JP2007329349A - 熱電変換装置およびその製造方法 - Google Patents

熱電変換装置およびその製造方法 Download PDF

Info

Publication number
JP2007329349A
JP2007329349A JP2006160203A JP2006160203A JP2007329349A JP 2007329349 A JP2007329349 A JP 2007329349A JP 2006160203 A JP2006160203 A JP 2006160203A JP 2006160203 A JP2006160203 A JP 2006160203A JP 2007329349 A JP2007329349 A JP 2007329349A
Authority
JP
Japan
Prior art keywords
thermoelectric
elements
heat exchange
electrode
element assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006160203A
Other languages
English (en)
Inventor
Akio Matsuoka
彰夫 松岡
Isao Azeyanagi
功 畔柳
Yasuhiko Niimi
康彦 新美
Hiroyuki Yamada
博之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006160203A priority Critical patent/JP2007329349A/ja
Publication of JP2007329349A publication Critical patent/JP2007329349A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】熱電素子12、13と吸放熱電極部材22、32との接合において、熱電素子12、13の性能低下を抑えつつ信頼性を向上させる。
【解決手段】熱電素子12、13と吸放熱電極部材22、32との接触面積が、熱電素子12、13の接合面12a、13aの面積よりも小さくしている。
これによれば、熱電素子12、13と、吸放熱電極部25、35を有する吸放熱電極部材22、32との接合において、接触面積を小さくすることにより、吸放熱電極部25、35の成分である銅(Cu)の分子が熱電素子12、13内部に拡散してしまうことによる熱電素子12、13の性能低下を抑えることができる。
【選択図】図5

Description

本発明は、P型熱電素子、N型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置およびその製造方法に関するものであり、特に、熱電素子と吸放熱電極部材との接合に関するものである。
従来、この種の熱電変換装置として、下記の特許文献1には、2個の素子を電極で接合するうえで、電極の接合部間に凹部を設けることを特徴とする熱電冷却装置が示されている。また、下記の特許文献2には、フィルム状素子を、熱伝導板を介してコルゲートフィンに接合して熱交換させる熱電装置が示されている。
特開平10−303470号公報 特開平6−151979号公報
しかしながら、上記特許文献1のような構造とした場合、素子と電極とは平面同士にて広い面積で接触するため、電極の成分である銅(Cu)の分子が多量に素子内部に拡散してしまい、素子の特性が大幅に劣化するという問題がある。従来、素子の接合面には、拡散防止のためにニッケル(Ni)メッキなどが施されているが、それでも拡散が防止できていない。
また、素子と電極とを押し付けて接合すると、素子と電極との間の隙間が無くなって半田が押し出されてしまうため、充分な接合強度が得られないという問題がある。これを防止するためには、素子と電極との間の隙間(ギャップ)を所定寸法に管理する必要があるが、組み立てが難しいものとなってしまう。また逆に、この隙間が大きくなり過ぎると、素子と電極とを接合できずに導通不良となってしまう。
また、上記特許文献2のような構造とした場合、フィルム状素子とコルゲートフィンとの間に介在させる熱伝導板は絶縁性を有する必要があり、その熱抵抗による性能低下が避けられないという問題がある。
本発明は、このような従来技術に存在する問題点に着目して成されたものであり、その目的は、素子と電極との接合において、素子の性能低下を抑えつつ信頼性を向上させることのできる熱電変換装置およびその製造方法を提供することにある。
本発明は上記目的を達成するために、請求項1ないし請求項8に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)とこれら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、複数の熱交換素子(22、32)を熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
熱電素子組立体(10)と熱交換素子組立体(20、30)とが積層された状態において、熱電素子組立体(10)と熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備え、
