JP2007023330A - Aluminum alloy casting and its manufacturing method - Google Patents

Aluminum alloy casting and its manufacturing method Download PDF

Info

Publication number
JP2007023330A
JP2007023330A JP2005206285A JP2005206285A JP2007023330A JP 2007023330 A JP2007023330 A JP 2007023330A JP 2005206285 A JP2005206285 A JP 2005206285A JP 2005206285 A JP2005206285 A JP 2005206285A JP 2007023330 A JP2007023330 A JP 2007023330A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy casting
less
cylinder head
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005206285A
Other languages
Japanese (ja)
Inventor
Soji Sasaki
聡司 佐々木
Koichi Akiyama
耕一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005206285A priority Critical patent/JP2007023330A/en
Publication of JP2007023330A publication Critical patent/JP2007023330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy casting having excellent tensile strength and fatigue strength and suitably used e.g. as a cylinder head for internal-combustion engines and its manufacturing method and further to provide a cylinder head for internal-combustion engines made of the aluminum alloy casting and a cylinder head for internal-combustion engines obtained using the manufacturing method. <P>SOLUTION: In the aluminum alloy casting which has a composition consisting of, by mass, 4.0 to 10.0%, preferably 4.0 to 7.0%, Si, 2.0 to 4.5% Cu, ≤0.5%, preferably 0.25 to 0.45%, Mg, 35 to 200 ppm, preferably >50 to 200 ppm Sr and the balance Al with inevitable impurities, Fe content is reduced to ≤0.25% and the amount of porosity is set to ≤0.3% by area ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、疲労強度に優れ、例えば自動車用内燃機関に用いられるシリンダヘッドなどの好適に用いられるアルミニウム合金鋳物と、このようなアルミニウム合金鋳物の製造方法に関するものである。   The present invention relates to an aluminum alloy casting that is excellent in fatigue strength and that is suitably used, for example, a cylinder head used in an internal combustion engine for automobiles, and a method for producing such an aluminum alloy casting.

内燃機関用シリンダーヘッドに用いられるアルミニウム合金鋳物としては、従来、JIS H 5202にAC2A、AC2B、AC4Bとして規定されるAl−Cu−Si系のアルミニウム合金鋳物が用いられていた(例えば、特許文献1の段落[0002]参照)。
特開平10−205388号公報
As an aluminum alloy casting used for a cylinder head for an internal combustion engine, an Al—Cu—Si based aluminum alloy casting defined in JIS H5202 as AC2A, AC2B, and AC4B has been conventionally used (for example, Patent Document 1). Paragraph [0002]).
JP-A-10-205388

しかしながら、このような内燃機関用のシリンダーヘッドにあっては、近年におけるエンジンの高出力化や、車体の軽量化を意図したシリンダーヘッドの薄肉化に伴って繰り返し応力が増大する傾向にあることに加えて、T6又はT7熱処理時に発生する高い残留応力が局所的に集中する構造となっているため、上記のようなアルミニウム合金鋳物では、疲労強度が不十分となることがないとは言えず、シリンダーヘッドのトップデッキやウォータージャケットの応力集中部から疲労亀裂が発生する可能性を必ずしも否定することができなくなってきている。   However, in such a cylinder head for an internal combustion engine, the stress tends to increase repeatedly with the recent increase in engine output and the thinning of the cylinder head intended to reduce the weight of the vehicle body. In addition, since it has a structure in which high residual stress generated during T6 or T7 heat treatment is locally concentrated, it cannot be said that the above-described aluminum alloy casting does not have insufficient fatigue strength. The possibility of fatigue cracks from the stress concentrated part of the top deck of the cylinder head and the water jacket cannot be denied.

本発明は、従来の内燃機関用アルミニウム合金製シリンダーヘッドにおける上記課題に鑑みてなされたものであって、その目的とするところは、引張強度や疲労強度に優れ、例えば内燃機関用シリンダーヘッドとして好適に用いることができるアルミニウム合金鋳物と、このようなアルミニウム合金鋳物の製造方法、さらには当該アルミニウム合金鋳物から成る内燃機関用シリンダーヘッド、及び上記製造方法に基づいて製造された内燃機関用シリンダーヘッドを提供することにある。   The present invention has been made in view of the above-mentioned problems in conventional aluminum alloy cylinder heads for internal combustion engines. The object of the present invention is excellent in tensile strength and fatigue strength, and is suitable, for example, as a cylinder head for internal combustion engines. An aluminum alloy casting that can be used for the above, a manufacturing method of such an aluminum alloy casting, a cylinder head for an internal combustion engine made of the aluminum alloy casting, and a cylinder head for an internal combustion engine manufactured based on the manufacturing method It is to provide.

