JP2007332222A - Pyrolytic treatment apparatus - Google Patents

Pyrolytic treatment apparatus Download PDF

Info

Publication number
JP2007332222A
JP2007332222A JP2006163889A JP2006163889A JP2007332222A JP 2007332222 A JP2007332222 A JP 2007332222A JP 2006163889 A JP2006163889 A JP 2006163889A JP 2006163889 A JP2006163889 A JP 2006163889A JP 2007332222 A JP2007332222 A JP 2007332222A
Authority
JP
Japan
Prior art keywords
thermal decomposition
inert gas
charging hopper
material charging
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006163889A
Other languages
Japanese (ja)
Inventor
Hidekazu Sugiyama
英一 杉山
Kazutaka Koshiro
和高 小城
Takeshi Noma
毅 野間
Tadashi Imai
正 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006163889A priority Critical patent/JP2007332222A/en
Publication of JP2007332222A publication Critical patent/JP2007332222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyrolytic treatment apparatus into whose pyrolysis oven for treating organic treating materials such as flammable waste plastics the organic treating materials can safely, efficiently and continuously be charged. <P>SOLUTION: A screw feeder 26 is disposed in the pyrolytic treatment apparatus into whose pyrolysis oven the organic treating materials such as flammable waste plastics are charged and pyrolyzed to produce a pyrolysis gas and residues. One end side of the screw feeder 26 has a material-charging device 15 inward projected through the pyrolysis oven 11. The portions, excluding portions in the pyrolysis oven 11, of the material-charging device 15 are sealed in an outside air-tight state. A material-charging hopper 29 is connected to the other end side of the material-charging device 15 through a line 30 having valves 31, 32, and the organic treating materials such as flammable waste plastics are supplied in an outside air-shutting state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃プラスチック等の有機物処理材料を熱分解炉内に投入して熱分解処理し、熱分解ガスを生成する熱分解処理装置に関する。   The present invention relates to a thermal decomposition processing apparatus that generates a pyrolysis gas by introducing an organic material treatment material such as waste plastic into a thermal decomposition furnace.

近年、プラスチックの利用が増加するにつれ、廃棄されるプラスチック(以下、廃プラスチック)の量も膨大になり、埋立て処分場の不足、焼却による有害ガスの発生等、環境問題の一因になっている。そこで、このような廃プラスチックの有効活用を図り環境問題を改善する一つの手段として、廃プラスチックを熱分解処理し、熱分解ガスから油を生成して回収し、この回収油を燃料等、各種の用途に利用することが考えられている。そして、このような廃プラスチックを油化処理する装置に関して多くの提案がなされている(例えば、特許文献1参照)。   In recent years, as the use of plastics has increased, the amount of plastics to be discarded (hereinafter referred to as waste plastics) has become enormous, contributing to environmental problems such as the shortage of landfill sites and the generation of harmful gases by incineration. Yes. Therefore, as one means of effectively utilizing such waste plastics and improving environmental problems, waste plastics are pyrolyzed, oil is generated from the pyrolysis gas and recovered, and this recovered oil is used for various fuels It is considered to be used for And many proposals are made regarding the apparatus which oil-treats such a waste plastic (for example, refer patent document 1).

また、このような廃プラスチックだけでなく、有機物処理材料としての、バイオマス(木材、汚泥、家畜糞尿、生ごみ等)についても、熱分解することにより油回収が可能であり、これらについても、熱分解処理による資源回収が広く行われるようになっている。
特開2000−167833号公報
In addition to such waste plastics, biomass (wood, sludge, livestock manure, garbage, etc.) as organic material treatment materials can be recovered by thermal decomposition, and these can also be recovered from heat. Resource recovery by decomposition processing is widely performed.
JP 2000-167833 A

ところで、このような熱分解処理装置では、可燃性の廃プラスチックを含む有機物処理材料を高温で処理するため、取扱を充分に注意しないと、火災が発生したりするおそれがある。   By the way, in such a thermal decomposition processing apparatus, since the organic substance processing material containing a combustible waste plastic is processed at high temperature, if handling is not careful enough, a fire may occur.

本発明の目的は、有機物処理材料を、高温で処理する熱分解炉内に安全かつ効率的に連続投入できるようにした熱分解処理装置を提供することにある。   An object of the present invention is to provide a pyrolysis apparatus capable of safely and efficiently continuously feeding an organic treatment material into a pyrolysis furnace for treating at a high temperature.

本発明の熱分解処理装置は、有機物処理材料を熱分解炉内に投入して熱分解処理し、熱分解ガスを生成する熱分解処理装置であって、内部にスクリューフィーダが設けられ、このスクリューフィーダの一端側が前記熱分解炉を貫通してこの炉内部に突出し、熱分解炉内部以外の部分は外気に対して気密に構成された材料投入装置と、この材料投入装置の、前記熱分解炉外の端部側に、バルブを有する管路を介して連結し、前記有機物処理材料を外気から遮断した状態で前記材料投入装置に供給する材料投入ホッパーとを備えたことを特徴とする。   The thermal decomposition treatment apparatus of the present invention is a thermal decomposition treatment apparatus that generates a pyrolysis gas by introducing an organic substance treatment material into a thermal decomposition furnace, and has a screw feeder provided therein. One end side of the feeder penetrates the pyrolysis furnace and protrudes into the furnace, and a portion other than the inside of the pyrolysis furnace is airtight with respect to the outside air, and the pyrolysis furnace of the material feed apparatus A material charging hopper is provided on the outer end side, which is connected via a pipe line having a valve, and supplies the material processing material to the material charging device in a state where the organic substance processing material is blocked from outside air.

