JP2007500793A - High strength heat resistant tough aluminum alloy castings - Google Patents
High strength heat resistant tough aluminum alloy castings Download PDFInfo
- Publication number
- JP2007500793A JP2007500793A JP2006529730A JP2006529730A JP2007500793A JP 2007500793 A JP2007500793 A JP 2007500793A JP 2006529730 A JP2006529730 A JP 2006529730A JP 2006529730 A JP2006529730 A JP 2006529730A JP 2007500793 A JP2007500793 A JP 2007500793A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- alloy
- alloy casting
- high strength
- alloy castings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
本発明は、高強度で耐熱性があり、延性に富むアルミニウム合金鋳物(Al Si 7 Mg 0.25 Zr wa又はAl Si 7 Mg 0.25 Hf wa)及び(Al Si 6 Mg 0.25 Zr wa又はAl Si 6 Mg 0.25 Hf wa)に関する。この合金は、Si:6.5〜7.5重量%及び5.5〜6.5重量%、Mg:0.20〜0.32重量%、Zr:0.03〜0.50重量%及び/又はHf:0.03〜1.50重量%、Ti:0〜0.20重量%、Fe:<0.20重量%、Mn:<0.50重量%、Cu:<0.05重量%、Zn:<0.07重量%、及び、各場合ともそれぞれ100重量%にするために加えるAlを含んでいる。本発明は、シリンダヘッドのようなこのAl合金鋳物製の加工品又は部品用として、このAl合金鋳物を、高い熱負荷で使用する方法にも関する。
The present invention is an aluminum alloy casting (Al Si 7 Mg 0.25 Zr wa or Al Si 7 Mg 0.25 Hf wa) and (Al Si 6 Mg 0.25 Zr wa) having high strength, heat resistance and high ductility. Or Al Si 6 Mg 0.25 Hf wa). This alloy contains Si: 6.5 to 7.5 wt% and 5.5 to 6.5 wt%, Mg: 0.20 to 0.32 wt%, Zr: 0.03 to 0.50 wt%, and / Or Hf: 0.03 to 1.50 wt%, Ti: 0 to 0.20 wt%, Fe: <0.20 wt%, Mn: <0.50 wt%, Cu: <0.05 wt% Zn: <0.07% by weight, and in each case, Al is added to make it 100% by weight. The present invention also relates to a method of using the Al alloy casting with a high heat load for a workpiece or part made of the Al alloy casting such as a cylinder head.
Description
本発明は、Zr及び/又はHfを含有する、高強度で耐熱性があり、強靭で延性に富むアルミニウム合金鋳物と、この合金鋳物製の加工品又は部品の製造におけるこの合金鋳物の使用法とに関する。 The present invention relates to a high-strength, heat-resistant, tough, ductile aluminum alloy casting containing Zr and / or Hf, and the use of this alloy casting in the manufacture of workpieces or parts made from this alloy casting. About.
エンジンの排出物と燃料消費とを低減し、その出力を増大させるために、内燃機関、特にディーゼルエンジンの燃焼圧力及び温度は過去数年にわたって増大してきた。この増大の結果、加工品に対する熱機械的な負荷に関して要請される要件が一層増えてきている。 In order to reduce engine emissions and fuel consumption and increase its output, the combustion pressure and temperature of internal combustion engines, particularly diesel engines, have increased over the past few years. As a result of this increase, the requirements required for the thermomechanical load on the workpiece are further increasing.
現行技術によれば、特に内燃機関製造用のアルミニウム(Al)合金鋳物が知られている。Al合金鋳物製の鋳物Al部品は、低比重、簡易な成形及び容易な製造の点から広く用いられている。さらに、多様な鋳造法によって、内燃機関用のピストン、シリンダヘッド、クランクケース、又はエンジンブロックのようなAl合金鋳物製の複雑な加工品又は部品の製造が可能である。このような加工品及び特にこれらの加工品のある範囲のものは、運転状況中に高い熱機械的負荷に曝される。 According to the current technology, aluminum (Al) alloy castings, particularly for the production of internal combustion engines, are known. Cast Al parts made of Al alloy castings are widely used in terms of low specific gravity, simple molding, and easy production. In addition, various casting methods can produce complex workpieces or parts made of Al alloy castings such as pistons, cylinder heads, crankcases, or engine blocks for internal combustion engines. Such workpieces and in particular a range of these workpieces are exposed to high thermomechanical loads during operating conditions.
