JP2007333025A - Manufacturing method of rolling/sliding component - Google Patents

Manufacturing method of rolling/sliding component Download PDF

Info

Publication number
JP2007333025A
JP2007333025A JP2006163320A JP2006163320A JP2007333025A JP 2007333025 A JP2007333025 A JP 2007333025A JP 2006163320 A JP2006163320 A JP 2006163320A JP 2006163320 A JP2006163320 A JP 2006163320A JP 2007333025 A JP2007333025 A JP 2007333025A
Authority
JP
Japan
Prior art keywords
rolling
rolling sliding
roller
diameter side
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006163320A
Other languages
Japanese (ja)
Other versions
JP4572875B2 (en
Inventor
Noriyuki Takeo
則之 竹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006163320A priority Critical patent/JP4572875B2/en
Publication of JP2007333025A publication Critical patent/JP2007333025A/en
Application granted granted Critical
Publication of JP4572875B2 publication Critical patent/JP4572875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which can shorten a dimension L<SB>21</SB>of chamfering portion 21a while preventing or suppressing a formation of projection made from nitride in a boundary portion between a rolling/sliding surface 19 and the chamfering portion 21a following soft nitriding treatment. <P>SOLUTION: In a condition before performing soft nitriding treatment for forming soft nitriding treatment layer, the above-mentioned chamfering portion 21a is constituted by an outside slant plane 17 sharp in a slant angle α and an inside slant plane 18 dull in a slant angle β. Additionally, the above-mentioned soft nitriding treatment layer is formed in the above-mentioned chamfering portion 21a consisting of these outside and inside slant plane portions 17, 18, and the above-mentioned rolling/sliding surface 19. Therefore, counter surface can be prevented from wearing caused by this projection by preventing or suppressing the formation of the above-mentioned projection in such a way that the boundary portion between the rolling/sliding surface 19 and the chamfering portion 21a is formed near 180 degrees in angle. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、エンジンの動弁機構を構成するカムフォロア用のローラ、ころ軸受(ニードル軸受を含む)を構成するころ(ニードルを含む)等、相手面と転がり接触又は滑り接触する転がり摺動部品の製造方法の改良に関する。具体的には、耐摩耗性向上の為に、相手面と転がり接触又は滑り接触する転がり摺動面に施す軟窒化処理に基づき、この転がり摺動面の端部が盛り上がる事を防止して、相手面に著しい摩耗が発生するのを防止できる転がり摺動部品を得られる製造方法の実現を図るものである。   The present invention relates to a roller sliding component that is in rolling contact or sliding contact with a mating surface, such as a roller for a cam follower constituting a valve mechanism of an engine, a roller (including a needle bearing) constituting a roller bearing (including a needle bearing), or the like. The present invention relates to an improvement of a manufacturing method. Specifically, to improve wear resistance, based on soft nitriding treatment applied to the rolling sliding surface that is in rolling contact or sliding contact with the mating surface, the end of this rolling sliding surface is prevented from rising, An object of the present invention is to realize a manufacturing method capable of obtaining a rolling and sliding component capable of preventing the occurrence of significant wear on the mating surface.

エンジン内部での摩擦低減を図り、燃料消費率を低減する事を目的として、クランクシャフトと同期したカムシャフトの回転を給気弁及び排気弁の往復運動に変換するロッカーアームに設けるカムフォロアにローラを回転自在に支持し、このローラの外周面とカムの外周面と転がり接触させる事が、例えば特許文献1〜4等に記載されている様に、従来から知られている。上記カムフォロアに上記ローラを回転自在に支持する為には、このカムフォロアに枢軸を、上記カムシャフトと平行に設置し、この枢軸の周囲に上記ローラを回転自在に支持する。又、この様に枢軸の周囲にローラを回転自在に支持する為の構造としては、次の(A) 〜(C) に示した3通りの構造が知られている。
(A) 枢軸の周囲に直接ローラを回転自在に支持する(枢軸の外周面とローラの内周面とを滑り接触させる)構造。
(B) 枢軸の外周面とローラの内周面との間にラジアルニードル軸受を設ける構造。
(C) 枢軸の外周面とローラの内周面との間に内径側ローラを設け、この内径側ローラをこの枢軸に対し回転させると共に、この内径側ローラに対して上記ローラ(外径側ローラ)を回転させる、ダブルローラ型構造。
For the purpose of reducing the friction inside the engine and reducing the fuel consumption rate, the cam follower provided on the rocker arm that converts the rotation of the camshaft synchronized with the crankshaft to the reciprocating motion of the intake valve and exhaust valve is provided with a roller. It has been conventionally known that the roller and the outer peripheral surface of the roller are brought into rolling contact with the outer peripheral surface of the cam as described in, for example, Patent Documents 1 to 4 and the like. In order to rotatably support the roller on the cam follower, a pivot shaft is installed on the cam follower in parallel with the cam shaft, and the roller is rotatably supported around the pivot shaft. As the structure for rotatably supporting the roller around the pivot shaft, the following three structures shown in (A) to (C) are known.
(A) A structure in which the roller is rotatably supported directly around the pivot (sliding contact between the outer peripheral surface of the pivot and the inner peripheral surface of the roller).
(B) A structure in which a radial needle bearing is provided between the outer peripheral surface of the pivot and the inner peripheral surface of the roller.
(C) An inner diameter roller is provided between the outer peripheral surface of the pivot and the inner peripheral surface of the roller. The inner roller is rotated with respect to the pivot, and the roller (outer roller) is rotated with respect to the inner roller. ) Rotating, double roller type structure.

これら3通りの構造には一長一短があるが、(C) のダブルローラ型構造は、静粛性確保と、低トルク性確保と、エンジンの高出力化への対応と、耐久性確保と、低コスト化とを、比較的高次元で並立させられる面から、近年使用例が増えている。図3は、前記特許文献3、4等に記載されて従来から知られている、ダブルローラ型の、エンジンの動弁機構用カムフォロア装置を示している。   There are advantages and disadvantages to these three types of structures, but the (C) double roller type structure ensures quietness, low torque, compatibility with high engine output, durability, and low cost. In recent years, the number of use cases has been increasing in view of making the conversion parallel to each other at a relatively high level. FIG. 3 shows a double roller type cam follower device for a valve operating mechanism of an engine described in Patent Documents 3 and 4 and the like, which has been conventionally known.

この従来構造の場合、エンジンのクランクシャフトと同期して回転するカムシャフト1に固定されてこのカムシャフト1と共に回転するカム2に対向して、このカム2の動きを受けて揺動し、吸気弁又は排気弁を往復移動させるロッカーアーム3を設けている。又、このロッカーアーム3の一部(端部又は中間部)に互いに間隔を開けて設けた1対の支持壁部4、4同士の間に、鉄系合金製の支持軸5を掛け渡している。そして、この支持軸5の周囲に、それぞれが鉄系合金製で円筒状の内径側ローラ6と外径側ローラ7とを、回転自在に支承し、このうちの外径側ローラ7の外周面を、上記カム2の外周面に転がり接触させている。   In the case of this conventional structure, the camshaft 1 is fixed to the camshaft 1 that rotates in synchronization with the crankshaft of the engine, and opposes the cam 2 that rotates together with the camshaft 1. A rocker arm 3 for reciprocating the valve or the exhaust valve is provided. Further, a support shaft 5 made of an iron alloy is spanned between a pair of support wall portions 4, 4 provided at a part (end portion or intermediate portion) of the rocker arm 3 at intervals. Yes. Around the support shaft 5, a cylindrical inner diameter side roller 6 and an outer diameter side roller 7 each made of an iron-based alloy are rotatably supported, and the outer peripheral surface of the outer diameter side roller 7 of these is supported. Is in rolling contact with the outer peripheral surface of the cam 2.

