JP5660689B2 - Aluminum alloy for casting and aluminum alloy casting - Google Patents
Aluminum alloy for casting and aluminum alloy casting Download PDFInfo
- Publication number
- JP5660689B2 JP5660689B2 JP2013108766A JP2013108766A JP5660689B2 JP 5660689 B2 JP5660689 B2 JP 5660689B2 JP 2013108766 A JP2013108766 A JP 2013108766A JP 2013108766 A JP2013108766 A JP 2013108766A JP 5660689 B2 JP5660689 B2 JP 5660689B2
- Authority
- JP
- Japan
- Prior art keywords
- casting
- aluminum alloy
- fatigue strength
- treatment
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
本発明は、鋳造用アルミニウム合金に係わり、さらに詳しくは、高サイクル疲労強度と熱疲労強度が共に要求される部材に好適に用いられるアルミニウム合金と、当該合金から成るアルミニウム合金鋳物、さらにはその一例としての内燃機関用シリンダーヘッドに関するものである。 The present invention relates to an aluminum alloy for casting, and more specifically, an aluminum alloy suitably used for a member that requires both high cycle fatigue strength and thermal fatigue strength, an aluminum alloy casting made of the alloy, and an example thereof As a cylinder head for an internal combustion engine.
複雑な形状を有し、しかも機械的特性が要求される鋳造用合金としては、従来、JIS H5202にAC2A、AC2B、AC4Bとして規定されるAl−Cu−Si系や、AC4C、AC4CHとして規定されるAl−Mg−Si系のアルミニウム合金鋳物が用いられている。これらの鋳造品としては、内燃機関用シリンダーヘッドやシリンダーブロック等がある。 As casting alloys having complicated shapes and required mechanical properties, conventionally, Al-Cu-Si systems defined as AC2A, AC2B, and AC4B in JIS H5202 and AC4C and AC4CH are defined. Al-Mg-Si based aluminum alloy castings are used. These cast products include a cylinder head for an internal combustion engine and a cylinder block.
これらの鋳造品においては、強度及び靭性を高めるべく、鋳造体にT6処理(溶体化・焼入れ処理後に、最高強度が得られる焼戻し温度の時効処理)又はT7処理(溶体化・焼入れ処理後に過時効にして寸法安定性を確保する処理)を施して使用することが多い(例えば、特許文献1参照)。 In these castings, in order to increase the strength and toughness, the cast body is subjected to T6 treatment (aging treatment at the tempering temperature at which the maximum strength is obtained after solution treatment / quenching treatment) or T7 treatment (overaging after solution treatment / quenching treatment). In many cases, it is used after being subjected to a process for ensuring dimensional stability) (see, for example, Patent Document 1).
しかしながら、このような従来の内燃機関用のシリンダーヘッドにあっては、近年におけるエンジンの高出力化や、車体の軽量化を意図したシリンダーヘッドの薄肉化に伴って、繰り返し応力が増大する傾向に有ることに加えて、T6又はT7熱処理時に発生する高い残留応力が局所的に集中する構造となっているため、上記のようなアルミニウム合金鋳物では、高サイクル疲労強度や熱疲労強度の代替特性である伸びが十分であるとは言えず、シリンダーヘッドのトップデッキやウォータージャケットの応力集中部、燃焼室弁間部の高温部から疲労亀裂が発生する可能性が高まってきているという問題点があった。 However, in such a conventional cylinder head for an internal combustion engine, the stress tends to increase repeatedly as the output of the engine is increased in recent years and the thickness of the cylinder head is reduced to reduce the weight of the vehicle body. In addition to having a structure in which high residual stress generated during T6 or T7 heat treatment is locally concentrated, the above aluminum alloy castings have an alternative characteristic of high cycle fatigue strength and thermal fatigue strength. There is a problem that fatigue cracks are increasing from the stress concentrated part of the top deck of the cylinder head and the water jacket and the high temperature part between the combustion chamber valves. It was.
