JP2007329189A - Thin-film capacitor, and manufacturing method thereof - Google Patents

Thin-film capacitor, and manufacturing method thereof Download PDF

Info

Publication number
JP2007329189A
JP2007329189A JP2006157565A JP2006157565A JP2007329189A JP 2007329189 A JP2007329189 A JP 2007329189A JP 2006157565 A JP2006157565 A JP 2006157565A JP 2006157565 A JP2006157565 A JP 2006157565A JP 2007329189 A JP2007329189 A JP 2007329189A
Authority
JP
Japan
Prior art keywords
film
electrode
dielectric
electrode film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157565A
Other languages
Japanese (ja)
Inventor
Kenji Horino
賢治 堀野
Kiyoshi Uchida
清志 内田
Hitoshi Saida
仁 齋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006157565A priority Critical patent/JP2007329189A/en
Publication of JP2007329189A publication Critical patent/JP2007329189A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film capacitor in which peeling of an electrode film from a dielectric film can be sufficiently prevented while sufficiently ensuring the electrical conductivity of the electrode film, even if inexpensive Cu is used as the electrode. <P>SOLUTION: The thin-film capacitor 100 is provided on a substrate 1, and has a pair of electrode films 2, 6 and the dielectric film 4 provided between the pair of electrode films 2 and 6. In this capacitor 100, the pair of electrode films 2, 6 are each a Cu electrode film containing Cu, coherent layers 3, 5 containing Cu<SB>2</SB>O are provided between the electrode films 2, 6 and the dielectric film 4, and the dielectric film 4 is an oxide dielectric film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板上に形成する小型電子回路などに用いられる薄膜コンデンサ及びその製造方法に関する。   The present invention relates to a thin film capacitor used in a small electronic circuit formed on a substrate and a method for manufacturing the same.

従来、基板の上に、受動素子としての薄膜コンデンサを形成したものが広く知られている。このような受動素子には高信頼性化及び小型化の要求があり、これらの要求を満足するために基板表面、電極膜及び誘電体膜のそれぞれが平滑であることが望まれる。   Conventionally, a thin film capacitor as a passive element formed on a substrate is widely known. Such passive elements are required to have high reliability and miniaturization, and in order to satisfy these requirements, it is desired that each of the substrate surface, the electrode film, and the dielectric film be smooth.

ところで、電極膜の電極材料としては、従来、耐酸化性や耐熱性を考慮して白金(Pt)又はパラジウム(Pt)などの貴金属を用いていた。しかし、これらの貴金属は高価であり、大容量化の要求に伴って積層化を考慮すると、コスト的に合わないという問題が生じた。そこで、電極として銅(Cu)、ニッケル(Ni)又はアルミニウム(Al)等の安価な金属を用いることが望まれる。ところが、電極としてCu、Ni、又はAlを用いた場合には、白金等の貴金属と比較して酸化しやすい。このことから、誘電体の形成は、電極材料が酸化しない還元性雰囲気で行われることが望まれる。   By the way, as an electrode material of the electrode film, a noble metal such as platinum (Pt) or palladium (Pt) has been conventionally used in consideration of oxidation resistance and heat resistance. However, these noble metals are expensive, and there has been a problem that they are not suitable in terms of cost when considering the lamination with the demand for larger capacity. Therefore, it is desirable to use an inexpensive metal such as copper (Cu), nickel (Ni), or aluminum (Al) as an electrode. However, when Cu, Ni, or Al is used as an electrode, it is more easily oxidized than a noble metal such as platinum. Therefore, it is desirable that the dielectric is formed in a reducing atmosphere in which the electrode material is not oxidized.

電極膜は金属材料からなり、一方誘電体膜は酸化物誘電体からなるとすれば、電極膜と誘電体膜を平滑化すると、薄膜の凹凸の減少により実質的な接合面積が減少し、膜の接合面での係合性も減少する。このため、誘電体膜と電極膜とは、主として電極材料と誘電体膜材料との親和性によって密着しているだけとなり、相互の密着性が弱い状態になる。したがって、薄膜コンデンサが高温状態におかれると、電極材料と誘電体膜材料との熱膨張係数が異なることにより、電極膜と誘電体膜との間で剥離が生じ、その結果、コンデンサの容量低下が生じやすく、形成された薄膜コンデンサの信頼性が確保し難い。   If the electrode film is made of a metal material, while the dielectric film is made of an oxide dielectric, smoothing the electrode film and the dielectric film reduces the substantial bonding area due to the reduction in the unevenness of the thin film. Engagement at the joint surface is also reduced. For this reason, the dielectric film and the electrode film are in close contact mainly due to the affinity between the electrode material and the dielectric film material, and the mutual adhesion is weak. Therefore, when the thin film capacitor is placed in a high temperature state, the electrode material and the dielectric film material have different thermal expansion coefficients, causing separation between the electrode film and the dielectric film, resulting in a decrease in the capacitance of the capacitor. It is difficult to ensure the reliability of the formed thin film capacitor.

このように、電極材料と誘電体膜材料との熱膨張係数が異なることで発生する応力により、電極と誘電体膜との間で剥離が生じやすいが、これに対する解決法として、例えばAu電極と誘電体(例えばPb(Mg1/3Nb2/3)O)との間に、両者の中間の熱膨張率を有し且つTa又はNbからなる金属層を設ける方法(例えば下記特許文献1参照)、銅からなる第1電極、及び銅と酸化第一銅との複合材料からなる第2電極の2層構造の電極層を形成し、電極層の熱膨張係数及びヤング率を調整する方法(例えば下記特許文献2参照)、例えばPt電極と誘電体(例えばPb(Mg1/3Nb2/3)O)との間に、酸素と、誘電体を構成する金属元素とを含む中間層を設ける方法(例えば下記特許文献3参照)が提案されている。
特開平11−243032号公報 特開2001−185443号公報 特開平7−45475号公報
In this way, peeling is likely to occur between the electrode and the dielectric film due to the stress generated by the difference in thermal expansion coefficient between the electrode material and the dielectric film material. A method of providing a metal layer having a thermal expansion coefficient between them and Ta or Nb between a dielectric (for example, Pb (Mg 1/3 Nb 2/3 ) O 3 ) (for example, Patent Document 1 below) Reference), a first electrode made of copper, and a second electrode made of a composite material of copper and cuprous oxide, and a method of adjusting the thermal expansion coefficient and Young's modulus of the electrode layer (for example, the following Patent Document 2), eg, between the Pt electrode and the dielectric (e.g. Pb (Mg 1/3 Nb 2/3) O 3), an intermediate containing oxygen and a metal element constituting the dielectric A method of providing a layer (for example, see Patent Document 3 below) is proposed. To have.
Japanese Patent Application Laid-Open No. 11-243032 JP 2001-185443 A Japanese Patent Laid-Open No. 7-45475

しかし、上記特許文献1は、密着層である金属層中の金属元素が、電極膜中の金属元素とも、誘電体膜を構成する金属元素とも異なるため、熱膨張係数が異なることで発生する応力の緩和はもちろん、電極材料と誘電体膜材料との密着力を高めるものではない。また特許文献2は、熱膨張係数の調整を優先すると、第2電極において、銅と酸化第一銅との複合材料中の酸化第一銅の割合が増大して(酸化第一銅の割合の最適は55%若しくはそれ以上)導電率が低下してしまう。一方、導電率を向上させるためには銅と酸化第一銅との複合材料中の銅の割合を高める必要があり、結局、誘電体膜と電極との間で剥離が生じやすくなる。さらに特許文献3は、誘電体を構成する金属元素が中間層中の金属元素となっているため、誘電体と中間層との密着性は良好であるものの、中間層中の金属元素が電極中の金属元素とは異なるため、中間層と電極との密着性は良好ではなく、中間層と電極との間で剥離が生じやすいという問題があった。   However, in Patent Document 1, since the metal element in the metal layer that is the adhesion layer is different from the metal element in the electrode film and the metal element that constitutes the dielectric film, the stress generated due to the difference in thermal expansion coefficient. Of course, this does not increase the adhesion between the electrode material and the dielectric film material. In Patent Document 2, when priority is given to the adjustment of the thermal expansion coefficient, the ratio of cuprous oxide in the composite material of copper and cuprous oxide is increased in the second electrode (of the ratio of cuprous oxide). (Optimum is 55% or more) The conductivity is lowered. On the other hand, in order to improve the electrical conductivity, it is necessary to increase the ratio of copper in the composite material of copper and cuprous oxide, and eventually, peeling easily occurs between the dielectric film and the electrode. Further, in Patent Document 3, since the metal element constituting the dielectric is a metal element in the intermediate layer, the adhesion between the dielectric and the intermediate layer is good, but the metal element in the intermediate layer is in the electrode. Therefore, the adhesion between the intermediate layer and the electrode is not good, and there is a problem that peeling is likely to occur between the intermediate layer and the electrode.