周知の高強度強靭Al合金鋳物、例えばAl Si 7 Mg 0.3 wa(注:waは独語warmausgehaertetの省略形で、T6、T7などの「熱処理をすること」を意味する)は、これらの運転条件の下でその性能限界に達する。周知のシリンダヘッド合金GK−Al Si 7 Mg 0.3 Cu 0.5 waは、Cuを含有しているために脆性を示し、ノッチ効果に敏感である。又、このタイプのシリンダヘッド合金は、テスト中に、燃焼室プレート(気筒間空間部材、バルブシート、バルブポート、グロープラグ穿孔)及び水路におけるひび割れに敏感であることが判明した点が短所となっている。さらに、このようなCu含有Al合金鋳物は、シリンダヘッドに用いられる冷却流体と反応して腐食性のスラリを形成する。上記の各Al合金鋳物においては、強度を増強するMg2Si及びAl2Cuの析出物が熱処理によって形成されるが、これらは150℃を超える温度では安定でなく、従って現代のエンジンの熱機械的負荷には適合しない。150℃を超える長期の熱負荷の下では少なくとも30%の強度低下が発生する。しかも、Mg2Si及びAl2Cu相がさらに析出すると、部品の高い熱負荷を受ける部分に不可逆的な熱膨張が発生し、これは運転中の合金の熱サイクルへの耐久性を低下させる。 Known high strength tough Al alloy castings, such as Al Si 7 Mg 0.3 wa (Note: wa is an abbreviation for German warmagehaertet, meaning “heat-treat” such as T6, T7). Its performance limit is reached under conditions. The well-known cylinder head alloy GK-Al Si 7 Mg 0.3 Cu 0.5 wa is brittle and sensitive to the notch effect because it contains Cu. This type of cylinder head alloy also has the disadvantage that it was found to be sensitive to cracks in the combustion chamber plate (inter-cylinder space member, valve seat, valve port, glow plug perforation) and water channel during testing. ing. Further, such a Cu-containing Al alloy casting reacts with a cooling fluid used in the cylinder head to form a corrosive slurry. In each of the Al alloy castings described above, precipitates of Mg 2 Si and Al 2 Cu that enhance the strength are formed by heat treatment, but these are not stable at temperatures above 150 ° C., and are therefore thermal engines of modern engines. Not compatible with dynamic loads. Under a long-term heat load exceeding 150 ° C., a strength decrease of at least 30% occurs. Moreover, further precipitation of the Mg 2 Si and Al 2 Cu phases results in irreversible thermal expansion in the parts of the component that are subjected to high thermal loads, which reduces the durability of the operating alloy to thermal cycling.
本発明の目的は、高強度で耐熱性があり同時に強靭なAl合金鋳物であって、150℃以上の温度でその強度値を保持し、さらに、相形成の低下によって熱膨張が低く、従って240℃までの温度における強化された熱機械的安定性を有する特徴を備えたAl合金鋳物を作製することにある。 The object of the present invention is a high strength, heat resistant and tough Al alloy casting which retains its strength value at a temperature of 150 ° C. or higher, and further has a low thermal expansion due to a decrease in phase formation. The object is to produce Al alloy castings with the characteristics of enhanced thermomechanical stability at temperatures up to 0 ° C.
上記目的は、請求項1の特徴部分によって達成される。さらに、現行技術の欠点を克服することができる。 This object is achieved by the characterizing part of claim 1. Furthermore, the drawbacks of the current technology can be overcome.
Al合金鋳物の場合、通常は結晶粒の微細化が、溶融物の中にAl3Ti核を形成するチタン(Ti)を用いて行われる。高い熱負荷の結果として、加工品用の現代の合金、特にシリンダヘッドにおける合金の鋳造組織はクリープを受けやすいので、組織の結晶粒界を耐高温性の析出物で安定化させる必要がある。 In the case of Al alloy castings, grain refinement is usually performed using titanium (Ti) that forms Al 3 Ti nuclei in the melt. As a result of the high heat load, the cast structure of modern alloys for workpieces, especially those in cylinder heads, is susceptible to creep, so that the grain boundaries of the structure need to be stabilized with high temperature resistant precipitates.
Ti以外にも、一方では微細結晶粒の成長を促進する化学元素、及び、他方では、高温安定の結晶粒界析出物及び/又は固溶体硬化によって微細組織を250〜300℃まで熱的に安定化させる化学元素が考慮の対象になる。微細組織は、250℃を超える温度においては、高温安定な結晶粒界析出物及び/又は固溶体硬化によって安定化されることを指摘しなければならない。これは、対クリープ抵抗を改善し、結晶粒界すべりと結晶粒の成長を防止する。さらに加えて、所望の高温強度が、固溶体硬化と析出物硬化とによって、合金を脆化することなく実現される。高い極限ひずみと耐熱性に対しては、固溶体硬化の含有量が高いものが有利である。 Besides Ti, on the one hand, chemical elements that promote the growth of fine grains, and on the other hand, thermally stabilize the microstructure to 250-300 ° C by high-temperature stable grain boundary precipitates and / or solid solution hardening. The chemical elements to be taken into consideration. It should be pointed out that the microstructure is stabilized by high temperature stable grain boundary precipitates and / or solid solution hardening at temperatures above 250 ° C. This improves resistance to creep and prevents grain boundary sliding and grain growth. In addition, the desired high temperature strength is achieved without solidifying the alloy by solid solution hardening and precipitate hardening. A high solid solution content is advantageous for high ultimate strain and heat resistance.