エンジンの運転時に上記カムシャフト1と共に上記カム2が回転すると、上記外径側ローラ7が回転しつつこのカム2の外径変化に対応して変位し、上記ロッカーアーム3を揺動変位させ、上記吸気弁又は排気弁を往復移動させる。この際、上記外径側ローラ7の外周面と上記カム2の外周面とは、ほぼ純転がりに近い状態で接触する。そして、この外径側ローラ7は、その外周面の周速が上記カム2の外周面の周速とほぼ一致する回転速度で回転する。これに対して、上記内径側ローラ6は、上記外径側ローラ7の凡そ半分程度の回転速度で回転する。これら内径側ローラ6の外周面と外径側ローラ7の内周面との接触部、この内径側ローラ6の内周面と上記支持軸5の外周面との接触部は、何れも滑り接触するが、滑り速度は、前記(A) の構造に比べて低く抑えられる。これらの作用により、図3に示した構造によれば、ロッカーアーム3とカム2との間に働く摩擦力を低減し、エンジン運転時に於ける燃料消費率の低減を図れる。   When the cam 2 rotates together with the camshaft 1 during the operation of the engine, the outer diameter side roller 7 is displaced in response to a change in the outer diameter of the cam 2, and the rocker arm 3 is oscillated and displaced. The intake valve or exhaust valve is reciprocated. At this time, the outer peripheral surface of the outer diameter side roller 7 and the outer peripheral surface of the cam 2 are in contact with each other in a state almost close to pure rolling. The outer diameter side roller 7 rotates at a rotational speed at which the peripheral speed of the outer peripheral surface substantially coincides with the peripheral speed of the outer peripheral surface of the cam 2. On the other hand, the inner diameter side roller 6 rotates at about half the rotational speed of the outer diameter side roller 7. The contact portion between the outer peripheral surface of the inner diameter side roller 6 and the inner peripheral surface of the outer diameter side roller 7 and the contact portion between the inner peripheral surface of the inner diameter side roller 6 and the outer peripheral surface of the support shaft 5 are all in sliding contact. However, the sliding speed can be kept low compared to the structure (A). With these actions, according to the structure shown in FIG. 3, the frictional force acting between the rocker arm 3 and the cam 2 can be reduced, and the fuel consumption rate can be reduced during engine operation.

上述の様に構成され作用するエンジンの動弁機構用カムフォロア装置の低トルク化及び耐久性確保をより一層向上させる為に、上記内径側ローラ6と上記外径側ローラ7とのうち、少なくとも内径側ローラ6の内外両周面に潤滑性被膜を形成する事も、特許文献4に記載されて、従来から知られている。図4は、上記内径側ローラ6の内外両周面に潤滑性被膜10を形成した構造を、図5は、内径側、外径側両ローラ6、7の内外両周面に潤滑性被膜10、10aを形成した構造を、それぞれ示している。上記特許文献4には、この様な潤滑性被膜10、10aとして各種のものが記載されているが、このうちの軟窒化処理層が、比較的低コストで形成できて、しかも優れた耐久性を有し、相手面への攻撃性が低い(相手面の摩耗を抑えられる)事から好ましい。即ち、(ガス)軟窒化処理は、SPC、炭素鋼、鋳鉄、STKM等の低級鋼の表面に、比較的短時間(90〜150min )で、薄く(8〜15μm程度)、しかも比較的硬度が低い(Hv400〜700程度)、Fe3 N・Fe4 N等の、FeとNとの化合物層軟窒化層 )を形成する。この為、(軟窒化処理ではない)ガス窒化処理とは異なり、上記した3通りの効果を得られる。尚、図4〜5には、各部材同士の間に存在するラジアル方向の隙間の大きさを誇張して描いてある。 In order to further improve the torque reduction and durability of the cam follower device for an engine valve operating mechanism constructed and operated as described above, at least the inner diameter of the inner diameter side roller 6 and the outer diameter side roller 7 is selected. The formation of a lubricating coating on both the inner and outer peripheral surfaces of the side roller 6 is also described in Patent Document 4 and is conventionally known. FIG. 4 shows a structure in which a lubricating coating 10 is formed on both inner and outer peripheral surfaces of the inner diameter side roller 6, and FIG. 5 shows a lubricating coating 10 on both inner and outer peripheral surfaces of the inner diameter side and outer diameter side rollers 6 and 7. The structure in which 10a is formed is shown. The above-mentioned Patent Document 4 describes various types of such lubricating coatings 10 and 10a. Of these, the soft nitriding treatment layer can be formed at a relatively low cost and has excellent durability. It is preferable because of its low aggression on the mating surface (abrasion of the mating surface can be suppressed). That is, (gas) soft nitriding treatment is performed on a surface of a low-grade steel such as SPC, carbon steel, cast iron, STKM, etc. for a relatively short time (90 to 150 min), thin (about 8 to 15 μm), and relatively hard. Low (Hv of about 400 to 700), Fe 3 N · Fe 4 N compound layer soft nitrided layer of Fe and N). For this reason, unlike the gas nitriding treatment (not soft nitriding treatment), the above three effects can be obtained. 4 to 5 exaggerate the size of the radial gap between the members.

但し、単に、図3〜5に示した様な内径側、外径側両ローラ6、7の内外両周面に軟窒化処理を施しても、相手面の耐久性を必ずしも十分に確保できない事が、本発明者等の研究により分かった。具体的には、図6に鎖線で示した様な形状を有する鉄系合金(上述した様な低級鋼)製で円筒状の素材(母材)8の表面に軟窒化層を形成して、図6に実線で示した様な、例えば上記内径側ローラ6に加工すると、この内径側ローラ6の周面(内周面及び外周面)の軸方向端部に、窒化化合物製の突条9が、径方向に突出した状態で生成される。図7は、実際に円筒状の素材に軟窒化処理を施し、この素材の表面(内外両周面及び軸方向両端面)に軟窒化層を形成して内径側ローラ6とした直後の状態での、この内径側ローラ6の内外両周面の形状を示している。図7のうちの(A)が外周面の母線形状を、(B)が内周面の母線形状を、それぞれ示している。又、図7は、横方向(内径側ローラの軸方向)に関しては実際の寸法の10倍で、縦方向(内径側ローラの径方向)に関しては実際の寸法の1000倍で、それぞれ表している。この様な図7からも、軟窒化処理に伴って、内外両周面の軸方向両端部に、径方向に突出する突条が形成される事が分かる。   However, the durability of the mating surface cannot always be sufficiently ensured even if soft nitriding is performed on the inner and outer peripheral surfaces of both the inner and outer rollers 6 and 7 as shown in FIGS. However, it became clear by research of the present inventors. Specifically, a soft nitride layer is formed on the surface of a cylindrical material (base material) 8 made of an iron-based alloy (lower steel as described above) having a shape shown by a chain line in FIG. When, for example, the inner diameter side roller 6 is processed as shown by a solid line in FIG. 6, a nitride compound protrusion 9 is formed at the axial end of the peripheral surface (inner peripheral surface and outer peripheral surface) of the inner diameter side roller 6. Is generated in a state protruding in the radial direction. FIG. 7 shows a state immediately after soft nitriding is performed on a cylindrical material and a soft nitriding layer is formed on the surface (both inner and outer peripheral surfaces and both axial end surfaces) of the material to form an inner diameter side roller 6. The shapes of the inner and outer peripheral surfaces of the inner diameter side roller 6 are shown. 7A shows the bus bar shape of the outer peripheral surface, and FIG. 7B shows the bus bar shape of the inner peripheral surface. FIG. 7 shows the horizontal direction (axial direction of the inner diameter side roller) at 10 times the actual dimension, and the vertical direction (radial direction of the inner diameter side roller) at 1000 times the actual dimension. . From FIG. 7 as described above, it can be seen that, along with the soft nitriding treatment, ridges protruding in the radial direction are formed at both axial ends of the inner and outer peripheral surfaces.