本発明は、従来のアルミニウム合金鋳物における上記問題点に着目してなされたものであって、その目的とするところは、高サイクル疲労強度及び熱疲労強度の代替特性である伸びに優れ、このような性能が要求される鋳造品、例えば内燃機関用シリンダーヘッドに好適に用いることができる鋳造用アルミニウム合金と、当該アルミニウム合金から成るアルミニウム合金鋳物、さらに当該鋳物の代表例である内燃機関用シリンダーヘッドを提供することにある。 The present invention has been made by paying attention to the above-mentioned problems in conventional aluminum alloy castings, and the object thereof is excellent in elongation, which is an alternative characteristic of high cycle fatigue strength and thermal fatigue strength. Castings that require high performance, for example, an aluminum alloy for casting that can be suitably used for a cylinder head for an internal combustion engine, an aluminum alloy casting made of the aluminum alloy, and a cylinder head for an internal combustion engine that is a representative example of the casting Is to provide.
本発明者らは、上記目的を達成すべく、合金成分や熱処理方法などについて鋭意検討を重ねた結果、Si,Cu,Mg含有量をそれぞれ特定したり、得られた合金鋳物にT7処理を施したりすることなどにより、上記課題が解決できることを見出し、本発明を完成するに到った。 As a result of intensive studies on alloy components and heat treatment methods to achieve the above object, the inventors of the present invention specified the respective contents of Si, Cu, and Mg, or performed T7 treatment on the obtained alloy castings. As a result, the present inventors have found that the above problems can be solved, and have completed the present invention.
すなわち、本発明は上記知見に基づくものであって、本発明の鋳造用アルミニウム合金は、質量比で、4.0〜6.0%のSi、0.5〜2.0%のCu、0.25〜0.5%のMg、0.002〜0.02%のSr、0.005〜0.2%のTi、それぞれ0.2%以下のFe及びMnを含有し、残部がAl及び不可避的不純物であって、高サイクル疲労強度が100MPa以上、伸びが10%以上、硬さが50HRB以上であることを特徴とする。
また、質量比で、5.0〜6.0%のSi、0.8〜1.3%のCu、0.3〜0.4%のMg、0.002〜0.02%のSr、0.005〜0.2%のTi、それぞれ0.2%以下のFe及びMnを含有し、残部がAl及び不可避的不純物であり、同様に高サイクル疲労強度が100MPa以上、伸びが10%以上、硬さが50HRB以上であることを特徴としている。
That is, the present invention is based on the above knowledge, and the aluminum alloy for casting of the present invention has a mass ratio of 4.0 to 6.0% Si, 0.5 to 2.0% Cu, 0 .25 to 0.5% Mg, 0.002 to 0.02% Sr, 0.005 to 0.2 % Ti, each containing 0.2 % or less Fe and Mn, with the balance being Al and It is an unavoidable impurity and has a high cycle fatigue strength of 100 MPa or more, an elongation of 10% or more, and a hardness of 50 HRB or more.
Also, by mass ratio, 5.0 to 6.0% Si, 0.8 to 1.3% Cu, 0.3 to 0.4% Mg, 0.002 to 0.02% Sr, 0.005 to 0.2% Ti, each containing 0.2% or less of Fe and Mn, the balance being Al and inevitable impurities, similarly high cycle fatigue strength of 100 MPa or more, elongation of 10% or more The hardness is 50 HRB or more.
そして、また、本発明のアルミニウム合金鋳物は、本発明の上記アルミニウム合金から成ることを特徴とし、本発明の内燃機関用シリンダーヘッドは、本発明の上記アルミニウム合金鋳物から成るものであることを特徴とする。 The aluminum alloy casting of the present invention is characterized by comprising the above-mentioned aluminum alloy of the present invention, and the cylinder head for an internal combustion engine of the present invention is characterized by comprising the above-described aluminum alloy casting of the present invention. And
本発明によれば、鋳造用アルミニウム合金中に含まれるSi,Cu,Mg,Sr,Tiをそれぞれ特定範囲内に限定するなどしたので、当該合金による鋳物の伸びを高めることができ、高サイクル疲労強度、熱疲労強度共に優れたアルミニウム合金鋳物、例えば内燃機関用シリンダーヘッドを得ることができる。 According to the present invention, since Si, Cu, Mg, Sr, and Ti contained in the aluminum alloy for casting are limited to specific ranges, respectively, the elongation of the casting by the alloy can be increased, and high cycle fatigue is achieved. An aluminum alloy casting excellent in both strength and thermal fatigue strength, for example, a cylinder head for an internal combustion engine can be obtained.