本発明に従って所要の要件を達成するためには、材料を脆化させる針状組織を特に鋳造中に形成しない金属間化合物の高温相の存在が確認されなければならない。 In order to achieve the required requirements in accordance with the present invention, the presence of a high temperature phase of intermetallic compounds that does not form an acicular structure that embrittles the material, particularly during casting, must be confirmed.
最初に、高強度で強靭なAl合金鋳物Al Si 7 Mg waを取り上げると、この合金は、本発明に従って、元素Zr及び/又はHfによって変性される。意外なことに、Zr及び/又はHfは上記の要件を達成する。つまり、Alと結合して高温安定な金属間化合物Al3Zr及びAl3Hfの高温相、並びに、AlxZrySiz、AlxHfySiz、あるいはAlx(Zr、Hf)ySizのようなZr及びHfを含有するケイ化アルミニウムの高温相を生成する結果をもたらす。これらの高温相は、1582℃(Al3Zrの場合)及び1590℃(Al3Hfの場合)の融点を有している。Al3Zr又はAl3Hfを含むAlプレアロイの形のZr及び/又はHfは、その高い温度安定性及びAlへのきわめて低い溶解度のために、結晶粒微細化添加剤として非常に効果的であり、本発明によるAl合金鋳物の熱機械的強度を決定因子的に決定する。後段の熱処理において、耐高温性のZr及び/又はHf含有ケイ化アルミニウムが付加的に形成されて、組織が熱的に安定化し、場合によっては、240℃における不可逆熱膨張を低く抑えることができる。針状の析出物、又は脆化をもたらす析出物を避けるために、微細なAl3Zr又はAl3Hf相の形のZr又はHfは、最大10重量%のZr及び/又はHfを含むAlプレアロイによって、粉体又は線の形で溶解Alの中に投入する必要がある。結晶粒微細化のためには、僅少量、すなわち僅かに0.03重量%のZr及び/又はHfの最低含有量が必要なだけである。 First, taking the high strength and tough Al alloy casting AlSi7Mgwa, this alloy is modified according to the invention by the elements Zr and / or Hf. Surprisingly, Zr and / or Hf achieve the above requirements. That is, the high-temperature phase of the intermetallic compounds Al 3 Zr and Al 3 Hf which are bonded to Al and stable at high temperature, and Al x Zr y Si z , Al x Hf y Si z , or Al x (Zr, Hf) y Si The result is a high temperature phase of aluminum silicide containing Zr and Hf, such as z . These high-temperature phases have melting points of 1582 ° C. (for Al 3 Zr) and 1590 ° C. (for Al 3 Hf). Zr and / or Hf in the form of Al prealloys containing Al 3 Zr or Al 3 Hf are very effective as grain refinement additives due to their high temperature stability and very low solubility in Al. The thermomechanical strength of the Al alloy casting according to the present invention is determined deterministically. In the subsequent heat treatment, high temperature resistant Zr and / or Hf-containing aluminum silicide is additionally formed, the structure is thermally stabilized, and in some cases, irreversible thermal expansion at 240 ° C. can be kept low. . In order to avoid acicular precipitates or precipitates that lead to embrittlement, fine Al 3 Zr or Zr or Hf in the form of Al 3 Hf phase is an Al prealloy containing up to 10% by weight of Zr and / or Hf. Therefore, it is necessary to put into the molten Al in the form of powder or wire. Only a very small amount of Zr and / or Hf content of only 0.03% by weight is required for grain refinement.
周知のTi結晶粒微細化に比べて、特に本発明によるZr及び/又はHf結晶粒微細化は、Al3Zr及び/又はAl3Hf相がAl3Tiよりも温度安定であり、さらにZr又はHfはAlへの溶解度が遥かに小さいという特徴を有している点で好ましい。 Compared to the well-known Ti grain refinement, in particular the Zr and / or Hf grain refinement according to the present invention is such that the Al 3 Zr and / or Al 3 Hf phase is more stable in temperature than Al 3 Ti, and moreover Zr or Hf is preferable in that it has a feature that its solubility in Al is much smaller.