本発明では、材料投入ホッパー内に不活性ガスを注入する不活性ガス注入装置を設け、この不活性ガスの注入により材料投入ホッパー内の酸素濃度を低下させるとよい。   In the present invention, an inert gas injection device for injecting an inert gas into the material charging hopper may be provided, and the oxygen concentration in the material charging hopper may be lowered by the injection of the inert gas.

また、本発明では、材料投入ホッパー内に水蒸気を注入する水蒸気注入装置を設け、この水蒸気の注入により材料投入ホッパー内への燃焼熱の逆流を防止するようにしてもよい。   In the present invention, a water vapor injection device for injecting water vapor into the material charging hopper may be provided, and the backflow of combustion heat into the material charging hopper may be prevented by this water vapor injection.

また、本発明では、材料投入ホッパー内に酸素濃度センサーを設け、不活性ガス注入装置は、上記酸素濃度センサーの測定値により不活性ガス注入量を制御してもよい。   In the present invention, an oxygen concentration sensor may be provided in the material charging hopper, and the inert gas injection device may control the inert gas injection amount based on the measured value of the oxygen concentration sensor.

また、本発明では、材料投入装置内に温度センサーを設け、その温度測定値によりスクリューフィーダの搬送速度を制御してもよい。   In the present invention, a temperature sensor may be provided in the material feeding device, and the conveying speed of the screw feeder may be controlled by the measured temperature value.

また、本発明では、運転停止時、または緊急時には、材料投入装置に連結した管路に設けられたバルブを閉塞動作させ、材料供給を停止させる機能を有する。   In the present invention, when the operation is stopped or in an emergency, the valve provided in the pipe connected to the material input device is closed to stop the material supply.

さらに、本発明では、有機物処理材料は、造粒減容化処理したものであることが好ましい。   Furthermore, in this invention, it is preferable that the organic substance processing material is a granulated volume reduction process.

本発明によれば、可燃性の廃プラスチック等の有機物処理材料を、外気と遮断した状態で熱分解炉内に連続投入することができるので、火災発生などを確実に防止でき、安全性が向上すると共に、連続投入により処理効率を高く維持することができる。   According to the present invention, organic treatment materials such as combustible waste plastics can be continuously fed into the pyrolysis furnace in a state of being shut off from the outside air, so that it is possible to reliably prevent fires and improve safety. In addition, the processing efficiency can be kept high by continuous feeding.

以下、本発明による熱分解処理装置の一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a thermal decomposition processing apparatus according to the present invention will be described in detail with reference to the drawings.

図1は熱分解処理装置の主体となる熱分解炉11の構成を示している。この熱分解炉11は、内筒12及び外筒13からなる2重円筒構造となっており、内筒12は外部に設けられた駆動機構14により、その軸芯を中心として回転駆動される。内筒12内には、その一端(図示左端)に設けられた、詳細を後述する材料投入装置15により廃プラスチック等の有機物処理材料(以下、廃プラスチックとして説明する)が低酸素状態を保って投入される。   FIG. 1 shows a configuration of a pyrolysis furnace 11 which is a main component of a pyrolysis treatment apparatus. The pyrolysis furnace 11 has a double cylindrical structure including an inner cylinder 12 and an outer cylinder 13, and the inner cylinder 12 is rotationally driven around its axis by a drive mechanism 14 provided outside. In the inner cylinder 12, an organic material processing material such as waste plastic (hereinafter referred to as waste plastic) is maintained in a low oxygen state by a material input device 15 provided at one end (left end in the drawing), which will be described in detail later. It is thrown.

ここで、内筒12は熱伝導性に優れた、例えばステンレスなどにより造られ、また、外筒13は断熱性に優れたセラミック材などの耐火材によって造られている。これら内筒12と外筒13との間は加熱用ジャケットとして用いられる。この加熱用ジャケット内には、図示しない大形バーナによる加熱装置により高温の加熱ガスが供給される。すなわち、外筒13には熱風入口17及び熱風出口18が形成され、これらは上述した大形バーナと連結して熱風循環路を構成し、加熱ジャケット内に高温ガスを供給している。   Here, the inner cylinder 12 is made of, for example, stainless steel having excellent thermal conductivity, and the outer cylinder 13 is made of a refractory material such as a ceramic material having excellent heat insulation. A space between the inner cylinder 12 and the outer cylinder 13 is used as a heating jacket. High-temperature heating gas is supplied into the heating jacket by a heating device using a large burner (not shown). That is, a hot air inlet 17 and a hot air outlet 18 are formed in the outer cylinder 13, which are connected to the above-described large-sized burner to form a hot air circulation path, and supply high-temperature gas into the heating jacket.