以下、本発明の鋳造用アルミニウム合金における成分の限定理由や、当該合金から成るアルミニウム合金鋳物に施される熱処理条件などについて、さらに詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。 Hereinafter, the reasons for limiting the components in the casting aluminum alloy of the present invention, the heat treatment conditions applied to the aluminum alloy casting made of the alloy, and the like will be described in more detail. In the present specification, “%” represents mass percentage unless otherwise specified.
(1)Si含有量:4.0〜6.0%
Si(ケイ素)は、鋳造性を向上させる作用を有するため、シリンダーヘッドのような複雑な形状や薄肉部を有するものを鋳造する場合は、溶湯の流動性つまり鋳造品の成形性の観点からSiをある程度以上添加することが必要になる。すなわち、Siが4.0%より少ないと、溶湯の流動性が不十分となる。また、準固相域が広がり、引け巣が分散されてポロシティが発生すると共に引け割れが発生しやすくなる。Siは、また、鋳造材の機械的強度、耐摩耗性、防振性を向上させる作用を有する。
しかし、Siの増加と共に合金の熱伝導率と延性が低下し、熱疲労特性が悪化する。Si含有量が6.0%を超えると伸びの低下が顕著になり、また引け巣が集中する傾向を示し始めるため、ざく巣の発生を見ることがある。
(1) Si content: 4.0-6.0%
Since Si (silicon) has an effect of improving castability, when casting a complicated shape such as a cylinder head or a thin-walled portion, Si is considered from the viewpoint of fluidity of the molten metal, that is, moldability of the cast product. It is necessary to add more than a certain amount. That is, when Si is less than 4.0%, the fluidity of the molten metal becomes insufficient. In addition, the quasi-solid phase region widens, the shrinkage nests are dispersed, porosity is generated, and shrinkage cracks are easily generated. Si also has the effect of improving the mechanical strength, wear resistance, and vibration resistance of the cast material.
However, as Si increases, the thermal conductivity and ductility of the alloy decrease and the thermal fatigue properties deteriorate. When the Si content exceeds 6.0%, the elongation decreases remarkably, and since the shrinkage nests begin to concentrate, the occurrence of nests may be observed.
図1は、引け性試験の結果、すなわち円錐状の試験片を鋳込んだ時の底面中央部の比重をアルキメデス法により測定し、標準比重との差により鋳造欠陥率を測定した結果を示すものであって、Si含有量が4.0〜6.0%が最も鋳造欠陥(ポロシティとざく巣の合計)が少なく、しかもCu含有量が少ない方が鋳造欠陥量が少なくなることが判る。
なお、Si含有量としては、5.0〜6.0%の範囲内であることがより好ましい。
FIG. 1 shows the result of a shrinkage test, that is, the result of measuring the specific gravity at the center of the bottom surface when casting a conical test piece by the Archimedes method and measuring the casting defect rate by the difference from the standard specific gravity. Thus, it can be seen that when the Si content is 4.0 to 6.0%, the casting defects (total of porosity and nests) are the smallest, and when the Cu content is smaller, the casting defect amount is smaller.
In addition, as Si content, it is more preferable to exist in the range of 5.0 to 6.0%.