GK−Al Si 7 Mg waのシリンダヘッドによって、結晶粒微細化の効果が実証された。Al Ti 10、Al Ti 5、あるいはAl Ti 3 B 1のような従来のTi含有結晶粒微細化添加剤を使用して、燃焼室プレートにおいて、Alデンドライトの20〜70μmのアームスペーシングを有する組織を実現した。Zr又はHfを、Al Zr 5、Al Zr 10、Al Hf 5、あるいはAl Hf 10のようなAl3Zr又はAl3Hf含有Alプレアロイの形で、GK−Al Si 7 Mgに0.10〜0.20重量%添加すると、Alデンドライトのアームスペーシングを10〜50μmに経済的に低減することができた。追加的なTi結晶粒微細化によっても同様に微小なデンドライトアームスペーシングが得られる。690℃を超える温度での本発明に基づくZr又はHfによる合金化の間、Al3Zr又はAl3Hf相は、その僅かな部分のみが、Zr又はHf含有Alプレアロイから溶解するのみであり、従って、十分なAl3Zr又はAl3Hf核がAlの結晶粒微細化のために残される。これに対して、すでに溶解しているZr及びHfは、圧力又は重力ダイカスト法における凝固速度に応じて、アルミニウムの中に溶解した状態に留まる。470℃〜560℃の間の溶体化熱処理と、水による急冷と、160℃を超える温度における時効硬化とからなる後段の熱処理の期間中に、本発明に従って、合金の組成以外にも、固溶体硬化の析出物硬化に対する比率も確定される。高温において長時間溶体化熱処理し、続いて水冷すると、固溶体硬化の含有率が高くなり、200℃〜250℃の温度で長時間溶体化熱処理すると、AlxZrySiz、AlxHfySiz、あるいはAlx(Zr、Hf)ySizのようなZr又はHf含有ケイ化アルミニウムが形成されて析出物硬化の比率が高くなり、固溶体硬化が低下する結果となる。470℃〜560℃の間の溶体化熱処理の間に、0.15重量以下%のZrあるいは1.00重量%以下のHfが溶解し得る。従って、合金の脆化を伴わない強度の増大に関しては、Hfの方がZrに比べて有利である。150℃〜250℃のエンジン温度(運転温度)においては、固溶体硬化は大部分保存されたままの状態が続く。これに対して、熱負荷の下では、Al3Zr及び/又はAl3Hfによる析出物硬化は低減する。しかし、材料強度の低下は、ごく僅かなものであるか、あるいは、Mg2Siの析出物硬化の場合よりも小さい。これは、未溶解のAl結晶粒微細化添加剤と、後に形成されるAlxZrySiz、AlxHfySiz、あるいはAlx(Zr、Hf)ySizのようなZr及びHf含有ケイ化アルミニウムとに由来するAl3Zr及び/又はAl3Hfが高温安定性を備えているからである。Ti結晶粒微細化を追加的に行うと、Al3Zr/Al3Hf分散質以外に、Al3(Zr、Ti)又はAl3(Hf、Ti)の混合分散質が形成され、あるいは又、ケイ素との反応によって、AlxZrySiz、AlxHfySiz、あるいはAlx(Zr、Hf、Ti)ySizのようなZr、Hf、又はTi含有ケイ化アルミニウムが形成される。これらの析出物はきわめて温度安定であるので、本発明によって、Zr又はHfを含有するAl Si 7 Mg waにおける不可逆的熱膨張が低下する結果が得られる。例えば、Zr/Hfを含まないGK−Al Si 7 Mg製のシリンダヘッドをT7熱処理したものの不可逆的熱膨張は、240℃に100h曝露後に、0.05〜0.06%である。僅かに0.10重量%のZrを添加するだけで、この不可逆的熱膨張は約0.04%に低下し、Zrを0.20重量%添加するとさらに約0.025%に低下する。本発明によれば、GK−Al Si 6 Mg 0.26 Zr/Hf製のT7熱処理したシリンダヘッドの不可逆的熱膨張は、Si含有量を4.5〜6.5重量%に低減することによって、さらに10%低下させることができた。このSi含有量はAl Si 7 Mgの範囲(Al Si 7 Mg:6.5〜7.5重量%Si)外にある。さらに、シリンダヘッドの極限ひずみがAl Si 7 Mgに比べて約1%だけ改善されたので、全体として温度サイクルへの高い耐久性が実現される。Si含有量は好ましくは5.5〜7.5重量%の範囲、特に好ましくは6.5〜7.5重量%の範囲である。 The effect of crystal grain refinement was demonstrated by the cylinder head of GK-Al Si 7 Mg wa. Using a conventional Ti-containing grain refiner additive such as AlTi10, AlTi5, or AlTi3B1, a texture having 20-70 μm arm spacing of Al dendrite in the combustion chamber plate. It was realized. Zr or Hf in the form of Al 3 Zr or Al 3 Hf-containing Al prealloys such as Al Zr 5, Al Zr 10, Al Hf 5, or Al Hf 10 and 0.10 to 0 in GK-Al Si 7 Mg When 20 wt% was added, the arm spacing of the Al dendrite could be economically reduced to 10 to 50 μm. Similarly, fine dendrite arm spacing can be obtained by further refinement of Ti crystal grains. During alloying with Zr or Hf according to the invention at temperatures above 690 ° C., only a small part of the Al 3 Zr or Al 3 Hf phase dissolves from the Zr or Hf-containing Al prealloy, Therefore, sufficient Al 3 Zr or Al 3 Hf nuclei are left for Al grain refinement. On the other hand, already dissolved Zr and Hf remain dissolved in the aluminum depending on the solidification rate in the pressure or gravity die casting method. In addition to the composition of the alloy, solid solution hardening during the subsequent heat treatment period consisting of solution heat treatment between 470 ° C. and 560 ° C., quenching with water, and age hardening at a temperature exceeding 160 ° C. The ratio of