内筒12内には、多数のセラミックボール19が設けられており、投入された廃プラスチックと混合接触することにより廃プラスチックの熱分解を促進し、効率化をはかっている。また、この内筒12内は環状の仕切り板20により、軸方向に沿って複数区画に区分されており、セラミックボール19が軸方向に流出しないように構成している。   A large number of ceramic balls 19 are provided in the inner cylinder 12, and the thermal decomposition of the waste plastic is promoted by mixing contact with the thrown-in waste plastic, thereby improving efficiency. The inner cylinder 12 is divided into a plurality of sections along the axial direction by an annular partition plate 20 so that the ceramic balls 19 do not flow out in the axial direction.

したがって、熱分解炉11の内筒12に連続投入される廃プラスチックは、内筒12の回転によりセラミックボール19と混合接触し、図示右方に移動しながら加熱ジャケットからの熱により加熱されて熱分解し、熱分解ガスと残渣とを生成する。   Accordingly, the waste plastic continuously fed into the inner cylinder 12 of the pyrolysis furnace 11 is mixed and brought into contact with the ceramic ball 19 by the rotation of the inner cylinder 12 and is heated by the heat from the heating jacket while moving to the right in the figure. It decomposes to produce pyrolysis gas and residue.

ここで、投入される廃プラスチックとしては、造粒処理されたものが好ましい。すなわち、造粒処理により廃プラスチックの嵩密度を高めることにより熱分解処理効率を高めることができる。   Here, as the waste plastic to be input, a granulated one is preferable. That is, the thermal decomposition efficiency can be increased by increasing the bulk density of the waste plastic by granulation.

この熱分解炉11の図示右端には、ガス導出装置21がもうけられ、内筒12内で発生した熱分解ガスを外部に導出して図示しない熱分解ガスエジェクタに供給する。そして、この熱分解ガスエジェクタにより熱分解ガスは凝縮され、回収油となって図示しない回収油タンクに送られる。また、同じくこの熱分解炉11の図示右端下部には、この炉内で発生した粉末状の残渣を外部に排出させる残渣排出装置22が設けられている。   A gas deriving device 21 is provided at the right end of the pyrolysis furnace 11 in the figure, and the pyrolysis gas generated in the inner cylinder 12 is led out and supplied to a pyrolysis gas ejector (not shown). Then, the pyrolysis gas is condensed by the pyrolysis gas ejector, and becomes a recovered oil, which is sent to a recovery oil tank (not shown). Similarly, a residue discharge device 22 for discharging the powdery residue generated in the furnace to the outside is provided at the lower right end of the pyrolysis furnace 11 in the figure.

前述した材料投入装置15は、筒状の外皮部材25を有し、この外皮部材25内にスクリューフィーダ26が設けられている。このスクリューフィーダ26は、2本のスクリューを互いに噛み合うように平行配置したもので、外部に設けられた駆動装置27により回転駆動される。この材料投入装置15の一端(図示右端)側は熱分解炉11を貫通して内筒12内部に突出している。また、この材料投入装置15の他端(図示左端)側には、後述する材料ホッパー29側と連結する材料入口28が設けられている。そして、これ以外の熱分解炉11外の部分は、外気に対して気密に構成されている。   The material charging device 15 described above has a cylindrical outer skin member 25, and a screw feeder 26 is provided in the outer skin member 25. The screw feeder 26 has two screws arranged in parallel so as to mesh with each other, and is rotationally driven by a driving device 27 provided outside. One end (right end in the figure) of the material charging device 15 penetrates the pyrolysis furnace 11 and protrudes into the inner cylinder 12. Further, a material inlet 28 connected to a material hopper 29 side described later is provided on the other end (left end in the drawing) side of the material feeding device 15. And the part other than the pyrolysis furnace 11 other than this is comprised airtight with respect to external air.

前記材料ホッパー29は、図2で示すように、材料投入装置15の図示左端部、すなわち、熱分解炉11の外側端部に設けられた材料入り口28に管路30を介して連結する。この管路30には、バルブ31,32が設けられている。すなわち、材料ホッパー29の直下にはロータリバルブ31が設けられ、中間部にはボールバルブ32が設けられている。これらの構成により、材料ホッパー29内の廃プラスチックを、外気から遮断した状態で材料投入装置15に供給する。   As shown in FIG. 2, the material hopper 29 is connected to a material inlet 28 provided at the left end portion of the material charging device 15, that is, the outer end portion of the pyrolysis furnace 11 via a pipe line 30. The conduit 30 is provided with valves 31 and 32. That is, a rotary valve 31 is provided immediately below the material hopper 29, and a ball valve 32 is provided in the middle. With these configurations, the waste plastic in the material hopper 29 is supplied to the material feeding device 15 in a state of being blocked from the outside air.

この材料ホッパー29に対しては、その上流側に計量ホッパー34が配置され、ロータリバルブ35及び管路36を介して、外気に対し気密に連結している。さらに、この計量ホッパー34に対しては、図示しない上流工程、例えば、造粒工程からの材料搬送用コンベア37が設けられ、造粒処理された廃プラスチックが供給される。なお、この計量ホッパー34内には、図示しないがロードセルのような計量装置が設けられており、貯留量を計量できるように構成している。   A metering hopper 34 is disposed on the upstream side of the material hopper 29 and is airtightly connected to the outside air via a rotary valve 35 and a conduit 36. Further, the weighing hopper 34 is provided with a material conveying conveyor 37 from an upstream process (not shown), for example, a granulation process, and is supplied with granulated waste plastic. In addition, although not shown, a weighing device such as a load cell is provided in the weighing hopper 34 so that the storage amount can be measured.

前記材料ホッパー29には、廃プラスチックの貯留レベルを検出するセンサー39H,39L,39LLが設けられている。センサー39Hは、材料ホッパー29内における廃プラスチックの貯留レベルが高レベルであることを検出するもので、その検出信号により、前記材料搬送用コンベア37の駆動モータ38を停止制御する。また、センサー39Lは、材料ホッパー29内における廃プラスチックの貯留レベルが低レベルであることを検出するもので、その検出信号により、前記材料搬送用コンベア37の駆動モータ38を起動制御する。さらに、センサー39LLは、材料ホッパー29内における廃プラスチックの貯留レベルが下限レベルであることを検出するもので、その検出信号により、管路30に設けたボールバルブ32を閉操作し、材料ホッパー29から材料供給装置15への廃プラスチック供給を停止させる。   The material hopper 29 is provided with sensors 39H, 39L, 39LL for detecting the level of waste plastic storage. The sensor 39H detects that the waste plastic storage level in the material hopper 29 is high, and stops and controls the drive motor 38 of the material conveying conveyor 37 based on the detection signal. The sensor 39L detects that the level of waste plastic storage in the material hopper 29 is low, and activates and controls the drive motor 38 of the material conveying conveyor 37 based on the detection signal. Further, the sensor 39LL detects that the waste plastic storage level in the material hopper 29 is the lower limit level, and the ball valve 32 provided in the pipe line 30 is closed by the detection signal, so that the material hopper 29 The supply of waste plastic to the material supply device 15 is stopped.

41は不活性ガス注入装置で、タンク42に貯留された不活性ガス、例えば窒素を、バルブ43を介して管路44により材料投入ホッパー29内に注入し、材料投入ホッパー29内の酸素濃度を低下させる。また、この不活性ガス注入装置41は、分岐管路45を介して管路30にも連結しており、この管路30を通して材料供給装置15へも不活性ガスを供給している。   Reference numeral 41 denotes an inert gas injection device, which injects an inert gas, for example, nitrogen stored in the tank 42 into the material charging hopper 29 through the pipe 44 through the valve 43, and adjusts the oxygen concentration in the material charging hopper 29. Reduce. The inert gas injection device 41 is also connected to the pipeline 30 via the branch pipeline 45 and supplies the inert gas to the material supply device 15 through the pipeline 30.

ここで、前記材料投入ホッパー29に対しては、その内部の酸素濃度を測定するセンサー47設けている。不活性ガス注入装置41は、この酸素濃度センサー47の測定値により不活性ガス注入量を制御する。すなわち、材料投入ホッパー29内の酸素濃度が高ければ不活性ガスの注入量を増やすべくバルブ43の開度を増大させる。また、このセンサー47により測定された材料投入ホッパー29内の酸素濃度により材料投入装置15の搬送速度を制御してもよい。すなわち、材料投入ホッパー29内の酸素濃度が高い場合は、駆動装置27を制御してスクリューフィーダ26の速度を低下させ、材料投入ホッパー29内の酸素濃度が低下するまで、燃焼炉11への廃プラスチック投入量を減少させ、酸素過多による発火を防止することができる。   Here, the material feeding hopper 29 is provided with a sensor 47 for measuring the oxygen concentration therein. The inert gas injection device 41 controls the inert gas injection amount based on the measured value of the oxygen concentration sensor 47. That is, if the oxygen concentration in the material charging hopper 29 is high, the opening degree of the valve 43 is increased in order to increase the injection amount of the inert gas. Further, the conveying speed of the material charging device 15 may be controlled by the oxygen concentration in the material charging hopper 29 measured by the sensor 47. That is, when the oxygen concentration in the material charging hopper 29 is high, the speed of the screw feeder 26 is controlled by controlling the driving device 27, and the waste in the combustion furnace 11 is reduced until the oxygen concentration in the material charging hopper 29 decreases. The amount of plastic input can be reduced and ignition due to excessive oxygen can be prevented.

また、材料投入装置15内に温度センサー48を設け、その温度測定値によりスクリューフィーダ26の搬送速度を制御し、熱分解炉11への廃プラスチック投入量を制御するようにしてもよい。   Further, a temperature sensor 48 may be provided in the material charging device 15, and the conveying speed of the screw feeder 26 may be controlled by the measured temperature value to control the amount of waste plastic charged into the pyrolysis furnace 11.

さらに、管路30に設けたボールバルブ32は、前述のように、材料ホッパー29内における廃プラスチックの貯留レベルが下限レベルである場合、閉操作され、材料ホッパー29から材料供給装置15への廃プラスチック供給を停止させる。この他、運転停止時や、緊急時にも、このボールバルブ32を閉操作し、材料ホッパー29から材料供給装置15への廃プラスチック供給を停止させるようにしてもよい。   Furthermore, as described above, the ball valve 32 provided in the pipe line 30 is closed when the waste plastic storage level in the material hopper 29 is the lower limit level, and the ball valve 32 is disposed from the material hopper 29 to the material supply device 15. Stop plastic supply. In addition, when the operation is stopped or in an emergency, the ball valve 32 may be closed to stop the supply of waste plastic from the material hopper 29 to the material supply device 15.

上記構成において、図示しない造粒工程で造粒処理された廃プラスチックはコンベア37により計量ホッパー34内に搬送され計量される。その後、ロータリバルブ35、管路36を通って材料ホッパー29内に外気と遮断された状態で送られ、貯留される。このとき、材料ホッパー29内は、不活性ガス供給装置41から供給される不活性ガス(以下、窒素として説明する)により低酸素状態となっている。   In the above configuration, the waste plastic granulated in the granulation step (not shown) is conveyed into the weighing hopper 34 by the conveyor 37 and weighed. After that, the material is sent and stored in the material hopper 29 through the rotary valve 35 and the pipe line 36 while being blocked from the outside air. At this time, the inside of the material hopper 29 is in a low oxygen state by an inert gas (hereinafter, described as nitrogen) supplied from the inert gas supply device 41.

材料ホッパー29内に貯留された廃プラスチックは、ロータリバルブ31及びボールバルブ32を通って、管路30により材料投入装置15に供給される。材料投入装置15は、スクリューコンベア26により、供給された廃プラスチックを、外気と遮断され、低酸素状態を保って熱分解炉11の内筒12内に投入する。   Waste plastic stored in the material hopper 29 passes through the rotary valve 31 and the ball valve 32 and is supplied to the material feeding device 15 through the pipe 30. The material input device 15 supplies the waste plastic supplied by the screw conveyor 26 to the inner cylinder 12 of the pyrolysis furnace 11 while being kept out of the outside air and maintaining a low oxygen state.

熱分解炉11内に投入された廃プラスチックは、内筒12の回転により、内筒12内のセラミックボール19と混合接触し、加熱ジャケットからの熱を効率よく伝達され、図示右方へ移動しながら熱分解され熱分解ガスと残渣を生成する。熱分解ガスは、ガス導出装置21により外部に導出され、図示しない熱分解ガスエジェクタにより凝縮され、回収油となって図示しない回収油タンクに送られる。また、粉末状の残渣は残渣排出装置22により外部に排出される。   The waste plastic put into the pyrolysis furnace 11 is mixed and brought into contact with the ceramic balls 19 in the inner cylinder 12 by the rotation of the inner cylinder 12, and the heat from the heating jacket is efficiently transmitted and moved to the right in the figure. While being pyrolyzed, pyrolysis gas and residue are generated. The pyrolysis gas is led out to the outside by the gas deriving device 21, is condensed by a pyrolysis gas ejector (not shown), and is sent to a recovery oil tank (not shown) as recovered oil. Further, the powdery residue is discharged to the outside by the residue discharging device 22.

ここで、材料ホッパー29内に貯留された廃プラスチックは、窒素ガスの供給により、低酸素状態を保ち、かつロータリバルブ31,35などにより外気と遮断された状態で、熱分解炉内に連続投入されるので、酸素が熱分解炉に浸入して発火が生じるようなことはない。   Here, the waste plastic stored in the material hopper 29 is continuously put into the pyrolysis furnace in a state where the low oxygen state is maintained by supply of nitrogen gas and is blocked from the outside air by the rotary valves 31, 35, etc. Thus, oxygen does not enter the pyrolysis furnace and ignition does not occur.

なお、不活性ガス注入装置41に代って水蒸気注入装置を設け、材料投入ホッパー29内に水蒸気を注入してもよい。この水蒸気の注入により、材料投入ホッパー29内を低酸素状態に保つと共に、熱分解炉11側からの材料投入ホッパー29内への燃焼熱の逆流を防止することも可能になる。   Note that a water vapor injection device may be provided in place of the inert gas injection device 41 to inject water vapor into the material charging hopper 29. By injecting the water vapor, the inside of the material charging hopper 29 can be kept in a low oxygen state, and the backflow of combustion heat from the pyrolysis furnace 11 into the material charging hopper 29 can be prevented.

また、運転終了時や緊急時には、管路30に設けられボールバルブ32を閉操作することにより燃料供給管路が遮断されるので、熱分解炉11内の熱気が、何らかの原因により材料ホッパー29側に逆流することを確実に阻止できる。これらの結果、熱分解処理装置としての安全性が格段に向上する。さらに、廃プラスチックは熱分解炉内に連続投入されるため、熱分解処理が連続処理となり、処理効率が向上する。   Further, when the operation is completed or in an emergency, the fuel supply conduit is shut off by closing the ball valve 32 provided in the conduit 30, so that the hot air in the pyrolysis furnace 11 is caused by the material hopper 29 side for some reason. It is possible to reliably prevent backflow. As a result, the safety as the thermal decomposition treatment apparatus is remarkably improved. Furthermore, since the waste plastic is continuously fed into the pyrolysis furnace, the pyrolysis process becomes a continuous process, and the processing efficiency is improved.

なお、上記説明では、有機物処理材料として廃プラスチックを対象としているが、前述のようにバイオマス(木材、汚泥、家畜糞尿、生ごみ等)についても、熱分解処理することにより熱分解ガスと残渣とが得られるので、廃プラスチックと同等に取り扱って熱分解処理することができる。   In the above description, waste plastic is used as the organic material treatment material. However, as described above, biomass (wood, sludge, livestock manure, garbage, etc.) is also pyrolyzed to produce pyrolysis gas and residues. Therefore, it can be handled in the same way as waste plastic and pyrolyzed.

本発明による熱分解処理装置の一実施の形態を、熱分解炉を中心として示す部分破断斜視図である。1 is a partially broken perspective view showing an embodiment of a thermal decomposition treatment apparatus according to the present invention, centering on a thermal decomposition furnace. 同上実施の形態における有機物処理材料の供給部分を示すシステム系統図である。It is a system system | strain diagram which shows the supply part of the organic substance processing material in embodiment same as the above.

符号の説明Explanation of symbols

11 熱分解炉
15 材料投入装置
25 筒体
26 スクリューフィーダ
29 材料ホッパー
30 管路
31,32 バルブ
41 不活性ガス供給装置
47 酸素濃度センサー
48 温度センサー
DESCRIPTION OF SYMBOLS 11 Pyrolysis furnace 15 Material input apparatus 25 Cylinder 26 Screw feeder 29 Material hopper 30 Pipe line 31, 32 Valve 41 Inert gas supply apparatus 47 Oxygen concentration sensor 48 Temperature sensor

Claims (7)

有機物処理材料を熱分解炉内に投入して熱分解処理し、熱分解ガスを生成する熱分解処理装置であって、
内部にスクリューフィーダが設けられ、このスクリューフィーダの一端側が前記熱分解炉を貫通してこの炉内部に突出し、熱分解炉内部以外の部分は外気に対して気密に構成された材料投入装置と、
この材料投入装置の、前記熱分解炉外の端部側に、バルブを有する管路を介して連結し、前記有機物処理材料を外気から遮断した状態で前記材料投入装置に供給する材料投入ホッパーと
を備えたことを特徴とする熱分解処理装置。
It is a thermal decomposition processing apparatus that inputs an organic material treatment material into a thermal decomposition furnace and performs thermal decomposition processing to generate a thermal decomposition gas,
A screw feeder is provided inside, one end side of the screw feeder passes through the pyrolysis furnace and protrudes into the furnace, and a part other than the inside of the pyrolysis furnace is configured to be airtight with respect to the outside air,
A material charging hopper connected to an end portion outside the pyrolysis furnace of the material charging device via a pipe line having a valve, and supplying the material processing material to the material charging device in a state where the organic processing material is blocked from outside air; A thermal decomposition treatment apparatus comprising:
材料投入ホッパー内に不活性ガスを注入する不活性ガス注入装置を設け、この不活性ガスの注入により材料投入ホッパー内の酸素濃度を低下させることを特徴とする請求項1に記載の熱分解処理装置。   2. The thermal decomposition treatment according to claim 1, wherein an inert gas injection device for injecting an inert gas into the material charging hopper is provided, and the oxygen concentration in the material charging hopper is lowered by the injection of the inert gas. apparatus. 材料投入ホッパー内に水蒸気を注入する水蒸気注入装置を設け、この水蒸気の注入により材料投入ホッパー内への燃焼熱の逆流を防止することを特徴とする請求項1に記載の熱分解処理装置。   The thermal decomposition treatment apparatus according to claim 1, wherein a steam injection device for injecting water vapor into the material charging hopper is provided, and the backflow of combustion heat into the material charging hopper is prevented by injection of the water vapor. 材料投入ホッパー内に酸素濃度センサーを設け、不活性ガス注入装置は、上記酸素濃度センサーの測定値により不活性ガス注入量を制御することを特徴とする請求項2に記載の熱分解処理装置。   The thermal decomposition treatment apparatus according to claim 2, wherein an oxygen concentration sensor is provided in the material charging hopper, and the inert gas injection device controls an inert gas injection amount based on a measured value of the oxygen concentration sensor. 材料投入装置内に温度センサーを設け、その温度測定値によりスクリューフィーダの搬送速度を制御することを特徴とする請求項1乃至請求項4のいずれかに記載の熱分解処理装置。   The thermal decomposition processing apparatus according to any one of claims 1 to 4, wherein a temperature sensor is provided in the material feeding apparatus, and the conveying speed of the screw feeder is controlled by the measured temperature value. 運転停止時、または緊急時には、材料投入装置に連結した管路に設けられたバルブを閉塞動作させ、材料供給を停止させる機能を有することを特徴とする請求項1乃至4のいずれかに記載の熱分解処理装置。   5. The material according to claim 1, having a function of closing a material supply by closing a valve provided in a pipe connected to the material input device when the operation is stopped or in an emergency. Thermal decomposition processing equipment. 有機物処理材料は、造粒減容化処理したものであることを特徴とする請求項1乃至請求項5のいずれかに記載の熱分解処理装置。   The pyrolysis apparatus according to any one of claims 1 to 5, wherein the organic material is a granulated and volume-reduced material.
JP2006163889A 2006-06-13 2006-06-13 Pyrolytic treatment apparatus Pending JP2007332222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163889A JP2007332222A (en) 2006-06-13 2006-06-13 Pyrolytic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163889A JP2007332222A (en) 2006-06-13 2006-06-13 Pyrolytic treatment apparatus

Publications (1)

Publication Number Publication Date
JP2007332222A true JP2007332222A (en) 2007-12-27

Family

ID=38931997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163889A Pending JP2007332222A (en) 2006-06-13 2006-06-13 Pyrolytic treatment apparatus

Country Status (1)

Country Link
JP (1) JP2007332222A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249576A (en) * 2008-04-09 2009-10-29 Toshiba Corp Pyrolytic method and pyrolyzer for plastic, and residue cooler
KR100989939B1 (en) * 2008-06-20 2010-10-26 티알에너지(주) Pyrolysis plant for waste rubber
CN109650691A (en) * 2019-01-29 2019-04-19 北京云水浩瑞环境科技有限公司 The system and method for continuous processing municipal sludge
JP2019529586A (en) * 2016-07-08 2019-10-17 ゴールデン リニューアブル エナジー、エルエルシー Heated airlock feeder unit
KR102077097B1 (en) * 2019-04-03 2020-02-13 주식회사 한미산업 carbonizing and thermal decomposition apparatus
US10961062B2 (en) 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly
KR102237691B1 (en) * 2020-11-25 2021-04-09 (주)이씨티 gasification system for biomass
KR102441715B1 (en) * 2021-04-30 2022-09-08 주식회사 웨이스트에너지솔루션 Pyrolysis petrolizing method
KR20220145681A (en) * 2021-04-22 2022-10-31 주식회사 한국신재생에너지 Oil extraction system for plastic waste having charging device
KR20220145684A (en) * 2021-04-22 2022-10-31 주식회사 한국신재생에너지 Oil extraction system for continuous operation and access method the same
US11542434B2 (en) 2016-06-21 2023-01-03 Golden Renewable Energy, LLC Char separator and method
KR102508387B1 (en) * 2022-06-22 2023-03-09 이승준 pyrolysis apparatus of synthetic resi
KR20230038006A (en) * 2021-09-10 2023-03-17 한국에너지기술연구원 System for transferring waste plastics with the removal of oxygen into the continuous pyrolysis process and System for the production of pyrolysis oil using the same
US11773330B2 (en) 2016-07-05 2023-10-03 Braven Environmental, Llc System and process for converting waste plastic into fuel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187791A (en) * 1986-02-14 1987-08-17 Isao Fujita Method of recovering oily hydrocarbon fuel or such from plastic scrap
JPH09217988A (en) * 1996-02-09 1997-08-19 Ishikawajima Harima Heavy Ind Co Ltd External heat type rotary kiln
JPH09310829A (en) * 1996-03-19 1997-12-02 Mitsui Eng & Shipbuild Co Ltd Thermal decomposition reactor in wastes treatment equipment
JPH11285898A (en) * 1998-03-31 1999-10-19 Kurimoto Ltd Twin-screw extruder
JP2000186285A (en) * 1998-12-22 2000-07-04 Nippon Steel Corp Equipment for removing foreign substance/residue in waste plastic liquefaction plant
JP2002173549A (en) * 2000-12-05 2002-06-21 Toshiba Corp Apparatus for treating waste plastic
JP2003055497A (en) * 2001-08-16 2003-02-26 Japan Steel Works Ltd:The Method for operating dechlorination treatment apparatus of waste plastic
JP2006016584A (en) * 2004-07-02 2006-01-19 Oputei:Kk Method and system for treating waste polystyrene foam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187791A (en) * 1986-02-14 1987-08-17 Isao Fujita Method of recovering oily hydrocarbon fuel or such from plastic scrap
JPH09217988A (en) * 1996-02-09 1997-08-19 Ishikawajima Harima Heavy Ind Co Ltd External heat type rotary kiln
JPH09310829A (en) * 1996-03-19 1997-12-02 Mitsui Eng & Shipbuild Co Ltd Thermal decomposition reactor in wastes treatment equipment
JPH11285898A (en) * 1998-03-31 1999-10-19 Kurimoto Ltd Twin-screw extruder
JP2000186285A (en) * 1998-12-22 2000-07-04 Nippon Steel Corp Equipment for removing foreign substance/residue in waste plastic liquefaction plant
JP2002173549A (en) * 2000-12-05 2002-06-21 Toshiba Corp Apparatus for treating waste plastic
JP2003055497A (en) * 2001-08-16 2003-02-26 Japan Steel Works Ltd:The Method for operating dechlorination treatment apparatus of waste plastic
JP2006016584A (en) * 2004-07-02 2006-01-19 Oputei:Kk Method and system for treating waste polystyrene foam

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249576A (en) * 2008-04-09 2009-10-29 Toshiba Corp Pyrolytic method and pyrolyzer for plastic, and residue cooler
KR100989939B1 (en) * 2008-06-20 2010-10-26 티알에너지(주) Pyrolysis plant for waste rubber
US11542434B2 (en) 2016-06-21 2023-01-03 Golden Renewable Energy, LLC Char separator and method
US10961062B2 (en) 2016-06-21 2021-03-30 Golden Renewable Energy, LLC Bag press feeder assembly
US11773330B2 (en) 2016-07-05 2023-10-03 Braven Environmental, Llc System and process for converting waste plastic into fuel
JP2019529586A (en) * 2016-07-08 2019-10-17 ゴールデン リニューアブル エナジー、エルエルシー Heated airlock feeder unit
JP2021183694A (en) * 2016-07-08 2021-12-02 ゴールデン リニューアブル エナジー、エルエルシー Heating air-lock feeder unit
CN109650691A (en) * 2019-01-29 2019-04-19 北京云水浩瑞环境科技有限公司 The system and method for continuous processing municipal sludge
KR102077097B1 (en) * 2019-04-03 2020-02-13 주식회사 한미산업 carbonizing and thermal decomposition apparatus
KR102237691B1 (en) * 2020-11-25 2021-04-09 (주)이씨티 gasification system for biomass
KR20220145684A (en) * 2021-04-22 2022-10-31 주식회사 한국신재생에너지 Oil extraction system for continuous operation and access method the same
KR20220145681A (en) * 2021-04-22 2022-10-31 주식회사 한국신재생에너지 Oil extraction system for plastic waste having charging device
KR102532568B1 (en) 2021-04-22 2023-05-15 (주)에스티클린에너지 Oil extraction system for plastic waste having charging device
KR102552257B1 (en) * 2021-04-22 2023-07-06 (주)에스티클린에너지 Oil extraction system for continuous operation and access method the same
KR102441715B1 (en) * 2021-04-30 2022-09-08 주식회사 웨이스트에너지솔루션 Pyrolysis petrolizing method
KR102536923B1 (en) 2021-09-10 2023-05-26 한국에너지기술연구원 System for transferring waste plastics with the removal of oxygen into the continuous pyrolysis process and System for the production of pyrolysis oil using the same
KR20230038006A (en) * 2021-09-10 2023-03-17 한국에너지기술연구원 System for transferring waste plastics with the removal of oxygen into the continuous pyrolysis process and System for the production of pyrolysis oil using the same
KR102508387B1 (en) * 2022-06-22 2023-03-09 이승준 pyrolysis apparatus of synthetic resi

Similar Documents

Publication Publication Date Title
JP2007332222A (en) Pyrolytic treatment apparatus
US6619214B2 (en) Method and apparatus for treatment of waste
US6758150B2 (en) System and method for thermally reducing solid and liquid waste and for recovering waste heat
JP3602504B2 (en) Heat treatment equipment using superheated steam
JP5379957B2 (en) Pyrolysis treatment method and pyrolysis treatment system
US11053443B2 (en) Microwave pyrolysis reactor
US7802528B2 (en) Pyrolysis apparatus
KR20140016451A (en) Pyrolysis apparatus
US20110036280A1 (en) Waste processing system
KR102429348B1 (en) Combustible material treatment method and treatment device
KR101415450B1 (en) Incineration device for solid wastes
CZ299492A3 (en) Process and apparatus for transforming noxious waste to harmless and insoluble products
US7950339B2 (en) Pyrolysis apparatus with transverse oxygenation
KR100850528B1 (en) A fuel injection device of sand circulation fluid bed boiler for rdf(rpf) combustion form waste material
CN114590607B (en) Slag discharging system for high-temperature ash and using method thereof
US7621225B2 (en) Method and apparatus for treatment of waste
JP4077811B2 (en) Heat treatment equipment using superheated steam
EP3365602A2 (en) Thermal treatment device
WO2011014094A1 (en) Method and device for recycling moist waste matter comprising organic materials
KR20090132174A (en) Pyrolysis plant for waste rubber
JP3726779B2 (en) Heat treatment method and facilities for sludge
JP7106600B2 (en) Radioactive waste sorting method
CN212777361U (en) Organic waste treatment system
KR100460636B1 (en) Apparatus for supplying solid state wastes for a waste gasification furnace
JP2023097491A (en) Organic matter treatment material heat decomposition processing device and organic matter treatment material putting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719