熱電素子(12、13)と熱交換素子(22、32)との接触面積が、熱電素子(12、13)の接合面(12a、13a)の面積よりも小さいことを特徴としている。
この請求項1に記載の発明によれば、熱電素子(12、13)と、電極部(25、35)を有する熱交換素子(22、32)との接合において、接触面積を小さくすることにより、電極部(25、35)の成分である銅(Cu)の分子が熱電素子(12、13)内部に拡散してしまうことによる熱電素子(12、13)の性能低下を抑えることができる。
また、請求項2に記載の発明では、請求項1に記載の熱電変換装置において、電極部(25、35)の接触部面積が、接合面(12a、13a)の面積よりも小さいことを特徴としている。この請求項2に記載の発明によれば、熱交換素子(22、32)を形成する際、電極部(25、35)の接触部面積を小さく形成することより、請求項1に記載の効果の実現が容易である。
また、請求項3に記載の発明では、請求項2に記載の熱電変換装置において、電極部(25、35)に接触部として、接合面(12a、13a)側に突出した凸部(T)を設けたことを特徴としている。この請求項3に記載の発明によれば、より具体的には電極部(25、35)に接触部としての凸部(T)を設けることにより、熱電素子(12、13)と電極部(25、35)との接触面積を小さくできる。
そのうえ、凸部(T)によって熱電素子(12、13)の接合面(12a、13a)と電極部(25、35)との間に適正な隙間(S)を容易に確保できるようになることより、導通不良とすることなく充分な接合強度を確保することができる。また、組み立ても熱電素子(12、13)と熱交換素子(22、32)とを押し付けて接合するだけで難しくすることがない。
また、請求項4に記載の発明では、請求項3に記載の熱電変換装置において、凸部(T)を複数設けたことを特徴としている。この請求項4に記載の発明によれば、熱交換素子(22、32)が傾いて接合されるのを防ぐことができる。
また、請求項5に記載の発明では、複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)とこれら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、複数の熱交換素子(22、32)を熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
熱電素子組立体(10)と熱交換素子組立体(20、30)とが積層された状態において、熱電素子組立体(10)と熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備えた熱電変換装置の製造方法であり、
電極部(25、35)に、接合する熱電素子(12、13)の接合面(12a、13a)側に突出させた凸部(T)を設け、その凸部(T)を接合面(12a、13a)に接触させた状態で接合することを特徴としている。
この請求項5に記載の発明によれば、熱電素子(12、13)と熱交換素子(22、32)とを押し付けて接合するだけで充分な接合強度を確保することのできる簡単な製造方法とすることができる。すなわち、熱電素子(12、13)と熱交換素子(22、32)とを押し付けて冶具で固定し、半田付けすれば良く、接合部間の隙間(S)の寸法管理の必要がないため、簡単な冶具で容易に組み立てが可能となる。
また、請求項6に記載の発明では、複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)と、これら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、複数の熱交換素子(22、32)を熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
熱電素子組立体(10)と熱交換素子組立体(20、30)とが積層された状態において、熱電素子組立体(10)と熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備えた熱電変換装置の製造方法であり、
熱電素子(12、13)と電極部(25、35)との間に隙間保持部材(SH)を介在させた状態で接合することを特徴としている。
この請求項6に記載の発明によれば、隙間保持部材(SH)によって熱電素子(12、13)の接合面(12a、13a)と電極部(25、35)との間に適正な隙間(S)を容易に確保できるようになる。このことより、電極部(25、35)の成分である銅(Cu)の分子が熱電素子(12、13)内部に拡散してしまうことによる熱電素子(12、13)の性能低下を防止することができるうえ、導通不良とすることなく充分な接合強度を確保することができる。
また、請求項7に記載の発明では、請求項6に記載の熱電変換装置の製造方法において、隙間保持部材(SH)として、所定の大きさの粒体を用いたことを特徴としている。この請求項7に記載の発明によれば、適正な隙間(S)を容易に確保することができる。なお、このような隙間保持部材(SH)としては、熱電素子(12、13)内部に拡散しにくい、例えば、ニッケル(Ni)などの材質が望ましく、形状もできるだけ球体が望ましく、大きさは具体的に数十〜百μm程度が望ましい。
