WO2012014321A1 - Wind detection device - Google Patents

Wind detection device Download PDF

Info

Publication number
WO2012014321A1
WO2012014321A1 PCT/JP2010/062922 JP2010062922W WO2012014321A1 WO 2012014321 A1 WO2012014321 A1 WO 2012014321A1 JP 2010062922 W JP2010062922 W JP 2010062922W WO 2012014321 A1 WO2012014321 A1 WO 2012014321A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
sound
bicycle
flow passage
flow
Prior art date
Application number
PCT/JP2010/062922
Other languages
French (fr)
Japanese (ja)
Inventor
泰輝 児玉
隆二郎 藤田
岳彦 塩田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2012526264A priority Critical patent/JP5489137B2/en
Priority to PCT/JP2010/062922 priority patent/WO2012014321A1/en
Publication of WO2012014321A1 publication Critical patent/WO2012014321A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave

Definitions

  • the present invention relates to a wind detecting device having directivity.
  • the travel speed is used as an index of travel
  • the driver adjusts the number of rotations of the pedal so as to keep the travel speed constant. Therefore, even if the vehicle travels on the same course, a difference occurs in the work performed by the driver according to the strength of the wind.
  • work that exceeds the capacity for air resistance may be required. In this case, the driver cannot feel uncomfortable or humiliated because the running speed cannot be kept constant, as well as physical fatigue.
  • the air resistance caused by the wind affects the driver both mentally and physically, so it can be said that it is an important indicator for driving.
  • the distance traveled by the mobile person relative to the air (atmosphere) (hereinafter referred to as “the travel distance relative to the air”), which is related to the air resistance, is considered to be a new indicator for outdoor sports.
  • This “movement distance with respect to the air” can be calculated by integrating the “relative speed of the mobile person (sport performer) with respect to the air (atmosphere)”.
  • the wind detection device described in Patent Document 1 includes a wind direction sensor and a cylindrical wind guide tube, and a sensing unit constituting the wind direction sensor is disposed in the wind guide tube.
  • the wind direction sensor can measure wind speed and wind force.
  • Prior art 1 measures the axial component of the introduction pipe of the wind speed by letting the wind flow through the wind guide pipe.
  • a wind detection device described in Patent Document 2 includes a first vortex body and a second vortex body that generate Karman vortices, and microphones attached to the vortex bodies. And a pressure conduit for transmitting the pressure fluctuation of the Karman vortex attached to each vortex body to the microphone.
  • Prior art 2 measures the wind speed by causing a wind to collide with the vortex and generating a Karman vortex.
  • Prior art 3 The wind detection device described in Patent Document 3 (hereinafter referred to as “prior art 3”) is converted by an air flow / acoustic conversion unit that converts an air flow blown from an opening into an acoustic wave, and an air flow / acoustic conversion unit.
  • a microphone that collects sound and converts it into an electrical signal.
  • Prior art 3 measures the wind speed by bringing the airflow (wind) into contact with the airflow / acoustic converter.
  • Prior art 1 is generally bi-directional and can measure the wind speed in a specific direction such as a traveling direction, but is expensive because it includes a wind speed sensor.
  • the prior art 2 and the prior art 3 are provided with a microphone, and therefore are less expensive than the prior art 1.
  • the prior art 2 has no description of directivity and does not consider directivity.
  • the prior art 3 can detect the wind direction, it has a complicated structure and requires two microphones, so it is difficult to suppress a reduction in manufacturing cost.
  • An object of the present invention is to provide an inexpensive wind detection device that can improve the directivity in the traveling direction in view of the above background.
  • a wind detection device includes an inflow port through which air flows in, an outflow port through which air flows out, and a flow through which air is circulated in communication with the inflow port and the outflow port.
  • a wind guide body having a path, and a sound measuring device that is spatially connected to the flow path and measures sound, and the flow path is closed in a circumferential direction with respect to its length direction, The outlet is wider than the inlet.
  • FIG. 2D is a cross-sectional view taken along the line AA in FIG.