to precipitation hardening is also determined. Heat treatment prolonged solution at high temperatures, followed when water cooling, the higher the content of the solid solution hardening and heat treatment prolonged solution at a temperature of 200 ℃ ~250 ℃, Al x Zr y Si z, Al x Hf y Si As a result, Zr or Hf-containing aluminum silicide, such as z or Al x (Zr, Hf) y Si z , is formed, resulting in a higher rate of precipitate hardening and lower solid solution hardening. During solution heat treatment between 470 ° C. and 560 ° C., 0.15 wt% or less of Zr or 1.00 wt% or less of Hf can be dissolved. Therefore, Hf is more advantageous than Zr for increasing the strength without embrittlement of the alloy. At engine temperatures (operating temperatures) between 150 ° C. and 250 ° C., solid solution curing remains largely preserved. On the other hand, under heat load, precipitation hardening by Al 3 Zr and / or Al 3 Hf is reduced. However, the decrease in material strength is negligible or less than with Mg 2 Si precipitate hardening. This is because the Al grain refinement additives undissolved later formed the Al x Zr y Si z, Al x Hf y Si z or Al x (Zr, Hf) y Si Zr and Hf, such as z, This is because Al 3 Zr and / or Al 3 Hf derived from the contained aluminum silicide has high temperature stability. When Ti grain refinement is additionally performed, a mixed dispersoid of Al 3 (Zr, Ti) or Al 3 (Hf, Ti) is formed in addition to the Al 3 Zr / Al 3 Hf dispersoid, or Reaction with silicon forms Zr, Hf, or Ti-containing aluminum silicides such as Al x Zr y Si z , Al x Hf y Si z , or Al x (Zr, Hf, Ti) y Si z. . Since these precipitates are very temperature stable, the present invention results in reduced irreversible thermal expansion in Al Si 7 Mg wa containing Zr or Hf. For example, the irreversible thermal expansion of a GK-Al Si 7 Mg cylinder head not containing Zr / Hf subjected to T7 heat treatment is 0.05 to 0.06% after exposure to 240 ° C. for 100 h. The addition of only 0.10% by weight of Zr reduces this irreversible thermal expansion to about 0.04%, and the addition of 0.20% by weight of Zr further reduces to about 0.025%. According to the present invention, the irreversible thermal expansion of the T7 heat treated cylinder head made of GK-Al Si 6 Mg 0.26 Zr / Hf is achieved by reducing the Si content to 4.5-6.5 wt%. Further, it could be reduced by 10%. This Si content is outside the range of Al Si 7 Mg (Al Si 7 Mg: 6.5-7.5 wt% Si). Furthermore, since the ultimate strain of the cylinder head is improved by about 1% as compared with Al 2 Si 7 Mg, high durability against the temperature cycle as a whole is realized. The Si content is preferably in the range of 5.5 to 7.5% by weight, particularly preferably in the range of 6.5 to 7.5% by weight.
本発明による合金の所要の高い強靭性、あるいはノッチ効果に対する抵抗力を保証するために、Al Si 7 Mg合金におけるFe及びMgの含有量を本発明に従って制限する必要がある。本発明によれば、以下のような化学組成が提案される。 In order to ensure the required high toughness or resistance to the notch effect of the alloy according to the invention, the Fe and Mg content in the Al Si 7 Mg alloy must be limited according to the invention. According to the present invention, the following chemical composition is proposed.