また、請求項8に記載の発明では、請求項6または請求項7に記載の熱電変換装置の製造方法において、接合部材(H)はペースト状であり、隙間保持部材(SH)を接合部材(H)に混入させて用いることを特徴としている。この請求項8に記載の発明によれば、接合時に新たな作業を加えることなく、容易に熱電素子(12、13)と電極部(25、35)との間に隙間保持部材(SH)を配置することができる。
なお、上記各手段および特許請求の範囲に記載の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図5に基づいて詳細に説明する。図1は本発明に係わる熱電変換装置の全体構成を示す模式図であり、図2は図1に示す熱電変換装置の主要部の構成を示す分解構成図である。また、図3は図1中に示すA−A断面図であり、図4は図1に示す熱電変換装置の全体構成を示す側面図である。そして、図5は本発明の第1実施形態における要部の部分拡大図である。
本実施形態の熱電変換装置は、図1ないし図5に示すように、熱電素子組立体としての熱電素子基板10、熱交換素子組立体としての吸熱電極基板20と放熱電極基板30、および一対のケース部材28、38などから構成されている。そして、熱電素子基板10は、図2および図3に示すように、P型とN型とからなる熱電素子12、13を所定の配列形状に配列し、保持板である第1絶縁基板11によって一体に構成している。
より具体的に、第1絶縁基板11は平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、フェノール樹脂、LCP樹脂もしくはPET樹脂など)からなり、P型熱電素子12とN型熱電素子13とを交互に複数個配列してなる熱電素子群を列設して一体に構成している。P型熱電素子12は、Bi−Te系化合物からなるP型半導体により構成され、N型熱電素子13はBi−Te系化合物からなるN型半導体により構成された極小部品である。
これらP型、N型熱電素子12、13を第1絶縁基板11に略碁盤目状に配列して接着剤等により固定している。なお、P型、N型熱電素子12、13は、上端面と下端面がそれぞれ接合面12a、13aとなっており、第1絶縁基板11よりも突き出すように固定されている。また、熱電素子12、13の接合面12a、13aには、Cu拡散防止のためのバリヤ層として、3〜6μ程度のNiメッキが施されており、さらには半田付け性向上のため、Niメッキの上にSn−Biなどの半田メッキが施こされている。
そして、これら隣接する熱電素子12、13は、本実施形態では熱交換素子としての吸熱電極部材22と放熱電極部材32とを介して接続されるようになっている。つまり、これら吸放熱電極部材22、32はそれぞれ電極部25、35を有しており、図1および図2に示すように、上側に配置される吸熱電極部材22は、隣接するN型熱電素子13からP型熱電素子12に向けて電流を流すため電気的に接続する電極部材となり、下側に配置される放熱電極部材32は、隣接するP型熱電素子12からN型熱電素子13に向けて電流を流すため電気的に接続する電極部材となる。
そして、この吸放熱電極部材22、32は、熱電素子12、13の接合面12a、13aに予め接合部材としてのSn−Sbなどのペースト半田H(図5参照)をスクリーン印刷で薄く均一に塗布しておき、組み立て後に全体を加熱することで半田付けにて接合される。なお、吸放熱電極部材22、32の電極部25、35は、熱電素子12、13を流れる電流に基づいて断面積が設定されるが、本実施形態では吸放熱電極部材22、32の吸放熱部26、36と同じ板厚、より具体的には約0.2〜0.5mm程度としている。
次に、吸熱電極基板20は、図1および図2に示すように、複数個の熱交換素子である吸熱電極部材22を平板あるいはフィルム状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、フェノール樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板としての第2絶縁基板21に一体構成している。同様に、放熱電極基板30は、複数個の熱交換素子である放熱電極部材32を平板あるいはフィルム状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、フェノール樹脂、LCP樹脂もしくはPET樹脂など)からなる保持板としての第3絶縁基板31に一体構成している。
そして、吸放熱電極部材22、32は、銅材などの導電性金属からなる薄肉の板材を用いて、図4に示すように、断面が略U字状となっており、U字状底部に平面状の吸放熱電極部25、35を形成し、その電極部25、35から外方に延出された平面に吸放熱部としてのルーバー26、36を形成している。
また、熱交換部であるルーバー26、36は、吸放熱電極部25、35から伝熱される熱を吸放熱するためのフィンであり、切り起こしなどの成形加工により電極部25、35と一体に形成している。そして、その吸放熱電極部25、35の一端面が熱電素子12、13に接合するように、第2、第3絶縁基板21、31にて一体で構成している。
なお、吸放熱電極部材22、32は、第2、第3絶縁基板21、31の一端面に、その吸放熱電極部25、35の一端面が僅かに突き出す程度の位置に一体で構成している。つまり、電極部25、35の一端面が熱電素子基板10に設けられた熱電素子12、13に接合したときに、その吸熱電極部材22および放熱電極部材32の吸放熱部が熱電素子12、13側にはみ出さないように構成している。
