JPH02221349A - Lightweight casting material - Google Patents
Lightweight casting materialInfo
- Publication number
- JPH02221349A JPH02221349A JP33092289A JP33092289A JPH02221349A JP H02221349 A JPH02221349 A JP H02221349A JP 33092289 A JP33092289 A JP 33092289A JP 33092289 A JP33092289 A JP 33092289A JP H02221349 A JPH02221349 A JP H02221349A
- Authority
- JP
- Japan
- Prior art keywords
- casting material
- aluminum
- weight
- silicon
- lightweight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000005266 casting Methods 0.000 title claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 238000010587 phase diagram Methods 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 229910002056 binary alloy Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 230000035939 shock Effects 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 229910021338 magnesium silicide Inorganic materials 0.000 claims description 8
- YTHCQFKNFVSQBC-UHFFFAOYSA-N magnesium silicide Chemical compound [Mg]=[Si]=[Mg] YTHCQFKNFVSQBC-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- -1 aluminum-magnesium-silicon Chemical compound 0.000 claims description 5
- 238000007711 solidification Methods 0.000 claims description 4
- 230000008023 solidification Effects 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000004881 precipitation hardening Methods 0.000 abstract description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 abstract 3
- 229910052919 magnesium silicate Inorganic materials 0.000 abstract 3
- 235000019792 magnesium silicate Nutrition 0.000 abstract 3
- 239000000391 magnesium silicate Substances 0.000 abstract 3
- 229910018464 Al—Mg—Si Inorganic materials 0.000 abstract 1
- 229910019752 Mg2Si Inorganic materials 0.000 abstract 1
- 230000012447 hatching Effects 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910000676 Si alloy Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000374 eutectic mixture Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000001995 intermetallic alloy Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム系軽量鋳造材料に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to aluminum-based lightweight casting materials.
燃料消費と汚染物質の排出とを減少させるために燃焼室
の点火圧と断熱性とを上昇させようとする内燃機関製作
における現在の開発目標のため、使用されるアルミニウ
ム系軽量材料が大きな影響を受け、その耐負荷性を構造
設計を補完するために高める必要がある。Due to current development goals in internal combustion engine construction, which seek to increase the ignition pressure and thermal insulation of the combustion chamber in order to reduce fuel consumption and pollutant emissions, the aluminum-based lightweight materials used have a significant impact. Therefore, its load-bearing capacity needs to be increased to complement the structural design.
アルミニウムーケイ素ピストン合金といった従来のアル
ミニウム系軽量鋳造材料はその耐負荷性が限界に達して
いる。というのは、約300℃より高い温度ではこの材
料が高い機械的及び熱的負荷に長時間にわたってほとん
ど耐えることができないからである。Conventional aluminum-based lightweight cast materials, such as aluminum-silicon piston alloys, have reached their load-bearing limits. This is because at temperatures above about 300° C. this material can hardly withstand high mechanical and thermal loads for long periods of time.
鋳造用金型に投入された溶融材料を約100バールの高
圧下で凝固させる加圧鋳造法は微細組織を生じ、この組
織によりアルミニウムーケイ素合金の耐熱サイクルがわ
ずかに増大するが、充分には増大しない(Z、 Met
al 、l]、1,976.546−54) 。The pressure casting process, in which the molten material introduced into the casting mold is solidified under high pressures of approximately 100 bar, produces a microstructure that slightly increases the thermal cycle resistance of the aluminum-silicon alloy, but not sufficiently. Does not increase (Z, Met
al, l], 1,976.546-54).
マトリックスが例えば20容量%の例えばAj!zOs
、炭素、鋼などから成る繊維又は例えばSiCなどのウ
ィスカーで強化されたアルミニウムーケイ素合金は機械
的及び熱的負荷に対して比較的高い耐性を有する。加圧
鋳造法はこのような繊維含有複合材料の製造に極めて適
している(Bader、M、G、 :Alus−ina
fiber reinforced alusinus
e alloy castingsfor autoa
otive applications、Proc、o
f thelnt。For example, Aj! where the matrix is, for example, 20% by volume. zOs
Aluminum-silicon alloys reinforced with fibers, carbon, steel, etc. or whiskers, such as SiC, have a relatively high resistance to mechanical and thermal loads. Pressure casting methods are extremely suitable for the production of such fiber-containing composite materials (Bader, M.G.: Alus-ina
fiber reinforced alusinus
e alloy castings for autoa
otive applications, Proc, o
fthelnt.