本発明によるAl合金鋳物の化学組成は次のとおりである(短縮表記:Al Si 7 Mg 0.25 Zr wa又はAl Si 7 Mg 0.25 Hf wa又はAl Si 6 Mg 0.25 Zr wa又はAl Si 6 Mg 0.25 Hf wa)。すなわち、
Si:4.5〜7.5重量%、特に、6.5〜7.5重量%、
Mg:0.20〜0.32重量%、
Zr:0.03〜0.50重量%及び/又はHf:0.03〜1.50重量%、
Ti:0〜0.20重量%、
Fe:<0.20重量%、
Mn:<0.50重量%、
Cu:<0.05重量%、
Zn:<0.07重量%、
及び、各場合ともそれぞれAlを加えて100重量%にする。
The chemical composition of the Al alloy castings according to the present invention is as follows (abbreviated notation: Al Si 7 Mg 0.25 Zr wa or Al Si 7 Mg 0.25 Hf wa or Al Si 6 Mg 0.25 Zr wa or Al Si 6 Mg 0.25 Hf wa). That is,
Si: 4.5 to 7.5% by weight, in particular 6.5 to 7.5% by weight,
Mg: 0.20 to 0.32% by weight,
Zr: 0.03-0.50% by weight and / or Hf: 0.03-1.50% by weight,
Ti: 0 to 0.20% by weight,
Fe: <0.20% by weight,
Mn: <0.50% by weight,
Cu: <0.05% by weight,
Zn: <0.07% by weight,
In each case, Al is added to make 100% by weight.
場合によっては、当分野における当業者にとっては周知のように、製造プロセスからの残留不純物(Nb、V、B、Ni、Co)が含まれることがある。 In some cases, residual impurities (Nb, V, B, Ni, Co) from the manufacturing process may be included, as is well known to those skilled in the art.
さらに、Zr、Ti及びHfは、上記の範囲内において、混合物として存在してもよい(例えば、Hfの“不純物を含有する”Zr)。 Further, Zr, Ti and Hf may exist as a mixture within the above range (eg, “contains” Zr of Hf).
GK−Al Si 7 Mg 0.25 Zr waのシリンダヘッドによって、0.10〜0.20重量%のZr添加により、引張強度及び降伏点を、合金を脆化することなく少なくとも10%だけ改善できることが明らかになった。又、Zrの結晶粒微細化効果があるので、極限ひずみは変化せずにそのままの状態に留まる。240℃における不可逆的熱膨張は約50%低減することができた。 With a cylinder head of GK-Al Si 7 Mg 0.25 Zr wa, by adding 0.10 to 0.20 wt% of Zr, the tensile strength and yield point can be improved by at least 10% without embrittlement of the alloy Became clear. Further, since there is an effect of refining Zr crystal grains, the ultimate strain remains unchanged. The irreversible thermal expansion at 240 ° C. could be reduced by about 50%.
目標とした高い強度値は、高い強靭性と共に、さらに、微細な鋳造組織によって実現することができる。このため、鋳造中の高い凝固速度が望ましい。又、同等の鋳造厚さの場合は、重力ダイカスト法及び圧力ダイカスト法の組織の方が、砂型鋳造に比べてより微細である。 The targeted high strength value can be realized by a fine cast structure together with high toughness. For this reason, a high solidification rate during casting is desirable. In the case of equivalent casting thickness, the structure of the gravity die casting method and the pressure die casting method is finer than that of sand casting.
本発明は、以上に述べたAl合金鋳物を、この合金鋳物製の加工品又は部品の製造に使用する方法にも関する。ここで、“この合金鋳物製の部品”という表現は、構成要素、ケーシング、被覆等のような、その加工品の固有の部分を意味している。 The present invention also relates to a method of using the Al alloy casting described above for the production of a workpiece or part made of this alloy casting. Here, the expression “parts made of this alloy casting” means specific parts of the workpiece, such as components, casings, coatings, etc.
加工品は、特に、内燃機関のピストン、シリンダヘッド、クランクケース、又はエンジンブロックのような品目であるがこれに限定されるわけではない。 The workpiece is in particular an item such as, but not limited to, an internal combustion engine piston, cylinder head, crankcase, or engine block.
本発明によるAl合金鋳物並びに加工品の製造については、当分野に携わる当業者に周知されている通常の方法を、ここに特に規定しない限り利用することができる。 For the production of Al alloy castings and processed products according to the present invention, ordinary methods well known to those skilled in the art can be used unless otherwise specified.