(2)Cu含有量:0.5〜2.0%
Cu(銅)は、アルミニウム合金の機械的強度を向上させる効果を有する。この効果は、Cuが0.5%以上含まれると顕著になるが、Cuの増加に伴って熱伝導率と展伸性が低下し、熱疲労特性が悪化する。また、Cuの増加に伴って凝固形態が粥状になり、引け巣が分散されてポロシティが発生するようになる。
図1から明らかなように、同じSi量であればCu量が増えるほど鋳造欠陥量が増え、これらの悪影響はCuが2.0%を超えることによって顕著になることから、0.5〜2.0%の範囲、さらに好ましくは0.8〜1.3%の範囲とする。
(2) Cu content: 0.5-2.0%
Cu (copper) has the effect of improving the mechanical strength of the aluminum alloy. This effect becomes prominent when Cu is contained in an amount of 0.5% or more. However, as Cu is increased, the thermal conductivity and stretchability are lowered, and the thermal fatigue characteristics are deteriorated. Further, as the Cu content increases, the solidification form becomes bowl-like, the shrinkage nests are dispersed, and porosity is generated.
As is clear from FIG. 1, if the amount of Si is the same, the amount of casting defects increases as the amount of Cu increases, and these adverse effects become prominent when Cu exceeds 2.0%. The range is 0.0%, more preferably 0.8 to 1.3%.
(3)Mg:0.25〜0.5%
Mg(マグネシウム)を添加すれば、熱処理によって引張強度、硬さを増し、熱疲労強度、伸びが低下する傾向を示す。過剰に添加すれば、Mg2Siとして析出し、熱疲労強度と伸びを低下させるので、0.25〜0.5%、より好ましくは0.3〜0.4%の範囲で添加する。
この範囲で添加することによって、Mg2Siの中間相の時効析出によるマトリックス強化に寄与する。また、Mg含有量が0.5%を超えると、溶湯の表面酸化量が顕著に増え、介在物欠陥が増えるという不具合を生じる。
(3) Mg: 0.25 to 0.5%
If Mg (magnesium) is added, the tensile strength and hardness are increased by heat treatment, and the thermal fatigue strength and elongation tend to decrease. If added excessively, it precipitates as Mg 2 Si and lowers the thermal fatigue strength and elongation, so it is added in the range of 0.25 to 0.5%, more preferably 0.3 to 0.4%.
By adding in this range, it contributes to matrix strengthening by aging precipitation of the intermediate phase of Mg 2 Si. Moreover, when Mg content exceeds 0.5%, the surface oxidation amount of a molten metal will increase notably and the malfunction that an inclusion defect increases will arise.
(4)Fe:0.5%以下
Fe(鉄)は、針状の鉄系化合物となって析出し、引張強度、疲労強度、熱疲労強度、伸びなど全般的に悪影響を及ぼすため、その上限値を0.5%とする。
なお、Feは上記のように有害な成分なので、少ないほど望ましく、0.2%以下とすることが好ましく、理想的には実質0%の場合をも含む。
(4) Fe: 0.5% or less Fe (iron) precipitates as an acicular iron-based compound, and has an adverse effect on the overall such as tensile strength, fatigue strength, thermal fatigue strength, and elongation. The value is 0.5%.
In addition, since Fe is a harmful component as described above, it is desirable that it is as small as possible, and it is preferably 0.2% or less, and ideally includes the case where it is substantially 0%.
(5)Mn:0.5%以下
Mn(マンガン)を添加することによって、Feを含む晶出物の形状を強度低下を招きやすい針状から、応力集中を起こしにくい塊状に形状を変えることができる。
Mn量が必要量以上に多くても鉄系化合物(Al−Fe、Mn−Si)の量が増加するので、0.5%以下、望ましくは0.2%以下とする。なお、Fe:Mn比が1:1〜2:1の割合となることが好ましい。
(5) Mn: 0.5% or less By adding Mn (manganese), the shape of the crystallized substance containing Fe can be changed from a needle shape that tends to cause a decrease in strength to a lump shape that does not easily cause stress concentration. it can.
