JPH02221349A - Lightweight casting material - Google Patents

Lightweight casting material

Info

Publication number
JPH02221349A
JPH02221349A JP33092289A JP33092289A JPH02221349A JP H02221349 A JPH02221349 A JP H02221349A JP 33092289 A JP33092289 A JP 33092289A JP 33092289 A JP33092289 A JP 33092289A JP H02221349 A JPH02221349 A JP H02221349A
Authority
JP
Japan
Prior art keywords
casting material
aluminum
weight
silicon
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33092289A
Other languages
Japanese (ja)
Inventor
Eberhard Schmid
エーバーハルト・シュミット
Manfred Ruehle
マンフレート・リーレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of JPH02221349A publication Critical patent/JPH02221349A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE: To provide a light casting material having a low coefficient of thermal expansion and a high thermal conductivity by adding a specific quantity of magnesium silicate into Al.
CONSTITUTION: The magnesium silicate is added at 5-25wt.% to the Al base casting material. In this material, at the time of containing silicon till 12%, the grain of the material can be fined. As the other way, all or a part of the silicon can be replaced till 15% in Mg. Further, at the time of adding at least one kind among Mn, Cu, Ni, Co till 5%, precipitation hardening can be accelerated. Then, in a phase diagram of Al-Mg-Si ternary system, it is desirable to have the composition shown with the limited range (hatching part) which positions in both sides of pseudo-binary system part Al/Mg2Si and limits with primary solidified range of the liquidus temp. of ≤700°C and the magnesium silicate. This material can be utilized to manufacture a shaped material having improved heat resistant strength, shock resistance and fatigue limit.
COPYRIGHT: (C)1990,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルミニウム系軽量鋳造材料に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to aluminum-based lightweight casting materials.

〔従来の技術〕[Conventional technology]

燃料消費と汚染物質の排出とを減少させるために燃焼室
の点火圧と断熱性とを上昇させようとする内燃機関製作
における現在の開発目標のため、使用されるアルミニウ
ム系軽量材料が大きな影響を受け、その耐負荷性を構造
設計を補完するために高める必要がある。
Due to current development goals in internal combustion engine construction, which seek to increase the ignition pressure and thermal insulation of the combustion chamber in order to reduce fuel consumption and pollutant emissions, the aluminum-based lightweight materials used have a significant impact. Therefore, its load-bearing capacity needs to be increased to complement the structural design.

アルミニウムーケイ素ピストン合金といった従来のアル
ミニウム系軽量鋳造材料はその耐負荷性が限界に達して
いる。というのは、約300℃より高い温度ではこの材
料が高い機械的及び熱的負荷に長時間にわたってほとん
ど耐えることができないからである。
Conventional aluminum-based lightweight cast materials, such as aluminum-silicon piston alloys, have reached their load-bearing limits. This is because at temperatures above about 300° C. this material can hardly withstand high mechanical and thermal loads for long periods of time.

鋳造用金型に投入された溶融材料を約100バールの高
圧下で凝固させる加圧鋳造法は微細組織を生じ、この組
織によりアルミニウムーケイ素合金の耐熱サイクルがわ
ずかに増大するが、充分には増大しない(Z、 Met
al 、l]、1,976.546−54) 。
The pressure casting process, in which the molten material introduced into the casting mold is solidified under high pressures of approximately 100 bar, produces a microstructure that slightly increases the thermal cycle resistance of the aluminum-silicon alloy, but not sufficiently. Does not increase (Z, Met
al, l], 1,976.546-54).

マトリックスが例えば20容量%の例えばAj!zOs
、炭素、鋼などから成る繊維又は例えばSiCなどのウ
ィスカーで強化されたアルミニウムーケイ素合金は機械
的及び熱的負荷に対して比較的高い耐性を有する。加圧
鋳造法はこのような繊維含有複合材料の製造に極めて適
している(Bader、M、G、 :Alus−ina
fiber reinforced alusinus
e alloy castingsfor autoa
otive applications、Proc、o
f thelnt。
For example, Aj! where the matrix is, for example, 20% by volume. zOs
Aluminum-silicon alloys reinforced with fibers, carbon, steel, etc. or whiskers, such as SiC, have a relatively high resistance to mechanical and thermal loads. Pressure casting methods are extremely suitable for the production of such fiber-containing composite materials (Bader, M.G.: Alus-ina
fiber reinforced alusinus
e alloy castings for autoa
otive applications, Proc, o
fthelnt.