そこで、本発明の目的は、電極として安価なCuを用いた場合でも、電極膜の導電率を充分に確保しながら、電極膜と誘電体膜との間で十分な密着性を有する薄膜コンデンサ、および薄膜コンデンサの製造方法を提供することである。   Therefore, an object of the present invention is to provide a thin film capacitor having sufficient adhesion between the electrode film and the dielectric film, while sufficiently ensuring the conductivity of the electrode film even when inexpensive Cu is used as the electrode, And a method of manufacturing a thin film capacitor.

上記課題を解決するため、本発明者らは鋭意研究を重ねた結果、薄膜コンデンサのCu電極膜と誘電体膜との間に少なくともCuOを含む密着層を設けることで、電極膜の導電率と、電極膜と誘電体膜との強固な密着性とを両立させ得ることを見出し、本発明を完成するに至った。すなわち、本発明は、基板上に設けられ、一対の電極膜と前記一対の電極膜の間に設けられる誘電体膜とを有する薄膜コンデンサにおいて、一対の電極膜の少なくとも一方はCuを含むCu電極膜であり、前記Cu電極膜と前記誘電体膜との間に、CuOを含む密着層が設けられており、前記誘電体膜が酸化物誘電体膜であることを特徴とする。 In order to solve the above problems, the present inventors have conducted intensive research. As a result, by providing an adhesion layer containing at least Cu 2 O between the Cu electrode film and the dielectric film of the thin film capacitor, the conductivity of the electrode film can be improved. The present invention has been completed by finding that both the rate and the strong adhesion between the electrode film and the dielectric film can be achieved. That is, the present invention provides a thin film capacitor provided on a substrate and having a pair of electrode films and a dielectric film provided between the pair of electrode films, wherein at least one of the pair of electrode films includes a Cu electrode containing Cu. An adhesion layer containing Cu 2 O is provided between the Cu electrode film and the dielectric film, and the dielectric film is an oxide dielectric film.

ここで、前記Cu電極膜の厚みは50nm〜1μmであり、且つ前記密着層の厚みの平均値は前記Cu電極膜に対して0%を超えて10%未満であることが好ましい。CuOは導電性を有するがCuよりも電気抵抗が高いため、前記密着層の厚みの平均値は前記Cu電極膜に対して10%未満であれば、10%以上の場合に比べて、電極間の抵抗の増加をより十分に防止できる。 Here, the thickness of the Cu electrode film is preferably 50 nm to 1 μm, and the average value of the thickness of the adhesion layer is preferably more than 0% and less than 10% with respect to the Cu electrode film. Since Cu 2 O has electrical conductivity but higher electrical resistance than Cu, the average value of the thickness of the adhesion layer is less than 10% with respect to the Cu electrode film, as compared with the case of 10% or more. An increase in resistance between the electrodes can be more sufficiently prevented.

また本発明に係る薄膜コンデンサでは、前記誘電体膜の厚みは、50nm〜1μmであることが好ましい。   In the thin film capacitor according to the present invention, the dielectric film preferably has a thickness of 50 nm to 1 μm.

さらに本発明に係る薄膜コンデンサでは、前記一対の電極膜の両方が前記Cu電極膜であることが好ましい。この場合、基板上に電極膜、密着層、誘電体膜、さらに密着層、電極膜が順次設けられることとなり、誘電体膜と2つの電極膜との間の剥離が密着層により十分に防止されるため、薄膜コンデンサの信頼性をより高めることができる。   Furthermore, in the thin film capacitor according to the present invention, it is preferable that both of the pair of electrode films are the Cu electrode films. In this case, an electrode film, an adhesion layer, a dielectric film, an adhesion layer, and an electrode film are sequentially provided on the substrate, and peeling between the dielectric film and the two electrode films is sufficiently prevented by the adhesion layer. Therefore, the reliability of the thin film capacitor can be further increased.

なお、本発明に係る薄膜コンデンサでは、一対の電極膜の間に前記誘電体膜を2層以上有し、前記誘電体膜同士の間に前記Cu電極膜を有し、且つ前記Cu電極膜と前記誘電体膜との間に前記密着層を有していてもよい。   In the thin film capacitor according to the present invention, the dielectric film has two or more layers between a pair of electrode films, the Cu electrode film is between the dielectric films, and the Cu electrode film The adhesion layer may be provided between the dielectric film.

また、本発明は、基板上に設けられ、一対の電極膜と前記一対の電極膜の間に設けられる誘電体膜とを有する薄膜コンデンサ素子の製造方法において、前記基板上に、前記一対の電極膜のうちの一方の電極膜を形成する工程と、前記誘電体膜を形成する工程と、前記誘電体膜上に、前記一対の電極膜のうちの他方の電極膜を形成する工程とを含み、前記一対の電極膜の少なくとも一方は、Cuを含むCu電極膜であり、前記Cu電極膜と前記誘電体膜との間に、CuOを含む密着層を形成する工程を含むことを特徴とする。 Further, the present invention provides a method of manufacturing a thin film capacitor element provided on a substrate and having a pair of electrode films and a dielectric film provided between the pair of electrode films, and the pair of electrodes on the substrate. Forming a first electrode film of the films, forming the dielectric film, and forming the other electrode film of the pair of electrode films on the dielectric film. And at least one of the pair of electrode films is a Cu electrode film containing Cu, and includes a step of forming an adhesion layer containing Cu 2 O between the Cu electrode film and the dielectric film. And

上記製造方法においては、前記一対の電極膜の両方が前記Cu電極膜であることが好ましい。この場合、電極膜の導電率を充分に確保しながら、誘電体膜と2つのCu電極膜との間の剥離が十分に防止されるため、薄膜コンデンサの信頼性をより高めることができる。   In the manufacturing method, it is preferable that both of the pair of electrode films are the Cu electrode films. In this case, since the peeling between the dielectric film and the two Cu electrode films is sufficiently prevented while sufficiently ensuring the conductivity of the electrode film, the reliability of the thin film capacitor can be further improved.

本発明の薄膜コンデンサは、電極として安価なCuを用いた場合でも、電極膜の導電率を充分に確保しながら、電極膜と誘電体膜との間の剥離を十分に防止でき、薄膜コンデンサの高信頼性化を実現できる。   The thin film capacitor of the present invention can sufficiently prevent peeling between the electrode film and the dielectric film while ensuring sufficient conductivity of the electrode film even when inexpensive Cu is used as the electrode. High reliability can be realized.

以下、本発明の実施形態について詳細に説明する。なお、全図中、同一部材には同一符号を付すこととする。   Hereinafter, embodiments of the present invention will be described in detail. In all the drawings, the same reference numerals are assigned to the same members.

〔第1実施形態〕
図1は、本実施形態に係る薄膜コンデンサを示す概略断面図である。図1に示すように、本実施形態の薄膜コンデンサ100は、基板1上に設けられるものであり、下部電極膜2と、上部電極膜6と、下部電極膜2および上部電極膜6の間に設けられる誘電体膜4とを備えている。ここで、下部電極膜2は、基板1上に設けられており、上部電極膜6は、誘電体膜4に対し下部電極膜2と反対側に配置されている。下部電極膜2,上部電極膜6はいずれもCuを主成分とするCu電極膜であり、下部電極膜2と誘電体膜4との間、及び上部電極膜6と誘電体膜4との間にはそれぞれ、CuOからなる密着層3,5が設けられている。密着層3は、下部電極膜2と誘電体膜4のそれぞれに直接接触しており、密着層5は、上部電極膜6および誘電体膜4のそれぞれに直接接触している。そして、誘電体膜は、酸化物を含む酸化物誘電体膜となっている。
[First Embodiment]
FIG. 1 is a schematic cross-sectional view showing a thin film capacitor according to this embodiment. As shown in FIG. 1, the thin film capacitor 100 of this embodiment is provided on a substrate 1, and is interposed between a lower electrode film 2, an upper electrode film 6, a lower electrode film 2, and an upper electrode film 6. And a dielectric film 4 to be provided. Here, the lower electrode film 2 is provided on the substrate 1, and the upper electrode film 6 is disposed on the opposite side of the dielectric film 4 from the lower electrode film 2. Each of the lower electrode film 2 and the upper electrode film 6 is a Cu electrode film containing Cu as a main component, between the lower electrode film 2 and the dielectric film 4, and between the upper electrode film 6 and the dielectric film 4. Are provided with adhesion layers 3 and 5 made of Cu 2 O, respectively. The adhesion layer 3 is in direct contact with each of the lower electrode film 2 and the dielectric film 4, and the adhesion layer 5 is in direct contact with each of the upper electrode film 6 and the dielectric film 4. The dielectric film is an oxide dielectric film containing an oxide.