Even if the amount of Mn is more than necessary, the amount of iron-based compound (Al—Fe, Mn—Si) increases, so it is 0.5% or less, preferably 0.2% or less. The Fe: Mn ratio is preferably 1: 1 to 2: 1.
(6)Sr:0.002〜0.02%
特に、シリンダーヘッド材については、その耐熱疲労性を向上させるために、Srを所定量添加し、鋳造組織のSi粒を微細化させることが望ましい。
このSi粒の改良処理によって、引張強度、伸び等の機械的特性が向上し、熱疲労強度も向上する。ただし、Srを大量に添加すると、オーバーモディフィケーションと呼ばれるバンド状の粗大Si相の晶出領域が発生し、強度が低下することがあるので、その添加量を0.002〜0.02%の範囲とする。なお、熱疲労強度が問題となる燃焼室面については、急冷凝固させ、デンドライトアームスペーシングを30μm以下にまで小さくすることが望ましい。
(6) Sr: 0.002 to 0.02%
In particular, for the cylinder head material, in order to improve its heat fatigue resistance, it is desirable to add a predetermined amount of Sr to refine the Si grains of the cast structure.
This Si grain improvement treatment improves mechanical properties such as tensile strength and elongation, and also improves thermal fatigue strength. However, when a large amount of Sr is added, a crystallization region of a band-like coarse Si phase called overmodification is generated and the strength may be lowered. Therefore, the amount added is 0.002 to 0.02%. The range. In addition, it is desirable to cool and solidify the combustion chamber surface where thermal fatigue strength becomes a problem, and to reduce the dendrite arm spacing to 30 μm or less.
(7)Ti:0.005〜0.2%
Tiは、鋳造組織の結晶粒微細化に有効な成分であることから、0.005〜0.2%の範囲で添加する。また、鋳造欠陥量の多い成分範囲では、Tiを添加することにより、ざく巣が分散し、引け巣が改善される。
Tiの添加量が0.005%未満では効果がなく、0.2%を超えた場合には結晶粒の核となるAl−Fe、TiB等が凝集して欠陥となる危険が高まる。
(7) Ti: 0.005 to 0.2%
Since Ti is an effective component for refining the crystal grain of the cast structure, it is added in the range of 0.005 to 0.2%. Moreover, in the component range with a large amount of casting defects, the addition of Ti disperses the nests and improves the shrinkage nests.
If the addition amount of Ti is less than 0.005%, there is no effect, and if it exceeds 0.2%, the risk of agglomeration of Al—Fe, TiB, etc., which are the cores of crystal grains, increases.
(8)熱処理
本発明のアルミニウム合金から成る鋳物においては、T6処理(溶体化処理後、人工時効硬化処理)に比べて僅かに強度は劣るものの、シリンダーヘッドに必要な熱疲労強度向上と残留応力の低減、及び寸法安定性を得るために、T7処理(溶体化処理後、安定化処理)を施すことが望ましい。
具体的には、上記成分組成を有する本発明の鋳造用アルミニウム合金に対して、溶体化処理を500〜550℃で2.0〜8.0時間、時効処理を190〜250℃で2.0〜6.0時間の条件で行うことにより、高サイクル疲労強度(100MPa以上)、伸び(10.0%以上)、硬さ(50HRB以上)の目標値が達成される。なお、ここで言う高サイクル疲労強度とは、回転数3600rpmの回転曲げ疲労試験による破断までの繰り替え指数が107回の時の応力振幅値を意味するものとする。
(8) Heat treatment In the casting made of the aluminum alloy of the present invention, although the strength is slightly inferior to the T6 treatment (after solution treatment, artificial age hardening treatment), the thermal fatigue strength improvement and residual stress required for the cylinder head In order to reduce the thickness and to obtain dimensional stability, it is desirable to perform T7 treatment (after solution treatment, stabilization treatment).