  • FIG. (A) is a front view of the mobile body measuring device in Embodiment 2
  • (b) is a longitudinal sectional view of the mobile body measuring device in Embodiment 2
  • (c) is the bottom surface of the mobile body measuring device in Embodiment 2.
  • FIG. (A) is a front view of the mobile body measuring device in Embodiment 3
  • (b) is a longitudinal sectional view of the mobile body measuring device in Embodiment 3
  • (c) is a bottom surface of the mobile body measuring device in Embodiment 3.
  • FIG. It is a graph showing the directivity of a wind detection apparatus.
  • FIG. 1 is an external view showing a state in which the wind speed measuring structure of the present invention is used in a moving body measuring apparatus and the moving body measuring apparatus is attached to a bicycle B.
  • a moving body measuring device takes in an air flow such as wind, generates sound from the captured air flow, and measures the volume of the sound (the amplitude of vibration that causes the sound) (sound measurement) (Structure) 1, a display device 2 for displaying preset items, and a main body portion 100a in which the input means 3 is integrated in the main body 10 and an attachment portion 100b for fixing the main body portion 100a to the bicycle. It comprises.
  • the moving body measuring apparatus 100 measures the wind speed from the loudness of the sound measured by the wind detecting apparatus 1 and uses the wind speed to set various preset calorie consumption, movement distance in the atmosphere, work amount, and the like. The value is calculated and displayed on the display device 2.
  • the attachment portion 100b has a mechanism that is fixed to the handle B1 while gripping the handle B1 of the bicycle B.
  • the attachment portion 100b is connected to the main body portion 100a.
  • the attachment portion 100b is located above the handle B1, and the main body portion 100a is located above the attachment portion 100b. Is located.
  • the main body 10 has a substantially flat plate shape, a mounting portion 100b is provided on one bottom surface, and predetermined information is displayed on the other bottom surface.
  • a display unit 21 of the display device 2 and an operation unit 31 of the input means 3 capable of input operation are provided. Therefore, when the moving body measuring apparatus 100 is attached to the bicycle B, one bottom surface faces the handle B1 of the bicycle B, and the other bottom surface faces the atmosphere (driver). Therefore, the driver can easily visually recognize the display unit 21 of the display device 2 and the operation unit 31 of the input device 3.
  • both bottom surfaces of the main body 10 have a substantially elliptical shape or a substantially elliptical shape with different diagonal lengths, and the mobile body measuring device 100 is normally attached to the bicycle B.
  • the major axis direction of the bottom surface coincides with the moving direction of the bicycle.
  • the display unit 21 and the operation unit 31 are arranged side by side in the long axis direction of the bottom surface of the main body unit 100a.
  • the display unit 21 is On the front side of the bicycle B
  • the operation unit 31 is located on the rear side of the bicycle B.
  • the main body 10 is provided with a wind detection device 1.
  • the wind detection device 1 generates a sound (vibration) from the air flow on the upstream side of the flow passage 11 through which an air flow such as wind flows and the sound (vibration) is measured.
  • a detection port (sound generating means) 13 is provided.
  • the flow passage 11 includes a hole that vertically cuts the main body 10 in the major axis direction of the bottom surface of the main body 10.
  • the holes constituting the flow passage 11 are formed from one end surface of the main body 10 to the other end surface.
  • the part of the hole currently formed in the end surface of the advancing direction side (front side) of the bicycle B comprises the inflow port 11A of the flow path 11, and is formed in the other driver side (rear side) end surface.
  • the hole portion constitutes the outlet 11 ⁇ / b> B of the flow passage 11.
  • the flow passage 11 is surrounded by the main body 10 in the entire circumferential direction with respect to the central axis C1 (length direction). Accordingly, an air flow such as wind coming from the front during traveling of the bicycle B flows into the flow passage 11 from the inflow port 11A, and flows out of the outflow port 11B through the flow passage 11.
  • the cross section of the flow passage 11 has a substantially rectangular shape and gradually expands from the front side toward the rear side. That is, the outlet 11B is wider than the inlet 11A.