Claims (5)
Si:4.5〜7.5重量%、
Mg:0.20〜0.32重量%、
Zr:0.03〜0.50重量%及び/又はHf:0.03〜1.50重量%、
Ti:0〜0.20重量%、
Fe:<0.20重量%、
Mn:<0.50重量%、
Cu:<0.05重量%、
Zn:<0.07重量%、
及び、合計で100重量%にするために加えられるAl、を含むAl合金鋳物。 The following chemical composition:
Si: 4.5 to 7.5% by weight,
Mg: 0.20 to 0.32% by weight,
Zr: 0.03-0.50% by weight and / or Hf: 0.03-1.50% by weight,
Ti: 0 to 0.20% by weight,
Fe: <0.20% by weight,
Mn: <0.50% by weight,
Cu: <0.05% by weight,
Zn: <0.07% by weight,
And Al alloy casting containing Al added to make it 100 weight% in total.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10323741A DE10323741B3 (en) | 2003-05-24 | 2003-05-24 | Aluminum casting alloy for the production of e.g. pistons of IC engines contains alloying additions of silicon, magnesium, zirconium, hafnium and titanium |
PCT/EP2004/004654 WO2004104240A2 (en) | 2003-05-24 | 2004-05-03 | High strength thermally resistant ductile cast aluminium alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007500793A true JP2007500793A (en) | 2007-01-18 |
Family
ID=32981337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006529730A Withdrawn JP2007500793A (en) | 2003-05-24 | 2004-05-03 | High strength heat resistant tough aluminum alloy castings |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060115375A1 (en) |
JP (1) | JP2007500793A (en) |
DE (1) | DE10323741B3 (en) |
WO (1) | WO2004104240A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013530310A (en) * | 2010-06-16 | 2013-07-25 | ノルスク・ヒドロ・アーエスアー | Castable heat resistant aluminum alloy |
CN103498080A (en) * | 2013-09-16 | 2014-01-08 | 北京工业大学 | Al-Er-Zr-Hf alloy, and preparation and heat treatment technique thereof |
KR101856381B1 (en) * | 2016-11-16 | 2018-05-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head |
CN112522552A (en) * | 2020-11-04 | 2021-03-19 | 佛山科学技术学院 | Corrosion-resistant aluminum alloy and preparation method and application thereof |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005037738B4 (en) * | 2005-08-10 | 2009-03-05 | Daimler Ag | Aluminum casting alloy with high dynamic strength and thermal conductivity |
DE102006059899A1 (en) * | 2006-12-19 | 2008-06-26 | Bayerische Motoren Werke Ag | High temperature resistant aluminum casting alloy for use in engine core construction units, ingot pouring, engine block, cylinder head, crankcase and in automotive industry, consists of various metals |
DE102007012423A1 (en) | 2007-03-15 | 2008-09-18 | Bayerische Motoren Werke Aktiengesellschaft | Cast aluminum alloy |
DE102008024531A1 (en) | 2008-05-21 | 2009-11-26 | Bayerische Motoren Werke Aktiengesellschaft | Aluminum cast alloy used for cylinder heads, pistons of combustion engines, crank housings or engine blocks contains alloying additions of silicon, magnesium, titanium and vanadium |
US8903035B2 (en) * | 2008-07-31 | 2014-12-02 | Battelle Energy Alliance, Llc | Neutron absorbers and methods of forming at least a portion of a neutron absorber |
DE102009036056A1 (en) | 2009-08-04 | 2011-02-10 | Daimler Ag | Impact-resistant aluminum alloy suitable for thick-walled die castings, especially crank cases, has specified composition |
DE102010055011A1 (en) * | 2010-12-17 | 2012-06-21 | Trimet Aluminium Ag | Readily castable ductile aluminum-silicon alloy comprises silicon, magnesium, manganese, copper, titanium, iron, molybdenum, zirconium, strontium, and aluminum and unavoidable impurities, and phosphorus for suppressing primary silicon phase |
EP2471966B1 (en) * | 2010-12-17 | 2014-09-03 | TRIMET Aluminium SE | Easily castable, ductile AlSi alloy and method for producing a cast component using the AlSi cast alloy |
AT14019U1 (en) * | 2014-02-14 | 2015-02-15 | Amag Casting Gmbh | cast alloy |
DE102014224229A1 (en) | 2014-11-27 | 2016-06-02 | Federal-Mogul Nürnberg GmbH | Method for producing an engine component, engine component and use of an aluminum alloy |
DE102015007929A1 (en) * | 2015-06-20 | 2016-12-22 | Daimler Ag | Cast aluminum alloy, method of manufacturing an aluminum cast alloy component and using an aluminum casting alloy |
GB201713005D0 (en) | 2017-08-14 | 2017-09-27 | Univ Brunel | The alloy and manufacturing method of Al-Si-Mg castings for improved mechanical performance |
CN111996409B (en) * | 2020-09-02 | 2021-07-02 | 湘潭大学 | Grain refining method for preventing silicon poisoning of aluminum-silicon alloy |