さらに、互いに隣り合う吸熱電極部材22および放熱電極部材32同士は、互いに電気的に絶縁するように、所定の隙間を設けて複数個碁盤目状に第2、第3絶縁基板21、31に配設されている。そして、熱電素子12、13の上側の接合面12a、13aに吸熱電極部材22の吸熱電極部25を接合するように配置し、熱電素子12、13の下側の接合面12a、13aに放熱電極部材32の放熱電極部35を接合するように配置している。
なお、図1および図2に示す左右端に配設される熱電素子12、13の末端には、それぞれ端子24a、24bが設けられ、この端子24a、24bには、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続するようにしている。これにより、上方側に配設される吸熱電極部材22は、隣接するN型熱電素子13からP型熱電素子12に電気的に接続するように複数個配設され、下方側に配設される放熱電極部材32は、隣接するP型熱電素子12からN型熱電素子13に電気的に接続するように複数個配設されている。
ちなみに、端子24aから入力された直流電源は、図1に示す左端のP型熱電素子12から下方に配設された放熱電極部材32を介してN型熱電素子13に直列的に流れ、次に、このN型熱電素子13から上方に配設された吸熱電極部材22を介してP型熱電素子12に直列的に流れるように構成している。つまり、熱電素子12、13の両端に直流電流が直列的に流れるように接続される。
このときに、PN接合部を構成する下方に配設された放熱電極部材32は、ペルチェ効果によって高温の状態となり、NP接合部を構成する上方に配設された吸熱電極部材22は低温の状態となる。つまり、上方側に形成されたルーバー26は吸熱部である吸熱熱交換部を形成して低温の状態の熱が伝熱されて被冷却流体が接触され、下方側に形成されたルーバー36は放熱部である放熱熱交換部を形成して高温の状態の熱が伝熱されて冷却流体が接触される。
つまり、図1に示すように、熱電素子基板10を区画壁として、ケース部材28、38により、熱電素子基板10の両側に送風通路を形成して、その送風通路に空気を流通することで、ルーバー26、36と空気とが熱交換され、熱電素子基板10を区画壁として、上側のルーバー26で空気を冷却することができ、下側のルーバー36で空気を加熱することができる。
本実施形態では、熱電素子12、13と吸放熱電極部材22、32とが直接接合されているため、熱抵抗がなく、大きな吸放熱量、COP(成績係数)が可能になる。なお、吸放熱電極部材22、32を複数個別体で形成して、それぞれを第2、第3絶縁基板21、31に一体構成させたが、これに限らず、少なくとも列ごとに配列される熱電素子群を複数個連結させてコルゲート状に形成して、第2、第3絶縁基板21、31に結合させた後に、吸放熱電極部25、35のそれぞれが互いに電気的に絶縁されるように連結部を切断して形成しても良い。
これによれば、吸放熱電極部材22、32がローラ成形などの簡素な治具で成型加工を行なうことができるとともに、吸放熱電極基板20、30を構成するときに、複数個となる吸放熱電極部材22、32が少なくとも熱電素子群単位にコルゲート状に一体で形成できることで、吸放熱電極部材22、32の第2、第3絶縁基板21、31への組付作業が容易にできる。
また、本実施形態では、吸放熱電極部材22、32を薄肉の板材を用いて形成したが、より具体的には、板材の板厚を約0.2〜0.5mm程度であれば、図に示すように、熱交換部としてのルーバー26、36を成形するにあたり、加工性の向上が図れるため望ましい。なお、ルーバー26、36は、形状がルーバー状のみでなくオフセット状に形成しても良い。
次に、本実施形態における本発明の要部を、図5を用いて説明する。本実施形態では熱電素子12、13と吸放熱電極部材22、32との接触面積が、熱電素子12、13の接合面12a、13aの面積よりも小さくなるようにしている。具体的には、吸放熱電極部25、35に接触部として、接合面12a、13a側に突出した凸部Tを設けて、吸放熱電極部25、35の接触部面積が、接合面12a、13aの面積よりも小さくなるようにしている。
この凸部Tは、吸放熱電極部材22、32の吸放熱電極部25、35を部分的に突出するように形成したものである。この凸部Tを熱電素子12、13の接合面12a、13aに接触させた状態で接合することにより、凸部Tの先端以外の部位は接合面12a、13aに接触せず、接合に適正な隙間Sが形成され、この隙間Sに半田Hが充填されて適正な半田層厚さが確保されて接合が成される。
より具体的には、吸放熱電極部25、35と接合面12a、13aとの隙間Sが数十〜百μm程度となるようにしている。これにより、吸放熱電極部25、35のCu成分が熱電素子12、13の内部に拡散するのを抑えることができるうえ、充分な接合強度を確保することができる。なお、この凸部Tによる接触は、点接触であっても良いし、線接触であっても良い。
次に、以上の構成による熱電変換装置の製造方法と組み付け方法について説明する。図2に示すように、まず、熱電素子12、13は、第1絶縁基板11に設けられた基板穴にP型とN型とを交互に略碁盤目状に複数個配列し、これらを接着剤で固定して熱電素子基板10を一体に構成する。なお、熱電素子12、13は、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンター装置を用いて製造しても良い。
吸熱電極基板20は、吸熱電極部材22を第2絶縁基板21に設けられた基板穴に略碁盤目状に複数個配列し、これらを固定して一体に構成する。ここで、吸熱電極部材22は、第2絶縁基板21の一端面より吸熱電極部25の一端面がわずかに突出するように第2絶縁基板21に一体に構成する。
一方の放熱電極基板30は、放熱電極部材32を第3絶縁基板31に設けられた基板穴に略碁盤目状に複数個配列し、これらを固定して一体に構成する。ここで、放熱電極部材32は、第3絶縁基板31の一端面より放熱電極部35の一端面がわずかに突出するように第3絶縁基板31に一体に構成する。
熱電素子基板10の熱電素子12、13の接合面12a、13aには、Sn−Sbなどのペースト半田H(図5参照)をスクリーン印刷で薄く均一に塗布する。そして、吸熱電極基板20と放熱電極基板30との間に、熱電素子基板10を挟み込み、吸放熱電極部材22、32の吸放熱電極部25、35に設けた凸部Tが熱電素子12、13の接合面12a、13aに接触させた状態に組み立てる。この組立体をリフロー炉などに入れて全体を昇温し、塗布したペースト半田Hを溶かしてこれら全体を一体に半田接合させて熱電変換装置を形成するものである。
これにより、上方側に配設される吸熱電極基板20は、吸熱電極部25が隣接するP型熱電素子12とN型熱電素子13とを直列的に接続するとともに、下方側に配設される放熱電極基板30は、放熱電極部35が隣接するN型熱電素子13とP型熱電素子12とを直列的に接続する。そして、吸放熱電極部25、35との接合面12a、13aとを半田付けにより接合される。
そして、図4に示すように、少なくとも、吸熱電極部材22の外郭と第2絶縁基板21との隙間、および吸熱電極部25の背面側に樹脂材料からなるシール材を用いてポッティング処理をして、吸熱による結露が発生したときに、接合面12a側に結露水が洩れないように気密としている。そして、上方側、下方側をケース部材28、38により空気流路を形成するように組み付けることで、上方側に吸熱熱交換部が形成され、下方側に放熱熱交換部が形成されて、これに空気を流通させることで冷風、温風を得ることが可能となる。
次に、本実施形態での特徴と、その効果について述べる。まず、複数のP型熱電素子12と複数のN型熱電素子13とを所定の配列形状に配列にしてなる熱電素子基板10と、隣接して配列されたP型熱電素子12とN型熱電素子13とを電気的に接続する吸放熱電極部25、35を有する複数の吸放熱電極部材22、32とこれら複数の吸放熱電極部材22、32を保持する第2、第3絶縁基板21、31とを備え、複数の吸放熱電極部材22、32を熱電素子12、13の配列状態に対応する所定の配列状態に保持してなる吸放熱電極基板20、30と、熱電素子基板10と吸放熱電極基板20、30とが積層された状態において、熱電素子基板10と吸放熱電極基板20、30との間の複数の接合箇所を一斉に接合する接合部材Hとを備え、
熱電素子12、13と吸放熱電極部材22、32との接触面積が、熱電素子12、13の接合面12a、13aの面積よりも小さくしている。
これによれば、熱電素子12、13と、吸放熱電極部25、35を有する吸放熱電極部材22、32との接合において、接触面積を小さくすることにより、吸放熱電極部25、35の成分である銅(Cu)の分子が熱電素子12、13内部に拡散してしまうことによる熱電素子12、13の性能低下を抑えることができる。
また、吸放熱電極部25、35の接触部面積が、接合面12a、13aの面積よりも小さくしている。これによれば、吸放熱電極部材22、32を形成する際、吸放熱電極部25、35の接触部面積を小さく形成することより、上記の効果の実現が容易である。また、吸放熱電極部25、35に接触部として、接合面12a、13a側に突出した凸部Tを設けている。これによれば、より具体的には吸放熱電極部25、35に接触部としての凸部Tを設けることにより、熱電素子12、13と吸放熱電極部25、35との接触面積を小さくできる。
そのうえ、凸部Tによって熱電素子12、13の接合面12a、13aと吸放熱電極部25、35との間に適正な隙間Sを容易に確保できるようになることより、適正な半田フィレット形状を容易に実現でき、導通不良とすることなく充分な接合強度を確保することができ、半田接合部の信頼性を向上することができる。また、組み立ても熱電素子12、13と吸放熱電極部材22、32とを押し付けて接合するだけで難しくすることがない。
また、複数のP型熱電素子12と複数のN型熱電素子13とを所定の配列形状に配列にしてなる熱電素子基板10と、隣接して配列されたP型熱電素子12とN型熱電素子(3とを電気的に接続する吸放熱電極部25、35を有する複数の吸放熱電極部材22、32とこれら複数の吸放熱電極部材22、32を保持する第2、第3絶縁基板21、31とを備え、複数の吸放熱電極部材22、32を熱電素子12、13の配列状態に対応する所定の配列状態に保持してなる吸放熱電極基板20、30と、熱電素子基板10と吸放熱電極基板20、30とが積層された状態において、熱電素子基板10と吸放熱電極基板20、30との間の複数の接合箇所を一斉に接合するペースト半田Hとを備えた熱電変換装置の製造方法であり、
吸放熱電極部25、35に、接合する熱電素子12、13の接合面12a、13a側に突出させた凸部Tを設け、その凸部Tを接合面12a、13aに接触させた状態で接合するようにしている。これによれば、熱電素子12、13と吸放熱電極部材22、32とを押し付けて接合するだけで充分な接合強度を確保することのできる簡単な製造方法とすることができる。すなわち、熱電素子12、13と吸放熱電極部材22、32とを押し付けて冶具で固定し、半田付けすれば良く、接合部間の隙間Sの寸法管理が必要ないため、簡単な冶具で容易に組み立てが可能となる。
(変形例)
図6は、図5の第1実施形態の変形例を示す部分拡大図である。上述の第1実施形態では、吸放熱電極部25、35の略中央部に、接触部として接合面12a、13a側に突出した凸部Tを設けたが、吸放熱電極部25、35全体を接合面12a、13a側に突出したR形状の凸部Tとしても良い。このR形状の凸部Tは、半球状であっても良いし、半円筒状であっても良い。
(第2実施形態)
図7は、本発明の第2実施形態における要部の部分拡大図である。上述した第1実施形態と異なる特徴部分を説明する。本実施形態では、吸放熱電極部25、35に形成する接触部としての凸部Tを複数設けている。これによれば、吸放熱電極部材22、32が広い面ではなく、複数の点で接合面12a、13aと接触することにより、Cu成分の拡散を抑えつつ、吸放熱電極部材22、32が傾いて接合されるのを防ぐことができる。
(第3実施形態)
図8は、本発明の第3実施形態における要部の部分拡大図である。上述した各実施形態と異なる特徴部分を説明する。本実施形態は、図1ないし図4で説明した本発明に係わる熱電変換装置の前提構成における製造方法であり、上述の第1、第2実施形態で説明したように吸放熱電極部25、35に凸部Tを設けるのではなく、熱電素子12、13と吸放熱電極部25、35との間に隙間保持部材SHを介在させた状態で接合するようにしたものである。
この隙間保持部材SHとは、熱電素子12、13の内部に拡散しにくい、例えば、ニッケル(Ni)などの材質が望ましく、形状もできるだけ球体が望ましく、大きさは具体的に数十〜百μm程度が望ましい。そして、このニッケルの微細な粒体を、先の接合部材としてのペースト半田Hに混入させ、ペースト半田Hと一緒に塗布して用いるものである。
これによれば、隙間保持部材SHによって熱電素子12、13の接合面12a、13aと吸放熱電極部25、35との間に適正な隙間Sを容易に確保できるようになる。このことより、吸放熱電極部25、35の成分である銅(Cu)の分子が熱電素子12、13内部に拡散してしまうことによる熱電素子12、13の性能低下を防止することができるうえ、導通不良とすることなく充分な接合強度を確保することができる。
また、隙間保持部材SHとして、所定の大きさの粒体を用いている。これによれば、適正な隙間Sを容易に確保することができる。また、接合部材Hはペースト状であり、隙間保持部材SHを接合部材Hに混入させて用いる。これによれば、接合時に新たな作業を加えることなく、容易に熱電素子12、13と電極部25、35との間に隙間保持部材SHを配置することができる。
(その他の実施形態)
本発明は、上述した実施形態に限定されるものではなく、上述の実施形態の他に、極小部品である熱電素子12、13を第1絶縁基板11に碁盤目状に複数個配列する組み付け方法として、熱電素子基板10としての第1絶縁基板11に熱電素子12、13を交互に略碁盤目状に配列するための複数個の係合孔14を形成して、吸熱電極基板20と放熱電極基板30とを組み合わせるときに、例えば、ロボットを用いた組み付け工程により熱電素子12、13を係合孔14に交互に複数個配列してなる熱電素子群を列設して構成しても良い。
また、上述の実施形態の他に、熱電素子基板10、吸熱電極基板20、放熱電極基板30は、それぞれのいずれかを複数個に分割し、それらを組み合わせるように構成しても良い。また、別な実施例として、熱電素子基板10を一つとして、他の基板20、30を複数個に分割してこれらを組み付けることでも良い。
さらに、それぞれの基板を複数個に分割し、これらを組み合わせることでも良い。これによれば、各基板10、20、30を小さくすることで、隣接する熱電素子12、13の接続部で発生する熱によって熱ひずみが生ずるが、各基板10、20、30を分割して形成することで、熱ひずみの低減が図れる。
また、以上の実施形態では、熱電素子12、13、吸放熱電極部25、35とからなる接合箇所において、接合部材として半田を用いて接合したが、これに限らず、熱的な接合を目的とする接着剤を用いても良い。また、この他に複数の接合箇所をひとまとめにして接合するように、例えば、一枚の板状の接着剤を用いても良い。
本発明に係わる熱電変換装置の全体構成を示す模式図である。 図1に示す熱電変換装置の主要部の構成を示す分解構成図である。 図1中に示すA−A断面図である。 図1に示す熱電変換装置の全体構成を示す側面図である。 本発明の第1実施形態における要部の部分拡大図である。 図5の第1実施形態の変形例を示す部分拡大図である。 本発明の第2実施形態における要部の部分拡大図である。 本発明の第3実施形態における要部の部分拡大図である。
符号の説明
10…熱電素子基板(熱電素子組立体)
12…P型熱電素子
12a…接合面
13…N型熱電素子
13a…接合面
20…吸熱電極基板(熱交換素子組立体)
21…第2絶縁基板(保持板)
22…吸熱電極部材(熱交換素子)
25…電極部
30…放熱電極基板(熱交換素子組立体)
31…第3絶縁基板(保持板)
32…放熱電極部材(熱交換素子)
35…電極部
H…ペースト半田(接合部材)
SH…隙間保持部材
T…凸部

Claims (8)

  1. 複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
    隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)とこれら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、前記複数の熱交換素子(22、32)を前記熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
    前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)とが積層された状態において、前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備え、
    前記熱電素子(12、13)と前記熱交換素子(22、32)との接触面積が、前記熱電素子(12、13)の接合面(12a、13a)の面積よりも小さいことを特徴とする熱電変換装置。
  2. 前記電極部(25、35)の接触部面積が、前記接合面(12a、13a)の面積よりも小さいことを特徴とする請求項1に記載の熱電変換装置。
  3. 前記電極部(25、35)に接触部として、前記接合面(12a、13a)側に突出した凸部(T)を設けたことを特徴とする請求項2に記載の熱電変換装置。
  4. 前記凸部(T)を複数設けたことを特徴とする請求項3に記載の熱電変換装置。
  5. 複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
    隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)とこれら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、前記複数の熱交換素子(22、32)を前記熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
    前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)とが積層された状態において、前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備えた熱電変換装置の製造方法であり、
    前記電極部(25、35)に、接合する前記熱電素子(12、13)の接合面(12a、13a)側に突出させた凸部(T)を設け、その凸部(T)を前記接合面(12a、13a)に接触させた状態で接合することを特徴とする熱電変換装置の製造方法。
  6. 複数のP型熱電素子(12)と複数のN型熱電素子(13)とを所定の配列形状に配列にしてなる熱電素子組立体(10)と、
    隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続する電極部(25、35)を有する複数の熱交換素子(22、32)と、これら複数の熱交換素子(22、32)を保持する保持部材(21、31)とを備え、前記複数の熱交換素子(22、32)を前記熱電素子(12、13)の配列状態に対応する所定の配列状態に保持してなる熱交換素子組立体(20、30)と、
    前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)とが積層された状態において、前記熱電素子組立体(10)と前記熱交換素子組立体(20、30)との間の複数の接合箇所を一斉に接合する接合部材(H)とを備えた熱電変換装置の製造方法であり、
    前記熱電素子(12、13)と前記電極部(25、35)との間に隙間保持部材(SH)を介在させた状態で接合することを特徴とする熱電変換装置の製造方法。
  7. 前記隙間保持部材(SH)として、所定の大きさの粒体を用いたことを特徴とする請求項6に記載の熱電変換装置の製造方法。
  8. 前記接合部材(H)はペースト状であり、前記隙間保持部材(SH)を前記接合部材(H)に混入させて用いることを特徴とする請求項6または請求項7に記載の熱電変換装置の製造方法。
JP2006160203A 2006-06-08 2006-06-08 熱電変換装置およびその製造方法 Pending JP2007329349A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160203A JP2007329349A (ja) 2006-06-08 2006-06-08 熱電変換装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160203A JP2007329349A (ja) 2006-06-08 2006-06-08 熱電変換装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007329349A true JP2007329349A (ja) 2007-12-20

Family

ID=38929610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160203A Pending JP2007329349A (ja) 2006-06-08 2006-06-08 熱電変換装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007329349A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061031A (ja) * 2009-09-10 2011-03-24 Toshiba Corp 熱電変換モジュール
WO2012046170A1 (en) * 2010-10-04 2012-04-12 Basf Se Thermoelectric modules for exhaust system
US9476617B2 (en) 2010-10-04 2016-10-25 Basf Se Thermoelectric modules for an exhaust system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321350A (ja) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd 熱電気変換装置
JP2003152231A (ja) * 2001-11-19 2003-05-23 Kyocera Corp 熱電素子モジュールならびに半導体素子収納用パッケージおよび半導体モジュール
JP2006114840A (ja) * 2004-10-18 2006-04-27 Denso Corp 熱電変換装置およびその熱電変換装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321350A (ja) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd 熱電気変換装置
JP2003152231A (ja) * 2001-11-19 2003-05-23 Kyocera Corp 熱電素子モジュールならびに半導体素子収納用パッケージおよび半導体モジュール
JP2006114840A (ja) * 2004-10-18 2006-04-27 Denso Corp 熱電変換装置およびその熱電変換装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061031A (ja) * 2009-09-10 2011-03-24 Toshiba Corp 熱電変換モジュール
WO2012046170A1 (en) * 2010-10-04 2012-04-12 Basf Se Thermoelectric modules for exhaust system
US9476617B2 (en) 2010-10-04 2016-10-25 Basf Se Thermoelectric modules for an exhaust system

Similar Documents

Publication Publication Date Title
CN1969397B (zh) 热电模块
JP5956608B2 (ja) 熱電モジュール
US20090194862A1 (en) Semiconductor module and method of manufacturing the same
JP4296881B2 (ja) 熱電変換装置
JP4297060B2 (ja) 熱電変換装置
JPWO2015033515A1 (ja) 半導体モジュール及びインバータ装置
JP2006294648A (ja) 熱電変換装置
JP2007093106A (ja) 熱交換装置
JP2008034792A (ja) 熱電変換装置およびその製造方法
JP2007103904A (ja) 熱電変換装置
JP5638333B2 (ja) 熱電モジュール
JP2007035907A (ja) 熱電モジュール
JP2008078222A (ja) 熱電変換装置
JP2007329349A (ja) 熱電変換装置およびその製造方法
KR101508793B1 (ko) 열전소자 모듈을 이용한 열교환기의 제조방법
JP2017041620A (ja) 熱電変換器および熱電変換システム
US7319590B1 (en) Conductive heat transfer system and method for integrated circuits
JP2011091152A (ja) パワーモジュール
KR20150123055A (ko) 열전환장치
JP2008085309A (ja) 熱電変換モジュールおよびその製造方法ならびに熱電変換モジュールに用いられる熱電変換材料
US20060219286A1 (en) Thermoelectric transducer and manufacturing method for the same
JP2007294548A (ja) 熱電変換装置
JP4682756B2 (ja) 熱電変換装置およびその装置の製造方法
JP4626263B2 (ja) 熱電変換装置およびその熱電変換装置の製造方法
JP2008066663A (ja) 熱電変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823