即ち、薄膜コンデンサ100においては、密着層3中に酸素原子が含まれ、誘電体膜4中にも酸素原子が含まれているため、密着層3と誘電体膜4との間の密着性が強固となる。また、密着層3中に含まれる金属元素は、Cuであり、下部電極膜2を構成する金属元素であるCuと同一となっている。このため、密着層3と下部電極膜2との間の密着性も強固となる。よって、密着層3により、誘電体膜4と下部電極膜2との間の剥離が十分に防止されることとなる。   That is, in the thin film capacitor 100, oxygen atoms are included in the adhesion layer 3, and oxygen atoms are also included in the dielectric film 4, so that the adhesion between the adhesion layer 3 and the dielectric film 4 is improved. Become strong. Further, the metal element contained in the adhesion layer 3 is Cu, which is the same as Cu that is a metal element constituting the lower electrode film 2. For this reason, the adhesion between the adhesion layer 3 and the lower electrode film 2 is also strengthened. Therefore, peeling between the dielectric film 4 and the lower electrode film 2 is sufficiently prevented by the adhesion layer 3.

一方、密着層5中にも酸素原子が含まれ、誘電体膜4中にも酸素原子が含まれているため、密着層5と誘電体膜4との間の密着性が強固となる。また、密着層5中に含まれる金属元素はCuであり、上部電極膜6を構成する金属元素であるCuと同一となっている。このため、密着層5と上部電極膜6との間の密着性も強固となる。よって、密着層5により、誘電体膜4と上部電極膜6との間の剥離が十分に防止されることとなる。   On the other hand, the adhesion layer 5 contains oxygen atoms, and the dielectric film 4 contains oxygen atoms, so that the adhesion between the adhesion layer 5 and the dielectric film 4 becomes strong. The metal element contained in the adhesion layer 5 is Cu, which is the same as Cu that is a metal element constituting the upper electrode film 6. For this reason, the adhesion between the adhesion layer 5 and the upper electrode film 6 is also strengthened. Therefore, peeling between the dielectric film 4 and the upper electrode film 6 is sufficiently prevented by the adhesion layer 5.

他方、CuOからなる密着層3は、下部電極膜2とは別に設けられているため、電極膜2の導電率を充分に確保しながら、誘電体膜4と下部電極膜2との密着性を向上させることができる。同様に、CuOからなる密着層5は、上部電極膜6とは別に設けられているため、電極膜6の導電率を充分に確保しながら、誘電体膜4と上部電極膜6との密着性を向上させることができる。 On the other hand, since the adhesion layer 3 made of Cu 2 O is provided separately from the lower electrode film 2, the adhesion between the dielectric film 4 and the lower electrode film 2 is ensured while sufficiently ensuring the conductivity of the electrode film 2. Can be improved. Similarly, since the adhesion layer 5 made of Cu 2 O is provided separately from the upper electrode film 6, the dielectric film 4 and the upper electrode film 6 have a sufficient conductivity while ensuring the conductivity of the electrode film 6. Adhesion can be improved.

このように薄膜コンデンサ100によれば、電極膜にCuを使用した場合であっても、電極膜の導電率を充分に確保しながら、誘電体膜4と下部電極膜2,上部電極膜6との間の剥離が十分に防止される。このため、高信頼化を実現することができる。   As described above, according to the thin film capacitor 100, even when Cu is used for the electrode film, the dielectric film 4, the lower electrode film 2, the upper electrode film 6 and the like can be obtained while sufficiently ensuring the conductivity of the electrode film. Is sufficiently prevented. For this reason, high reliability can be realized.

なお、基板1と下部電極膜2との間に基板密着膜11を設けても良い。   A substrate adhesion film 11 may be provided between the substrate 1 and the lower electrode film 2.

以下、本実施形態の薄膜コンデンサ100の各構成要素について詳細に説明する。   Hereinafter, each component of the thin film capacitor 100 of this embodiment will be described in detail.

基板1としては、シリコン単結晶基板、或いはアルミナ(Al)、マグネシア(MgO)、フォルステライト(2MgO・SiO)、ステアタイト(MgO・SiO)、ムライト(3Al・2SiO)、ベリリア(Be○)、ジルコニア(ZrO)、蜜化アルミニウム(AlN)、窒化シリコン(Si)、炭化シリコン(SiC)マグネシア等のセラミック多結晶基板、或いは1000℃以下で焼成して得たアルミナ(結晶相)と酸化ケイ素(ガラス相)等からなるガラスセラミックス基板(LTCC基板)、或いは石英ガラス等のガラス基板、或いはサファイア、MgO、SrTiO等の単結晶基板、或いはAl−Ni−Cu合金、Fe−Ni合金等の金属基板が例示される。基板1は、化学的、熱的に安定で応力発生が少なく、表面の平滑性を保つことができれば、何れのものでも良い。目的とする比誘電率や焼成温度に基づいて適宜選択すればよい。前記基板の中でも、基板表面の平滑性が良好なシリコン単結晶基板を用いることが好ましい。シリコン単結晶基板を用いる場合は、絶縁性を確保するためにその表面に熱酸化膜(Si○膜)を形成することが好ましい。熱酸化膜は、シリコン基板を高温にして、酸化性雰囲気中でシリコン単結晶基板の表面を酸化させて形成すればよい。基板1の厚みは、特に限定されず、たとえば100〜1000μmである。 As the substrate 1, a silicon single crystal substrate, or alumina (Al 2 O 3 ), magnesia (MgO), forsterite (2MgO · SiO 2 ), steatite (MgO · SiO 2 ), mullite (3Al 2 O 3 · 2SiO) is used. 2 ), beryllia (Be ○), zirconia (ZrO 2 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), ceramic polycrystalline substrate such as silicon carbide (SiC) magnesia, or fired at 1000 ° C. or lower A glass ceramic substrate (LTCC substrate) made of alumina (crystal phase) and silicon oxide (glass phase), a glass substrate such as quartz glass, a single crystal substrate such as sapphire, MgO, SrTiO 3 , or Al -Metal substrates, such as a Ni-Cu alloy and a Fe-Ni alloy, are illustrated. The substrate 1 may be any material as long as it is chemically and thermally stable, generates little stress, and can maintain the smoothness of the surface. What is necessary is just to select suitably based on the target dielectric constant and baking temperature. Among the substrates, it is preferable to use a silicon single crystal substrate having good substrate surface smoothness. When a silicon single crystal substrate is used, it is preferable to form a thermal oxide film (Si 2 film) on the surface in order to ensure insulation. The thermal oxide film may be formed by raising the temperature of the silicon substrate and oxidizing the surface of the silicon single crystal substrate in an oxidizing atmosphere. The thickness of the board | substrate 1 is not specifically limited, For example, it is 100-1000 micrometers.

なお、基板の表面を基板研削(ラッピング)、CMP(Chemical Mechanical Polishing)等の鏡面化(ポリツシング)処理を行なって、平滑化しても良い。また、基板1には、必要に応じて、ビア電極を形成しても良い。   Note that the surface of the substrate may be smoothed by subjecting it to mirror polishing (policing) such as substrate grinding (lapping) or CMP (Chemical Mechanical Polishing). Further, via electrodes may be formed on the substrate 1 as necessary.

誘電体膜4は、酸化物を含む酸化物誘電体で構成されており、このような酸化物誘電体としては、例えば、BST(チタン酸バリウムストロンチウム)、BaTiO、(Ba)(Ca1−X)TiO、(BaSr1−X)TiO、PbTiO、Pb(ZrTi1−X等のペロブスカイト構造を持った(強)誘電体材料や、Pb(Mg1/3Ni2/3)O等に代表される複合ペロブスカイトリラクサー型強誘電体材料や、BiTi12、SrBiTa等に代表されるビスマス層状化合物、(SrBa1−X)Nb、PbNb等に代表されるタングステンブロンズ型強誘電体材料が用いられる。この中でも、BST、BaTiOやPZT等のペロブスカイト構造を持った強誘電体材料が、誘電率が高く比較的低温での合成が容易であるため好ましい。誘電体膜4の膜厚は特に限定されないが50nm以上1μm以下に設定することが好ましい。膜厚が50nm未満であると充分な比誘電率が得られない場合があり、リーク電流が許容範囲を超えるおそれがある。一方、膜厚が1μmを超えると充分な静電容量値が得られない。なお、誘電体の特性制御のため、適宜、副成分として添加物質を加えても良い。 The dielectric film 4 is composed of an oxide dielectric containing an oxide. Examples of such an oxide dielectric include BST (barium strontium titanate), BaTiO 3 , (Ba) (Ca 1− X ) TiO 3 , (Ba X Sr 1-X ) TiO 3 , PbTiO 3 , Pb (Zr X Ti 1-X ) 3, etc. (strong) dielectric materials, Pb (Mg 1/3) Composite perovskite relaxor type ferroelectric materials typified by Ni 2/3 ) O 3, bismuth layered compounds typified by Bi 4 Ti 3 O 12 , SrBi 2 Ta 2 O 9 , (Sr X Ba 1- X 2 ) Tungsten bronze ferroelectric materials represented by Nb 2 O 6 , PbNb 2 O 6 and the like are used. Among these, ferroelectric materials having a perovskite structure such as BST, BaTiO 3 and PZT are preferable because they have a high dielectric constant and can be easily synthesized at a relatively low temperature. The film thickness of the dielectric film 4 is not particularly limited, but is preferably set to 50 nm or more and 1 μm or less. If the film thickness is less than 50 nm, sufficient dielectric constant may not be obtained, and the leakage current may exceed the allowable range. On the other hand, when the film thickness exceeds 1 μm, a sufficient capacitance value cannot be obtained. In order to control the characteristics of the dielectric, an additive substance may be added as a subcomponent as appropriate.

下部電極膜2及び上部電極膜6の電極材料は、Cuを主成分とする材料とし、Cu基合金を含む。ここで、主成分とは、電極材料中に50体積%以上含有されている成分を言うものとする。また、Cuを主成分とした理由は、Ni、Alを主成分とする場合に比べて、電気抵抗が低くなるという利点があるからである。なお、電極材料はCuのみで構成されることが、安価で且つ導電性が高いことから最も好ましい。下部電極膜2及び上部電極膜6の膜厚は特に限定されないが、薄い場合はピンホール等の欠陥が生じやすく、厚い場合には内部応力に伴う剥離が生じやすいという理由から、50nm以上1μm以下に設定することが好ましい。各電極膜の膜厚は、より好ましくは50〜200nmである。   The electrode material of the lower electrode film 2 and the upper electrode film 6 is a material mainly composed of Cu and includes a Cu-based alloy. Here, the main component refers to a component contained in the electrode material by 50% by volume or more. The reason why Cu is the main component is that there is an advantage that the electric resistance is lower than that when Ni and Al are the main components. The electrode material is most preferably composed only of Cu because it is inexpensive and has high conductivity. The film thicknesses of the lower electrode film 2 and the upper electrode film 6 are not particularly limited, but when they are thin, defects such as pinholes are likely to occur, and when they are thick, peeling due to internal stress is likely to occur. It is preferable to set to. The film thickness of each electrode film is more preferably 50 to 200 nm.

密着層3,5は、CuOからなる。密着層3,5を形成することにより特許文献2記載の技術とは異なって、誘電体膜4との親和性が全面にわたって増すこととなるので、密着性を高めることができる。密着層3,5の厚みの平均値はCu電極膜である下部電極膜2及び上部電極膜6のそれぞれの厚さに対して0%を超えて10%未満とすることが好ましい。すなわち下部電極膜2,上部電極膜6の厚さが例えば50nmであれば、密着層3,5の厚さを5nm未満とし、下部電極膜2,上部電極膜6の厚さが1μmであれば、密着層3,5の厚さを100nm未満とすることが好ましい。ここで、密着層の厚みの平均値は、薄膜コンデンサをFIB(集束イオンビーム)装置内で切断し、断面を露出した薄層サンプルを得、これをTEM(透過型電子顕微鏡)により観察した画像データから算出された値を言う。Cu電極膜である下部電極膜2及び上部電極膜6のそれぞれの厚さに対する密着層3,5の厚みの平均値の割合は、より好ましくは、1%以上10%未満、さらに好ましくは、2.5%以上5%以下とする。CuOは導電性を有するがCuよりも電気抵抗が高いため、密着層3,5の厚みの平均値はCu電極膜である下部電極膜2及び上部電極膜6の厚さに対して10%未満であれば、10%以上の場合に比べて、電極膜2,6間の抵抗の増加をより十分に防止でき、また、tanδ及びリーグ特性の性能が低下することを抑制することができる。 The adhesion layers 3 and 5 are made of Cu 2 O. By forming the adhesion layers 3 and 5, unlike the technique described in Patent Document 2, the affinity with the dielectric film 4 is increased over the entire surface, so that the adhesion can be enhanced. The average thickness of the adhesion layers 3 and 5 is preferably more than 0% and less than 10% with respect to the thickness of each of the lower electrode film 2 and the upper electrode film 6 which are Cu electrode films. That is, if the thickness of the lower electrode film 2 and the upper electrode film 6 is 50 nm, for example, the thickness of the adhesion layers 3 and 5 is less than 5 nm, and the thickness of the lower electrode film 2 and the upper electrode film 6 is 1 μm. The thickness of the adhesion layers 3 and 5 is preferably less than 100 nm. Here, the average value of the thickness of the adhesion layer is obtained by cutting a thin film capacitor in a FIB (focused ion beam) apparatus to obtain a thin layer sample having an exposed cross section, and observing this with a TEM (transmission electron microscope). A value calculated from data. The ratio of the average value of the thicknesses of the adhesion layers 3 and 5 to the thicknesses of the lower electrode film 2 and the upper electrode film 6 that are Cu electrode films is more preferably 1% or more and less than 10%, and further preferably 2%. .5% or more and 5% or less. Since Cu 2 O has conductivity but has an electric resistance higher than that of Cu, the average thickness of the adhesion layers 3 and 5 is 10 with respect to the thicknesses of the lower electrode film 2 and the upper electrode film 6 which are Cu electrode films. If it is less than%, an increase in resistance between the electrode films 2 and 6 can be prevented more sufficiently than in the case of 10% or more, and deterioration of the performance of tan δ and league characteristics can be suppressed. .

基板密着層11としては、TiO、TiO/SiO、TaN等を例示できる。なお、TiO/SiOはTiO層及びSiO層の積層体を意味する。この場合、SiO層が基板側に設けられる。なお、上部電極膜10の上に電極保護の目的でTiO、SiO、Al等の無機材料、エポキシ樹脂、ポリイミド樹脂等の有機材料等の保護層を設けても良い。 Examples of the substrate adhesion layer 11 include TiO x , TiO x / SiO 2 , and TaN. Incidentally, TiO X / SiO 2 means a laminate of TiO X layer and the SiO 2 layer. In this case, the SiO 2 layer is provided on the substrate side. A protective layer made of an inorganic material such as TiO 2 , SiO 2 , or Al 2 O 3, or an organic material such as an epoxy resin or a polyimide resin may be provided on the upper electrode film 10 for the purpose of electrode protection.

次に、薄膜コンデンサ100の製造方法について図2を参照しながら説明する。薄膜コンデンサ100の製造方法では、基板1としてシリコン単結晶基板の表面を熱酸化してSiO層を形成した基板を使用する薄膜コンデンサを例として説明する。 Next, a method for manufacturing the thin film capacitor 100 will be described with reference to FIG. In the method of manufacturing the thin film capacitor 100, a thin film capacitor using a substrate in which the surface of a silicon single crystal substrate is thermally oxidized to form a SiO 2 layer will be described as an example.

<基板密着層の形成>
図2(a)に示すように、まず基板1上に、基板1と下部電極膜12との密着性を高めることを目的として基板密着層11を形成する。基板密着層11の形成は、物理気相成長法(PVD)、化学気相成長(CVD)法を用いて蒸着することにより行うことができる。これらの蒸着方法の選択は、蒸着物質によって適宜選択すればよい。例えばTiOをターゲットとしてスパッタリング法によりTiO層を形成すればよい。なお、基板密着層11の形成は、基板1と下部電極膜2との組み合わせを考慮して必要により行なえば良い。
<Formation of substrate adhesion layer>
As shown in FIG. 2A, first, a substrate adhesion layer 11 is formed on the substrate 1 for the purpose of improving the adhesion between the substrate 1 and the lower electrode film 12. The substrate adhesion layer 11 can be formed by vapor deposition using physical vapor deposition (PVD) or chemical vapor deposition (CVD). These vapor deposition methods may be selected appropriately depending on the vapor deposition material. For example, TiO 2 may be formed of TiO 2 layer by sputtering a target. The formation of the substrate adhesion layer 11 may be performed as necessary in consideration of the combination of the substrate 1 and the lower electrode film 2.

<下部電極膜の形成>
次に、図2(b)に示すように、基板密着層11の上にCuを主成分とした材料からなる下部電極膜2を形成する。下部電極膜2は通常の薄膜形成法で作製されるが、例えばPVD法やパルスレーザー蒸着法(PLD)等の物理的蒸着法を用いることができる。PVD法としては、抵抗加熱蒸着又は電子ビーム加熱蒸着等の真空蒸着法、DCスパッタリング、高周波スパッタリング、マグネトロンスパッタリング、ECRスパッタリング又はイオンビームスパッタリング等の各種スパッタリング法、高周波イオンプレーティング、活性化蒸着又はアークイオンプレーティング等の各種イオンプレーティング法、分子線エビタキシ一法、レーザアブレーション法、イオン化クラスタビーム蒸着法、並びにイオンビーム蒸着法などが例示される。より具体的には、例えば室温でCuメタルターゲットを使用してDCスパッタリングによりCu下部電極を形成する。
<Formation of lower electrode film>
Next, as shown in FIG. 2B, the lower electrode film 2 made of a material mainly composed of Cu is formed on the substrate adhesion layer 11. The lower electrode film 2 is produced by a normal thin film forming method, and a physical vapor deposition method such as a PVD method or a pulse laser vapor deposition method (PLD) can be used. PVD methods include resistance vapor deposition or vacuum deposition such as electron beam heating, DC sputtering, high frequency sputtering, magnetron sputtering, various sputtering methods such as ECR sputtering or ion beam sputtering, high frequency ion plating, activated vapor deposition, or arc. Illustrative examples include various ion plating methods such as ion plating, molecular beam epitaxy, laser ablation, ionized cluster beam deposition, and ion beam deposition. More specifically, for example, a Cu lower electrode is formed by DC sputtering using a Cu metal target at room temperature.

<CuOからなる密着層の形成>
次に、図2(c)に示すように、Cuを主成分とした材料で形成された下部電極膜2の上に、CuOからなる密着層3を形成する。CuOからなる密着層3は、酸素分圧を調整して通常の薄膜形成法を適用して成膜することも可能であるが、Cuを主成分とした材料で形成された下部電極膜2の最表層を熱酸化することにより形成するほうが簡易である。例えば、酸素雰囲気中で、200℃5分間の熱酸化条件とすることで下部電極膜2の表面にCuOからなる密着層3が形成される。なお、加熱時間を長くすることで密着層3の厚さを制御することができる。
<Formation of adhesion layer made of Cu 2 O>
Next, as shown in FIG. 2C, an adhesion layer 3 made of Cu 2 O is formed on the lower electrode film 2 made of a material containing Cu as a main component. The adhesion layer 3 made of Cu 2 O can be formed by adjusting a partial pressure of oxygen and applying a normal thin film forming method. However, the lower electrode film formed of a material mainly composed of Cu It is easier to form the outermost surface layer 2 by thermal oxidation. For example, the adhesion layer 3 made of Cu 2 O is formed on the surface of the lower electrode film 2 under the condition of thermal oxidation at 200 ° C. for 5 minutes in an oxygen atmosphere. Note that the thickness of the adhesion layer 3 can be controlled by increasing the heating time.

<誘電体膜の形成>
次に、図2(d)に示すように、密着層3の上に誘電体膜(例えばBST)4を形成する。誘電体膜4は、ゾルゲル法やMOD法(有機金属化合物堆積法)等の溶液塗布焼成法、スパッタリング法等のPVD法又はCVD法等の成膜技術を用いて形成する。これらの成膜方法によれば、BaTiOやPZT等のペロブスカイト強誘電体を例にとると、通常のセラミックス粉体焼結法では900〜1000℃以上の高温プロセスが必要であるが、400〜850℃程度の低温で形成可能である。なお、下部電極膜2の酸化を抑止するために成膜は、Cuが酸化しない程度の還元性雰囲気中で行なわれる。
<Formation of dielectric film>
Next, as shown in FIG. 2D, a dielectric film (for example, BST) 4 is formed on the adhesion layer 3. The dielectric film 4 is formed using a film coating technique such as a solution coating and firing method such as a sol-gel method or a MOD method (organometallic compound deposition method), a PVD method such as a sputtering method, or a CVD method. According to these film forming methods, when a perovskite ferroelectric such as BaTiO 3 or PZT is taken as an example, a normal ceramic powder sintering method requires a high temperature process of 900 to 1000 ° C. or more, but 400 to 400 It can be formed at a low temperature of about 850 ° C. In order to suppress the oxidation of the lower electrode film 2, the film formation is performed in a reducing atmosphere in which Cu is not oxidized.

<CuOからなる密着層の形成>
次に図2(e)に示すように、誘電体膜4の上にCuOからなる密着層5を形成する。密着層5の形成は、例えばCuメタルターゲットを使用し、酸素−アルゴン雰囲気中、基板温度200℃として、DCスパッタリングにより成膜することにより行うことができる。これによりCuが酸化されてCuOからなる密着層5が形成される。密着層5の膜厚は、スパッタリングによる成膜時間を長くすることで大きくすることができる。
<Formation of adhesion layer made of Cu 2 O>
Next, as shown in FIG. 2E, an adhesion layer 5 made of Cu 2 O is formed on the dielectric film 4. The adhesion layer 5 can be formed, for example, by using a Cu metal target and forming a film by DC sputtering in an oxygen-argon atmosphere at a substrate temperature of 200 ° C. Thereby, Cu is oxidized and the adhesion layer 5 made of Cu 2 O is formed. The film thickness of the adhesion layer 5 can be increased by increasing the film formation time by sputtering.

<上部電極膜の形成>
次に図2(f)に示すように、密着層5の上にCuを主成分とした材料からなる上部電極膜6を形成する。上部電極膜6は、下部電極膜2と同様の薄膜形成法で作製される。即ち、例えばアルゴン雰囲気、基板温度200℃とし、Cuメタルターゲットを使用してDCスパッタリングにより上部電極膜16を形成することができる。
<Formation of upper electrode film>
Next, as shown in FIG. 2F, an upper electrode film 6 made of a material containing Cu as a main component is formed on the adhesion layer 5. The upper electrode film 6 is produced by a thin film forming method similar to that for the lower electrode film 2. That is, for example, the upper electrode film 16 can be formed by DC sputtering using a Cu metal target with an argon atmosphere and a substrate temperature of 200 ° C.

上部電極膜6を形成した後に、アニール処理を施しても良い。アニール処理は、pO=20〜100%、400〜1000℃の温度で行なえばよい。また、必要に応じてパッシベーション層(不図示)を形成する。なお、上記各層を形成する際にその都度フォトリソグラフィ技術を用いて所定のパターンニングを行っても良い。上記工程を経ることで薄膜コンデンサ100が得られる。 An annealing process may be performed after the upper electrode film 6 is formed. The annealing treatment may be performed at a temperature of pO 2 = 20 to 100% and 400 to 1000 ° C. Further, a passivation layer (not shown) is formed as necessary. In addition, when forming each said layer, you may perform predetermined patterning using a photolithographic technique each time. Through the above process, the thin film capacitor 100 is obtained.

図2に示す製法で薄膜コンデンサ100を製造することにより、電極膜の導電率を充分に確保しながら、誘電体膜4と2つの電極膜2,6との間の剥離が十分に防止された薄膜コンデンサ100、即ち信頼性の高い薄膜コンデンサ100を製造することができる。   By manufacturing the thin film capacitor 100 by the manufacturing method shown in FIG. 2, peeling between the dielectric film 4 and the two electrode films 2 and 6 was sufficiently prevented while sufficiently ensuring the conductivity of the electrode film. The thin film capacitor 100, that is, the highly reliable thin film capacitor 100 can be manufactured.

〔第2実施形態〕
次に、本発明の薄膜コンデンサの第2実施形態について説明する。図3は、本実施形態の薄膜コンデンサを示す概略断面図である。図3に示すように、本実施形態の薄膜コンデンサ400は、上部電極膜6と下部電極膜2との間に、2つの誘電体膜4a,4bを設け、誘電体膜4a,4bの間に、Cuを含む電極膜10を設け、電極膜10と誘電体膜4a,4bとの間にそれぞれCuOからなる密着層7,9を設けると共に、基板密着層11を省略した点で第1実施形態の薄膜コンデンサ100と異なる。
[Second Embodiment]
Next, a second embodiment of the thin film capacitor of the present invention will be described. FIG. 3 is a schematic cross-sectional view showing the thin film capacitor of the present embodiment. As shown in FIG. 3, in the thin film capacitor 400 of this embodiment, two dielectric films 4a and 4b are provided between the upper electrode film 6 and the lower electrode film 2, and between the dielectric films 4a and 4b. First, in that the electrode film 10 containing Cu is provided, the adhesion layers 7 and 9 made of Cu 2 O are provided between the electrode film 10 and the dielectric films 4a and 4b, respectively, and the substrate adhesion layer 11 is omitted. Different from the thin film capacitor 100 of the embodiment.

ここで、誘電体層4a,4bは誘電体層4と同様の構成を有し、密着層7,9は、密着層3,5と同様に、CuOを含んでいる。 Here, the dielectric layers 4 a and 4 b have the same configuration as that of the dielectric layer 4, and the adhesion layers 7 and 9 contain Cu 2 O like the adhesion layers 3 and 5.

本実施形態の薄膜コンデンサ400によっても、誘電体膜4aと上部電極膜6との間の剥離、誘電体膜4bと下部電極膜2との間の剥離が防止されることはもちろん、電極膜10と誘電体膜4aとの剥離、電極膜10と誘電体膜4bとの間の剥離も十分に防止される。このため、薄膜コンデンサ400によれば、電極膜にCuを使用した場合であっても、電極膜の導電率を充分に確保しながら、誘電体膜4aと下部電極膜2との間の剥離、誘電体膜4bと上部電極膜6との間の剥離、誘電体膜4a,4bと電極膜10との間の剥離が十分に防止される。このため、高信頼化を実現することができる。   The thin film capacitor 400 of the present embodiment also prevents peeling between the dielectric film 4a and the upper electrode film 6 and peeling between the dielectric film 4b and the lower electrode film 2, as well as the electrode film 10. And the dielectric film 4a and the separation between the electrode film 10 and the dielectric film 4b are sufficiently prevented. For this reason, according to the thin film capacitor 400, even when Cu is used for the electrode film, the separation between the dielectric film 4a and the lower electrode film 2 while ensuring sufficient conductivity of the electrode film, Peeling between the dielectric film 4b and the upper electrode film 6 and peeling between the dielectric films 4a and 4b and the electrode film 10 are sufficiently prevented. For this reason, high reliability can be realized.

なお、本発明は、上記実施形態に限定されるものではない。例えば上記第1実施形態では、誘電体膜4の両側に密着層3,5が設けられているが、上部電極膜6がCuを含まない場合には、図4(a)に示すように、密着層5は省略してもよい。また、下部電極膜2がCuを含まない場合には、図4(b)に示すように、密着層3は省略してもよい。なお、図4(a)、(b)のそれぞれにおいて、基板密着槽11は省略してある。   The present invention is not limited to the above embodiment. For example, in the first embodiment, the adhesion layers 3 and 5 are provided on both sides of the dielectric film 4, but when the upper electrode film 6 does not contain Cu, as shown in FIG. The adhesion layer 5 may be omitted. When the lower electrode film 2 does not contain Cu, the adhesion layer 3 may be omitted as shown in FIG. 4A and 4B, the substrate adhesion tank 11 is omitted.

また上記第2実施形態では、上部電極膜6と下部電極膜2との間に、2つの誘電体膜4a,4bが設けられているが、酸化物を含む誘電体膜が3つ以上設けられ、誘電体膜同士の間に、Cuを含む電極膜が設けられてもよい。そして、この場合、Cuを含む電極膜と誘電体膜との間に、CuOを含む密着層が設けられてもよい。この場合でも、第2実施形態に係る薄膜コンデンサ400と同様、高信頼化を実現することができることに加えて、大容量化を実現できる。 In the second embodiment, two dielectric films 4a and 4b are provided between the upper electrode film 6 and the lower electrode film 2, but three or more dielectric films containing oxide are provided. An electrode film containing Cu may be provided between the dielectric films. In this case, an adhesion layer containing Cu 2 O may be provided between the electrode film containing Cu and the dielectric film. Even in this case, similarly to the thin film capacitor 400 according to the second embodiment, in addition to realizing high reliability, it is possible to realize large capacity.

次に、実施例を用いて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
まず、図2で示した製法にしたがって、薄膜コンデンサを作製した。最初に、シリコン単結晶基板の表面を熱酸化してSiO層を形成した基板に、TiOをターゲットとしてスパッタリング法によりTiO層を形成した。基板温度は室温、酸素雰囲気中で成膜を行った。TiO層の膜厚は20nmとした。
Example 1
First, a thin film capacitor was manufactured according to the manufacturing method shown in FIG. First, the surface of the silicon single crystal substrate in the substrate forming the SiO 2 layer by thermal oxidation to form a TiO 2 layer by sputtering of TiO 2 as a target. The substrate temperature was room temperature and the film was formed in an oxygen atmosphere. The film thickness of the TiO 2 layer was 20 nm.

次にTiO層の上にCu下部電極膜を形成した。すなわち室温でCuメタルターゲットを使用してDCスパッタリングによりCu下部電極膜を形成した。Cu下部電極膜の膜厚は200nmとした。 Next, a Cu lower electrode film was formed on the TiO 2 layer. That is, a Cu lower electrode film was formed by DC sputtering using a Cu metal target at room temperature. The film thickness of the Cu lower electrode film was 200 nm.

次にCu下部電極膜の上に、CuOからなる密着層を形成した。すなわち、酸素雰囲気中で、200℃5分間の熱酸化条件とすることでCu下部電極膜の表面にCuOからなる密着層を形成した。このとき、CuO密着層の膜厚は2nmであった。これによってCu下部電極膜の膜厚は198nmとなった。 Next, an adhesion layer made of Cu 2 O was formed on the Cu lower electrode film. That is, an adhesion layer made of Cu 2 O was formed on the surface of the Cu lower electrode film by using thermal oxidation conditions at 200 ° C. for 5 minutes in an oxygen atmosphere. In this case, the thickness of the Cu 2 O adhesive layer was 2 nm. As a result, the thickness of the Cu lower electrode film became 198 nm.

次にCuO密着層の上にBST薄膜を形成した。BSTターゲットを使用して基板温度200℃、アルゴン雰囲気でスパッタリングすることにより、膜厚150nmのBST薄膜(組成式(Sr0.6Ba0.4)TiO)を得た。 Next, a BST thin film was formed on the Cu 2 O adhesion layer. A BST thin film (composition formula (Sr 0.6 Ba 0.4 ) TiO 3 ) having a film thickness of 150 nm was obtained by sputtering using a BST target at a substrate temperature of 200 ° C. in an argon atmosphere.

このときアルゴン雰囲気でBST薄膜を成膜したため、このBST薄膜の成膜によってCu下部電極膜は酸化されていなかった。   At this time, since the BST thin film was formed in an argon atmosphere, the Cu lower electrode film was not oxidized by the formation of the BST thin film.

次にBST薄膜の上にCuO密着層を形成した。このCuO密着層の形成は、Cuメタルターゲットを使用し、酸素−アルゴン雰囲気中、基板温度200℃として、DCスパッタリングにより成膜した。膜厚は5nmとした。次にCuO密着層の表面にCu上部電極膜を形成した。すなわちアルゴン雰囲気、基板温度200℃とし、Cuメタルターゲットを使用してDCスパッタリングによりCu上部電極膜を形成した。膜厚は、200nmとした。Cu上部電極膜は、直径100μmの円形電極膜とした。上記工程を経ることで、基板上に薄膜コンデンサが得られた。 Next, a Cu 2 O adhesion layer was formed on the BST thin film. The Cu 2 O adhesion layer was formed by DC sputtering using a Cu metal target at a substrate temperature of 200 ° C. in an oxygen-argon atmosphere. The film thickness was 5 nm. Next, a Cu upper electrode film was formed on the surface of the Cu 2 O adhesion layer. That is, a Cu upper electrode film was formed by DC sputtering using a Cu metal target with an argon atmosphere and a substrate temperature of 200 ° C. The film thickness was 200 nm. The Cu upper electrode film was a circular electrode film having a diameter of 100 μm. Through the above steps, a thin film capacitor was obtained on the substrate.

(実施例2)
2つのCuO密着層を、酸素雰囲気中で、200℃10分間の熱酸化条件で形成することにより2つのCuO密着層の膜厚を10nmとしたこと以外は実施例1と同様にして、基板上に薄膜コンデンサを得た。
(Example 2)
Except that the thickness of the two Cu 2 O adhesion layers was 10 nm by forming two Cu 2 O adhesion layers in an oxygen atmosphere under thermal oxidation conditions at 200 ° C. for 10 minutes, the same as in Example 1. Thus, a thin film capacitor was obtained on the substrate.

(比較例1)
下部電極膜と誘電体膜との間、及び誘電体膜と上部電極膜との間にCuO密着層を設けなかったこと以外は実施例1と同様にして、基板上に薄膜コンデンサを得た。
(Comparative Example 1)
A thin film capacitor was obtained on the substrate in the same manner as in Example 1 except that the Cu 2 O adhesion layer was not provided between the lower electrode film and the dielectric film and between the dielectric film and the upper electrode film. It was.

(実施例3)
2つのCuO密着層を、酸素雰囲気中で、200℃20分間の熱酸化条件で形成することにより2つのCuO密着層の膜厚を20nmとしたこと以外は実施例1と同様にして、基板上に薄膜コンデンサを得た。
(Example 3)
Two of Cu 2 O adhesion layer in an oxygen atmosphere, is in the same manner as in Example 1 except that a 20nm thickness of two Cu 2 O adhesion layer by forming a thermal oxidation conditions 200 ° C. 20 min Thus, a thin film capacitor was obtained on the substrate.

(比較例2)
下部電極膜と誘電体層との間にTiO密着層を設けたこと以外は実施例1と同様にして、基板上に薄膜コンデンサを得た。TiO密着層は、TiOターゲットを用いたスパッタリング法によって形成した。TiO密着層の厚みは10nmとした。
(Comparative Example 2)
A thin film capacitor was obtained on the substrate in the same manner as in Example 1 except that a TiO 2 adhesion layer was provided between the lower electrode film and the dielectric layer. The TiO 2 adhesion layer was formed by a sputtering method using a TiO 2 target. The thickness of the TiO 2 adhesion layer was 10 nm.

(評価)
実施例1、2及び比較例1、2について、比誘電率k(100kHz)、tanδ(%)、リーク特性(100kV/cmの電圧印加)及び剥離強度(N/cm)の測定を行った。なお、薄膜コンデンサの比誘電率は、インピーダンスアナライザー(ヒューレットパッカード社製、型式:HP4194A)を用い、室温・周波数100kHz(交流1V)での条件で測定した静電容量と、薄膜コンデンサの電極寸法、及び、薄膜コンデンサの電極間距離から算出した。また、リーク特性は、半導体パラメータアナライザー(アジレントテクノロジー社製、型式:4156C)を用い、室温で且つ電解強度100kV/cmの条件で測定した。また剥離強度は、図5に示すように試料台20の上にサンプルSをテープで接着し、さらにサンプルSの上面を角柱形状の金属治具21の底面とテープ22で接着した。これを、ロードセル23を用いた引っ張り試験機(アイコーエンジニアリング製)で試験を行うことで剥離強度を測定した。結果を表1に示す。なお、サンプルSとは、基板上に薄膜コンデンサを設けたものであり、サンプルSの上面は、上部電極膜の表面である。

Figure 2007329189
(Evaluation)
For Examples 1 and 2 and Comparative Examples 1 and 2, the relative dielectric constant k (100 kHz), tan δ (%), leakage characteristics (100 kV / cm voltage applied) and peel strength (N / cm 2 ) were measured. . The relative dielectric constant of the thin film capacitor is determined by using an impedance analyzer (manufactured by Hewlett Packard, model: HP4194A) under conditions of room temperature and frequency of 100 kHz (AC 1 V), and the electrode dimensions of the thin film capacitor, And it computed from the distance between electrodes of a thin film capacitor. Further, the leak characteristics were measured using a semiconductor parameter analyzer (manufactured by Agilent Technologies, model: 4156C) under the conditions of room temperature and electrolytic strength of 100 kV / cm. As shown in FIG. 5, the peel strength was obtained by bonding the sample S on the sample stage 20 with a tape, and further bonding the upper surface of the sample S with the bottom surface of the prismatic metal jig 21 with the tape 22. The peel strength was measured by testing this with a tensile tester (manufactured by Aiko Engineering) using the load cell 23. The results are shown in Table 1. The sample S is a thin film capacitor provided on a substrate, and the upper surface of the sample S is the surface of the upper electrode film.
Figure 2007329189

表1に示す結果より、実施例1〜2は、比較例1〜2に比べて、剥離強度が1.9倍以上となっており、電極膜と誘電体膜とが強固に密着していることが分かった。また実施例1〜2はいずれも電極膜がCuとなっており、CuOからなる密着層が別に設けられているので、電極膜の導電率は十分に確保できていると考えられる。 From the results shown in Table 1, in Examples 1-2, the peel strength is 1.9 times or more compared to Comparative Examples 1-2, and the electrode film and the dielectric film are firmly adhered. I understood that. The Examples 1-2 also electrode film eventually has become a Cu, since the adhesion layer made of Cu 2 O is provided separately, is considered the conductivity of the electrode film is sufficiently secured.

以上より、本発明によれば、電極として安価なCuを用いた場合でも、電極膜の導電率を充分に確保しながら、電極膜と誘電体膜との間の剥離を十分に防止でき、薄膜コンデンサの高信頼性化を実現できることが確認された。   As described above, according to the present invention, even when inexpensive Cu is used as an electrode, it is possible to sufficiently prevent peeling between the electrode film and the dielectric film while sufficiently ensuring the conductivity of the electrode film, It was confirmed that high reliability of the capacitor could be realized.

本発明に係る薄膜コンデンサの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the thin film capacitor which concerns on this invention. 図1の薄膜コンデンサの一連の製造工程を示す図である。It is a figure which shows a series of manufacturing processes of the thin film capacitor of FIG. 本発明に係る薄膜コンデンサの他の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows other embodiment of the thin film capacitor which concerns on this invention. 本発明に係る薄膜コンデンサのさらに別の実施形態を示す図であり、(a)は下部電極膜と誘電体膜との間のみにCuO密着層を設けた形態、(b)は上部電極膜と誘電体膜との間のみにCuO密着層を設けた形態をそれぞれ示す。Furthermore a diagram illustrating another embodiment, (a) shows the embodiment which is provided only on the Cu 2 O adhesion layer between the lower electrode film and the dielectric film of the thin film capacitor according to the present invention, (b) the upper electrode A mode in which a Cu 2 O adhesion layer is provided only between the film and the dielectric film is shown. ロードセルを用いた剥離強度測定試験の方法を示す概念図である。It is a conceptual diagram which shows the method of the peeling strength measurement test using a load cell.

符号の説明Explanation of symbols

1 基板
2 下部電極膜
3,5,7,9 密着層
4,4a,4b 誘電体膜
6 上部電極膜
10 電極膜
11 基板密着層
100,200 薄膜コンデンサ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode film 3, 5, 7, 9 Adhesion layer 4, 4a, 4b Dielectric film 6 Upper electrode film 10 Electrode film 11 Substrate adhesion layer 100, 200 Thin film capacitor

Claims (7)

基板上に設けられ、一対の電極膜と前記一対の電極膜の間に設けられる誘電体膜とを有する薄膜コンデンサにおいて、
前記一対の電極膜の少なくとも一方は、Cuを含むCu電極膜であり、
前記Cu電極膜と前記誘電体膜との間に、CuOを含む密着層が設けられており、
前記誘電体膜が酸化物誘電体膜であることを特徴とする薄膜コンデンサ。
In a thin film capacitor provided on a substrate and having a pair of electrode films and a dielectric film provided between the pair of electrode films,
At least one of the pair of electrode films is a Cu electrode film containing Cu,
An adhesion layer containing Cu 2 O is provided between the Cu electrode film and the dielectric film,
A thin film capacitor, wherein the dielectric film is an oxide dielectric film.
前記Cu電極膜の厚みは50nm〜1μmであり、且つ前記密着層の厚みの平均値は前記Cu電極膜の厚みに対して0%を超えて10%未満であることを特徴とする請求項1記載の薄膜コンデンサ。   2. The thickness of the Cu electrode film is 50 nm to 1 μm, and the average value of the thickness of the adhesion layer is more than 0% and less than 10% with respect to the thickness of the Cu electrode film. The thin film capacitor described. 前記誘電体膜の厚みは、5.0nm〜1μmであることを特徴とする請求項1又は2に記載の薄膜コンデンサ。   The thin film capacitor according to claim 1, wherein the dielectric film has a thickness of 5.0 nm to 1 μm. 前記一対の電極膜の両方が前記Cu電極膜であることを特徴とする請求項1〜3のいずれか一項に記載の薄膜コンデンサ。   The thin film capacitor according to any one of claims 1 to 3, wherein both of the pair of electrode films are the Cu electrode films. 前記一対の電極膜の間に前記誘電体膜を2層以上有し、前記誘電体膜同士の間に前記Cu電極膜を有し、且つ前記Cu電極膜と前記誘電体膜との間に前記密着層を有することを特徴とする請求項1〜4のいずれか一項に記載の薄膜コンデンサ。   The dielectric film has two or more layers between the pair of electrode films, the Cu electrode film is between the dielectric films, and the Cu electrode film and the dielectric film The thin film capacitor according to claim 1, further comprising an adhesion layer. 基板上に設けられ、一対の電極膜と前記一対の電極膜の間に設けられる誘電体膜とを有する薄膜コンデンサ素子の製造方法において、
前記基板上に、前記一対の電極膜のうちの一方の電極膜を形成する工程と、
前記誘電体膜を形成する工程と、
前記誘電体膜上に、前記一対の電極膜のうちの他方の電極膜を形成する工程とを含み、
前記一対の電極膜の少なくとも一方は、Cuを含むCu電極膜であり、
前記Cu電極膜と前記誘電体膜との間に、CuOを含む密着層を形成する工程を含むことを特徴とする薄膜コンデンサの製造方法。
In a method for manufacturing a thin film capacitor element provided on a substrate and having a pair of electrode films and a dielectric film provided between the pair of electrode films,
Forming one of the pair of electrode films on the substrate;
Forming the dielectric film;
Forming the other electrode film of the pair of electrode films on the dielectric film,
At least one of the pair of electrode films is a Cu electrode film containing Cu,
A method of manufacturing a thin film capacitor, comprising a step of forming an adhesion layer containing Cu 2 O between the Cu electrode film and the dielectric film.
前記一対の電極膜の両方が前記Cu電極膜であることを特徴とする請求項6記載の薄膜コンデンサの製造方法。

7. The method of manufacturing a thin film capacitor according to claim 6, wherein both of the pair of electrode films are the Cu electrode films.

JP2006157565A 2006-06-06 2006-06-06 Thin-film capacitor, and manufacturing method thereof Pending JP2007329189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157565A JP2007329189A (en) 2006-06-06 2006-06-06 Thin-film capacitor, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157565A JP2007329189A (en) 2006-06-06 2006-06-06 Thin-film capacitor, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007329189A true JP2007329189A (en) 2007-12-20

Family

ID=38929478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157565A Pending JP2007329189A (en) 2006-06-06 2006-06-06 Thin-film capacitor, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007329189A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122774A1 (en) * 2008-03-31 2009-10-08 三井金属鉱業株式会社 Capacitor-forming member and printed wiring board comprising capacitor
JP2009260301A (en) * 2008-03-26 2009-11-05 Tdk Corp Dielectric element and its manufacturing method
JP2013500589A (en) * 2009-07-23 2013-01-07 プロテウス デジタル ヘルス, インコーポレイテッド Solid thin film capacitor
CN103971933A (en) * 2014-05-12 2014-08-06 同济大学 Solid state thin film capacitor and preparation method thereof
JP2019197791A (en) * 2018-05-09 2019-11-14 凸版印刷株式会社 Capacitor built-in glass substrate and capacitor built-in circuit substrate
CN117373829A (en) * 2023-12-08 2024-01-09 深圳市汉嵙新材料技术有限公司 Thin film capacitor, method of manufacturing the same, and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167637U (en) * 1979-05-17 1980-12-02
JPH02268412A (en) * 1989-04-11 1990-11-02 Matsushita Electron Corp Manufacture of capacitor
JPH1154366A (en) * 1997-07-31 1999-02-26 Hokuriku Electric Ind Co Ltd Capacitor and its manufacture
JPH11233723A (en) * 1998-02-13 1999-08-27 Sony Corp Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture
JPH11243032A (en) * 1998-02-25 1999-09-07 Kyocera Corp Thin-film capacitor
JP2001185443A (en) * 1999-12-22 2001-07-06 Hitachi Ltd Thin-film capacitor
JP2003347159A (en) * 2002-05-30 2003-12-05 Kyocera Corp Thin film electronic component and its manufacturing method
JP2004064081A (en) * 2003-08-08 2004-02-26 Hitachi Ltd Composite material and its use
JP2004311950A (en) * 2002-12-27 2004-11-04 Kohoku Kogyo Kk Tab terminal for electrolytic capacitor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167637U (en) * 1979-05-17 1980-12-02
JPH02268412A (en) * 1989-04-11 1990-11-02 Matsushita Electron Corp Manufacture of capacitor
JPH1154366A (en) * 1997-07-31 1999-02-26 Hokuriku Electric Ind Co Ltd Capacitor and its manufacture
JPH11233723A (en) * 1998-02-13 1999-08-27 Sony Corp Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture
JPH11243032A (en) * 1998-02-25 1999-09-07 Kyocera Corp Thin-film capacitor
JP2001185443A (en) * 1999-12-22 2001-07-06 Hitachi Ltd Thin-film capacitor
JP2003347159A (en) * 2002-05-30 2003-12-05 Kyocera Corp Thin film electronic component and its manufacturing method
JP2004311950A (en) * 2002-12-27 2004-11-04 Kohoku Kogyo Kk Tab terminal for electrolytic capacitor
JP2004064081A (en) * 2003-08-08 2004-02-26 Hitachi Ltd Composite material and its use

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260301A (en) * 2008-03-26 2009-11-05 Tdk Corp Dielectric element and its manufacturing method
WO2009122774A1 (en) * 2008-03-31 2009-10-08 三井金属鉱業株式会社 Capacitor-forming member and printed wiring board comprising capacitor
US20110005817A1 (en) * 2008-03-31 2011-01-13 Mitsui Mining & Smelting Co., Ltd. Capacitor-forming material and printed wiring board provided with capacitor
JPWO2009122774A1 (en) * 2008-03-31 2011-07-28 三井金属鉱業株式会社 Capacitor forming material and printed wiring board provided with capacitor
JP2013500589A (en) * 2009-07-23 2013-01-07 プロテウス デジタル ヘルス, インコーポレイテッド Solid thin film capacitor
US8786049B2 (en) 2009-07-23 2014-07-22 Proteus Digital Health, Inc. Solid-state thin-film capacitor
CN103971933A (en) * 2014-05-12 2014-08-06 同济大学 Solid state thin film capacitor and preparation method thereof
JP2019197791A (en) * 2018-05-09 2019-11-14 凸版印刷株式会社 Capacitor built-in glass substrate and capacitor built-in circuit substrate
CN117373829A (en) * 2023-12-08 2024-01-09 深圳市汉嵙新材料技术有限公司 Thin film capacitor, method of manufacturing the same, and semiconductor device

Similar Documents

Publication Publication Date Title
US7883905B2 (en) Process for producing a BST thin-film capacitor having increased capacity density and reduced leakage current density
KR0174594B1 (en) A method of forming a platinum thin film on a silicon wafer, a silicon substrate manufactured by the method and a semiconductor device using the substrate
JP2006523153A (en) Multilayer structure containing barium strontium titanate on metal foil
JP6015159B2 (en) Thin film capacitor
TWI244660B (en) High dielectric constant insulating film, thin-film capacitive element, thin-film multilayer capacitor, and method for manufacturing thin-film capacitive element
JP5267251B2 (en) Thin film capacitor and method of manufacturing thin film capacitor
EP1793416B1 (en) Capacitor and method for manufacturing the same
JP2006310744A (en) Thin film capacitor and semiconductor device
JP2007329189A (en) Thin-film capacitor, and manufacturing method thereof
US7382013B2 (en) Dielectric thin film, dielectric thin film device, and method of production thereof
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
US20060072282A1 (en) Dielectric thin film, thin film capacitor element, and method for manufacturing thin film capacitor element
JP4862371B2 (en) Thin film electronic component and manufacturing method thereof
JP2007031242A (en) Substrate for thin film electronic component, and method for producing thin film electronic component using the same
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP4872306B2 (en) Method for manufacturing substrate for thin film electronic component and method for manufacturing thin film electronic component using the same
JP2007179794A (en) Thin-film dielectric and thin-film capacitor element
JP5407792B2 (en) Thin film capacitor and method for manufacturing thin film capacitor
JP2001185443A (en) Thin-film capacitor
JP3299909B2 (en) Multilayer structure electrode using oxide conductor
JP4923756B2 (en) METHOD FOR FORMING LAMINATE FOR THIN FILM DIELECTRIC ELEMENT AND THIN FILM DIELECTRIC ELEMENT
JP4548262B2 (en) Lower electrode structure
JP4918781B2 (en) Thin film dielectric and thin film capacitor element
JP4420232B2 (en) Thin film capacitor manufacturing method
JP4493235B2 (en) Thin film element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731