CN112322944B (en) * | 2020-11-30 | 2021-09-24 | 安徽军明机械制造有限公司 | High-temperature-resistant light aluminum-titanium alloy |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2908566A (en) * | 1956-06-01 | 1959-10-13 | North American Avation Inc | Aluminum base alloy |
US4797164A (en) * | 1986-09-30 | 1989-01-10 | Swiss Aluminum Ltd. | Process for manufacturing a fine-grained recrystallized sheet |
DE69410906T2 (en) * | 1993-08-28 | 1998-12-17 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe | Aluminum alloy casting with high laser weldability, connection from an aluminum alloy casting and method for improving a construction element from aluminum alloy casting |
EP0861911A4 (en) * | 1996-09-03 | 1999-09-08 | Toyota Motor Co Ltd | Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue |
AU1983200A (en) * | 1998-12-18 | 2000-07-12 | Corus Aluminium Walzprodukte Gmbh | Method for the manufacturing of an aluminium-magnesium-lithium alloy product |
-
2003
- 2003-05-24 DE DE10323741A patent/DE10323741B3/en not_active Expired - Lifetime
-
2004
- 2004-05-03 JP JP2006529730A patent/JP2007500793A/en not_active Withdrawn
- 2004-05-03 WO PCT/EP2004/004654 patent/WO2004104240A2/en active Application Filing
- 2004-05-03 US US10/559,163 patent/US20060115375A1/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013530310A (en) * | 2010-06-16 | 2013-07-25 | ノルスク・ヒドロ・アーエスアー | Castable heat resistant aluminum alloy |
JP2016035113A (en) * | 2010-06-16 | 2016-03-17 | ノルスク・ヒドロ・アーエスアーNorsk Hydro Asa | Castable heat resistant aluminium alloy |
CN103498080A (en) * | 2013-09-16 | 2014-01-08 | 北京工业大学 | Al-Er-Zr-Hf alloy, and preparation and heat treatment technique thereof |
CN103498080B (en) * | 2013-09-16 | 2016-04-20 | 北京工业大学 | A kind of Al-Er-Zr-Hf alloy and preparation and thermal treatment process |
KR101856381B1 (en) * | 2016-11-16 | 2018-05-10 | 현대자동차주식회사 | Aluminum alloy for cylinder head |
CN112522552A (en) * | 2020-11-04 | 2021-03-19 | 佛山科学技术学院 | Corrosion-resistant aluminum alloy and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
DE10323741B3 (en) | 2004-10-14 |
WO2004104240A3 (en) | 2005-04-28 |
WO2004104240A2 (en) | 2004-12-02 |
US20060115375A1 (en) | 2006-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5300118B2 (en) | Aluminum alloy casting manufacturing method | |
JP2007500793A (en) | High strength heat resistant tough aluminum alloy castings | |
CN109868393B (en) | High temperature cast aluminum alloy for cylinder heads | |
JP4914225B2 (en) | Aluminum alloy material, its production method and its use | |
US8980021B2 (en) | Metal treatment to eliminate hot tear defects in low silicon aluminum alloys | |
KR101757013B1 (en) | Copper aluminum alloy molded part having high mechanical strength and hot creep resistance | |
US20080060723A1 (en) | Aluminum alloy for engine components | |
JP2007084922A (en) | High temperature aluminum alloy | |
KR101756016B1 (en) | Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof | |
JP2005530927A (en) | Cast parts made of aluminum alloy with excellent tensile strength | |
US6419769B1 (en) | Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom | |
JP7513621B2 (en) | Magnesium alloy, piston made from said magnesium alloy, and method for manufacturing said piston | |
US6676775B2 (en) | Recrystallization-hardenable aluminum cast alloy and component | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
JPH08134578A (en) | Aluminum alloy for die casting, excellent in high temperature strength and toughness, and its production | |
JP5660689B2 (en) | Aluminum alloy for casting and aluminum alloy casting | |
JP2007023330A (en) | Aluminum alloy casting and its manufacturing method | |
JP2021008649A (en) | Austenitic stainless cast steel | |
JPS58503B2 (en) | Tainetsei Aluminum Powder | |
JP2004225121A (en) | Alloy for die casting piston | |
JP3303661B2 (en) | Heat resistant high strength aluminum alloy | |
JPH02221349A (en) | Lightweight casting material | |
CN106011563A (en) | Hypo eutectic aluminum-magnesium alloy reinforcing method through melt compounding treatment | |
JP2016204711A (en) | HIGH STRENGTH HYPEREUTECTIC Al-Si ALLOY AND DIE CAST USING THE SAME | |
JP2004225134A (en) | Aluminum alloy material for diesel engine cylinder head, production method therefor, and diesel engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070703 |