軟窒化処理層の表面硬度は、窒化処理層(表面硬度:Hv700〜1200)に比べて低いとは言え、一般的な鉄系合金の表面硬度に比べれば高い。又、上記突条9は幅が極く狭い為、この突条9の先端縁と相手面との接触部の面圧は非常に高くなる。この結果、この突条9を有する内径側ローラを、前述の図3〜5に示す様なエンジンの動弁機構用カムフォロア装置に組み込むと、相手面である外径側ローラ7の内周面や支持軸5の外周面の一部を、著しく摩耗させてしまう。図8は、この様な原因でこれら外径側ローラ7の内周面及び支持軸5の外周面の一部に生じる、著しい摩耗の状態を示している。図8のうちの(A)は所定時間運転後の状態での外径側ローラ7の内周面の、(B)は同じく内径側ローラ6の外周面の、(C)は同じく内周面の、(D)は同じく支持軸5の外周面の、それぞれ母線形状を示している。縦横の倍率は、上記図7の場合と同じである。この様な図8からも、上記突条9の生成が、相手面の耐久性に悪影響を及ぼす事が分かる。   The surface hardness of the nitrocarburized layer is lower than that of a nitrided layer (surface hardness: Hv 700 to 1200), but is higher than the surface hardness of a general iron-based alloy. Moreover, since the said protrusion 9 is very narrow, the surface pressure of the contact part of the front-end edge of this protrusion 9 and the other party's surface becomes very high. As a result, when the inner diameter side roller having the protrusion 9 is incorporated in the cam follower device for the valve mechanism of the engine as shown in FIGS. 3 to 5 described above, the inner peripheral surface of the outer diameter side roller 7 which is the mating surface, A part of the outer peripheral surface of the support shaft 5 is worn significantly. FIG. 8 shows a state of remarkable wear that occurs on the inner peripheral surface of the outer diameter side roller 7 and a part of the outer peripheral surface of the support shaft 5 due to such a cause. 8A shows the inner peripheral surface of the outer diameter side roller 7 in a state after operation for a predetermined time, FIG. 8B shows the outer peripheral surface of the inner diameter side roller 6, and FIG. 8C shows the inner peripheral surface. (D) shows the bus bar shape of the outer peripheral surface of the support shaft 5. The vertical and horizontal magnifications are the same as in FIG. From FIG. 8 as described above, it can be seen that the generation of the protrusion 9 adversely affects the durability of the mating surface.

この様な耐久性悪化の原因となる突条9が生成される原因は、完全には解明されていないが、本発明者は、周面の軸方向両端縁部に関して、軟窒化処理層の生成が、軸方向両側から進行する為であると考えた。即ち、軟窒化処理層は、処理容器中のガス(浸炭ガス+NH3 )から供給されるCとNとが上記内径側ローラ6の素材(母材)中に入り込んで化合物を生成する事により(特にNの浸入による窒化により)形成される。このNの供給が、この素材の表面全体で均一に行なわれれば、上記突条9が形成される事はないが、上記内径側ローラ6の場合、内外両周面の軸方向両端部に、図9に示す様な面取り部21が存在する。軟窒化処理を行なう場合に上記Nは、この図9に矢印で示す様に、上記内径側ローラ6の外周面からだけでなく、上記面取り部21及び軸方向両端面からも、上記素材中に浸入する。従来の場合、上記内径側ローラ6の中心軸に対するこの面取り部21の傾斜角度θは、30度程度と、比較的大きかった。この為、上記外周面のうちで円筒面部11の軸方向端部と上記面取り部21との境界部分に、この円筒面部11から浸入したNと、この面取り部21部分から浸入したNとが集まり、上記境界部分の化合物量が多くなって(境界部分の窒化が他の部分よりも進行して)、上記突条9を形成するものと考えた。 Although the cause of the generation of the protrusion 9 that causes such deterioration in durability has not been completely elucidated, the present inventor has generated a nitrocarburized layer on both ends of the circumferential surface in the axial direction. However, it was thought that it was because it progressed from both sides in the axial direction. In other words, the soft nitriding layer is formed by C and N supplied from the gas (carburizing gas + NH 3 ) in the processing vessel entering the material (base material) of the inner diameter side roller 6 to generate a compound ( In particular by nitridation by N penetration). If the supply of N is uniformly performed on the entire surface of the material, the protrusion 9 is not formed. However, in the case of the inner diameter side roller 6, There is a chamfer 21 as shown in FIG. When soft nitriding is performed, the N is not only from the outer peripheral surface of the inner diameter side roller 6 but also from the chamfered portion 21 and both end surfaces in the axial direction, as indicated by arrows in FIG. Infiltrate. In the conventional case, the inclination angle θ of the chamfered portion 21 with respect to the central axis of the inner diameter side roller 6 is relatively large, about 30 degrees. Therefore, N that has entered from the cylindrical surface portion 11 and N that has entered from the chamfered portion 21 gather at the boundary between the axial end of the cylindrical surface portion 11 and the chamfered portion 21 in the outer peripheral surface. It was considered that the amount of the compound at the boundary portion increased (nitridation at the boundary portion proceeded more than the other portions) to form the protrusion 9.

この様な考え(仮説)に基づいて本発明者は、面取り部の傾斜角度を緩やかにすれば、この面取り部と円筒面部との境界部分へのNの集中を抑え、上記突条9の生成を解消乃至は緩和できるものと考え、面取り部の傾斜角度を3〜15度に抑える発明を行なった(特願2005−192166)。図10は、この先発明に係る、エンジンの動弁機構用カムフォロア装置用のローラ12を示している。この先発明に係るローラ12の場合、内外両周面の軸方向両端部に、それぞれがこのローラ12の中心軸に対する傾斜角度θi 、θo が、それぞれ3〜15度と、比較的緩やかである、内径側、外径側両面取り部13、14を形成している。この様に、内外両周面の軸方向両端部に形成する、内径側、外径側両面取り部13、14の傾斜角度θi 、θo を、緩やかにすると、これら両面取り部13、14と、内外両周面の軸方向中間部に存在する、内径側、外径側両円筒面部15、16との境界部分の角度(上記各傾斜角度θi 、θo の補角)が180度に近くなる。この結果、軟窒化処理に伴う、これら各境界部分へのNの集中が緩和され、前述の図6及び図7に示す様な突条9の生成が、解消乃至緩和される。 Based on such an idea (hypothesis), the present inventor can suppress the concentration of N at the boundary portion between the chamfered portion and the cylindrical surface portion by reducing the inclination angle of the chamfered portion, thereby generating the protrusion 9. Therefore, an invention was made to suppress the inclination angle of the chamfered portion to 3 to 15 degrees (Japanese Patent Application No. 2005-192166). FIG. 10 shows a roller 12 for a cam follower device for an engine valve mechanism according to the present invention. In the case of the roller 12 according to the present invention, the inclination angles θ i and θ o with respect to the central axis of the roller 12 are relatively moderate at 3 to 15 degrees, respectively, at both axial ends of the inner and outer peripheral surfaces. The inner diameter side and outer diameter side double-sided chamfers 13 and 14 are formed. In this way, when the inclination angles θ i and θ o of the inner diameter side and outer diameter side double-sided chamfers 13 and 14 formed at both axial ends of the inner and outer peripheral surfaces are moderated, the double-sided chamfers 13 and 14 are formed. And the angle at the boundary between the inner and outer cylindrical surfaces 15 and 16 (complementary angles of the inclination angles θ i and θ o ), which are present at the axially intermediate portions of the inner and outer peripheral surfaces, are 180 degrees. Close to. As a result, the concentration of N at each boundary portion associated with the soft nitriding treatment is alleviated, and the generation of the protrusions 9 as shown in FIGS. 6 and 7 is eliminated or alleviated.