Ass、for Vehicle Design、Vo
l、2+1984)、 Ltかし繊維含有複合材料は生
産の面で比較的高価につく。
Ass, for Vehicle Design, Vo
Lt oak fiber-containing composite materials are relatively expensive to produce.

セラミック材料は極めて高い耐高温性とより好ましい耐
食挙動を有することが期待できる。しかし、例えば一体
型ピストン又はタービン°翼といった複雑なセラミック
ス部品の量産は未解決の問題である。その上、内燃機関
へのセラミックスの使用可能性は、セラミックスがノツ
チ、機械的衝撃及び熱サイクル負荷に対して極めて敏感
であるために本来的に制限される。さらに、セラミック
スは望ましくない程度に重量を増大させ、かなりの費用
をかけないと成形できずに、その製作もかなりの費用が
かかる。
Ceramic materials can be expected to have extremely high temperature resistance and more favorable corrosion resistance behavior. However, mass production of complex ceramic components, such as monolithic pistons or turbine blades, remains an open problem. Moreover, the potential use of ceramics in internal combustion engines is inherently limited because ceramics are extremely sensitive to notches, mechanical shocks, and thermal cycling loads. Additionally, ceramics add undesirable weight, cannot be molded without considerable expense, and are also fairly expensive to manufacture.

金属間相からなる材料はそれ自体で金属とセラミックス
との性質を併せもっている0例えば、この材料は良好な
伝熱性、高い溶融温度及び場合により満足な延性を有す
る。したがってこの材料は従来のアルミニウム系軽量金
属材料と耐高温性ではあるが脆いセラミックスとの藺の
領域を埋めるのに明らかに適している。このことは、材
料が改良されれば運転温度を、したがって熱効率を上げ
ることができるガスタービン及び内燃機関に特に関係が
ある。
Materials consisting of intermetallic phases have in themselves the properties of metals and ceramics; for example, they have good heat conductivity, high melting temperatures and, if appropriate, satisfactory ductility. This material is therefore clearly suited to fill the gap between traditional aluminum-based lightweight metal materials and high-temperature resistant but brittle ceramics. This is particularly relevant for gas turbines and internal combustion engines, where improved materials can increase operating temperatures and therefore thermal efficiency.

金属間相は、この相が第一ピストンリング溝の領域でア
ーク溶接の結果析出し、マトリックスの一部が溶融し、
ニッケル又は銅材料と混合する限りにおいてアルミニウ
ムーケイ素合金からなる軽量金属ピストンに用いられて
いた。硬い金属間相と一部ケイ素は高度に過飽和したア
ルミニウム結晶固溶体のマトリックスに埋まるので高い
耐摩耗性が得られる(US−A−4,562,327)
 。
The intermetallic phase precipitates out as a result of arc welding in the area of the first piston ring groove, part of the matrix melts, and
It has been used in lightweight metal pistons made of aluminum-silicon alloys insofar as they are mixed with nickel or copper materials. The hard intermetallic phase and some silicon are embedded in a matrix of highly supersaturated aluminum crystalline solid solution, resulting in high wear resistance (US-A-4,562,327).
.

DB−A−3,702,721に開示されている、耐熱
性の高い成形物を製造するためのケイ化マグネシウム系
金属間和合金は42重量%までのアルミニウム及び/又
は22重量%までのケイ素を含有することができる。こ
の合金の最適組成はアルミニウム−マグネシウム−ケイ
素三成分系の状態図において、共晶合部、擬二元系部及
びアルミニウム42重量%によって囲まれた部分によっ
て規定される。このような軽量鋳造材料の欠点は必ずし
も空孔が避けられないことであり、この空孔は鋳物中の
残留溶融物が凝固する際に発生し、溶解度の低下に従っ
て凝固する際に遊離する溶融物に溶解したガスによって
生じる。
The magnesium silicide-based intermetallic alloy disclosed in DB-A-3,702,721 for producing highly heat-resistant moldings contains up to 42% by weight of aluminum and/or up to 22% by weight of silicon. can contain. The optimum composition of this alloy is defined by the eutectic part, the pseudo-binary part, and the part surrounded by 42% by weight of aluminum in the phase diagram of the aluminum-magnesium-silicon ternary system. The disadvantage of such lightweight casting materials is that porosity is not always avoided, and this porosity occurs when the residual melt in the casting solidifies, and the melt that is liberated during solidification as the solubility decreases. produced by gases dissolved in