  • the length of the flow passage 11 in the direction perpendicular to the bottom surface of the main body 10 is constant, and only the length in the major axis direction of the bottom surface of the main body 10 of the flow passage 11 is from the traveling direction side. It is expanding towards the driver side.
  • the central axis C ⁇ b> 1 of the flow passage 11 is a straight line parallel to the bottom surface of the main body 10.
  • the cross-section of the flow passage 11 has a substantially rectangular shape, but the cross-sectional shape of the flow passage 11 is not particularly limited. Further, only the length in the major axis direction of the bottom surface of the main body 10 of the flow passage 11 is enlarged from the front side toward the rear side, but it is sufficient that the cross section of the flow passage 11 is enlarged in that direction.
  • the mode of expansion is not particularly limited. Further, although the central axis C1 of the flow passage 11 is a straight line parallel to the bottom surface of the main body 10, it may be a straight line inclined to the bottom surface of the main body 10 or a curved line.
  • a sound measuring device 12 is provided at the center of the flow passage 11. That is, the sound measuring device 12 is disposed between the bottom surface of the main body 10 where the display unit 21 and the operation unit 31 are provided and the flow passage 11. As long as the sound measuring device 12 can measure sound (vibration), its structure and shape are not particularly limited. In the present embodiment, a MEMS microphone packaged in a flat plate shape is used as the sound detector 12.
  • a detection port 13 is formed from the hole wall of the flow passage 11 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 12, It communicates with the mouth.
  • the airflow flowing toward the bicycle B flows into the flow passage 11 from the inflow port 11 ⁇ / b> A and flows through the flow passage 11.
  • a turbulent flow is generated and moves in the detection port 13 toward the sound measuring device 12.
  • the sound measuring device 12 measures turbulent flow generated by an air flow such as wind as sound (so-called “wind noise”).
  • the shape of the detection port 14 is not particularly limited, but if the detection port 13 has a columnar shape, sound (vibration) attenuation due to bending loss can be suppressed, and therefore the detection port 13 has a columnar shape. Is desirable.
  • case 1 When the hollow portion of the hollow structure expands along the air flow (hereinafter referred to as “case 1”), the flow velocity of the air flow increases toward the outlet of the hollow structure.
  • case 2 when the hollow portion of the hollow structure is contracted along the air flow (hereinafter referred to as “case 2”), the flow velocity of the air flow decreases toward the outlet of the hollow structure.
  • the directivity of the sound generated by the airflow such as the wind from the front of the bicycle B toward the bicycle B is higher when the flow passage 11 expands along the airflow. Further, since the loudness of the sound measured by the sound measuring device 12 is faster than the wind speed in the atmosphere in the case 1 and slower than the wind speed in the atmosphere in the case 2, the wind detection with respect to the moving direction of the bicycle B is detected. The directivity of the device 1 is biased to the front side of the bicycle B as a whole (see FIG. 5).
  • FIG. 5 is a graph showing the directivity of a device in which the wind direction sensor of Prior Art 1 described above is replaced with a sound measuring device 12 (hereinafter referred to as Replacement Prior Art 1).
  • the distance from the origin represents the level of directivity in the direction of the wind detection device 1, that is, the sensitivity to the direction.
  • the direction of directivity corresponds to an angle centered on the origin, where 0 degree is in front of the wind detection apparatus 1, 180 degrees is behind the wind detection apparatus 1, and 90 degrees and 270 degrees are wind detection.
  • the side of the device 1 is shown.
  • the directivity of the replacement prior art 1 is stronger at 90 degrees and 270 degrees than at 0 degrees and 180 degrees.
  • turbulence is generated by the wind moving from the front and the rear of the wind detection device 1 to the wind detection device 1, but the wind moves from the side of the wind detection device 1 to the wind detection device 1.
  • the sound measuring device 12 of the replacement prior art 1 detects sound.
  • the directivity of the replacement prior art is stronger to the side (90 degrees and 270) than to the front and rear (0 degrees and 180 degrees) of the wind detection device 1.