但し、上述した先発明の場合、上記内径側、外径側両面取り部13、14の傾斜角度θi 、θo を、これら両面取り部13、14の全長に亙って一定としていた。一方、上記ローラ12の軸方向端面側でのこれら両面取り部13、14の直径と、上記内径側、外径側両円筒面部15、16の直径との差(面取り部の径差)は、或る程度確保する必要がある。この理由は、上記ローラ12と相手部材との嵌合作業を容易に行なえる様にする為と、このローラの周面と相手部材の周面との間に潤滑油が送り込まれ易くする為とである。この為上記先発明の様に、上記両面取り部13、14の傾斜角度θi 、θo を全長に亙り一定とした場合には、上記面取り部の径差を確保する必要上、上記両面取り部13、14の軸方向長さLi 、Lo を或る程度大きくしなければならない。先発明の場合には、これら両面取り部13、14の軸方向長さLi 、Lo を、それぞれ0.8〜1.5mm程度にするとしている。 However, in the case of the above-described invention, the inclination angles θ i and θ o of the inner diameter side and outer diameter side double-sided chamfers 13 and 14 are constant over the entire length of the double-sided chamfered parts 13 and 14. On the other hand, the difference (diameter difference of the chamfered portion) between the diameters of the double-sided chamfered portions 13 and 14 on the axial end surface side of the roller 12 and the diameters of the cylindrical surface portions 15 and 16 on both the inner and outer diameter sides is as follows. It is necessary to secure a certain amount. The reason for this is to facilitate the fitting operation between the roller 12 and the mating member, and to facilitate the feeding of lubricating oil between the circumferential surface of the roller and the circumferential surface of the mating member. It is. For this reason, when the inclination angles θ i and θ o of the double-sided chamfers 13 and 14 are made constant over the entire length as in the previous invention, it is necessary to secure a difference in diameter between the chamfered parts. The axial lengths L i and L o of the portions 13 and 14 must be increased to some extent. In the case of the prior invention, the lengths L i and L o in the axial direction of the double-sided chamfers 13 and 14 are about 0.8 to 1.5 mm, respectively.

この様な理由で、上記内径側、外径側両面取り部13、14の軸方向長さLi 、Lo を大きくすると、運転時に相手面と転がり接触又は滑り接触する、上記内径側、外径側両円筒面部15、16の幅Wi 、Wo が狭くなる。例えば、上記ローラ12が、エンジンの動弁機構用カムフォロア装置用の内径側ローラ6或いは外径側ローラ7(図3〜5参照)であった場合、上記ローラ12の全幅WT は10mmからせいぜい15mm程度である。例えば、この全幅WT を12mmとし、上記両面取り部13、14の軸方向長さLi 、Lo を1.2mmとすると、これら両面取り部13、14はそれぞれ軸方向両側に存在するので、上記両円筒面部15、16の幅Wi 、Wo は、それぞれ、12mm−2×1.2mm=9.6mmとなる。 In such reason, the inner diameter side, the axial length L i of the outer diameter side duplex-up sections 13 and 14, a larger L o, the contact or sliding rolling contact with the mating surface during operation, the inner diameter side, the outer The widths W i and W o of the radial side cylindrical surface portions 15 and 16 become narrower. For example, the roller 12, indicating an internal diameter side roller 6 or the outer diameter side roller 7 for cam follower device valve mechanism of the engine (see FIG. 3-5), the total width W T of the roller 12 is at most from 10mm It is about 15mm. For example, the total width W T and 12 mm, the axial length L i of the double-sided chamfer 13, when the L o and 1.2 mm, since these double-sided chamfer 13, 14 present on both sides axis direction The widths W i and W o of the cylindrical surface portions 15 and 16 are 12 mm−2 × 1.2 mm = 9.6 mm, respectively.

上記ローラは、使用時に相手面に対し大きな力で押し付けられる場合が多く、この相手面と接触する部分である、上記両円筒面部15、16の幅Wi 、Wo が狭くなる事は、この部分の接触面圧の上昇に結び付く。そして、この接触面圧の上昇は、上記ローラ及び相手部材の耐久性確保の面から不利になる。一方、上記両円筒面部15、16の幅Wi 、Wo を同じと仮定した場合には、上記両面取り部13、14の軸方向長さLi 、Lo が大きくなる事は、上記ローラ12の全幅WT の増大、延てはこのローラ12の大型化、重量増大に結び付く。例えばエンジンの動弁機構用カムフォロア装置用の内径側ローラ6或いは外径側ローラ7は、限られた空間に設置する必要上、上記ローラ12の全幅WT は僅かでも小さい事が好ましい。又、上記内径側、外径側両ローラ6、7は、エンジンの運転時に高速で往復移動する為、このエンジンの高性能化を図る為には、慣性質量を少しでも小さくする必要がある。
これらの事を考慮すれば、上記両面取り部13、14の軸方向長さLi 、Lo が嵩む事は好ましくない。
The roller is often pressed against a large force to the mating surface when in use, a portion in contact with the mating surface, the width W i of both cylindrical surface portion 15 and 16, that W o is narrowed, the This leads to an increase in the contact surface pressure of the part. This increase in contact surface pressure is disadvantageous in terms of ensuring the durability of the roller and the mating member. On the other hand, assuming that the widths W i and W o of the cylindrical surface portions 15 and 16 are the same, the axial lengths L i and L o of the double-sided chamfers 13 and 14 are increased. This leads to an increase in the total width W T of 12, and an increase in the size and weight of the roller 12. For example the inner diameter side roller 6 or the outer diameter side roller 7 for cam follower device valve train engine, the need to install in a limited space, full width W T of the roller 12 is preferably even slightly smaller. Further, since both the inner diameter side and outer diameter side rollers 6 and 7 reciprocate at high speed during operation of the engine, it is necessary to reduce the inertial mass as much as possible in order to improve the performance of the engine.
Considering these things, the axial length L i of the double-sided chamfer 13, 14, L o is increase it is not preferable.

特開昭59−183007号公報JP 59-183007 A 特開平8−74526号公報JP-A-8-74526 特開平11−247845号公報Japanese Patent Laid-Open No. 11-247845 特開2004−257287号公報JP 2004-257287 A 特開2002−97563号公報JP 2002-97563 A

本発明は、上述の様な事情に鑑みて、軟窒化処理に伴って突条が生成されるのを防止若しくは抑制しつつ、面取り部の寸法を短くできる、転がり摺動部品の製造方法を実現するものである。   In view of the circumstances as described above, the present invention realizes a method for manufacturing a rolling and sliding component capable of reducing the size of a chamfered portion while preventing or suppressing the generation of protrusions due to soft nitriding. To do.

本発明の製造方法の対象となる転がり摺動部品は、鉄系合金製で、図1に示す様に、相手部材と転がり接触若しくは滑り接触する転がり摺動面19を有する。そして、この転がり摺動面19の端縁部に、端縁に向かう程この転がり摺動面19の中央寄り部分よりも凹む方向に傾斜した面取り部21aを備える。更に、この面取り部21a及び上記転がり摺動面19の表面部分に、軟窒化処理層20(図1に実線で表した、完成後の状態での表面層部分)を形成している。   The rolling sliding part which is the object of the manufacturing method of the present invention is made of an iron-based alloy, and has a rolling sliding surface 19 which is in rolling contact or sliding contact with a mating member as shown in FIG. Then, a chamfered portion 21 a is provided at the end edge portion of the rolling sliding surface 19, which is inclined in a direction of being recessed from the center portion of the rolling sliding surface 19 toward the end edge. Further, a soft nitriding layer 20 (surface layer portion in a completed state shown by a solid line in FIG. 1) is formed on the surface portions of the chamfered portion 21a and the rolling sliding surface 19.

この様な転がり摺動部品を造る為の、本発明の製造方法では、上記軟窒化処理層20を形成する為の軟窒化処理を行なう以前の状態で、図1に鎖線で示す様に、上記面取り部21aを、外側傾斜面部17と内側傾斜面部18とから構成する。
このうちの外側傾斜面部17は、上記端縁側(図1の左側)に位置し、上記転がり摺動面19の中央寄り部分に対する傾斜角度αが比較的急である。
これに対して上記内側傾斜面部18は、上記転がり摺動面19の中央寄り側(図1の右側)に位置し、この転がり摺動面19の中央寄り部分に対する傾斜角度βが緩やかである。
そして、上述の様な外側傾斜面部17と内側傾斜面部18とから成る上記面取り部21a及び上記転がり摺動面19に(実際には転がり摺動部品の表面全体に)、上記軟窒化処理層を形成する為の軟窒化処理を施す。
この軟窒化処理により、上記転がり摺動部品を造る為の素材(母材)中にNを浸入させ、上記外側、内側両傾斜面部17、18から成る面取り部21a及び上記転がり摺動面19を含む、上記素材の表面に、上記軟窒化処理層20を形成する。
この軟窒化処理層20を形成した後の状態では、上記外側、内側両傾斜面部17、18が残留していても(面取り部の途中で傾斜角度が変化していても)良いが、残留していなくても(面取り部の傾斜角度が全幅に亙り一定であっても)差し支えない。
In the production method of the present invention for producing such a rolling sliding part, as shown by a chain line in FIG. 1, in the state before performing the soft nitriding treatment for forming the soft nitriding treatment layer 20, The chamfered portion 21 a is composed of an outer inclined surface portion 17 and an inner inclined surface portion 18.
Of these, the outer inclined surface portion 17 is located on the edge side (left side in FIG. 1), and the inclination angle α with respect to the central portion of the rolling sliding surface 19 is relatively steep.
On the other hand, the inner inclined surface portion 18 is located closer to the center of the rolling sliding surface 19 (right side in FIG. 1), and the inclination angle β with respect to the central portion of the rolling sliding surface 19 is gentle.
Then, the nitrocarburized layer is applied to the chamfered portion 21a and the rolling sliding surface 19 (in fact, the entire surface of the rolling sliding component) composed of the outer inclined surface portion 17 and the inner inclined surface portion 18 as described above. Soft nitriding treatment is performed to form the film.
By this soft nitriding treatment, N is infiltrated into the material (base material) for producing the rolling sliding part, and the chamfered portion 21a composed of the outer and inner inclined surface portions 17 and 18 and the rolling sliding surface 19 are formed. In addition, the soft nitriding layer 20 is formed on the surface of the material.
In the state after the soft nitriding layer 20 is formed, both the outer and inner inclined surface portions 17 and 18 may remain (the inclination angle may change in the middle of the chamfered portion), but remain. (Even if the angle of inclination of the chamfered portion is constant over the entire width).

上述の様な本発明の転がり摺動部品の製造方法を実施する場合に、例えば請求項2に記載した様に、上記転がり摺動面19を円筒状の外周面とし、上記面取り部を、端縁に向かう程外径が小さくなる方向に傾斜させる。そして、この外周面の中心軸に対する上記内側傾斜面17の傾斜角度βを、3〜15度(好ましくは4〜7度)の範囲に設定する。
或いは、請求項3に記載した様に、上記転がり摺動面19を円筒状の内周面とし、上記面取り部を、端縁に向かう程外径が大きくなる方向に傾斜させる。そして、この外周面の中心軸に対する上記内側傾斜面17の傾斜角度βを3〜15度(好ましくは4〜7度)の範囲に設定する。
When carrying out the manufacturing method of the rolling sliding part of the present invention as described above, for example, as described in claim 2, the rolling sliding surface 19 is a cylindrical outer peripheral surface, and the chamfered portion is an end. The outer diameter is inclined in the direction of decreasing toward the edge. And the inclination | tilt angle (beta) of the said inner side inclined surface 17 with respect to the central axis of this outer peripheral surface is set to the range of 3-15 degrees (preferably 4-7 degrees).
Alternatively, as described in claim 3, the rolling sliding surface 19 is a cylindrical inner peripheral surface, and the chamfered portion is inclined in a direction in which the outer diameter increases toward the end edge. And the inclination | tilt angle (beta) of the said inner side inclined surface 17 with respect to the central axis of this outer peripheral surface is set to the range of 3-15 degrees (preferably 4-7 degrees).