Specifically, for the casting aluminum alloy of the present invention having the above component composition, solution treatment is performed at 500 to 550 ° C. for 2.0 to 8.0 hours, and aging treatment is performed at 190 to 250 ° C. at 2.0. By carrying out the conditions for ˜6.0 hours, target values of high cycle fatigue strength (100 MPa or more), elongation (10.0% or more), and hardness (50 HRB or more) are achieved. The high cycle fatigue strength referred to here means a stress amplitude value when the repetition index until fracture by the rotational bending fatigue test at a rotational speed of 3600 rpm is 10 7 times.
このようなT7処理によって、ヘッドボルト座面、ガスケットシール面のへたり防止、シリンダーブロックとの締結面、カムシャフト摺動部等における耐摩耗性の観点から必要な硬さである50HRB以上を得ることができる。
溶体化処理時間を十分にとると、拡散によって共晶Siが丸みを備えた形状になり、これによって応力集中が緩和され靭性等の機械的特性が改善されることになる。
By such a T7 treatment, the head bolt seat surface, gasket seal surface is prevented from sagging, a fastening surface with the cylinder block, the wear resistance in the camshaft sliding portion, etc., a required hardness of 50 HRB or more is obtained. be able to.
If a sufficient solution treatment time is taken, the eutectic Si has a rounded shape due to diffusion, which reduces stress concentration and improves mechanical properties such as toughness.
以下、本発明を実施例に基づいて、さらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(1)舟型鋳造試験
表1に示す組成のアルミニウム合金を電気炉によって溶解し、微細化処理、Si改良処理後に、190×40×25mmの舟型を鋳造し、T7処理(530℃×8時間の溶体化処理後、180〜260℃間の所定温度で6時間の時効処理)を施した後、疲労試験片及び引張試験片を切出し、それぞれ高サイクル疲労強度及び破断伸びを測定すると共に、Bスケールロックウェル硬さ(HRB)を測定した。
これらの結果を表1に併せて示す。これらの目標値としては、高サイクル疲労強度については100MPa以上、熱疲労強度の代替特性である伸びについては10.0%以上、硬さについては50HRB以上とする。
(1) Boat type casting test An aluminum alloy having the composition shown in Table 1 was melted in an electric furnace, and after a refinement process and a Si improvement process, a boat type of 190 × 40 × 25 mm was cast, and T7 treatment (530 ° C. × 8 After a solution treatment for a period of time, an aging treatment for 6 hours at a predetermined temperature between 180-260 ° C.), a fatigue test piece and a tensile test piece were cut out, and high cycle fatigue strength and elongation at break were measured respectively. B scale Rockwell hardness (HRB) was measured.
These results are also shown in Table 1. These target values are 100 MPa or more for high cycle fatigue strength, 10.0% or more for elongation, which is an alternative characteristic of thermal fatigue strength, and 50 HRB or more for hardness.
なお、高サイクル疲労試験については、小野式回転曲げ疲労試験機を用いて、回転数を3600rpmとし、破断までの繰り返し回数が107回の時の応力振幅値により疲労強度を評価した。 Note that the high cycle fatigue test, using a fatigue tester Ono-type rotating bending, the rotational speed and 3600 rpm, number of repetitions to failure and rated the fatigue strength by the stress amplitude value when the 10 7 times.
表1から明らかなように、所定範囲の合金成分を有し、200〜240℃の時効温度でT7処理を施した実施例1〜9においては、高サイクル疲労強度、破断伸び、硬さ共に良好な性能を示すことが確認された。
これに対して、合金成分が本発明の規定範囲を外れた比較例1〜8や、180℃あるいは260℃の時効処理を施した比較例9、10、さらに従来のシリンダーヘッド材料として用いられてきたAC4CH合金及びAC2A合金を用いた従来材1及び2においては、それぞれ疲労強度、破断伸び、硬さのうちの少なくともひとつの特性が低く、高性能エンジンのシリンダーヘッド材としては満足な強度が得られないことが判明した。
As is clear from Table 1, in Examples 1 to 9 having alloy components in a predetermined range and subjected to T7 treatment at an aging temperature of 200 to 240 ° C., both high cycle fatigue strength, breaking elongation and hardness are good. It was confirmed that it showed a good performance.
In contrast, Comparative Examples 1 to 8 in which the alloy components are outside the specified range of the present invention, Comparative Examples 9 and 10 subjected to aging treatment at 180 ° C. or 260 ° C., and further used as conventional cylinder head materials. In the
(2)シリンダーヘッド鋳造試験
上記実施例及び比較例のうち、舟型鋳造試験の結果が比較的良好であった合金成分のものをピックアップしてシリンダーヘッド実体を金型鋳造し、該当するT7処理を施した後、燃焼室面の近傍位置から疲労試験片及び引張試験片を切出し、同様に高サイクル疲労強度及び破断伸びを測定すると共に、Bスケールロックウェル硬さ(HRB)を測定した。
これらの結果を表2に示す。この場合の目標値としては、高サイクル疲労強度は85MPa以上、硬さについては50HRB以上とする。
(2) Cylinder head casting test Of the above-mentioned examples and comparative examples, picking up the alloy components whose results of the boat-type casting test were relatively good, and casting the cylinder head body, and corresponding T7 treatment After the test, fatigue test pieces and tensile test pieces were cut out from the vicinity of the combustion chamber surface, and similarly high cycle fatigue strength and elongation at break were measured, and B scale Rockwell hardness (HRB) was measured.
These results are shown in Table 2. As target values in this case, the high cycle fatigue strength is 85 MPa or more, and the hardness is 50 HRB or more.
さらに、熱疲労強度の目標値として、Vノッチ付き平板試験片を用いて完全拘束条件で40℃−270℃−40℃を1サイクルとした簡易熱疲労試験を実施し、その目標値としては、従来のAC2A合金によるTIG再溶融処理品の熱疲労寿命である100サイクル以上とした。 Furthermore, as a target value of the thermal fatigue strength, a simple thermal fatigue test was performed in which 40 ° C.-270 ° C.-40 ° C. was set as one cycle under a completely restrained condition using a flat notched test piece, and as the target value, It was set to 100 cycles or more, which is the thermal fatigue life of a TIG remelted product using a conventional AC2A alloy.
表2に示す結果から明らかなように、シリンダーヘッド実体の鋳造品においても、舟型鋳造試験の実施例2及び6に相当する実施例2−2及び6−2は、高サイクル疲労強度、熱疲労寿命、硬さ共に良好な性能を示し、シリンダーヘッドとしての要求特性を高い水準で満たしていることが確認された。 As is apparent from the results shown in Table 2, also in the cast product of the cylinder head entity, Examples 2-2 and 6-2 corresponding to Examples 2 and 6 of the boat-type casting test have high cycle fatigue strength, Both fatigue life and hardness were good, and it was confirmed that the required characteristics as a cylinder head were met at a high level.
これに対して、舟型鋳造試験の比較例4及び8に相当する比較例4−2及び8−2においては、舟型にては比較的良好な評価結果が得られたものの、比較例4−2については、シリンダーヘッド実体が肉厚であることから、舟型では現れなかった鋳造欠陥の影響によって疲労強度、熱疲労寿命が低くなった。
一方、舟型鋳造試験ではわずかに目標値を達成することができなかった比較例8−2については、実体試験においてもやはり強度が低く、これはSrによるSiの改良がなされていないことによるものと考えられる。
On the other hand, in Comparative Examples 4-2 and 8-2 corresponding to Comparative Examples 4 and 8 of the boat type casting test, comparatively good evaluation results were obtained in the boat type, but Comparative Example 4 Regarding -2, since the cylinder head body was thick, the fatigue strength and thermal fatigue life were lowered due to the influence of casting defects that did not appear in the boat type.