  • the directivity of the wind detection device 1 is stronger at 0 degree than 180 degrees because the outlet 11B is wider than the inlet 11A as described above.
  • the graph of FIG. 5 shows that the wind detection device measured the volume of sound when the wind detection device was given a wind of a predetermined wind speed while rotating 30 degrees at 0 degrees in front of the wind detection device. It is a result (experimental result).
  • the moving body measuring device 200 includes a wind detecting device 101 that measures sound, a display device 102 that displays preset items, and an input device 103 incorporated in a main body 110 and integrated into a main body portion 200a. And an attachment portion 100b for fixing the main body portion 200a to the bicycle.
  • the wind detection device 101 is provided in a range in front of the bicycle B from the display unit 121 of the main body 110.
  • the wind detection device 101 generates a sound (vibration) from the air flow on the upstream side of the flow path 111 through which an air flow such as wind flows and the sound (vibration) is measured.
  • a detection port (sound generating means) 113 is provided.
  • the flow path 111 is configured by a hole that is bent from the front end surface of the main body 110 to the bottom surface to which the mounting portion 100b of the main body 110 is connected.
  • the portion of the hole formed in the end surface of the main body 110 constitutes the inlet 111A of the flow passage 111, and the portion of the hole formed in the bottom surface of the main body 110 constitutes the outlet 111B of the flow passage 111.
  • the flow passage 111 is surrounded by the main body 110 in the entire circumferential direction with respect to the central axis C2. Accordingly, an air flow such as wind coming from the front during the traveling of the bicycle B flows in from the inflow port 111A, flows out of the outflow port 111B through the flow path 111.
  • the inflow port 111A has a substantially rectangular shape
  • the outflow port 111B has a substantially elliptical shape.
  • the outlet 111B is wider than the inlet 111A, and the cross section of the inlet passage 111 expands from the front side toward the rear side.
  • the flow path 111 is bent halfway, and the cross section of the flow path 111 from the inlet 111A to the break point is the same as the inlet 111A, and the flow from the break point to the outlet 111B.
  • the cross section of the channel 111 is enlarged toward the outlet 111B.
  • the flow passage 111 is directed upward from the break point, and an outlet 111 ⁇ / b> B is formed on the surface of the main body 110.
  • the outflow port 111B is formed in the surface, the detection of the sound outside the detection purpose which generate
  • a sound measuring instrument 112 and a detection port 113 are provided in a portion from the inlet 111 ⁇ / b> A to the break point of the flow passage 111. That is, the sound measuring instrument 112 and the detection port 113 are disposed between the bottom surface of the main body 10 where the display unit 121 and the operation unit 131 are provided and the portion of the flow passage 111 from the inlet 111A to the break point. Yes.
  • the sound measuring instrument 112 can measure sound (vibration), its structure and shape are not particularly limited.
  • a MEMS microphone packaged in a flat plate shape is used as the sound detector 112.
  • the detection port 113 is formed from a hole wall near the sound detector 112 in the flow passage 111 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 112. That is, the flow path 111 and the sound port of the sound detector 112 are communicated with each other by the detection port 113. Therefore, the airflow flowing toward the bicycle B flows into the flow passage 111 from the inflow port 111A and flows through the flow passage 111 toward the outflow port 111B. At this time, when the air flow passes through the detection port 113, turbulent flow (so-called “wind noise”) is generated and moves in the detection port 113 toward the sound measuring instrument 112. As a result, the sound measuring device 112 measures turbulent flow generated by an air flow such as wind as sound.
  • the cross section of the flow passage 111 is enlarged along the air flow, but the direction of the outlet 111B and the direction of the inlet 111A of the flow passage 111 Are different in that they are orthogonal. That is, the direction of the airflow such as wind from the rear of the bicycle B toward the bicycle B is parallel to the surface direction of the rear opening of the flow passage 11 of the first embodiment and the surface direction of the outlet 111B of the present embodiment. It is. In the point that the direction of the air flow and the surface direction of the outlet 111B are parallel to each other, the air flow such as wind directed from the side of the bicycle B toward the bicycle B in the case of the first embodiment and the surface direction of the outlet 11B. Same as relationship.