本発明者らは、上記目的を達成すべく、合金成分や鋳造方法などについて鋭意検討を重ねた結果、不純物成分としてのFe含有量を低減すると共に、溶湯中のガス成分を少なくしてポロシティ量を低減することによって、上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies on alloy components and casting methods in order to achieve the above object, the present inventors have reduced Fe content as an impurity component and reduced the amount of porosity by reducing the gas component in the molten metal. It has been found that the above-mentioned problems can be solved by reducing the above, and the present invention has been completed.

すなわち、本発明は上記知見に基づくものであって、本発明のアルミニウム合金鋳物は、質量比で、4.0〜10.0%、好ましくは4.0〜7.0%のSiと、2.0〜4.5%nCuと、0.5%以下、好ましくは0.25〜0.45%のMgと、0.25%以下のFeに加えて、35〜50ppmのSrを含有し、残部Al及び不可避不純物から成り、ポロシティ量が面積率で0.3%以下であることを特徴としている。   That is, the present invention is based on the above knowledge, and the aluminum alloy casting of the present invention has a mass ratio of 4.0 to 10.0%, preferably 4.0 to 7.0% Si and 2%. In addition to 0.0 to 4.5% nCu, 0.5% or less, preferably 0.25 to 0.45% Mg, and 0.25% or less Fe, 35 to 50 ppm Sr, It consists of the balance Al and inevitable impurities, and the porosity is 0.3% or less in terms of area ratio.

また、本発明のアルミニウム合金鋳物は、同じく質量比で、4.0〜10.0%、好ましくは4.0〜7.0%のSiと、2.0〜4.5%nCuと、0.5%以下、好ましくは0.25〜0.45%のMgと、0.25%以下のFeに加えて、50超〜200ppmのSrを含有し、残部Al及び不可避不純物から成り、ポロシティ量が同様に面積率で0.3%以下であることを特徴とする。   Also, the aluminum alloy casting of the present invention has a mass ratio of 4.0 to 10.0%, preferably 4.0 to 7.0% Si, 2.0 to 4.5% nCu, 0 0.5% or less, preferably 0.25 to 0.45% Mg, and in addition to 0.25% or less Fe, containing 50 to 200 ppm of Sr, the balance being Al and unavoidable impurities, the amount of porosity Similarly, the area ratio is 0.3% or less.

本発明のアルミニウム合金鋳物の製造方法においては、上記アルミニウム合金鋳物の鋳造に際して、金型を350〜400℃の温度範囲に予熱した上で、680〜720℃の温度範囲の溶湯を鋳込むようにしており、鋳造後にT7処理(溶体化処理後、安定化処理)を施すことが望ましい。   In the method for producing an aluminum alloy casting of the present invention, when casting the aluminum alloy casting, the mold is preheated to a temperature range of 350 to 400 ° C., and a molten metal having a temperature range of 680 to 720 ° C. is cast. It is desirable to perform T7 treatment (after solution treatment and stabilization treatment) after casting.

そして、本発明の内燃機関用シリンダーヘッドは、本発明の上記アルミニウム合金鋳物から成ることを特徴とし、本発明の上記製造方法に基づくものであることを特徴としている。   The cylinder head for an internal combustion engine of the present invention is characterized by comprising the above-described aluminum alloy casting of the present invention, and is characterized by being based on the manufacturing method of the present invention.

本発明によれば、アルミニウム合金鋳物の引張強度や疲労強度、伸びなどの機械的性能に悪影響を及ぼすFeとポロシティ(気孔)とを共に低減させたことから、当該アルミニウム合金鋳物の上記機械的性能、特に疲労強度を向上させることができる。
本発明の製造方法においては、所定温度の合金溶湯を上記温度範囲に予熱した金型に鋳込むようにしていることから、溶湯の湯周り性が確保され、鋳巣の少ない健全なアルミニウム合金鋳物を得ることができる。
According to the present invention, since both Fe and porosity (porosity) adversely affecting the mechanical performance such as tensile strength, fatigue strength and elongation of the aluminum alloy casting are reduced, the mechanical performance of the aluminum alloy casting is reduced. Especially, fatigue strength can be improved.
In the manufacturing method of the present invention, the molten alloy at a predetermined temperature is cast into a mold preheated to the above temperature range, so that the molten metal can be secured and a healthy aluminum alloy casting with a small casting hole is obtained. be able to.