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、例えばA I Si12CuNiMg
型の従来のアルミニウムピストン合金と同じ鋳物条件、
即ち、700〜750℃の温度で鋳造が可能であり、5
60〜700℃の液相温度と550〜600℃の同相温
度を有し、20 X 10−に−’より低い膨張係数を
有するアルミニウム系軽量鋳造材料を提供することであ
る。
The problem of the present invention is, for example, A I Si12CuNiMg
Same casting conditions as traditional aluminum piston alloy of type,
That is, casting is possible at a temperature of 700 to 750°C, and
An object of the present invention is to provide an aluminum-based lightweight casting material having a liquidus temperature of 60 to 700°C and a phase temperature of 550 to 600°C, and an expansion coefficient lower than 20 x 10-'.

〔課題を解決するための手段〕 前記課題は5〜25重量%のケイ化マグネシウム添加物
を含有したアルミニウム系軽量鋳造材料により解決され
る。この軽量鋳造材料は組織として一部ケイ化マグネシ
ウムを含み、残部は二成分系Aj!  MgzSi共晶
混合物及び/又は三成分系1−M口St −Si共品混
合物から成る。
[Means for Solving the Problem] The above problem is solved by an aluminum-based lightweight casting material containing 5 to 25% by weight of magnesium silicide additive. This lightweight cast material contains a part of magnesium silicide as a structure, and the rest is a binary system Aj! It consists of a MgzSi eutectic mixture and/or a ternary 1-M St-Si eutectic mixture.

L、F、MondolfoのAlugeinum  A
11oys:5tructure  andPrope
rties、London 1976*3.787には
、アルミニウム合金はケイ化マグネシウムを2重量%ま
で含有することができると記載されてい°る。この限界
を趨えるとこのアルミニウムの合金はもはや変形され得
ない。この刊行物にはMg、st添加物を含有する軽量
鋳造材料について記載されていない。
L, F, Mondolfo's Alugeinum A
11oys: 5structure and Prope
Rties, London 1976*3.787 states that aluminum alloys can contain up to 2% by weight of magnesium silicide. Beyond this limit, the aluminum alloy can no longer be deformed. This publication does not describe lightweight casting materials containing Mg, st additives.

延性を向上させるために本発明の軽量鋳造材料は12重
量%までの、好ましくは0.5〜10重量%のケイ素の
添加により微粒化させることができるが、−次ケイ素は
生じさせてはならない。
In order to improve the ductility, the lightweight casting material of the invention can be atomized by the addition of up to 12% by weight of silicon, preferably 0.5-10% by weight, but no secondary silicon must occur. .

本発明の別の特徴によりケイ素はその全部又は一部を1
5重量%の、好ましくは5〜12重量%のマグネシウム
で置き換えることができる。
According to another feature of the invention, silicon is
It can be replaced by 5% by weight of magnesium, preferably 5-12% by weight.

アルミニウム系軽量鋳造材料の好ましい組成はアルミニ
ウム−マグネシウム−ケイ素三成分の状態図において、
擬二元系部へ11g、siの両側に位置しかつ700℃
以下の液相温度とケイ化マグネシウムの一次凝固範囲と
によって限定された領域によって表わされる組織を有す
る。
The preferred composition of the aluminum-based lightweight casting material is as follows in the aluminum-magnesium-silicon ternary phase diagram:
11g to the pseudo binary system part, located on both sides of si and 700℃
It has a structure defined by a region defined by the following liquidus temperature and primary solidification range of magnesium silicide.

マンガン、銅、ニッケル及びコバルトの各元素の少なく
とも1種を5重量%までの量で添加することにより軽量
鋳造材料の析出硬化を著しく加速させることができる。
By adding at least one of the elements manganese, copper, nickel and cobalt in amounts of up to 5% by weight, the precipitation hardening of lightweight casting materials can be significantly accelerated.

本発明のアルミニウム系軽量鋳造材料はアルミニウム溶
融物にケイ化マグネシウムを投入するか、あるいはマグ
ネシウムとケイ素を別々に溶融物に加えるかによる従来
の鋳造性により製造することができる。
The aluminum-based lightweight casting material of the present invention can be produced by conventional casting methods, either by adding magnesium silicide to the aluminum melt or by adding magnesium and silicon separately to the melt.

本発明により得られる性質は、数表にタイプG−^It
 Si12CuMgNiのアルミニウムピストン合金の
性質と比較されている。これかられかるように、A 1
280  MggSi20の組成を有する軽量鋳造材料
の場合、熱膨張係数が19.8X 10−”K−’と低
い。熱伝導度の値173W/mkは通常のピストン合金
より著しく高い。軽量鋳造材料の密度は約2.51 g
/cdに減少し、弾性率で表わされる軽量材料の剛性は
83GPaに上昇している。その他の機械的強度は組織
と熱処理により影響される。
The properties obtained by the present invention are shown in the numerical table as type G-^It.
The properties of an aluminum piston alloy of Si12CuMgNi are compared. As you will see, A 1
For a lightweight cast material with a composition of 280 MggSi20, the coefficient of thermal expansion is as low as 19.8 x 10-"K-'. The thermal conductivity value of 173 W/mk is significantly higher than that of a normal piston alloy. The density of the lightweight cast material is about 2.51 g
/cd, and the stiffness of the lightweight material, expressed in terms of modulus of elasticity, has increased to 83 GPa. Other mechanical strengths are influenced by structure and heat treatment.

(以下余白次頁につづく) 性質 G−A I Si12CuMgNiAf+20重
量%MgzSi 密度(g/csj)   2,70     2.51
弾性率(GPa)   78      83図面に示
したアルミニウム−マグネシウム−ケイ素三成分系の状
態図において、ピストン材料とに位置するハツチング部
分で表わされ、この部分は700°C以下の液相温度と
ケイ化マグネシウムの一次凝固範囲とによって限定され
ている。
(The following margin continues on the next page) Properties G-A I Si12CuMgNiAf + 20% by weight MgzSi Density (g/csj) 2,70 2.51
Elastic modulus (GPa) 78 83 In the phase diagram of the aluminum-magnesium-silicon ternary system shown in the drawing, this is represented by the hatched part located between the piston material and the liquidus temperature below 700°C. It is limited by the primary solidification range of magnesium chloride.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はアルミニウム−マグネシウム−ケイ素三成分系の
状態図である。
The drawing is a phase diagram of the aluminum-magnesium-silicon ternary system.

Claims (1)

【特許請求の範囲】 1、5〜25重量%のケイ化マグネシウム添加物を含有
したアルミニウム系軽量鋳造材料。 2、12重量%までのケイ素を含有した請求項1記載の
軽量鋳造材料。 3、15重量%までのマグネシウムを含有した請求項1
又は2に記載の軽量鋳造材料。 4、マンガン、銅、ニッケル及びコバルトの各元素の少
なくとも1種を5重量%までの量で含有した請求項1〜
3のいずれかに記載の軽量鋳造材料。 5、アルミニウム−マグネシウム−ケイ素三成分系の状
態図において、擬二元系部Al/Mg_2Siの両側に
位置しかつ700℃以下の液相温度とケイ化マグネシウ
ムの一次凝固範囲とによって限定された領域(添付図面
に示すハッチング部)によって表わされる組成を有する
ことを特徴とする請求項1〜4のいずれかに記載の軽量
鋳造材料。 6、改良された耐熱強度、耐熱衝撃性及び疲労限を有す
る形状物の製造に利用可能な請求項1〜4のいずれかに
記載の軽量鋳造材料。
Claims: An aluminum-based lightweight casting material containing 1.5 to 25% by weight of magnesium silicide additive. 2. A lightweight casting material as claimed in claim 1 containing up to 2.12% by weight of silicon. 3. Claim 1 containing up to 15% by weight of magnesium
Or the lightweight casting material according to 2. 4. Claims 1 to 4 containing at least one of the following elements: manganese, copper, nickel, and cobalt in an amount of up to 5% by weight.
3. The lightweight casting material according to any one of 3. 5. In the phase diagram of the aluminum-magnesium-silicon ternary system, the region located on both sides of the pseudo-binary system part Al/Mg_2Si and limited by the liquidus temperature of 700°C or less and the primary solidification range of magnesium silicide The lightweight casting material according to any one of claims 1 to 4, characterized in that it has a composition represented by (the hatched part shown in the accompanying drawings). 6. The lightweight casting material according to any one of claims 1 to 4, which can be used for producing shaped articles having improved heat resistance strength, thermal shock resistance and fatigue limit.
JP33092289A 1988-12-20 1989-12-20 Lightweight casting material Pending JPH02221349A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842812.1 1988-12-20
DE19883842812 DE3842812A1 (en) 1988-12-20 1988-12-20 CAST LIGHT MATERIAL

Publications (1)

Publication Number Publication Date
JPH02221349A true JPH02221349A (en) 1990-09-04

Family

ID=6369586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33092289A Pending JPH02221349A (en) 1988-12-20 1989-12-20 Lightweight casting material

Country Status (3)

Country Link
EP (1) EP0375025A1 (en)
JP (1) JPH02221349A (en)
DE (1) DE3842812A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522348A (en) * 2004-02-16 2007-08-09 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Aluminum alloy-based material, production method thereof and use thereof
WO2013054716A1 (en) * 2011-10-11 2013-04-18 日本軽金属株式会社 METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4400896C1 (en) * 1994-01-14 1995-03-30 Bergische Stahlindustrie Brake disc for disc brakes of rail vehicles
ATE177158T1 (en) * 1994-11-15 1999-03-15 Rheinfelden Aluminium Gmbh ALUMINUM CAST ALLOY
EP0773302B1 (en) * 1995-10-09 2002-07-31 Honda Giken Kogyo Kabushiki Kaisha Thixocasting process
DE102007035115A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Aluminum-matrix material for building contains concentration gradient of magnesium silicide
DE102007035124A1 (en) 2007-07-27 2009-01-29 FNE Forschungsinstitut für Nichteisen-Metalle GmbH Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1483229C2 (en) * 1965-09-03 1980-04-17 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi-GuB alloy for cylinder heads
DE1608165C2 (en) * 1967-12-01 1981-10-22 Honsel-Werke Ag, 5778 Meschede Use of AlMgSi cast alloys for cylinder heads subject to alternating thermal loads
DE3702721A1 (en) * 1986-02-26 1987-08-27 Metallgesellschaft Ag Intermetallic-phase alloys and process for the production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522348A (en) * 2004-02-16 2007-08-09 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Aluminum alloy-based material, production method thereof and use thereof
US7892482B2 (en) 2004-02-16 2011-02-22 Mahle Gmbh Material on the basis of an aluminum alloy, method for its production, as well as use therefor
JP4914225B2 (en) * 2004-02-16 2012-04-11 マーレ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Aluminum alloy material, its production method and its use
WO2013054716A1 (en) * 2011-10-11 2013-04-18 日本軽金属株式会社 METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED
JP5655953B2 (en) * 2011-10-11 2015-01-21 日本軽金属株式会社 Al-Fe-Si-based compound and method for producing aluminum alloy in which primary crystal Si is refined
US9303299B2 (en) 2011-10-11 2016-04-05 Nippon Light Metal Company, Ltd. Method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si

Also Published As

Publication number Publication date
DE3842812A1 (en) 1990-06-21
EP0375025A1 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
JP5669392B2 (en) Steel material with high silicon content for the production of piston rings and cylinder liners
JP4914225B2 (en) Aluminum alloy material, its production method and its use
US20140182750A1 (en) Method for producing an aluminum alloy casting
CN104561688A (en) Heat-resistant cast aluminum alloy and gravity casting method thereof
CN105039798A (en) Cast aluminum alloy components
CN101220431A (en) Aluminum alloy for engine components
CN109868393B (en) High temperature cast aluminum alloy for cylinder heads
JP2005530927A (en) Cast parts made of aluminum alloy with excellent tensile strength
US6399020B1 (en) Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom
JPS621840A (en) Pereutectic aluminum/silicon cast alloy
US5996471A (en) Aluminum alloy for internal-combustion piston, and aluminum alloy piston
US6419769B1 (en) Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom
JP2007500793A (en) High strength heat resistant tough aluminum alloy castings
US5178686A (en) Lightweight cast material
JPH02221349A (en) Lightweight casting material
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP2000054053A (en) Aluminum-base alloy excellent in heat resistance, and its production
JPH10226840A (en) Aluminum alloy for piston
JPH09263867A (en) Aluminum alloy for casting
JP3303661B2 (en) Heat resistant high strength aluminum alloy
JPH06299276A (en) Ti-al alloy parts
JP2602838B2 (en) High thermal expansion cast iron
JP3194531B2 (en) Piston for internal combustion engine
JPH0686642B2 (en) Heat resistant spheroidal graphite cast iron