上述の様な本発明の転がり摺動部品の製造方法によれば、軟窒化処理に伴って面取り部21aと転がり摺動面19との境界部分に突条が生成されるのを防止若しくは抑制しつつ、この面取り部21aの軸方向寸法L21を短くできる。
このうち、突条が形成される事の防止は、転がり摺動面19に隣接する内側傾斜面部18の傾斜角度βを緩やかにした事により図られる。即ち、この内側傾斜面部18の傾斜角度βが緩やかであり、この内側傾斜面部18と上記転がり摺動面19との境界部分の角度(上記傾斜角度βの補角)が180度に近くなる。この結果、軟窒化処理に伴う、上記境界部分へのNの集中が緩和され、前述の図6及び図7に示す様な突条9の生成が、解消乃至緩和される。
尚、上記傾斜角度βが15度を超えて大きくなると、上記境界部分の角度が小さく(165度未満に)なって、この境界部分に上記突条が形成され易くなる。反対に、上記傾斜角度βが3度よりも小さくなると、上記内側傾斜面部18よりも急な傾斜角度αを有する外側傾斜面部17を設けるとは言え、次述する面取り部21aの落ち量δの確保が難しくなる。そこで、上記内側傾斜面部18の傾斜角度βを、3〜15度の範囲に設定する。より好ましくは、この傾斜角度を4〜7度の範囲に設定すれば、上記突条の生成防止と、上記落ち量δの確保とを、より効果的に図れる。
According to the manufacturing method of the rolling sliding part of the present invention as described above, it is possible to prevent or suppress the generation of protrusions at the boundary portion between the chamfered portion 21a and the rolling sliding surface 19 due to the soft nitriding treatment. while, can be shortened axial dimension L 21 of the chamfered portion 21a.
Of these, the formation of protrusions is prevented by making the inclination angle β of the inner inclined surface portion 18 adjacent to the rolling sliding surface 19 gentle. That is, the inclination angle β of the inner inclined surface portion 18 is gentle, and the angle of the boundary portion between the inner inclined surface portion 18 and the rolling sliding surface 19 (complement angle of the inclination angle β) approaches 180 degrees. As a result, the concentration of N at the boundary due to the soft nitriding treatment is alleviated, and the generation of the protrusions 9 as shown in FIGS. 6 and 7 is eliminated or alleviated.
When the inclination angle β increases beyond 15 degrees, the angle of the boundary portion decreases (below 165 degrees), and the protrusions are easily formed at the boundary portion. On the other hand, when the inclination angle β is smaller than 3 degrees, the outer inclined surface portion 17 having an inclination angle α steeper than the inner inclined surface portion 18 is provided, but the fall amount δ of the chamfered portion 21a described below is reduced. It becomes difficult to secure. Therefore, the inclination angle β of the inner inclined surface portion 18 is set in the range of 3 to 15 degrees. More preferably, if the inclination angle is set in a range of 4 to 7 degrees, the generation of the protrusions and the securing of the drop amount δ can be more effectively achieved.

同様に、外側傾斜面部17と内側傾斜面部18との境界部分に関しても、境界部分の角度(これら両傾斜面部17、18の傾斜角度の差「α−β」の補角)が180度に近くなるので、突条9の生成が、解消乃至緩和される。
尚、上記両傾斜面部17、18の境界部分に関しては、上記転がり摺動面19よりも少し凹んだ位置に存在するので、この境界部分が相手面と直接接触する事は少ない。従って、この境界部分に多少の突条が形成される事は、上記内側傾斜面部18と上記転がり摺動面19との境界部分に比べれば、実用上問題とはなりにくい。従って、上記外側傾斜面部17の傾斜角度αは、特に限定しないが、この傾斜角度を45度を超えて大きくする事は、非現実的であり、30度以下に収めるべきである。
但し、上記両傾斜面部17、18の境界部分に関しても、上記突条が生成されない事が好ましい。そこで、上記両傾斜面部17、18の傾斜角度の差「α−β」を3〜15度の範囲に収めるべく、上記外側傾斜面部17の傾斜角度αを設定{α=β+(3〜15度)に規制}する。尚、上記両傾斜面部17、18の境界部分に関しては、上記突条の生成を抑えれば良く(完全に防止する必要はなく)、反対に、上記落ち量δの確保の為には上記外側傾斜面部17の傾斜角度αを大きくする必要がある。この為、上記両傾斜面部17、18の傾斜角度の差「α−β」は、上記範囲内で大きめに(例えば10〜15度の範囲内で)設定すれば良い。
Similarly, regarding the boundary portion between the outer inclined surface portion 17 and the inner inclined surface portion 18, the angle of the boundary portion (complement angle of the difference “α−β” between the inclination angles of both the inclined surface portions 17 and 18) is close to 180 degrees. Therefore, the generation of the protrusion 9 is eliminated or alleviated.
In addition, since the boundary portion between the both inclined surface portions 17 and 18 exists at a position slightly depressed from the rolling sliding surface 19, the boundary portion is rarely in direct contact with the mating surface. Therefore, the formation of some protrusions at the boundary portion is unlikely to be a practical problem as compared with the boundary portion between the inner inclined surface portion 18 and the rolling sliding surface 19. Therefore, the inclination angle α of the outer inclined surface portion 17 is not particularly limited, but it is unrealistic to increase the inclination angle beyond 45 degrees, and should be within 30 degrees or less.
However, it is preferable that the protrusions are not generated even at the boundary between the inclined surface portions 17 and 18. Therefore, the inclination angle α of the outer inclined surface portion 17 is set so that the difference “α−β” between the inclined surface portions 17 and 18 falls within the range of 3 to 15 degrees {α = β + (3 to 15 degrees. ). In addition, regarding the boundary portion between the both inclined surface portions 17 and 18, it is only necessary to suppress the generation of the ridge (it is not necessary to prevent it completely). On the contrary, in order to ensure the drop amount δ, It is necessary to increase the inclination angle α of the inclined surface portion 17. Therefore, the difference “α−β” between the inclined surfaces 17 and 18 may be set larger within the above range (for example, within a range of 10 to 15 degrees).

又、上記面取り部21aの軸方向寸法L21を短くできるのは、上記面取り部21aの傾斜角度を2段階に変化させ、端縁側に存在する上記外側傾斜面部17の傾斜角度αを比較的急にする事により図れる。
即ち、前述した通り、上記面取り部21aの端縁の上記転がり摺動面19からの落ち量δは、転がり摺動部品の組立作業の能率向上の為、或いはこの転がり摺動面19と相手面との間への潤滑油の取り込み性確保の為、或る程度確保する必要がある。
前述した先発明の場合には、図10に示した如く、内径側、外径側各面取り部13、14の傾斜角度θi 、θo がこれら各面取り部13、14の全幅に亙り緩やかで、且つ、一定であった。この為、落ち量δを確保する為には、これら各面取り部13、14の軸方向長さLi 、Lo を大きくする必要があった。
これに対して本発明の場合には、上記転がり摺動面19から離れた、上記外側傾斜面部17の傾斜角度αを比較的急にしているので、上記面取り部21aの軸方向寸法L21を短くしても、上記落ち量δを確保できる。
尚、上記面取り部21aの軸方向寸法L21に対する、前記内側傾斜面部の割合は、必要とする上記落ち量δとの関係で設計的に定めるが、30〜60%程度が現実的と考えられる。
Also, can reduce the axial dimension L 21 of the chamfered portion 21a, the inclination angle of the chamfered portion 21a is changed in two steps, the inclination angle α of the outer inclined surface portion 17 that exists in the edge side relatively steep You can plan by doing.
That is, as described above, the fall amount δ of the edge of the chamfered portion 21a from the rolling sliding surface 19 is for improving the efficiency of assembling work of the rolling sliding parts or for the rolling sliding surface 19 and the mating surface. It is necessary to secure a certain amount in order to ensure that the lubricating oil can be taken in between the two.
In the case of the above-described prior invention, as shown in FIG. 10, the inclination angles θ i and θ o of the chamfered portions 13 and 14 on the inner diameter side and the outer diameter side are gentle over the entire width of the chamfered portions 13 and 14. And it was constant. Therefore, in order to secure the drop amount δ, it is necessary to increase the axial lengths L i and L o of the chamfered portions 13 and 14.
On the other hand, in the case of the present invention, since the inclination angle α of the outer inclined surface portion 17 away from the rolling sliding surface 19 is made relatively steep, the axial dimension L 21 of the chamfered portion 21a is set to be smaller. Even if it is shortened, the drop amount δ can be secured.
Incidentally, with respect to the axial dimension L 21 of the chamfered portion 21a, the ratio of the inner inclined surface portion defines the design in relation to the drop amount δ in need, but 30 to 60% can be considered realistic .

本発明を実施する好ましい形態としては、前述の図3〜5に示した様な、ダブルローラ型のエンジンの動弁機構用カムフォロア装置のうち、内径側ローラ6の内外両周面に関して実施する事が考えられる。この場合に、この内径側ローラ6の外周面に関しては、特許請求の範囲の請求項2に記載した様に、転がり摺動面が円筒状の外周面であり、面取り部が、端縁に向かう程外径が小さくなる方向に傾斜した、部分円すい状凸面となる。そして、この外周面の中心軸に対する、内側傾斜面の傾斜角度を3〜15度、好ましくは4〜7度とする。   As a preferred embodiment for carrying out the present invention, the inner and outer peripheral surfaces of the inner diameter side roller 6 of the cam follower device for a valve mechanism of a double roller type engine as shown in FIGS. Can be considered. In this case, with respect to the outer peripheral surface of the inner diameter side roller 6, as described in claim 2 of the claims, the rolling sliding surface is a cylindrical outer peripheral surface, and the chamfered portion faces the edge. As the outer diameter becomes smaller, a partially conical convex surface is formed. The inclination angle of the inner inclined surface with respect to the central axis of the outer peripheral surface is set to 3 to 15 degrees, preferably 4 to 7 degrees.

又、上記内径側ローラ6の内周面に関しては、特許請求の範囲の請求項3に記載した様に、転がり摺動面が円筒状の内周面であり、面取り部が、端縁に向かう程外径が大きくなる方向に傾斜した、部分円すい状凹面となる。そして、この内周面の中心軸に対する内側傾斜面の傾斜角度を3〜15度、好ましくは4〜7度とする。
図2は、実際に内径側ローラ6を造る為に加工した、鉄系合金製素材の内周面の形状を表している。図2の(A)(B)は、何れも同一の内径側ローラ6の同一部分を測定したものであるが、倍率が互いに異なっている。即ち、横軸(この内径側ローラ6の軸方向)の倍率は、(A)(B)何れの場合も10倍であるが、縦軸(この内径側ローラ6の直径方向)に関しては、(A)が1000倍、(B)が50倍である。
上記図2の(A)(B)に示した様な素材を造り、この素材の表面に軟窒化処理を施したところ、転がり摺動面と内側傾斜面部との境界部分にも、この内側傾斜面部と外側傾斜面部との境界部分にも、前述の図6〜8に示した様な突条9は形成されず、本発明の効果を確認できた。
As for the inner peripheral surface of the inner diameter side roller 6, as described in claim 3 of the claims, the rolling sliding surface is a cylindrical inner peripheral surface, and the chamfered portion faces the edge. As the outer diameter increases, a partially conical concave surface is formed. The inclination angle of the inner inclined surface with respect to the central axis of the inner peripheral surface is set to 3 to 15 degrees, preferably 4 to 7 degrees.
FIG. 2 shows the shape of the inner peripheral surface of a ferrous alloy material processed to actually manufacture the inner diameter side roller 6. FIGS. 2A and 2B are obtained by measuring the same part of the same inner diameter side roller 6 but have different magnifications. That is, the magnification of the horizontal axis (the axial direction of the inner diameter side roller 6) is 10 times in both cases (A) and (B), but regarding the vertical axis (the diameter direction of the inner diameter side roller 6), A) is 1000 times and (B) is 50 times.
When a material as shown in FIGS. 2A and 2B is made and the surface of this material is soft-nitrided, the inner inclined surface is also applied to the boundary portion between the rolling sliding surface and the inner inclined surface portion. The protrusions 9 as shown in FIGS. 6 to 8 were not formed at the boundary portion between the surface portion and the outer inclined surface portion, and the effects of the present invention could be confirmed.

上述の説明は、本発明をエンジンの動弁機構用カムフォロア装置用のローラに関して実施する場合を中心に行なった。但し、本発明は、この様なローラに限らず、例えば、ころ軸受用のころの転動面の軸方向端部に形成する面取り部に関して実施する事もできる。勿論、ローラを1個のみ設けた、シングルローラ型の構造でも実施できる。更には、相手面と滑り接触する面を凸曲面或いは平面とし、この面の端部に面取り部を形成した部品に就いて本発明を実施する事もできる。   The above description has been mainly focused on the case where the present invention is applied to a roller for a cam follower device for an engine valve mechanism. However, the present invention is not limited to such a roller, and can be implemented, for example, with respect to a chamfered portion formed at an axial end portion of a rolling surface of a roller for a roller bearing. Of course, a single roller type structure in which only one roller is provided can also be implemented. Furthermore, the present invention can also be carried out for a component in which a surface that is in sliding contact with the mating surface is a convex curved surface or a flat surface, and a chamfered portion is formed at the end of this surface.

本発明を説明する為の模式図。The schematic diagram for demonstrating this invention. 同じく具体的な母線形状の1例を示す図。The figure which similarly shows one example of specific bus-bar shape. エンジンの動弁機構用カムフォロア装置の1例を示す部分拡大断面図。The partial expanded sectional view which shows an example of the cam follower apparatus for valve operating mechanisms of an engine. 内径側ローラの表面に軟窒化処理層を形成した構造を示す、図3と同方向、及び、直角方向から見た部分断面図。FIG. 4 is a partial cross-sectional view showing a structure in which a soft nitriding layer is formed on the surface of an inner diameter side roller, as viewed from the same direction as FIG. 内径側、外径側両ローラの表面に軟窒化処理層を形成した構造を示す、図4と同様の図。FIG. 5 is a view similar to FIG. 4 showing a structure in which a soft nitriding layer is formed on the surfaces of both the inner diameter side and outer diameter side rollers. ローラの周面に突条が生成される状態を示す模式図。The schematic diagram which shows the state in which a protrusion is produced | generated by the surrounding surface of a roller. 同じく具体的な母線形状の1例を示す図。The figure which similarly shows one example of specific bus-bar shape. この具体的形状を有するローラを組み込んで運転した後の、各部の母線形状の変化を示す線図。The diagram which shows the change of the bus-bar shape of each part after operating by incorporating the roller which has this specific shape. ローラの周面に突条が生成される理由を説明する為の模式図。The schematic diagram for demonstrating the reason a protrusion is produced | generated by the surrounding surface of a roller. この突条が生成されるのを防止する為に考えた、先発明の構造を示す断面図。Sectional drawing which shows the structure of the prior invention considered in order to prevent that this protrusion is produced | generated.

符号の説明Explanation of symbols

1 カムシャフト
2 カム
3 ロッカーアーム
4 支持壁部
5 支持軸
6 内径側ローラ
7 外径側ローラ
8 素材
9 突条
10、10a 潤滑性皮膜
11 円筒面部
12 ローラ
13 内径側面取り部
14 外径側面取り部
15 内径側円筒面部
16 外径側円筒面部
17 外側傾斜面部
18 内側傾斜面部
19 転がり摺動面
20 軟窒化処理層
21、21a 面取り部
DESCRIPTION OF SYMBOLS 1 Camshaft 2 Cam 3 Rocker arm 4 Support wall part 5 Support shaft 6 Inner diameter side roller 7 Outer diameter side roller 8 Material 9 Projection 10, 10a Lubricant film 11 Cylindrical surface part 12 Roller 13 Inner diameter side chamfering part 14 Outer diameter side chamfering 14 Part 15 Inner diameter side cylindrical surface part 16 Outer diameter side cylindrical surface part 17 Outer inclined surface part 18 Inner inclined surface part 19 Rolling sliding surface 20 Soft nitriding layer 21, 21a Chamfered part

Claims (3)

鉄系合金製で、相手部材と転がり接触若しくは滑り接触する転がり摺動面を有し、この転がり摺動面の端縁部に、端縁に向かう程この転がり摺動面の中央寄り部分よりも凹む方向に傾斜した面取り部を備え、この面取り部及びこの転がり摺動面の表面部分に軟窒化処理層を形成した転がり摺動部品の製造方法であって、この軟窒化処理層を形成する為の軟窒化処理を行なう以前の状態で、上記面取り部を、上記端縁側に位置し、上記転がり摺動面の中央寄り部分に対する傾斜角度が急な外側傾斜面部と、この転がり摺動面の中央寄り側に位置し、この転がり摺動面の中央寄り部分に対する傾斜角度が緩やかな内側傾斜面部とにより構成し、これら外側、内側両傾斜面部から成る上記面取り部及び上記転がり摺動面に、上記軟窒化処理層を形成する為の軟窒化処理を施す工程を有する転がり摺動部品の製造方法。   It is made of an iron-based alloy and has a rolling sliding surface that makes rolling contact or sliding contact with the mating member. At the edge of this rolling sliding surface, the closer to the edge, the closer to the center of this rolling sliding surface. A rolling sliding part manufacturing method comprising a chamfered portion inclined in a dent direction, and a soft nitriding layer formed on the chamfered portion and the surface portion of the rolling sliding surface. In the state before performing the soft nitriding treatment, the chamfered portion is located on the edge side, the outer inclined surface portion having a steep inclination angle with respect to the central portion of the rolling sliding surface, and the center of the rolling sliding surface. An inner inclined surface portion that is located on the near side and has a gentle inclination angle with respect to the central portion of the rolling sliding surface, and the chamfered portion including both the outer and inner inclined surface portions and the rolling sliding surface, Form nitrocarburized layer Method for manufacturing a sliding component rolling with a soft-nitriding the applied process for that. 転がり摺動面が円筒状の外周面であり、面取り部が端縁に向かう程外径が小さくなる方向に傾斜していて、この外周面の中心軸に対する内側傾斜面の傾斜角度が3〜15度である、請求項1に記載した転がり摺動部品の製造方法。   The rolling sliding surface is a cylindrical outer peripheral surface, and is inclined in a direction in which the outer diameter decreases as the chamfered portion approaches the edge, and the inclination angle of the inner inclined surface with respect to the central axis of the outer peripheral surface is 3 to 15 The method of manufacturing a rolling sliding part according to claim 1, wherein 転がり摺動面が円筒状の内周面であり、面取り部が端縁に向かう程外径が大きくなる方向に傾斜していて、この内周面の中心軸に対する内側傾斜面の傾斜角度が3〜15度である、請求項1に記載した転がり摺動部品の製造方法。   The rolling sliding surface is a cylindrical inner peripheral surface, and the chamfered portion is inclined in a direction in which the outer diameter increases toward the end edge. The inclination angle of the inner inclined surface with respect to the central axis of the inner peripheral surface is 3 The method for manufacturing a rolling sliding part according to claim 1, which is ˜15 degrees.
JP2006163320A 2006-06-13 2006-06-13 Manufacturing method of rolling sliding parts Active JP4572875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163320A JP4572875B2 (en) 2006-06-13 2006-06-13 Manufacturing method of rolling sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163320A JP4572875B2 (en) 2006-06-13 2006-06-13 Manufacturing method of rolling sliding parts

Publications (2)

Publication Number Publication Date
JP2007333025A true JP2007333025A (en) 2007-12-27
JP4572875B2 JP4572875B2 (en) 2010-11-04

Family

ID=38932695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163320A Active JP4572875B2 (en) 2006-06-13 2006-06-13 Manufacturing method of rolling sliding parts

Country Status (1)

Country Link
JP (1) JP4572875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067887A (en) * 2010-09-27 2012-04-05 Kubota Corp Sealing device of transmission case of engine
CN102717247A (en) * 2012-06-18 2012-10-10 福建省永安轴承有限责任公司 Optimization design method of bearing assembly chamfer
EP2907982A1 (en) * 2014-02-14 2015-08-19 Caterpillar Energy Solutions GmbH Cam follower for an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852647A (en) * 1971-11-05 1973-07-24
JPS6253741B2 (en) * 1982-01-23 1987-11-11 Matsuda Kk
JPH11247845A (en) * 1998-02-27 1999-09-14 Nippon Seiko Kk Bearing device for roller support
JP2000034907A (en) * 1998-07-21 2000-02-02 Nippon Seiko Kk Tappet roller support bearing for engine
JP2005256656A (en) * 2004-03-10 2005-09-22 Toyota Central Res & Dev Lab Inc Roller rocker arm type valve gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852647A (en) * 1971-11-05 1973-07-24
JPS6253741B2 (en) * 1982-01-23 1987-11-11 Matsuda Kk
JPH11247845A (en) * 1998-02-27 1999-09-14 Nippon Seiko Kk Bearing device for roller support
JP2000034907A (en) * 1998-07-21 2000-02-02 Nippon Seiko Kk Tappet roller support bearing for engine
JP2005256656A (en) * 2004-03-10 2005-09-22 Toyota Central Res & Dev Lab Inc Roller rocker arm type valve gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067887A (en) * 2010-09-27 2012-04-05 Kubota Corp Sealing device of transmission case of engine
CN102717247A (en) * 2012-06-18 2012-10-10 福建省永安轴承有限责任公司 Optimization design method of bearing assembly chamfer
EP2907982A1 (en) * 2014-02-14 2015-08-19 Caterpillar Energy Solutions GmbH Cam follower for an internal combustion engine

Also Published As

Publication number Publication date
JP4572875B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5307477B2 (en) Cam follower and cam follower device for rocker arm
JP2005180459A (en) Roller bearing, manufacturing method of race plate and manufacturing method of retainer
JP4572875B2 (en) Manufacturing method of rolling sliding parts
JP2005256868A (en) Slide member in pair
JP3640140B2 (en) Engine tappet roller support bearing
JP2007085446A (en) Shell type roller bearing
JPH11247845A (en) Bearing device for roller support
JP2007009817A (en) Tappet roller bearing
JP4464767B2 (en) Roller with cage
JP2006292132A (en) Split bearing
JP2009228829A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
JPWO2016035373A1 (en) Roller type rocker arm
JP2005326023A (en) Roller supporting bearing device
JP2007270963A (en) Automatic self-aligning roller bearing with cage
JP2007255277A (en) Cam follower
JP2008082421A (en) Solid-shaped needle-like roller bearing and method of manufacturing cage of solid-shaped needle-like roller bearing
JP2002188643A (en) Needle roller bearing
JP4627751B2 (en) Outer ring member manufacturing apparatus and outer ring member manufacturing method
JPH08233070A (en) Roller for cam follower
JP2006342904A (en) Pinion shaft and planetary gear device
JP2000054810A5 (en)
JP2003307223A (en) Rolling bearing and method of manufacture
WO2015194492A1 (en) Rolling bearing
JP2008115837A (en) Tappet roller bearing structure
JP6461640B2 (en) Roller type rocker arm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Ref document number: 4572875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3