したがって、このようなアルミニウム合金鋳物やアルミニウム合金鋳物の製造方法を内燃機関用のシリンダーヘッドに適用することによって、当該シリンダーヘッドの疲労強度を向上させることができ、シリンダーヘッドのトップデッキやウォータージャケットなどの応力集中部においても、疲労亀裂の発生を防止することができるという優れた効果がもたらされる。   Therefore, by applying such an aluminum alloy casting or aluminum alloy casting manufacturing method to a cylinder head for an internal combustion engine, the fatigue strength of the cylinder head can be improved, such as a top deck or a water jacket of the cylinder head. Even in the stress concentration part, an excellent effect of preventing the occurrence of fatigue cracks is brought about.

以下、本発明のアルミニウム合金鋳物について、合金成分や製造条件などの限定理由をその作用と共に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。   Hereinafter, the reasons for limitation of the aluminum alloy castings of the present invention, such as alloy components and manufacturing conditions, will be described together with their actions. In the present specification, “%” represents mass percentage unless otherwise specified.

(1)Si:4.0〜10.0%
Si(ケイ素)は、引張強度、疲労強度、硬さを増す効果を発揮すると共に、溶湯に流動性を与え、鋳造性を向上させる作用を有する元素であるが、4.0%に満たない場合はこのような作用を十分に発揮することができず、10%を超えた添加は、伸びを低下させる傾向を示すことから、4.0〜10.0%の範囲で添加する。
なお、添加による伸び減少の悪影響を最小限のものとするには、その上限値を7.0%とすることが望ましい。
(1) Si: 4.0 to 10.0%
Si (silicon) is an element that has the effect of increasing tensile strength, fatigue strength, and hardness, and has the effect of imparting fluidity to the molten metal and improving castability, but when it is less than 4.0% Cannot fully exhibit such an action, and addition exceeding 10% tends to reduce elongation, so it is added in the range of 4.0 to 10.0%.
In order to minimize the adverse effect of the decrease in elongation due to the addition, the upper limit is preferably set to 7.0%.

(2)Cu:2.0〜4.5%
Cu(銅)は、熱処理によって引張強度、疲労強度、硬さを増す効果を有する反面、伸びを低下させる傾向を示す元素である。特に、高サイクル疲労強度と相関の高い引張強度と、低サイクル疲労強度や熱処理時の割れ防止に必要な高い伸びを両立させるため2.0〜4.5%の範囲で添加する。
(2) Cu: 2.0 to 4.5%
Cu (copper) is an element that has the effect of increasing tensile strength, fatigue strength, and hardness by heat treatment, but tends to decrease elongation. In particular, it is added in the range of 2.0 to 4.5% in order to achieve both the tensile strength having a high correlation with the high cycle fatigue strength and the high elongation necessary for preventing low cycle fatigue strength and cracking during heat treatment.

(3)Mg:0.5%以下
Mg(マグネシウム)は、Cuと同様に、熱処理によって引張強度、疲労強度、硬さを増すのに有効な元素である。しかしながら、過剰に添加するとMgSiとして析出し、伸びを低下させる傾向を示すことから、その上限値を0.5%とする必要がある。
なお、Mg添加による上記効果をより確実なものとし、添加の悪影響を最小限のものとするためには、0.25〜0.45%の範囲内で添加することが望ましい。
(3) Mg: 0.5% or less Mg (magnesium) is an element effective for increasing tensile strength, fatigue strength, and hardness by heat treatment, similarly to Cu. However, if added excessively, Mg 2 Si precipitates and tends to reduce elongation, so the upper limit value needs to be 0.5%.
In addition, in order to make the said effect by addition of Mg more reliable and to minimize the adverse effect of the addition, it is desirable to add in the range of 0.25 to 0.45%.

(4)Fe:0.25%以下
Fe(鉄)は、針状のFe化合物となって析出し、引張強度、疲労強度、伸びなど、全般に悪影響を及ぼすため、その上限値を0.25%とする。
なお、Feは、上記したような機械的性能に有害な成分であることから、その含有量は少ないほど望ましい。
(4) Fe: 0.25% or less
Fe (iron) precipitates as an acicular Fe compound, and has an adverse effect on the overall strength, such as tensile strength, fatigue strength, and elongation. Therefore, the upper limit is set to 0.25%.
In addition, since Fe is a component harmful to the mechanical performance as described above, its content is preferably as small as possible.

(5)Sr:35〜200ppm
Srは、共晶Si粒子の微細化と形状改良効果を有するので、必要に応じて35ppm以上を添加する。しかし、過剰に添加するとSr化合物を晶出して、強度と伸びの低下を惹き起こすため、その上限値を200ppmとする必要がある。なお、Sr添加による上記効果をより確実なものとするためには、50ppmを超え、200ppm以下の範囲内とすることが望ましい。
(5) Sr: 35 to 200 ppm
Since Sr has the effect of refinement of eutectic Si particles and shape improvement, 35 ppm or more is added as necessary. However, when added in excess, the Sr compound crystallizes and causes a decrease in strength and elongation, so the upper limit value needs to be 200 ppm. In addition, in order to make the said effect by Sr addition more reliable, it is desirable to set it in the range of more than 50 ppm and 200 ppm or less.

(6)ポロシティ量:0.3%以下
ポロシティは、溶湯中のガス含有量と相関があり、引張強度、疲労強度、伸びなどに対して、全般的に悪影響を及ぼす。特に、疲労亀裂の起点となり疲労強度を低下させるため、上記のFe化合物の有害性を取り除き、疲労強度の改善を図るためには、同時にポロシティ量を面積比で0.3%以下とする必要がある。
(6) Porosity amount: 0.3% or less Porosity correlates with the gas content in the molten metal, and generally has an adverse effect on tensile strength, fatigue strength, elongation, and the like. In particular, since it becomes the starting point of fatigue cracks and reduces fatigue strength, in order to remove the toxicity of the above-mentioned Fe compound and improve fatigue strength, it is necessary to simultaneously reduce the porosity amount to 0.3% or less by area ratio. is there.

ここで、ポロシティ量を減少させるためには、上記のように溶湯中のガス含有量を低減する必要があり、例えば、十分に脱湿した窒素(N)ガスのような不活性ガスを回転式の吹き込み装置によって溶湯中に吹き込みながら攪拌し、その後吹き込んだガスが浮上するまで十分に沈静化することによってガス含有量を低減させることができ、この状態で金型への注湯を開始すれば、ポロシティが減少することになる。
なお、ポロシティ量を0.3%以下とするための目安としては、溶湯の凝固後におけるガス(水素量)含有量の分析値を0.25cc/100g以下にすればよいことが確認されている。
Here, in order to reduce the amount of porosity, it is necessary to reduce the gas content in the molten metal as described above. For example, an inert gas such as a sufficiently dehumidified nitrogen (N 2 ) gas is rotated. The gas content can be reduced by stirring while blowing into the molten metal with a blower of the type, and then sufficiently calming until the blown gas rises, and in this state, pouring the mold into the mold can be started. In this case, the porosity will decrease.
In addition, as a standard for setting the porosity amount to 0.3% or less, it has been confirmed that the analysis value of the gas (hydrogen amount) content after solidification of the molten metal should be 0.25 cc / 100 g or less. .

(7)金型予熱温度:350〜400℃、溶湯温度:680〜720℃
当該アルミニウム合金の融点は、620〜630℃程度であるが、溶湯温度をこれよりも50〜100℃程度高い680〜720℃の温度範囲に保持し、これを350〜400℃に予熱した金型に鋳込むことによって、鋳巣の生成が防止され、製品の強度が向上することになる。
(7) Mold preheating temperature: 350 to 400 ° C, molten metal temperature: 680 to 720 ° C
The melting point of the aluminum alloy is about 620 to 630 ° C., however, a mold in which the molten metal temperature is maintained in a temperature range of 680 to 720 ° C., which is higher by about 50 to 100 ° C., and preheated to 350 to 400 ° C. By casting into the mold, the formation of the cast hole is prevented and the strength of the product is improved.

すなわち、金型温度が350℃に満たない場合には、溶湯の流動性が低下し、湯周り不良が多くなり、逆に400℃を超えた場合には、溶湯及び凝固した合金鋳物の冷却速度が遅くなり過ぎ、結晶粒粗大化などの悪影響が生じるので、金型予熱温度を350〜400℃の範囲に設定する。
また、溶湯温度についても、同様に流動性および冷却速度の観点から、上記680〜720℃の温度範囲に設定する。なお、このとき、必要に応じて金型を部分的に水冷するなどの手段を併用することによって冷却速度を早め、鋳巣の低減や結晶粒の微細化を図ることも可能である。
That is, when the mold temperature is less than 350 ° C., the fluidity of the molten metal decreases and the surroundings of the molten metal increase, and conversely, when it exceeds 400 ° C., the cooling rate of the molten metal and the solid alloy casting is increased. However, the mold preheating temperature is set in the range of 350 to 400 ° C.
Similarly, the molten metal temperature is set in the temperature range of 680 to 720 ° C. from the viewpoint of fluidity and cooling rate. At this time, it is also possible to increase the cooling rate by using a means such as partially cooling the mold as necessary, thereby reducing the cast holes and making the crystal grains finer.

(8)T7処理(溶体化処理後、安定化処理)
アルミニウム合金から成るシリンダーヘッドにおいては、通常、強度を高めるためにT6処理(溶体化処理後、人工時効処理)が施されることが多いが、本発明においては、上記T6処理に比べて若干強度は劣るものの、シリンダーヘッドに必要な伸び向上と残留応力の低減、さらに寸法安定性を確保するためにT7処理(溶体化処理後、安定化処理)を施すようにした。
(8) T7 treatment (after solution treatment, stabilization treatment)
In general, a cylinder head made of an aluminum alloy is often subjected to T6 treatment (after solution treatment and artificial aging treatment) in order to increase the strength. In the present invention, however, the strength is slightly higher than that of the T6 treatment. Although it is inferior, T7 treatment (after solution treatment and stabilization treatment) is performed to improve elongation necessary for the cylinder head, reduce residual stress, and secure dimensional stability.

このようなT7処理の具体的な条件としては、500〜510℃で4〜8時間の溶体化処理の後、210〜220℃で6〜10時間の安定化処理を行うような条件を採用することができる。
そして、このようなT7処理によって、本発明のアルミニウム合金をシリンダーヘッドに適用した場合に、ヘッドボルト座面、ガスケットシール面のへたり防止の観点から必要な硬さ54HRB以上、70HRB以下を得ることができる。
As specific conditions for such T7 treatment, conditions are employed in which a solution treatment at 500 to 510 ° C. for 4 to 8 hours is followed by a stabilization treatment at 210 to 220 ° C. for 6 to 10 hours. be able to.
And, when the aluminum alloy of the present invention is applied to a cylinder head by such a T7 treatment, the required hardness of 54 HRB or more and 70 HRB or less is obtained from the viewpoint of preventing the head bolt seat surface and the gasket seal surface from sagging. Can do.

また、Mg含有量が0.25〜0.45%のアルミニウム合金鋳物に対しては、同様に500〜510℃で4〜8時間の溶体化処理の後、やや高めの温度230〜240℃で6〜10時間の安定化処理を行うようにすることができる。
この場合、上記合金鋳物の安定化処理よりも温度が高いため、残留応力が低減し、疲労強度向上の効果が得られる。
Similarly, for aluminum alloy castings having a Mg content of 0.25 to 0.45%, after a solution treatment at 500 to 510 ° C. for 4 to 8 hours, a slightly higher temperature of 230 to 240 ° C. A stabilization process for 6 to 10 hours can be performed.
In this case, since the temperature is higher than the stabilization treatment of the alloy casting, the residual stress is reduced, and the effect of improving the fatigue strength can be obtained.

以下、本発明を実施例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
表1に示すような成分組成を有するアルミニウム合金を電気炉によってそれぞれ溶解し、乾燥窒素ガスの吹き込みによる脱ガス処理の後、成分組成・ガス分析用試料をそれぞれ採取した。
次に、380℃に予熱した金型中に、温度700℃の溶湯を注湯し、JIS舟金型(190×23×40mm)の大きさを有する6種のアルミニウム合金鋳物を得た。
Example 1
Aluminum alloys having component compositions as shown in Table 1 were respectively melted by an electric furnace, and after degassing treatment by blowing dry nitrogen gas, component composition / gas analysis samples were collected.
Next, molten metal having a temperature of 700 ° C. was poured into a mold preheated to 380 ° C. to obtain six types of aluminum alloy castings having a size of a JIS boat mold (190 × 23 × 40 mm).

得られたアルミニウム合金鋳物に、それぞれT7処理(溶体化処理:500℃×6時間、安定化処理:210℃×8時間)を施した後、引張試験片及び疲労試験片を切り出し、それぞれの試験を実施した。   Each of the obtained aluminum alloy castings was subjected to T7 treatment (solution treatment: 500 ° C. × 6 hours, stabilization treatment: 210 ° C. × 8 hours), and then a tensile test piece and a fatigue test piece were cut out and tested. Carried out.

また、試験終了後の引張試験片のつかみ部分から硬さ試験片を切り出し、Bスケールのロックウェル硬さ(HRB)を測定すると共に、同じく引張試験片のつかみ部分からポロシティ測定用の試験片を切り出し、光学顕微鏡(20倍)を用いてポロシティの面積率を求めた。   In addition, a hardness test piece is cut out from the grip portion of the tensile test piece after completion of the test, and a B-scale Rockwell hardness (HRB) is measured. It cut out and calculated | required the area ratio of the porosity using the optical microscope (20 time).

これらの結果を表1に併せて示す。なお、表中の「ガス量」とは、Ranslay法による水素分析装置による結果を表わすものであって、凝固後のアルミニウム合金100g中の水素量(cc)を示す。なお、各アルミニウム合金鋳物のガス量の相違は、脱ガス処理の程度によるものである。
また、疲労強度(10回)に及ぼすアルミニウム合金鋳物中のFe含有量とポロシティ量の関係を図1に示す。
These results are also shown in Table 1. The “gas amount” in the table represents the result of a hydrogen analyzer by the Ransley method, and indicates the amount of hydrogen (cc) in 100 g of the solidified aluminum alloy. In addition, the difference in the gas amount of each aluminum alloy casting is due to the degree of degassing treatment.
Further, FIG. 1 shows the relationship between the Fe content in the aluminum alloy casting and the porosity amount, which affects the fatigue strength (10 7 times).

Figure 2007023330
Figure 2007023330

表1の結果から明らかなように、ガス含有量が多く、ポロシティ量も多い場合には不純物であるFe含有量を減らしても、引張強度、延性、疲労強度ともに改善効果がないことが判明した(比較例1及び3)。
また、Fe量が従来と同程度の場合、ガス含有量及びポロシティ量だけを減らすことによって、ある程度の改善効果が得られるものの、その効果は十分ではないことが確認された(比較例1及び2)。
As is clear from the results in Table 1, when the gas content is large and the porosity amount is large, even if the Fe content which is an impurity is reduced, it has been found that there is no improvement effect in tensile strength, ductility and fatigue strength. (Comparative Examples 1 and 3).
In addition, when the amount of Fe is the same as the conventional one, it was confirmed that by reducing only the gas content and the amount of porosity, a certain degree of improvement effect can be obtained, but the effect is not sufficient (Comparative Examples 1 and 2). ).

そして、ポロシティ量と不純物であるFe量が共に少ない場合に、最も顕著な改善効果が認められた(発明例1及び比較例1)。
これは、疲労起点となり得るFe化合物の量を少なくしたり、大きさを小さくしたりすることによって、疲労強度を改善使用とする場合、同様に起点となり得るポロシティの量や大きさも同様に少なくしたり、小さくする必要があることを示唆しているものと考えられる。
And when the amount of porosity and the amount of Fe which is an impurity were both small, the most remarkable improvement effect was recognized (Invention example 1 and Comparative example 1).
This is because when the fatigue strength is improved by reducing the amount of Fe compound that can be used as a starting point for fatigue or reducing the size, the amount and size of porosity that can also be used as a starting point can be reduced as well. It is thought that it is necessary to make it small.

(実施例2)
表1に示した発明例1の組成をベースとして、表2に示すような成分組成のアルミニウム合金を電気炉によってそれぞれ同様に溶解して、脱ガス処理の後、同様に鋳造し、熱処理の後、各分析用試料や試験片を上記実施例と同様に採取して、同様の試験を実施した。
その結果を表2に併せて示す。
(Example 2)
Based on the composition of Invention Example 1 shown in Table 1, aluminum alloys having the composition shown in Table 2 were similarly dissolved in an electric furnace, and after degassing treatment, cast in the same manner, and after heat treatment Each analysis sample and test piece were collected in the same manner as in the above example, and the same test was performed.
The results are also shown in Table 2.

Figure 2007023330
Figure 2007023330

発明例2のアルミニウム合金鋳物は、上記実施例の発明例1をベースとして、さらに共晶Siの微細化と形状改良効果を得るために、Srを添加したものであるが、Srの効果によって、上記発明例1の場合よりもさらに優れた引張強度、伸び、疲労強度を有していることが確認された。
なお、Mg含有量が0.25〜0.45%の場合(発明例3及び4)には、500℃×8時間の溶体化処理、及び230℃×8時間の安定化処理から成るT7処理を実施した。
The aluminum alloy casting of Invention Example 2 is based on Invention Example 1 of the above-described example, and is obtained by adding Sr in order to obtain further eutectic Si refinement and shape improvement effect. It was confirmed that the material had superior tensile strength, elongation, and fatigue strength than those of Example 1 above.
When the Mg content is 0.25 to 0.45% (Invention Examples 3 and 4), a T7 treatment comprising a solution treatment at 500 ° C. × 8 hours and a stabilization treatment at 230 ° C. × 8 hours. Carried out.

発明例3のアルミニウム合金鋳物は、上記実施例の発明例1をベースとして、Mgを増量したものであるが、上記発明例1の場合とほぼ同等の引張強度、伸び、疲労強度、硬さを有していることが判明した。   The aluminum alloy casting of Invention Example 3 is obtained by increasing the amount of Mg based on Invention Example 1 of the above example, but has substantially the same tensile strength, elongation, fatigue strength, and hardness as in the case of Invention Example 1. It turned out to have.

発明例4のアルミニウム合金鋳物は、上記発明例3の合金組成をベースとして、さらに共晶Siの微細化と形状改良効果を得るために、Srを添加したものであって、上記発明例3の場合よりもさらに優れた引張強度、伸び、疲労強度、硬さを有していることが確認された。
なお、この発明例4の場合も、上記発明例3の場合と同様に、500℃×8時間の溶体化処理、及び230℃×8時間の安定化処理から成るT7処理条件を採用している。
The aluminum alloy casting of Invention Example 4 is based on the alloy composition of Invention Example 3 above, and further added with Sr in order to obtain the eutectic Si refinement and shape improvement effect. It was confirmed that the material had even better tensile strength, elongation, fatigue strength, and hardness than the case.
In the case of Invention Example 4 as well, as in the case of Invention Example 3, T7 treatment conditions comprising a solution treatment at 500 ° C. × 8 hours and a stabilization treatment at 230 ° C. × 8 hours are employed. .

アルミニウム合金鋳物の疲労強度(10回)に及ぼすFe含有量とポロシティ量の関係を示すグラフである。It is a graph showing the relationship between aluminum alloy fatigue strength of the casting Fe content on the (107 times) and porosity volume.

Claims (8)

質量比で、Si:4.0〜10.0%、Cu:2.0〜4.5%、Mg:0.5%以下、Fe:0.25%以下、Sr:35〜50ppmを含有し、残部が実質的にAlから成り、かつポロシティ量が面積率で0.3%以下であることを特徴とするアルミニウム合金鋳物。   In mass ratio, Si: 4.0-10.0%, Cu: 2.0-4.5%, Mg: 0.5% or less, Fe: 0.25% or less, Sr: 35-50ppm An aluminum alloy casting characterized in that the balance is substantially made of Al and the porosity is 0.3% or less in terms of area ratio. Si含有量が4.0〜7.0%、Mg含有量が0.25〜0.45%であることを特徴とする請求項1に記載のアルミニウム合金鋳物。   2. The aluminum alloy casting according to claim 1, wherein the Si content is 4.0 to 7.0%, and the Mg content is 0.25 to 0.45%. 質量比で、Si:4.0〜10.0%、Cu:2.0〜4.5%、Mg:0.5%以下、Fe:0.25%以下、Sr:50超〜200ppmを含有し、残部が実質的にAlから成り、かつポロシティ量が面積率で0.3%以下であることを特徴とするアルミニウム合金鋳物。   In mass ratio, Si: 4.0-10.0%, Cu: 2.0-4.5%, Mg: 0.5% or less, Fe: 0.25% or less, Sr: more than 50 to 200 ppm An aluminum alloy casting characterized in that the balance is substantially made of Al and the porosity is 0.3% or less in terms of area ratio. Si含有量が4.0〜7.0%、Mg含有量が0.25〜0.45%であることを特徴とする請求項3に記載のアルミニウム合金鋳物。   4. The aluminum alloy casting according to claim 3, wherein the Si content is 4.0 to 7.0% and the Mg content is 0.25 to 0.45%. 請求項1〜4のいずれか1つの項に記載のアルミニウム合金鋳物を製造するに際して、350〜400℃の温度範囲に予熱した金型中に、680〜720℃の温度範囲の溶湯を鋳込むことを特徴とするアルミニウム合金鋳物の製造方法。   When producing the aluminum alloy casting according to any one of claims 1 to 4, a molten metal having a temperature range of 680 to 720 ° C is cast into a mold preheated to a temperature range of 350 to 400 ° C. The manufacturing method of the aluminum alloy casting characterized by these. 得られた鋳物にT7処理を施すことを特徴とする請求項5に記載のアルミニウム合金鋳物の製造方法。   6. The method for producing an aluminum alloy casting according to claim 5, wherein the obtained casting is subjected to a T7 treatment. 請求項1〜4のいずれか1つの項に記載のアルミニウム合金鋳物から成ることを特徴とする内燃機関用シリンダーヘッド。   A cylinder head for an internal combustion engine, comprising the aluminum alloy casting according to any one of claims 1 to 4. 請求項6に記載された方法により製造されていることを特徴とする内燃機関用シリンダーヘッド。   A cylinder head for an internal combustion engine manufactured by the method according to claim 6.
JP2005206285A 2005-07-15 2005-07-15 Aluminum alloy casting and its manufacturing method Pending JP2007023330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206285A JP2007023330A (en) 2005-07-15 2005-07-15 Aluminum alloy casting and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206285A JP2007023330A (en) 2005-07-15 2005-07-15 Aluminum alloy casting and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007023330A true JP2007023330A (en) 2007-02-01

Family

ID=37784500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206285A Pending JP2007023330A (en) 2005-07-15 2005-07-15 Aluminum alloy casting and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007023330A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009010264A2 (en) * 2007-07-18 2009-01-22 Technische Universität Clausthal Cast aluminum alloy, and use thereof
JP2009208095A (en) * 2008-03-03 2009-09-17 Nsk Ltd Aluminum alloy die-casting component
JP2012097332A (en) * 2010-11-04 2012-05-24 Toyota Industries Corp Aluminum alloy component excellent in high-temperature strength, and method of manufacturing the same
US8999080B2 (en) * 2007-07-06 2015-04-07 Nissan Motor Co., Ltd. Casting aluminum alloy and internal combustion engine cylinder head
CN113652619A (en) * 2021-08-03 2021-11-16 郑州大学 Heat treatment strengthening and toughening method for low-energy hypoeutectic high-copper-content Al-Si-Cu-Mg cast alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999080B2 (en) * 2007-07-06 2015-04-07 Nissan Motor Co., Ltd. Casting aluminum alloy and internal combustion engine cylinder head
US9828660B2 (en) 2007-07-06 2017-11-28 Nissan Motor Co., Ltd. Method for producing an aluminum alloy casting
WO2009010264A2 (en) * 2007-07-18 2009-01-22 Technische Universität Clausthal Cast aluminum alloy, and use thereof
WO2009010264A3 (en) * 2007-07-18 2009-04-09 Univ Clausthal Tech Cast aluminum alloy, and use thereof
JP2009208095A (en) * 2008-03-03 2009-09-17 Nsk Ltd Aluminum alloy die-casting component
JP2012097332A (en) * 2010-11-04 2012-05-24 Toyota Industries Corp Aluminum alloy component excellent in high-temperature strength, and method of manufacturing the same
CN113652619A (en) * 2021-08-03 2021-11-16 郑州大学 Heat treatment strengthening and toughening method for low-energy hypoeutectic high-copper-content Al-Si-Cu-Mg cast alloy

Similar Documents

Publication Publication Date Title
JP5300118B2 (en) Aluminum alloy casting manufacturing method
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
CA2932867A1 (en) High performance alsimgcu casting alloy
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JP2009506215A (en) Cast aluminum alloy
CN112301259A (en) High-strength die-casting aluminum alloy, and preparation method and application thereof
JP2007023330A (en) Aluminum alloy casting and its manufacturing method
JP2007500793A (en) High strength heat resistant tough aluminum alloy castings
JP2006241531A (en) Continuous casting aluminum alloy ingot and its production method
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP5660689B2 (en) Aluminum alloy for casting and aluminum alloy casting
JP2005187896A (en) Heat resistant magnesium alloy casting
JPH1112673A (en) Aluminum alloy casting and its production
JPS63259045A (en) Aluminum alloy for casting
EP3192883B1 (en) Ai alloy containing cu and c and its manufacturing method
JPH0941064A (en) Production of aluminum alloy for casting and aluminum alloy casting material
JP2004225134A (en) Aluminum alloy material for diesel engine cylinder head, production method therefor, and diesel engine
JP7409195B2 (en) Aluminum alloy for casting, aluminum alloy casting and manufacturing method thereof
JPH1017975A (en) Aluminum alloy for casting
JP2005082865A (en) Non-heat treated aluminum alloy for die-casting, die-cast product obtained by using the alloy, and method for producing the product
JP7401080B1 (en) Manufacturing method of Al alloy for casting
JP2004068152A (en) Piston made of aluminum cast alloy and method for producing the same
JP2003342661A (en) Aluminum alloy casting, method for producing the same, and internal combustion engine cylinder head using the same
JPH10158771A (en) Aluminum alloy for casting, excellent in pressure resistance