Ass、for Vehicle Design、Vo
l、2+1984)、 Ltかし繊維含有複合材料は生
産の面で比較的高価につく。Ass, for Vehicle Design, Vo
Lt oak fiber-containing composite materials are relatively expensive to produce.
セラミック材料は極めて高い耐高温性とより好ましい耐
食挙動を有することが期待できる。しかし、例えば一体
型ピストン又はタービン°翼といった複雑なセラミック
ス部品の量産は未解決の問題である。その上、内燃機関
へのセラミックスの使用可能性は、セラミックスがノツ
チ、機械的衝撃及び熱サイクル負荷に対して極めて敏感
であるために本来的に制限される。さらに、セラミック
スは望ましくない程度に重量を増大させ、かなりの費用
をかけないと成形できずに、その製作もかなりの費用が
かかる。Ceramic materials can be expected to have extremely high temperature resistance and more favorable corrosion resistance behavior. However, mass production of complex ceramic components, such as monolithic pistons or turbine blades, remains an open problem. Moreover, the potential use of ceramics in internal combustion engines is inherently limited because ceramics are extremely sensitive to notches, mechanical shocks, and thermal cycling loads. Additionally, ceramics add undesirable weight, cannot be molded without considerable expense, and are also fairly expensive to manufacture.
金属間相からなる材料はそれ自体で金属とセラミックス
との性質を併せもっている0例えば、この材料は良好な
伝熱性、高い溶融温度及び場合により満足な延性を有す
る。したがってこの材料は従来のアルミニウム系軽量金
属材料と耐高温性ではあるが脆いセラミックスとの藺の
領域を埋めるのに明らかに適している。このことは、材
料が改良されれば運転温度を、したがって熱効率を上げ
ることができるガスタービン及び内燃機関に特に関係が
ある。Materials consisting of intermetallic phases have in themselves the properties of metals and ceramics; for example, they have good heat conductivity, high melting temperatures and, if appropriate, satisfactory ductility. This material is therefore clearly suited to fill the gap between traditional aluminum-based lightweight metal materials and high-temperature resistant but brittle ceramics. This is particularly relevant for gas turbines and internal combustion engines, where improved materials can increase operating temperatures and therefore thermal efficiency.
金属間相は、この相が第一ピストンリング溝の領域でア
ーク溶接の結果析出し、マトリックスの一部が溶融し、
ニッケル又は銅材料と混合する限りにおいてアルミニウ
ムーケイ素合金からなる軽量金属ピストンに用いられて
いた。硬い金属間相と一部ケイ素は高度に過飽和したア
ルミニウム結晶固溶体のマトリックスに埋まるので高い
耐摩耗性が得られる(US−A−4,562,327)
。The intermetallic phase precipitates out as a result of arc welding in the area of the first piston ring groove, part of the matrix melts, and
It has been used in lightweight metal pistons made of aluminum-silicon alloys insofar as they are mixed with nickel or copper materials. The hard intermetallic phase and some silicon are embedded in a matrix of highly supersaturated aluminum crystalline solid solution, resulting in high wear resistance (US-A-4,562,327).
.
DB−A−3,702,721に開示されている、耐熱
性の高い成形物を製造するためのケイ化マグネシウム系
金属間和合金は42重量%までのアルミニウム及び/又
は22重量%までのケイ素を含有することができる。こ
の合金の最適組成はアルミニウム−マグネシウム−ケイ
素三成分系の状態図において、共晶合部、擬二元系部及
びアルミニウム42重量%によって囲まれた部分によっ
て規定される。このような軽量鋳造材料の欠点は必ずし
も空孔が避けられないことであり、この空孔は鋳物中の
残留溶融物が凝固する際に発生し、溶解度の低下に従っ
て凝固する際に遊離する溶融物に溶解したガスによって
生じる。The magnesium silicide-based intermetallic alloy disclosed in DB-A-3,702,721 for producing highly heat-resistant moldings contains up to 42% by weight of aluminum and/or up to 22% by weight of silicon. can contain. The optimum composition of this alloy is defined by the eutectic part, the pseudo-binary part, and the part surrounded by 42% by weight of aluminum in the phase diagram of the aluminum-magnesium-silicon ternary system. The disadvantage of such lightweight casting materials is that porosity is not always avoided, and this porosity occurs when the residual melt in the casting solidifies, and the melt that is liberated during solidification as the solubility decreases. produced by gases dissolved in
本発明の課題は、例えばA I Si12CuNiMg
型の従来のアルミニウムピストン合金と同じ鋳物条件、
即ち、700〜750℃の温度で鋳造が可能であり、5
60〜700℃の液相温度と550〜600℃の同相温
度を有し、20 X 10−に−’より低い膨張係数を
有するアルミニウム系軽量鋳造材料を提供することであ
る。The problem of the present invention is, for example, A I Si12CuNiMg
Same casting conditions as traditional aluminum piston alloy of type,
That is, casting is possible at a temperature of 700 to 750°C, and
An object of the present invention is to provide an aluminum-based lightweight casting material having a liquidus temperature of 60 to 700°C and a phase temperature of 550 to 600°C, and an expansion coefficient lower than 20 x 10-'.
〔課題を解決するための手段〕
前記課題は5〜25重量%のケイ化マグネシウム添加物
を含有したアルミニウム系軽量鋳造材料により解決され
る。この軽量鋳造材料は組織として一部ケイ化マグネシ
ウムを含み、残部は二成分系Aj! MgzSi共晶
混合物及び/又は三成分系1−M口St −Si共品混
合物から成る。[Means for Solving the Problem] The above problem is solved by an aluminum-based lightweight casting material containing 5 to 25% by weight of magnesium silicide additive. This lightweight cast material contains a part of magnesium silicide as a structure, and the rest is a binary system Aj! It consists of a MgzSi eutectic mixture and/or a ternary 1-M St-Si eutectic mixture.
L、F、MondolfoのAlugeinum A
11oys:5tructure andPrope
rties、London 1976*3.787には
、アルミニウム合金はケイ化マグネシウムを2重量%ま
で含有することができると記載されてい°る。この限界
を趨えるとこのアルミニウムの合金はもはや変形され得
ない。この刊行物にはMg、st添加物を含有する軽量
鋳造材料について記載されていない。L, F, Mondolfo's Alugeinum A
11oys: 5structure and Prope
Rties, London 1976*3.787 states that aluminum alloys can contain up to 2% by weight of magnesium silicide. Beyond this limit, the aluminum alloy can no longer be deformed. This publication does not describe lightweight casting materials containing Mg, st additives.
延性を向上させるために本発明の軽量鋳造材料は12重
量%までの、好ましくは0.5〜10重量%のケイ素の
添加により微粒化させることができるが、−次ケイ素は
生じさせてはならない。In order to improve the ductility, the lightweight casting material of the invention can be atomized by the addition of up to 12% by weight of silicon, preferably 0.5-10% by weight, but no secondary silicon must occur. .
本発明の別の特徴によりケイ素はその全部又は一部を1
5重量%の、好ましくは5〜12重量%のマグネシウム
で置き換えることができる。According to another feature of the invention, silicon is
It can be replaced by 5% by weight of magnesium, preferably 5-12% by weight.
アルミニウム系軽量鋳造材料の好ましい組成はアルミニ
ウム−マグネシウム−ケイ素三成分の状態図において、
擬二元系部へ11g、siの両側に位置しかつ700℃
以下の液相温度とケイ化マグネシウムの一次凝固範囲と
によって限定された領域によって表わされる組織を有す
る。The preferred composition of the aluminum-based lightweight casting material is as follows in the aluminum-magnesium-silicon ternary phase diagram:
11g to the pseudo binary system part, located on both sides of si and 700℃
It has a structure defined by a region defined by the following liquidus temperature and primary solidification range of magnesium silicide.
マンガン、銅、ニッケル及びコバルトの各元素の少なく
とも1種を5重量%までの量で添加することにより軽量
鋳造材料の析出硬化を著しく加速させることができる。By adding at least one of the elements manganese, copper, nickel and cobalt in amounts of up to 5% by weight, the precipitation hardening of lightweight casting materials can be significantly accelerated.
本発明のアルミニウム系軽量鋳造材料はアルミニウム溶
融物にケイ化マグネシウムを投入するか、あるいはマグ
ネシウムとケイ素を別々に溶融物に加えるかによる従来
の鋳造性により製造することができる。The aluminum-based lightweight casting material of the present invention can be produced by conventional casting methods, either by adding magnesium silicide to the aluminum melt or by adding magnesium and silicon separately to the melt.
本発明により得られる性質は、数表にタイプG−^It
Si12CuMgNiのアルミニウムピストン合金の
性質と比較されている。これかられかるように、A 1
280 MggSi20の組成を有する軽量鋳造材料
の場合、熱膨張係数が19.8X 10−”K−’と低
い。熱伝導度の値173W/mkは通常のピストン合金
より著しく高い。軽量鋳造材料の密度は約2.51 g
/cdに減少し、弾性率で表わされる軽量材料の剛性は
83GPaに上昇している。その他の機械的強度は組織
と熱処理により影響される。The properties obtained by the present invention are shown in the numerical table as type G-^It.
The properties of an aluminum piston alloy of Si12CuMgNi are compared. As you will see, A 1
For a lightweight cast material with a composition of 280 MggSi20, the coefficient of thermal expansion is as low as 19.8 x 10-"K-'. The thermal conductivity value of 173 W/mk is significantly higher than that of a normal piston alloy. The density of the lightweight cast material is about 2.51 g
/cd, and the stiffness of the lightweight material, expressed in terms of modulus of elasticity, has increased to 83 GPa. Other mechanical strengths are influenced by structure and heat treatment.
(以下余白次頁につづく)
性質 G−A I Si12CuMgNiAf+20重
量%MgzSi
密度(g/csj) 2,70 2.51
弾性率(GPa) 78 83図面に示
したアルミニウム−マグネシウム−ケイ素三成分系の状
態図において、ピストン材料とに位置するハツチング部
分で表わされ、この部分は700°C以下の液相温度と
ケイ化マグネシウムの一次凝固範囲とによって限定され
ている。(The following margin continues on the next page) Properties G-A I Si12CuMgNiAf + 20% by weight MgzSi Density (g/csj) 2,70 2.51
Elastic modulus (GPa) 78 83 In the phase diagram of the aluminum-magnesium-silicon ternary system shown in the drawing, this is represented by the hatched part located between the piston material and the liquidus temperature below 700°C. It is limited by the primary solidification range of magnesium chloride.
図面はアルミニウム−マグネシウム−ケイ素三成分系の
状態図である。The drawing is a phase diagram of the aluminum-magnesium-silicon ternary system.
Claims (1)
したアルミニウム系軽量鋳造材料。 2、12重量%までのケイ素を含有した請求項1記載の
軽量鋳造材料。 3、15重量%までのマグネシウムを含有した請求項1
又は2に記載の軽量鋳造材料。 4、マンガン、銅、ニッケル及びコバルトの各元素の少
なくとも1種を5重量%までの量で含有した請求項1〜
3のいずれかに記載の軽量鋳造材料。 5、アルミニウム−マグネシウム−ケイ素三成分系の状
態図において、擬二元系部Al/Mg_2Siの両側に
位置しかつ700℃以下の液相温度とケイ化マグネシウ
ムの一次凝固範囲とによって限定された領域(添付図面
に示すハッチング部)によって表わされる組成を有する
ことを特徴とする請求項1〜4のいずれかに記載の軽量
鋳造材料。 6、改良された耐熱強度、耐熱衝撃性及び疲労限を有す
る形状物の製造に利用可能な請求項1〜4のいずれかに
記載の軽量鋳造材料。Claims: An aluminum-based lightweight casting material containing 1.5 to 25% by weight of magnesium silicide additive. 2. A lightweight casting material as claimed in claim 1 containing up to 2.12% by weight of silicon. 3. Claim 1 containing up to 15% by weight of magnesium
Or the lightweight casting material according to 2. 4. Claims 1 to 4 containing at least one of the following elements: manganese, copper, nickel, and cobalt in an amount of up to 5% by weight.
3. The lightweight casting material according to any one of 3. 5. In the phase diagram of the aluminum-magnesium-silicon ternary system, the region located on both sides of the pseudo-binary system part Al/Mg_2Si and limited by the liquidus temperature of 700°C or less and the primary solidification range of magnesium silicide The lightweight casting material according to any one of claims 1 to 4, characterized in that it has a composition represented by (the hatched part shown in the accompanying drawings). 6. The lightweight casting material according to any one of claims 1 to 4, which can be used for producing shaped articles having improved heat resistance strength, thermal shock resistance and fatigue limit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3842812.1 | 1988-12-20 | ||
DE19883842812 DE3842812A1 (en) | 1988-12-20 | 1988-12-20 | CAST LIGHT MATERIAL |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02221349A true JPH02221349A (en) | 1990-09-04 |
Family
ID=6369586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33092289A Pending JPH02221349A (en) | 1988-12-20 | 1989-12-20 | Lightweight casting material |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0375025A1 (en) |
JP (1) | JPH02221349A (en) |
DE (1) | DE3842812A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007522348A (en) * | 2004-02-16 | 2007-08-09 | マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Aluminum alloy-based material, production method thereof and use thereof |
WO2013054716A1 (en) * | 2011-10-11 | 2013-04-18 | 日本軽金属株式会社 | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4400896C1 (en) * | 1994-01-14 | 1995-03-30 | Bergische Stahlindustrie | Brake disc for disc brakes of rail vehicles |
ATE177158T1 (en) * | 1994-11-15 | 1999-03-15 | Rheinfelden Aluminium Gmbh | ALUMINUM CAST ALLOY |
EP0773302B1 (en) * | 1995-10-09 | 2002-07-31 | Honda Giken Kogyo Kabushiki Kaisha | Thixocasting process |
DE102007035115A1 (en) | 2007-07-27 | 2009-01-29 | FNE Forschungsinstitut für Nichteisen-Metalle GmbH | Aluminum-matrix material for building contains concentration gradient of magnesium silicide |
DE102007035124A1 (en) | 2007-07-27 | 2009-01-29 | FNE Forschungsinstitut für Nichteisen-Metalle GmbH | Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1483229C2 (en) * | 1965-09-03 | 1980-04-17 | Honsel-Werke Ag, 5778 Meschede | Use of AlMgSi-GuB alloy for cylinder heads |
DE1608165C2 (en) * | 1967-12-01 | 1981-10-22 | Honsel-Werke Ag, 5778 Meschede | Use of AlMgSi cast alloys for cylinder heads subject to alternating thermal loads |
DE3702721A1 (en) * | 1986-02-26 | 1987-08-27 | Metallgesellschaft Ag | Intermetallic-phase alloys and process for the production thereof |
-
1988
- 1988-12-20 DE DE19883842812 patent/DE3842812A1/en not_active Withdrawn
-
1989
- 1989-12-09 EP EP89203151A patent/EP0375025A1/en not_active Withdrawn
- 1989-12-20 JP JP33092289A patent/JPH02221349A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007522348A (en) * | 2004-02-16 | 2007-08-09 | マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Aluminum alloy-based material, production method thereof and use thereof |
US7892482B2 (en) | 2004-02-16 | 2011-02-22 | Mahle Gmbh | Material on the basis of an aluminum alloy, method for its production, as well as use therefor |
JP4914225B2 (en) * | 2004-02-16 | 2012-04-11 | マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Aluminum alloy material, its production method and its use |
WO2013054716A1 (en) * | 2011-10-11 | 2013-04-18 | 日本軽金属株式会社 | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
JP5655953B2 (en) * | 2011-10-11 | 2015-01-21 | 日本軽金属株式会社 | Al-Fe-Si-based compound and method for producing aluminum alloy in which primary crystal Si is refined |
US9303299B2 (en) | 2011-10-11 | 2016-04-05 | Nippon Light Metal Company, Ltd. | Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si |
Also Published As
Publication number | Publication date |
---|---|
DE3842812A1 (en) | 1990-06-21 |
EP0375025A1 (en) | 1990-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5669392B2 (en) | Steel material with high silicon content for the production of piston rings and cylinder liners | |
JP4914225B2 (en) | Aluminum alloy material, its production method and its use | |
US20140182750A1 (en) | Method for producing an aluminum alloy casting | |
CN104561688A (en) | Heat-resistant cast aluminum alloy and gravity casting method thereof | |
CN105039798A (en) | Cast aluminum alloy components | |
CN101220431A (en) | Aluminum alloy for engine components | |
CN109868393B (en) | High temperature cast aluminum alloy for cylinder heads | |
JP2005530927A (en) | Cast parts made of aluminum alloy with excellent tensile strength | |
US6399020B1 (en) | Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom | |
JPS621840A (en) | Pereutectic aluminum/silicon cast alloy | |
US5996471A (en) | Aluminum alloy for internal-combustion piston, and aluminum alloy piston | |
US6419769B1 (en) | Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom | |
JP2007500793A (en) | High strength heat resistant tough aluminum alloy castings | |
US5178686A (en) | Lightweight cast material | |
JPH02221349A (en) | Lightweight casting material | |
JP3448990B2 (en) | Die-cast products with excellent high-temperature strength and toughness | |
JP4093221B2 (en) | Aluminum alloy for casting, aluminum alloy casting and method for producing the same | |
JP2000054053A (en) | Aluminum-base alloy excellent in heat resistance, and its production | |
JPH10226840A (en) | Aluminum alloy for piston | |
JPH09263867A (en) | Aluminum alloy for casting | |
JP3303661B2 (en) | Heat resistant high strength aluminum alloy | |
JPH06299276A (en) | Ti-al alloy parts | |
JP2602838B2 (en) | High thermal expansion cast iron | |
JP3194531B2 (en) | Piston for internal combustion engine | |
JPH0686642B2 (en) | Heat resistant spheroidal graphite cast iron |