On the other hand, Comparative Example 8-2, which was not able to achieve the target value slightly in the boat-type casting test, also has low strength in the substantial test, and this is because Si has not been improved by Sr. it is conceivable that.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013108766A JP5660689B2 (en) | 2013-05-23 | 2013-05-23 | Aluminum alloy for casting and aluminum alloy casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013108766A JP5660689B2 (en) | 2013-05-23 | 2013-05-23 | Aluminum alloy for casting and aluminum alloy casting |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007177983A Division JP5300118B2 (en) | 2007-07-06 | 2007-07-06 | Aluminum alloy casting manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013174022A JP2013174022A (en) | 2013-09-05 |
JP5660689B2 true JP5660689B2 (en) | 2015-01-28 |
Family
ID=49267162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013108766A Active JP5660689B2 (en) | 2013-05-23 | 2013-05-23 | Aluminum alloy for casting and aluminum alloy casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5660689B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101604855B1 (en) | 2014-05-07 | 2016-03-21 | 한국기계연구원 | Aluminum alloy with excellent castability and mechanical property and method of manufacturing thereof |
KR101846735B1 (en) * | 2016-11-10 | 2018-04-09 | 현대자동차주식회사 | Aluminum alloy for cylinder head and method for manufacturing thereof |
CN115323226B (en) * | 2022-10-14 | 2023-01-24 | 山东裕航特种合金装备有限公司 | Fastener for ship and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63259045A (en) * | 1987-04-16 | 1988-10-26 | Mitsubishi Motors Corp | Aluminum alloy for casting |
JPH11246925A (en) * | 1998-03-05 | 1999-09-14 | Hitachi Metals Ltd | Aluminum alloy casting with high toughness, and its manufacture |
JP2001131669A (en) * | 1999-11-04 | 2001-05-15 | Kobe Steel Ltd | Aluminum alloy casting material |
JP2004225134A (en) * | 2003-01-24 | 2004-08-12 | Showa Keigokin Kk | Aluminum alloy material for diesel engine cylinder head, production method therefor, and diesel engine |
JP2007169731A (en) * | 2005-12-22 | 2007-07-05 | Hitachi Metal Precision:Kk | Aluminum casting alloy and compressor impeller using the same |
-
2013
- 2013-05-23 JP JP2013108766A patent/JP5660689B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013174022A (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5300118B2 (en) | Aluminum alloy casting manufacturing method | |
CA2932867C (en) | High performance alsimgcu casting alloy | |
JP4765400B2 (en) | Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof | |
CN109868393B (en) | High temperature cast aluminum alloy for cylinder heads | |
JP4187018B2 (en) | Cast aluminum alloy with excellent relaxation resistance and heat treatment method | |
EP2771493A2 (en) | High performance aisimgcu casting alloy | |
JP6028546B2 (en) | Aluminum alloy | |
JP2007500793A (en) | High strength heat resistant tough aluminum alloy castings | |
JP2009506215A (en) | Cast aluminum alloy | |
JP5660689B2 (en) | Aluminum alloy for casting and aluminum alloy casting | |
JP6743155B2 (en) | High-strength aluminum alloy, internal combustion engine piston made of the alloy, and method for manufacturing internal combustion engine piston | |
JP2023542129A (en) | aluminum casting alloy | |
JP2005139552A (en) | Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting | |
JP2007023330A (en) | Aluminum alloy casting and its manufacturing method | |
JP2004225121A (en) | Alloy for die casting piston | |
JPH1017975A (en) | Aluminum alloy for casting | |
JP2016204711A (en) | HIGH STRENGTH HYPEREUTECTIC Al-Si ALLOY AND DIE CAST USING THE SAME | |
JP2011140702A (en) | Method of producing die-casting piston and die-casting piston | |
JP5910206B2 (en) | Aluminum alloy | |
KR20090062318A (en) | Alloy composition and method for manufacturing stabilizer bar bracket | |
KR100497053B1 (en) | High strength aluminum casting alloy with improved age-hardenability | |
JP2020132893A (en) | Aluminum alloy for casting, and internal combustion engine cylinder head | |
JPH1017970A (en) | Aluminum alloy for casting | |
JP2005105402A (en) | Aluminum alloy having excellent corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5660689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |