JP2007327790A - Heat generation resistor type flow measuring instrument - Google Patents

Heat generation resistor type flow measuring instrument Download PDF

Info

Publication number
JP2007327790A
JP2007327790A JP2006157729A JP2006157729A JP2007327790A JP 2007327790 A JP2007327790 A JP 2007327790A JP 2006157729 A JP2006157729 A JP 2006157729A JP 2006157729 A JP2006157729 A JP 2006157729A JP 2007327790 A JP2007327790 A JP 2007327790A
Authority
JP
Japan
Prior art keywords
passage
sub
resistor type
heating resistor
type flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157729A
Other languages
Japanese (ja)
Other versions
JP5085889B2 (en
Inventor
Mari Hikoda
真里 彦田
Hiroki Okamoto
裕樹 岡本
Takeshi Morino
毅 森野
Tadao Saito
直生 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006157729A priority Critical patent/JP5085889B2/en
Publication of JP2007327790A publication Critical patent/JP2007327790A/en
Application granted granted Critical
Publication of JP5085889B2 publication Critical patent/JP5085889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a flow measuring error generated in a heat generation resistor type flow measuring instrument by generation of a pulsation phenomenon in travel of a vehicle. <P>SOLUTION: This heat generation resistor type flow measuring instrument of the present invention having a sub-passage having at least one sub-passage bypass part in a midway with one part of a fluid flowing in a main passage, which flows in from a sub-passage inlet part and flowing out to a sub-passage outlet part, and a measuring element for measuring a suction flow rate arranged in the sub-passage, includes a through hole located between the sub-passage inlet part and the measuring element, provided on a wall face constituting the sub-passage, and penetrated through the sub-passage and the main passage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気の流量を計測する発熱抵抗体式流量測定装置に関する。特には、内燃機関の空燃比制御などに用いる各種センサを始め、流体流量の計測センサ全般及びその制御システムに関するものである。   The present invention relates to a heating resistor type flow rate measuring device for measuring a flow rate of air. In particular, the present invention relates to various sensors used for air-fuel ratio control of internal combustion engines and the like, as well as general fluid flow measurement sensors and control systems therefor.

発熱抵抗体式流量測定装置は、発熱抵抗体の奪われる熱量が流入流量に対し単調に増加する関係が有ることを利用したものであり、質量流量を直接測定出来るため、特に自動車の空燃比制御用の流量計として広く使われている。   The heating resistor type flow measurement device utilizes the fact that the amount of heat taken away by the heating resistor has a relationship that increases monotonously with the inflow flow rate, and can directly measure the mass flow rate. It is widely used as a flow meter.

自動車用の発熱抵抗体式流量測定装置は、車輌の吸気ダクトの一部に装着され、吸入空気流量を測定する役割を持つ。ガソリンエンジンでは、通常アクセルに連動して吸気ダクト内に吸入空気が流れ、エンジンシリンダへと運ばれる。   A heating resistor type flow rate measuring device for an automobile is mounted on a part of an intake duct of a vehicle and has a role of measuring an intake air flow rate. In a gasoline engine, intake air normally flows in the intake duct in conjunction with the accelerator and is carried to the engine cylinder.

このとき、エンジンシリンダのインレット弁が開閉することによって、流れに大きい変動若しくは脈動が発生し、発熱抵抗体式流量測定装置に測定誤差を生じるが、副通路を用いた測定誤差低減構造により実用上十分対応できる。   At this time, when the inlet valve of the engine cylinder opens and closes, a large fluctuation or pulsation occurs in the flow, resulting in a measurement error in the heating resistor type flow rate measuring device. However, the measurement error reduction structure using the auxiliary passage is sufficient for practical use. Yes.

しかし、燃費が良く、CO2の排出量が少ないというメリットがあること、高圧をかけた燃料を霧状にして噴射し、効率よく燃やす技術(コモンレール)により、排出ガス浄化とさらなる燃費向上がなされているなどにより、利用が増えているディーゼルエンジンにおいては、発熱抵抗体式流量測定装置の計測誤差が懸念される。   However, it has the advantages of good fuel efficiency and low CO2 emissions, and the technology for injecting high-pressure fuel in the form of a mist and burning it efficiently (common rail) has improved exhaust gas purification and further improved fuel efficiency. For example, in a diesel engine that is increasing in use, there is a concern about the measurement error of the heating resistor type flow rate measuring device.

それは、ディーゼルエンジンでは自然着火を利用して燃料を燃焼させるため、エンジンシリンダ内が高圧となりガソリンエンジンよりも脈動影響を受けやすいからである。   This is because in a diesel engine, fuel is burned by utilizing spontaneous ignition, and therefore the pressure in the engine cylinder becomes high and is more susceptible to pulsation than a gasoline engine.

発熱抵抗体式流量測定装置の脈動による誤差を低減する構造として、特許文献1には流入開口、流入通路、流入通路内にセンサ、流出通路、流出通路開口があり、センサ下流でセンサと流出開口の間の変向通路に設けられた一つ以上の開口を設けた構造のものが記載されている。   As a structure for reducing an error due to pulsation of the heating resistor type flow rate measuring device, Patent Document 1 includes an inflow opening, an inflow path, and a sensor, an outflow path, and an outflow path opening in the inflow path. A structure having one or more openings provided in a turning passage between them is described.

特表2003−502682号公報Japanese translation of PCT publication No. 2003-502682

脈動流発生時に発熱抵抗体式流量測定装置に測定誤差が発生する理由について説明する。   The reason why a measurement error occurs in the heating resistor type flow measuring device when the pulsating flow is generated will be described.

脈動流発生時、吸気ダクトの一部であるボディ内部に備え付けられた迂回通路を有する発熱抵抗体式流量測定装置では、逆流を順流としてカウントしてしまうプラス誤差が発生する。   When a pulsating flow is generated, a positive error that counts backflow as forward flow occurs in a heating resistor type flow rate measuring device having a bypass path provided inside the body that is a part of the intake duct.

また、副通路入口部と副通路出口部の圧力変動に対し、副通路内部では遅れを伴った圧力変動が生じ、これにより平均流速が増加し誤差が発生する。これらの誤差により、正確な流量計測および正確な燃料制御ができない。   In addition, a pressure fluctuation with a delay occurs in the sub-passage with respect to the pressure fluctuation at the sub-passage inlet and the sub-passage outlet, thereby increasing the average flow velocity and causing an error. These errors prevent accurate flow measurement and accurate fuel control.

そこで、副通路に水抜き穴、貫通穴を設けることで脈動影響を低減できることはわかってきているが、流量(流速)が急激に変化した場合、位置及び大きさによっては、これらの穴から空気が流出し易くなり、計測素子を流れる流量(流速)が確保できず、発熱抵抗体式流量測定装置の出力値がマイナス側へ落ち込む現象が発生し、応答性が悪化する場合がある。   Therefore, it has been known that the pulsation effect can be reduced by providing drain holes and through holes in the sub-passage. However, if the flow rate (flow velocity) changes suddenly, depending on the position and size, air may flow from these holes. May flow out, the flow rate (flow velocity) flowing through the measuring element cannot be secured, and the output value of the heating resistor type flow rate measuring device may drop to the negative side, which may deteriorate the responsiveness.

本発明の目的は、この応答性を確保しながら脈動時の流量計測誤差を低減することである。   An object of the present invention is to reduce flow measurement errors during pulsation while ensuring this responsiveness.

本発明は、主通路を流れる流体の一部が副通路入口部から流入し、副通路出口部に流れて行く途中に少なくとも一つの副通路迂回部を有する副通路と、前記副通路内に配置された吸気流量を計測する計測素子を有する発熱抵抗体式流量測定装置において、前記副通路入口部と前記計測素子との間にあって、前記副通路を構成する壁面に設けられ、前記副通路と前記主通路とを貫通する貫通孔を備えることを特徴とする。   The present invention provides a sub-passage having at least one sub-passage detour part in the middle of a part of the fluid flowing in the main passage flowing in from the sub-passage inlet part and flowing to the sub-passage outlet part. In the heating resistor type flow measuring device having a measuring element for measuring the intake flow rate, the auxiliary passage and the main passage are provided between the auxiliary passage inlet and the measuring element, and are provided on a wall surface forming the auxiliary passage. A through-hole penetrating the passage is provided.

本発明によれば、脈動時の流量計測誤差を低減することができる。   According to the present invention, it is possible to reduce flow measurement errors during pulsation.

特に、副通路入口部と計測素子の間に副通路出口部と同じ面の流速の速くなる部分に貫通孔を設けることで、応答時には貫通孔から主通路への過剰な空気の流出を抑制することができる反面、脈動順流時には、貫通孔から主通路への空気の流出を増やす効果があり、その結果副通路内部の流速が抑制され、平均流速を下げることができ、すなわち、応答性を確保しながら脈動時の流量計測誤差を低減することができる。   In particular, by providing a through-hole in the portion where the flow velocity increases on the same surface as the sub-passage outlet between the sub-passage inlet and the measuring element, excessive air flow from the through-hole to the main passage is suppressed during response. On the other hand, at the time of pulsating forward flow, it has the effect of increasing the outflow of air from the through hole to the main passage. As a result, the flow velocity inside the sub passage is suppressed and the average flow velocity can be lowered, that is, responsiveness is ensured. However, the flow measurement error during pulsation can be reduced.

以下、本発明の実施形態について、添付図にて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1、2は、本発明を実施するための、第1の実施形態である。   1 and 2 show a first embodiment for carrying out the present invention.

図1、2において、流量計測装置は、流体である空気が流れる吸気ダクトの一部であるボディ2の主通路1内に配置される。   1 and 2, the flow rate measuring device is disposed in a main passage 1 of a body 2 that is a part of an intake duct through which air as a fluid flows.

流量計測装置は、流体の一部が流れる副通路3と、流体の一部が流入する副通路入口部10と、副通路3を流れた流体が流出する副通路出口部4と、副通路入口部10と副通路出口部4の途中に設けた副通路迂回部11と、副通路迂回部11と副通路出口部4との間に配置された計測素子5を有する。   The flow rate measuring device includes a sub-passage 3 through which a part of the fluid flows, a sub-passage inlet part 10 through which a part of the fluid flows in, a sub-passage outlet part 4 through which the fluid flowing through the sub-passage 3 flows out, and a sub-passage inlet A sub-passage bypass unit 11 provided in the middle of the part 10 and the sub-passage exit unit 4, and a measuring element 5 disposed between the sub-passage bypass unit 11 and the sub-passage exit unit 4.

また、副通路3に配置された計測素子5、副通路3の吸入空気の温度を補償するための感温抵抗体6は、流量信号を外部に出力するための電子回路7と電気的に接続されている。   The measuring element 5 disposed in the sub-passage 3 and the temperature sensitive resistor 6 for compensating the temperature of the intake air in the sub-passage 3 are electrically connected to an electronic circuit 7 for outputting a flow rate signal to the outside. Has been.

そして、この電子回路7は、カバー8、ハウジング9に格納されている。また副通路入口部10と副通路迂回部11の間には副通路3内への水溜り防止用の水抜き穴12が配置されている。   The electronic circuit 7 is stored in a cover 8 and a housing 9. Further, a drain hole 12 for preventing a water pool in the sub-passage 3 is disposed between the sub-passage entrance 10 and the sub-passage bypass part 11.

副通路入口部10と計測素子5との間に副通路3と主通路1とを貫通する貫通孔13が副通路3を構成する壁面に設けられる。貫通孔13は副通路迂回部11に位置するように備わる。   A through-hole 13 that penetrates the sub-passage 3 and the main passage 1 is provided between the sub-passage entrance 10 and the measuring element 5 in the wall surface that forms the sub-passage 3. The through hole 13 is provided so as to be located in the sub-passage detour part 11.

貫通孔13は副通路迂回部11の中央を含む近傍に設けられる。   The through hole 13 is provided in the vicinity including the center of the sub-passage bypass portion 11.

副通路迂回部11は、流体の流速が速くなるように狭まった通路になっている。この副通路迂回部11は、流体の流速の速い部分である。   The sub-passage bypass unit 11 is a passage narrowed so as to increase the fluid flow rate. The sub-passage bypassing part 11 is a part where the flow velocity of the fluid is fast.

副通路迂回部11は円弧を描くように湾曲している。この副通路迂回部11を流れる流体は、流速が速く、円弧を描くような流れで遠心作用をもつ。流体に含まれる塵埃が遠心力を受けて副通路3の外周側壁面に沿って流れる。このため、計測素子5に付着する塵埃が少なく、計測素子5の検知が精度良く行なわれる。   The auxiliary passage detour part 11 is curved so as to draw an arc. The fluid flowing through the sub-passage bypassing portion 11 has a high flow velocity and has a centrifugal action with a flow that draws an arc. Dust contained in the fluid receives centrifugal force and flows along the outer peripheral side wall surface of the sub-passage 3. For this reason, there is little dust adhering to the measurement element 5, and the detection of the measurement element 5 is performed accurately.

貫通孔13は、主通路1に臨む開口が副通路出口部4と同じ方向に開放するように形成される。   The through hole 13 is formed so that the opening facing the main passage 1 is opened in the same direction as the sub passage outlet 4.

副通路出口部4は、図3に示すように左右に分かれるように形成される。副通路出口部4の開口方向と、副通路入口部10の開口方向はほぼ直角に交差するように配置されている。   The sub passage outlet 4 is formed so as to be divided into left and right as shown in FIG. The opening direction of the sub-passage outlet portion 4 and the opening direction of the sub-passage inlet portion 10 are arranged so as to intersect at a substantially right angle.

さて、上述した脈動時には、この流速の速い部分(副通路迂回部11)に設けた貫通孔13により、副通路3と主通路1との間の流体の出入りが促進されることで、計測素子5付近の流速の増加が抑制され、流量計測装置の計測誤差を低減することができる。   Now, at the time of the pulsation described above, the flow of fluid between the sub-passage 3 and the main passage 1 is promoted by the through-hole 13 provided in the fast flow rate portion (the sub-passage bypassing portion 11), whereby the measuring element The increase in the flow velocity in the vicinity of 5 is suppressed, and the measurement error of the flow rate measuring device can be reduced.

この流速の増加の抑制は計測素子5の上流側で行なわれるので、流量計測装置の計測誤差を低減することができる。計測素子5の下流側で流速の増加が抑制されても、計測誤差の低減に寄与しない。   Since the increase in the flow velocity is suppressed on the upstream side of the measurement element 5, the measurement error of the flow rate measuring device can be reduced. Even if the increase in the flow velocity is suppressed on the downstream side of the measuring element 5, it does not contribute to the reduction of the measurement error.

また、流速の速い部分(副通路迂回部11)に貫通孔13が設けることにより、流速の増加の抑制が効果的に行なわれ、計測誤差の低減に寄与するのである。   Moreover, by providing the through-hole 13 in the portion where the flow velocity is fast (the sub-passage bypassing portion 11), the increase in the flow velocity is effectively suppressed and the measurement error is reduced.

第1の実施例の効果を確認するために、貫通孔13のあり、なしそれぞれについてCAE解析を実施した。図3には、図2の計測素子5の中央付近を断面したA−A横断面図を示す。図4にはCAE解析結果を示す。   In order to confirm the effect of the first example, CAE analysis was performed for each of the presence and absence of the through hole 13. FIG. 3 is a cross-sectional view taken along the line AA in which the vicinity of the center of the measuring element 5 in FIG. 2 is cut. FIG. 4 shows the CAE analysis results.

図4に示すグラフの横軸には、図3に図示された貫通孔13の直径を示し、縦軸には図3に図示された点Pにおける定常流解析時の流速Aと、脈動流解析時の平均流速Bを算出し、数式1により求めた脈動誤差を示す。   The horizontal axis of the graph shown in FIG. 4 shows the diameter of the through-hole 13 shown in FIG. 3, and the vertical axis shows the flow velocity A during the steady flow analysis at the point P shown in FIG. The average flow velocity B at the time is calculated, and the pulsation error calculated by Equation 1 is shown.

この図4に示すグラフより、貫通孔13を設けることで、大幅に脈動誤差を低減させる効果があることが確認できる。   From the graph shown in FIG. 4, it can be confirmed that the provision of the through-hole 13 has the effect of greatly reducing the pulsation error.

また、貫通孔13の大きさは、水抜け性、ダスト詰まり防止を考慮すると1.5mm以上必要であることが実験で確認されており、最小径は1.5mm以上とすることが望ましい。   Moreover, it has been confirmed by experiments that the size of the through-hole 13 is required to be 1.5 mm or more in consideration of drainage and prevention of dust clogging, and the minimum diameter is desirably 1.5 mm or more.

最大径については、図4に示すグラフより直径4.5mmを超えると急激に脈動誤差が増加していることから4.5mm以下とすることが望ましい。   The maximum diameter is desirably 4.5 mm or less because the pulsation error increases rapidly when the diameter exceeds 4.5 mm from the graph shown in FIG.

すなわち、貫通孔13の大きさは、直径1.5〜4.5mmの範囲で脈動誤差を低減させる効果があることが確認できる。   That is, it can be confirmed that the size of the through hole 13 has an effect of reducing the pulsation error in the range of 1.5 to 4.5 mm in diameter.

さらに、応答性についてもCAE解析を実施しており問題の無いことを確認している。   Furthermore, CAE analysis is also conducted for responsiveness, and it is confirmed that there is no problem.

次に、第2の実施形態を図5で説明する。   Next, a second embodiment will be described with reference to FIG.

第1の実施例と同様に、副通路入口部10と計測素子5との間に副通路3と主通路1とを貫通し、副通路3を構成する壁面における流体の流速の速い部分(副通路迂回部11)に、副通路3の出口部4と同じ方向に開口する貫通孔13を配置し、さらには貫通孔13よりも下流側の流速の速い部分に副通路3の出口部4と同じ方向に開口する貫通孔13Aを配置した構造である。   Similar to the first embodiment, the sub-passage 3 and the main passage 1 pass through between the sub-passage inlet 10 and the measuring element 5, and the portion of the wall where the sub-passage 3 has a high fluid flow velocity ( A through hole 13 that opens in the same direction as the outlet part 4 of the sub-passage 3 is arranged in the passage detour part 11), and further, the outlet part 4 of the sub-passage 3 and In this structure, a through hole 13A that opens in the same direction is arranged.

本実施例についても効果を確認するために、第1の実施例と同様のCAE解析を実施した。図6にCAE解析結果を示す。   In order to confirm the effect of this example as well, the same CAE analysis as in the first example was performed. FIG. 6 shows the CAE analysis results.

この図6に示すグラフより、貫通孔13を複数個設けても、第1の実施形態と同様の効果があることが確認できる。   From the graph shown in FIG. 6, it can be confirmed that even if a plurality of through holes 13 are provided, the same effect as in the first embodiment is obtained.

さらには、例えばいずれかの貫通孔13が水滴の付着、凍結、オイル、ダストなどによって塞がれたとしても、流量計測装置の計測誤差を大幅に悪化させることが無くなり、信頼性の高い発熱抵抗体式流量測定装置を実現することができる。   Further, for example, even if any of the through holes 13 is blocked by water droplet adhesion, freezing, oil, dust, or the like, the measurement error of the flow rate measuring device is not greatly deteriorated, and the highly reliable heating resistance A body flow measuring device can be realized.

次に、第3の実施形態を図7で説明する。   Next, a third embodiment will be described with reference to FIG.

第1の実施例と同様に、副通路入口部10と計測素子5との間に副通路3と主通路1とを貫通し、副通路3を構成する壁面における流体の流速の速い部分に、副通路3の副通路出口部4と同じ方向に開口する空気の流線に沿って延長された貫通孔13が配置されているのが特徴であり、長さが1.5〜4.5mmの範囲であれば第1の実施形態と同様の効果がある。   As in the first embodiment, the sub-passage 3 and the main passage 1 are passed between the sub-passage inlet 10 and the measuring element 5, and the portion of the wall surface constituting the sub-passage 3 has a high fluid flow velocity. The through-hole 13 extended along the stream line of the air opened in the same direction as the sub-passage outlet part 4 of the sub-passage 3 is arranged, and the length is 1.5 to 4.5 mm. If it is within the range, the same effect as the first embodiment is obtained.

さらには、貫通孔13が空気の流線に沿って延長された形状であることから、副通路3に混入したダストや水滴が、この貫通孔13から主通路1へ排出され易くなり、ダスト詰まりや水滴付着による水抜け性の悪化を低減させる効果もある。   Furthermore, since the through-hole 13 has a shape extending along the air flow line, dust and water droplets mixed in the sub-passage 3 are easily discharged from the through-hole 13 to the main passage 1 and become clogged with dust. There is also an effect of reducing deterioration of water drainage due to water droplet adhesion.

図8は、上述した発熱抵抗体式流量測定装置を用いた内燃機関の制御システムの実施例を示す図である。   FIG. 8 is a diagram showing an embodiment of a control system for an internal combustion engine using the heating resistor type flow rate measuring device described above.

図8において、エアクリーナ100、ボディ2、吸気ダクト103、スロットル角度センサ111、アイドルエアコントロールバルブ102、スロットルボディ104は、吸気マニホールド106と一体となり、吸気通路を形成している。   In FIG. 8, an air cleaner 100, a body 2, an intake duct 103, a throttle angle sensor 111, an idle air control valve 102, and a throttle body 104 are integrated with an intake manifold 106 to form an intake passage.

エンジンへの吸入空気101は、上記吸気通路を流れる途中の通路あるいは副通路3で、本実施例による発熱抵抗体式流量測定装置のモジュール110に流量が検知される。   The intake air 101 to the engine is a passage or sub-passage 3 in the middle of flowing through the intake passage, and the flow rate is detected by the module 110 of the heating resistor type flow measuring device according to the present embodiment.

そして、検知された流量の信号が電圧、周波数等の信号形態で、コントロールユニット114に取込まれ、インジェクタ105、エンジン回転速度計113、エンジンシリンダ107、排気マニホールド109、排気ガス108、酸素濃度計112から構成される燃料部構造及びサブシステムの制御に用いられる。   Then, the detected flow rate signal is taken into the control unit 114 in the form of a signal such as voltage and frequency, and the injector 105, the engine rotation speed meter 113, the engine cylinder 107, the exhaust manifold 109, the exhaust gas 108, and the oxygen concentration meter. 112 is used to control the fuel unit structure and the subsystem composed of 112.

この燃料部構造及びサブシステムの制御に、本発明による発熱抵抗体式流量測定装置を適用することにより、脈動影響を低減することで正確な空気流量を測定でき、エンジンコントロール精度が向上される。   By applying the heating resistor type flow rate measuring device according to the present invention to the control of the fuel part structure and the subsystem, an accurate air flow rate can be measured by reducing the influence of pulsation, and the engine control accuracy is improved.

本発明は副通路を有する流量計に関わり、特に内燃機関に使用される発熱抵抗体式流量測定装置に好適である。   The present invention relates to a flow meter having a sub passage, and is particularly suitable for a heating resistor type flow rate measuring device used in an internal combustion engine.

本発明の第1の実施形態である発熱抵抗体式流量測定装置の流れ方向に対する縦断面図。The longitudinal cross-sectional view with respect to the flow direction of the heating resistor type | formula flow measuring device which is the 1st Embodiment of this invention. 本発明の第1の実施形態である発熱抵抗体式流量測定装置の流れ方向に対する縦断面図。The longitudinal cross-sectional view with respect to the flow direction of the heating resistor type | formula flow measuring device which is the 1st Embodiment of this invention. 本発明の第1の実施形態である発熱抵抗体式流量測定装置のA−A横断面図。1 is a cross-sectional view taken along line AA of a heating resistor type flow rate measuring apparatus according to a first embodiment of the present invention. FIG. 本発明の第1の実施形態である発熱抵抗体式流量測定装置のCAE解析結果。The CAE analysis result of the heating resistor type flow measuring device which is the 1st embodiment of the present invention. 本発明の第2の実施形態である発熱抵抗体式流量測定装置の流れ方向に対する縦断面図。The longitudinal cross-sectional view with respect to the flow direction of the heating resistor type | formula flow measuring device which is the 2nd Embodiment of this invention. 本発明の第2の実施形態である発熱抵抗体式流量測定装置のCAE解析結果。The CAE analysis result of the heating resistor type flow measuring device which is the 2nd embodiment of the present invention. 本発明の第3の実施形態である発熱抵抗体式流量測定装置の流れ方向に対する縦断面図。The longitudinal cross-sectional view with respect to the flow direction of the heating resistor type flow measuring device which is the 3rd Embodiment of this invention. 本発明の発熱抵抗体式流量測定装置を用いて燃料制御を行う内燃機関の制御システム図。The control system figure of the internal combustion engine which performs fuel control using the heating resistor type flow measuring device of the present invention.

符号の説明Explanation of symbols

1…主通路、2…ボディ、3…副通路、4…副通路出口部、5…計測素子、6…感温抵抗体、7…電子回路、8…カバー、9…ハウジング、10…副通路入口部、11…副通路迂回部、12…水抜き穴、13、13A…貫通孔、14…ターミナル、P…解析時の流体速度測定点、100…エアクリーナ、101…吸入空気、102…アイドルエアコントロールバルブ、103…吸気ダクト、104…スロットルボディ、105…インジェクタ、106…吸気マニホールド、107…エンジンシリンダ、108…排気ガス、109…排気マニホールド、110…モジュール、111…スロットル角度センサ、112…酸素濃度計、113…エンジン回転速度計、114…コントロールユニット。
DESCRIPTION OF SYMBOLS 1 ... Main passage, 2 ... Body, 3 ... Sub passage, 4 ... Sub passage exit part, 5 ... Measuring element, 6 ... Temperature sensitive resistor, 7 ... Electronic circuit, 8 ... Cover, 9 ... Housing, 10 ... Sub passage Inlet portion, 11 ... bypass passage portion, 12 ... drain hole, 13, 13A ... through hole, 14 ... terminal, P ... fluid velocity measurement point during analysis, 100 ... air cleaner, 101 ... intake air, 102 ... idle air Control valve 103 ... Intake duct 104 ... Throttle body 105 ... Injector 106 ... Intake manifold 107 ... Engine cylinder 108 ... Exhaust gas 109 ... Exhaust manifold 110 ... Module 111 ... Throttle angle sensor 112 ... Oxygen Densitometer, 113 ... engine speed meter, 114 ... control unit.

Claims (9)

主通路を流れる流体の一部が副通路入口部から流入し、副通路出口部に流れて行く途中に少なくとも一つの副通路迂回部を有する副通路と、前記副通路内に配置された吸気流量を計測する計測素子を有する発熱抵抗体式流量測定装置において、
前記副通路入口部と前記計測素子との間にあって、前記副通路を構成する壁面に設けられ、前記副通路と前記主通路とを貫通する貫通孔を備えることを特徴とする発熱抵抗体式流量測定装置。
A part of the fluid flowing in the main passage flows from the inlet portion of the auxiliary passage and flows to the outlet portion of the auxiliary passage, and the intake passage disposed in the auxiliary passage having at least one auxiliary passage detour portion. In a heating resistor type flow measuring device having a measuring element for measuring
A heating resistor type flow rate measurement comprising a through hole between the sub passage entrance and the measuring element and provided in a wall surface constituting the sub passage and penetrating the sub passage and the main passage. apparatus.
主通路を流れる流体の一部が流通する副通路と、前記副通路に設けられた、前記流体の一部が流れ込む副通路入口部と、前記副通路に設けられた、前記副通路を流れた流体が流れ出る副通路出口部と、前記副通路に設けられた、前記副通路入口部と前記副通路出口部の途中に存在する副通路迂回部と、前記副通路内に設けられた、前記副通路迂回部と前記副通路出口部との間に配置された吸気流量を計測する計測素子を有する発熱抵抗体式流量測定装置において、
前記副通路と前記主通路とを貫通する貫通孔を前記計測素子の上流側に備えたことを特徴とする発熱抵抗体式流量測定装置。
A sub-passage in which a part of the fluid flowing through the main passage circulates, a sub-passage inlet portion into which the part of the fluid flows, provided in the sub-passage, and the sub-passage provided in the sub-passage. A sub-passage outlet portion through which fluid flows, a sub-passage bypass portion provided in the sub-passage and in the middle of the sub-passage inlet portion and the sub-passage outlet portion, and the sub-passage provided in the sub-passage In the heating resistor type flow rate measuring device having a measuring element for measuring the intake flow rate disposed between the passage detour portion and the sub passage outlet portion,
A heating resistor type flow rate measuring device comprising a through hole penetrating the sub passage and the main passage on the upstream side of the measuring element.
請求項1または2記載の発熱抵抗体式流量測定装置において、
前記副通路迂回部は、前記副通路内を流れる流体が速くなるように狭まる流路になっていることを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to claim 1 or 2,
The heating resistor type flow rate measuring device, wherein the bypass passage detour portion is a flow path that narrows so that the fluid flowing in the bypass passage becomes faster.
請求項1〜3の何れかに記載された発熱抵抗体式流量測定装置において、
前記副通路迂回部は、円弧を描くように湾曲していることを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to any one of claims 1 to 3,
The sub-passage bypassing part is curved so as to draw an arc.
請求項1〜4の何れかに記載された発熱抵抗体式流量測定装置において、
前記貫通孔は、前記副通路迂回部の中央を含む近傍に設けられることを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to any one of claims 1 to 4,
The heating resistor type flow rate measuring device, wherein the through hole is provided in the vicinity including the center of the bypass passage bypassing portion.
請求項1〜5の何れかに記載された発熱抵抗体式流量測定装置において、
前記貫通孔は、前記主通路側に臨む開口部が前記副通路出口部と同じ方向に開口することを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to any one of claims 1 to 5,
The heating resistor type flow rate measuring device, wherein the through-hole has an opening facing the main passage in the same direction as the sub-passage outlet.
請求項1〜6の何れかに記載された発熱抵抗体式流量測定装置において、
前記貫通孔は直径が1.5〜4.5mm程度であることを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to any one of claims 1 to 6,
The heating resistor type flow rate measuring device, wherein the through hole has a diameter of about 1.5 to 4.5 mm.
請求項1〜7の何れかに記載された発熱抵抗体式流量測定装置において、
前記貫通孔を複数個備えたことを特徴とする発熱抵抗体式流量測定装置。
In the heating resistor type flow measuring device according to any one of claims 1 to 7,
A heating resistor type flow rate measuring apparatus comprising a plurality of the through holes.
請求項1〜7の何れかに記載された発熱抵抗体式流量測定装置を用いて燃料制御を行うことを特徴とする内燃機関の制御システム。   8. A control system for an internal combustion engine, wherein fuel control is performed using the heating resistor type flow rate measuring device according to any one of claims 1 to 7.
JP2006157729A 2006-06-06 2006-06-06 Heating resistor type flow measuring device Expired - Fee Related JP5085889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157729A JP5085889B2 (en) 2006-06-06 2006-06-06 Heating resistor type flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157729A JP5085889B2 (en) 2006-06-06 2006-06-06 Heating resistor type flow measuring device

Publications (2)

Publication Number Publication Date
JP2007327790A true JP2007327790A (en) 2007-12-20
JP5085889B2 JP5085889B2 (en) 2012-11-28

Family

ID=38928361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157729A Expired - Fee Related JP5085889B2 (en) 2006-06-06 2006-06-06 Heating resistor type flow measuring device

Country Status (1)

Country Link
JP (1) JP5085889B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014489A (en) * 2008-07-02 2010-01-21 Mitsubishi Electric Corp Flow measuring device
DE102011006528A1 (en) 2010-04-09 2011-12-15 Denso Corporation Air flow measuring device
WO2012014321A1 (en) * 2010-07-30 2012-02-02 パイオニア株式会社 Wind detection device
WO2013187169A1 (en) * 2012-06-15 2013-12-19 日立オートモティブシステムズ株式会社 Thermal flow meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136313A (en) * 1994-11-08 1996-05-31 Tokyo Gas Co Ltd Flow-rate measuring instrument
JP2002005712A (en) * 2000-06-16 2002-01-09 Hitachi Ltd Air flow measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136313A (en) * 1994-11-08 1996-05-31 Tokyo Gas Co Ltd Flow-rate measuring instrument
JP2002005712A (en) * 2000-06-16 2002-01-09 Hitachi Ltd Air flow measuring device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014489A (en) * 2008-07-02 2010-01-21 Mitsubishi Electric Corp Flow measuring device
US7942052B2 (en) 2008-07-02 2011-05-17 Mitsubishi Electric Corporation Flow rate measuring apparatus including a recess for changing air flow direction
US8181514B2 (en) 2008-07-02 2012-05-22 Mitsubishi Electric Corporation Flow rate measuring apparatus including a recess for changing air flow direction
US8191417B2 (en) 2008-07-02 2012-06-05 Mitsubishi Electric Corporation Flow rate measuring apparatus including a recess for changing air flow direction
DE102011006528A1 (en) 2010-04-09 2011-12-15 Denso Corporation Air flow measuring device
DE102011006528B4 (en) * 2010-04-09 2021-02-11 Denso Corporation Air flow measuring device
WO2012014321A1 (en) * 2010-07-30 2012-02-02 パイオニア株式会社 Wind detection device
WO2013187169A1 (en) * 2012-06-15 2013-12-19 日立オートモティブシステムズ株式会社 Thermal flow meter
CN104380057A (en) * 2012-06-15 2015-02-25 日立汽车系统株式会社 Thermal flow meter
US10018492B2 (en) 2012-06-15 2018-07-10 Hitachi Automotive Systems, Ltd. Thermal flow meter with drainage passage at inlet of bypass passage

Also Published As

Publication number Publication date
JP5085889B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5178388B2 (en) Air flow measurement device
JP4979262B2 (en) Flow measuring device
JP5183164B2 (en) Flow measuring device
US6810725B2 (en) Exhaust gas recirculation measurement device
JP5168223B2 (en) Air flow measurement device
EP1722089A1 (en) Exhaust gas purifying device for engine
JP5085889B2 (en) Heating resistor type flow measuring device
JP3709385B2 (en) Gas flow measuring device for internal combustion engine
JP2004226315A (en) Thermal flow rate measuring device
JP2006047272A (en) Flow sensor
US7523731B2 (en) Intake system for internal combustion engine
ZA200206052B (en) Device for measuring air flow, comprising a device for separating foreign particles.
JP4659623B2 (en) Thermal flow meter
JP2732665B2 (en) Intake pipe pressure detector
JP4836179B2 (en) Heating resistor type fluid flow measuring device
JP5542614B2 (en) Flow measuring device
US7395700B2 (en) Intake device for internal combustion engine and method of measuring intake air amount
JP5462114B2 (en) Heating resistor type air flow measuring device
JPS5861411A (en) Measuring device for flow rate of gas
JP2021039025A (en) Aur flowrate measuring device
JP5010877B2 (en) Thermal gas flow measuring device
JP4173833B2 (en) Intake device for internal combustion engine
JPH01130024A (en) Intake amount measuring device for engine
JP2812329B2 (en) Air flow meter
JP2003161652A (en) Flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5085889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees