion gas discharged from the combustion chamber. 前記ガス化室および前記燃焼室は、流動媒体が前記ガス化室と前記燃焼室との間で循環することが可能であるように流動床ガス化炉に設けられていることを特徴とする請求項7記載のガス化方法。   The gasification chamber and the combustion chamber are provided in a fluidized bed gasification furnace so that a fluid medium can circulate between the gasification chamber and the combustion chamber. Item 8. The gasification method according to Item 7. 流動媒体を沈降させて流動媒体を前記ガス化室および前記燃焼室の少なくとも一方に送る少なくとも一つの流動媒体沈降室を備えたことを特徴とする請求項10記載のガス化方法。   The gasification method according to claim 10, further comprising at least one fluid medium sedimentation chamber that sediments the fluid medium and sends the fluid medium to at least one of the gasification chamber and the combustion chamber. 前記原料はバイオマスからなることを特徴とする請求項7記載のガス化方法。   The gasification method according to claim 7, wherein the raw material is made of biomass. 原料の前処理を行う前処理室と、
前処理された原料をガス化して可燃性ガスおよび残渣を生成するガス化室と、
残渣を燃焼し燃焼ガスを発生する燃焼室とを備え、
揮発分の一部は、燃焼ガスを前記燃焼室から前記前処理室に供給することによって原料から分離されることを特徴とするガス化装置。
A pretreatment chamber for pretreatment of raw materials;
A gasification chamber for gasifying the pretreated raw material to produce a combustible gas and a residue;
A combustion chamber for burning residue and generating combustion gas,
A part of the volatile matter is separated from the raw material by supplying combustion gas from the combustion chamber to the pretreatment chamber.
前記前処理室から排出されたガス状物質を冷却しヒ素化合物及び/又は木酢成分を回収する冷却装置を備えたことを特徴とする請求項13記載のガス化装置。   The gasifier according to claim 13, further comprising a cooling device that cools the gaseous substance discharged from the pretreatment chamber and collects an arsenic compound and / or a pyroligneous component. 前記ガス化室および前記燃焼室は、流動媒体が前記ガス化室と前記燃焼室との間で循環することが可能であるように流動床ガス化炉に設けられていることを特徴とする請求項13記載のガス化装置。   The gasification chamber and the combustion chamber are provided in a fluidized bed gasification furnace so that a fluid medium can circulate between the gasification chamber and the combustion chamber. Item 14. The gasifier according to Item 13. 前記前処理室は前記流動床ガス化炉に設けられていることを特徴とする請求項15記載のガス化装置。   The gasifier according to claim 15, wherein the pretreatment chamber is provided in the fluidized bed gasification furnace. 流動媒体を沈降させて流動媒体を前記ガス化室および前記燃焼室の少なくとも一方に送る少なくとも一つの流動媒体沈降室を備えたことを特徴とする請求項15又は16記載のガス化装置。   17. The gasifier according to claim 15, further comprising at least one fluid medium sedimentation chamber that sediments the fluid medium and sends the fluid medium to at least one of the gasification chamber and the combustion chamber. 原料を乾燥する乾燥装置と、
乾燥した原料をガス化して可燃性ガスと残渣を生成するガス化室と、
残渣を燃焼し燃焼ガスを発生する燃焼室とを備え、
原料は、燃焼ガスを前記燃焼室から前記乾燥装置に供給することによって前記乾燥装置において乾燥されることを特徴とするガス化装置。
A drying device for drying the raw materials;
A gasification chamber for gasifying the dried raw material to produce a combustible gas and a residue;
A combustion chamber for burning residue and generating combustion gas,
The raw material is dried in the drying device by supplying combustion gas from the combustion chamber to the drying device.
前記乾燥装置から排出されたガス状物質を冷却し精油成分及び/又は木酢成分を回収する冷却装置を備えたことを特徴とする請求項18記載のガス化装置。   The gasifier according to claim 18, further comprising a cooling device that cools the gaseous substance discharged from the drying device and collects an essential oil component and / or a wood vinegar component. 前記燃焼室から排出された燃焼ガスから熱を回収する熱回収装置を備え、
前記熱回収装置から排出された燃焼ガスは前記乾燥装置に供給されることを特徴とする請求項18記載のガス化装置。
A heat recovery device for recovering heat from the combustion gas discharged from the combustion chamber;
19. The gasifier according to claim 18, wherein the combustion gas discharged from the heat recovery device is supplied to the drying device.
前記ガス化室および前記燃焼室は、流動媒体が前記ガス化室と前記燃焼室との間で循環することが可能であるように流動床ガス化炉に設けられていることを特徴とする請求項18記載のガス化方法。   The gasification chamber and the combustion chamber are provided in a fluidized bed gasification furnace so that a fluid medium can circulate between the gasification chamber and the combustion chamber. Item 19. The gasification method according to Item 18. 流動媒体を沈降させて流動媒体を前記ガス化室および前記燃焼室の少なくとも一方に送る少なくとも一つの流動媒体沈降室を備えたことを特徴とする請求項21記載のガス化方法。   The gasification method according to claim 21, further comprising at least one fluid medium sedimentation chamber that sediments the fluid medium and sends the fluid medium to at least one of the gasification chamber and the combustion chamber. 前記原料はバイオマスからなることを特徴とする請求項18記載のガス化装置。






The gasifier according to claim 18, wherein the raw material is biomass.






JP2006515398A 2003-10-02 2004-10-01 Gasification method and apparatus Expired - Fee Related JP4589311B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003344925 2003-10-02
PCT/JP2004/014881 WO2005033250A2 (en) 2003-10-02 2004-10-01 Gasification method and apparatus

Publications (2)

Publication Number Publication Date
JP2007507555A true JP2007507555A (en) 2007-03-29
JP4589311B2 JP4589311B2 (en) 2010-12-01

Family

ID=34419402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006515398A Expired - Fee Related JP4589311B2 (en) 2003-10-02 2004-10-01 Gasification method and apparatus

Country Status (2)

Country Link
JP (1) JP4589311B2 (en)
WO (1) WO2005033250A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017376A (en) * 2010-07-07 2012-01-26 Ai Net Corporation:Kk Organic waste gasification system and organic waste gasification method
KR101846479B1 (en) * 2016-12-12 2018-04-09 한국지역난방공사 Circulating fluidized bed reactor for using bucket elevator capable of transporting high temperature material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008098311A1 (en) * 2007-02-16 2008-08-21 Corky's Carbon And Combustion Pty Ltd Drying and gasification process
ITTO20070438A1 (en) * 2007-06-19 2008-12-20 Martini Aldo APPARATUS FOR THE DECOMPOSITION OF VEGETABLE ORGANIC SUBSTANCES AND THE PRODUCTION OF COMBUSTIBLE GAS VIA THERMOCHEMISTRY, AND RELATIVE METHOD
JP4939511B2 (en) * 2008-10-29 2012-05-30 三菱重工業株式会社 Coal gasification combined power generation facility
FI125814B (en) 2009-06-02 2016-02-29 Valmet Technologies Oy Method for performing pyrolysis and pyrolysis apparatus
DE202009010832U1 (en) * 2009-07-08 2010-01-28 Eurotherm Technologies Ag Arrangement for the treatment and thermal treatment of waste products and waste
WO2011100729A2 (en) * 2010-02-13 2011-08-18 Mcalister Roy E Multi-purpose renewable fuel for isolating contaminants and storing energy
WO2011100719A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Engineered fuel storage, respeciation and transport
US8784661B2 (en) 2010-02-13 2014-07-22 Mcallister Technologies, Llc Liquid fuel for isolating waste material and storing energy
CN101818081B (en) * 2010-03-23 2013-04-24 武汉凯迪工程技术研究总院有限公司 Process and system for manufacturing synthesis gas from biomass by carbonization
MX2013006421A (en) 2010-12-08 2013-09-02 Mcalister Technologies Llc System and method for preparing liquid fuels.
US8840692B2 (en) 2011-08-12 2014-09-23 Mcalister Technologies, Llc Energy and/or material transport including phase change
US9133011B2 (en) 2013-03-15 2015-09-15 Mcalister Technologies, Llc System and method for providing customized renewable fuels
IT201900012822A1 (en) * 2019-07-24 2019-10-24 Paolo Pejrani Device and procedure for the valorisation of standardized waste materials containing organic fractions
JP6935482B2 (en) * 2019-12-27 2021-09-15 荏原環境プラント株式会社 Pyrolysis equipment and pyrolysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031202A1 (en) * 1997-12-18 1999-06-24 Ebara Corporation Fuel gasifying system
JP2001316675A (en) * 2000-05-01 2001-11-16 Kaneko:Kk Carbonization apparatus
JP2003253269A (en) * 2002-02-28 2003-09-10 Daiko Tekku Kk Vegetable treating plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031202A1 (en) * 1997-12-18 1999-06-24 Ebara Corporation Fuel gasifying system
JP2001316675A (en) * 2000-05-01 2001-11-16 Kaneko:Kk Carbonization apparatus
JP2003253269A (en) * 2002-02-28 2003-09-10 Daiko Tekku Kk Vegetable treating plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017376A (en) * 2010-07-07 2012-01-26 Ai Net Corporation:Kk Organic waste gasification system and organic waste gasification method
KR101846479B1 (en) * 2016-12-12 2018-04-09 한국지역난방공사 Circulating fluidized bed reactor for using bucket elevator capable of transporting high temperature material

Also Published As

Publication number Publication date
JP4589311B2 (en) 2010-12-01
WO2005033250A3 (en) 2005-07-14
WO2005033250A2 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4589311B2 (en) Gasification method and apparatus
RU2471856C2 (en) Autothermal method of continuous gasification of substances with high content of carbon
JP6594206B2 (en) Second stage gasifier in staged gasification
US7819070B2 (en) Method and apparatus for generating combustible synthesis gas
JP2003238973A (en) Method for reforming combustible gas, apparatus for reforming combustible gas and apparatus for gasification
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
EP2834328B1 (en) Method for reduction of tar in gasification of carbonaceous materials
JP2007112873A (en) Method and system for gasification of gasification fuel
JP2007523218A (en) Hydrocarbon raw material processing system and method
EP1165726A1 (en) Process for the gasification of carbonaceous fuel in a fluidized bed gasifier
FI95924C (en) Process for the purification of rye gas
US20040035788A1 (en) Method for the gasification of liquid to pasty organic substances and substance mixtures
JP6008082B2 (en) Gasification apparatus and gasification method
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JP3954816B2 (en) Gas supply apparatus and gas supply method
JP2011105890A (en) Circulating fluidized bed gasification reactor
EP2284245A1 (en) Fluid bed reactor with particle separator and reaction chamber
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JP3990897B2 (en) Gas supply apparatus and gas supply method
JP2003171673A (en) Gas generator
JP2007217696A (en) Material production system and gas-supplying method
JP2003190763A (en) Treatment system for matter to be treated and treatment method using the same
KR102653928B1 (en) Gasifier integrated with tar reformer
JP2019203078A (en) Gasification gas manufacturing apparatus and manufacturing method of gasification gas
JP7351349B2 (en) Gas purification method and gas purification device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609