  • the shape of the flow passage after the air flow such as the wind from the side of the bicycle B toward the bicycle B flows from the outlet that is, the flow passage is Whether it is straight or bent.
  • the direction of the air flow that moves in the direction opposite to the traveling direction of the bicycle B the direction of the air flow that moves from the side of the bicycle B toward the bicycle B, and the surface of the outlet 111B. Parallel to the direction.
  • the direction of the incoming air flow matches the direction of the central axis C2 of the flow passage 111.
  • the direction of the incoming air flow and the direction of the central axis C2 of the flow passage 111 Are orthogonal.
  • the air flow is less likely to propagate through the flow path 111 when flowing from the side of the bicycle B toward the bicycle B.
  • the directivity of the wind detection device 101 with respect to the direction of the airflow from the measurement of the bicycle B toward the bicycle B is more directivity of the wind detection device 101 with respect to the direction of the airflow from the rear of the bicycle B toward the bicycle B.
  • the results are summarized as shown in FIG. That is, 90 degrees and 270 degrees of the wind detection apparatus 101 in the second embodiment, that is, the directivity with respect to the side of the wind detection apparatus 101 is 90 degrees and 270 degrees of the wind detection apparatus 1 in the first embodiment. Weaker than directivity.
  • the surface direction of the outlet 111B and the wind direction of an air flow such as wind moving from the rear of the bicycle B toward the bicycle are parallel to each other. Therefore, the air flow hardly flows into the flow path 111 from the outflow port 111B from the outflow port 111B of the wind detection device 1 orthogonal to the airflow direction of the air flow. Accordingly, the wind detection device 101 is stronger in the rear of the bicycle B, that is, the directivity of 180 degrees than the wind detection device 1 (see FIG. 5). Further, in the present embodiment, the cross section of the flow path 111 is the same from the inlet 111A to the detection port 113.
  • the velocity of the air flow that decreases to the detection port 113 is smaller than that in the first embodiment in which the cross section of the flow passage 11 is enlarged from the inlet 11A to the detection port 13. Therefore, the direction of the wind detection apparatus 101 with respect to the direction opposite to the advancing direction of the bicycle B is higher in the case of the present embodiment (see FIG. 5).
  • the moving body measuring device 300 includes a wind detecting device 201 that measures sound, a display device 102 that displays preset items, and a main body portion 300a in which an input device 103 is integrated into a main body 210, and And an attachment portion 100b for fixing the main body portion 300a to the bicycle B.
  • a wind detection device 201 is provided in a range in front of the bicycle B from the display unit 21 of the main body 210.
  • the wind detection device 201 generates sound (vibration) from the air flow on the upstream side of the flow path 211 through which an air flow such as wind circulates, the sound (vibration) is measured, and the sound detector 212.
  • a detection port (sound generating means) 213 is provided.
  • the flow path 211 is configured by a hole formed by bending from the front end surface of the main body 210 to the bottom surface to which the attachment portion 100b of the main body 300b is connected.
  • This flow passage 211 is branched into a plurality (in this embodiment, two) in the middle.
  • the portion of the hole formed in the end surface of the main body 210 constitutes the inlet 211A of the flow passage 211, and the portion of the hole formed in the bottom surface of the main body 210 constitutes the outlets 111B and 111C of the flow passage 111.
  • the flow passage 111 is surrounded by the main body 210 in the entire circumferential direction with respect to the central axis C3. Accordingly, an air flow such as wind coming from the front toward the measurement apparatus 300 while the bicycle B is traveling enters from the inflow port 211A, passes through the flow path 211, and flows out from the outflow port 211B and the outflow port 211C.
  • the inflow port 211A has a substantially rectangular shape, and the outflow ports 211B and 211C have a substantially elliptical shape. Further, the outlet 211B and the outlet 211C are wider than the inlet 211A. That is, the cross section of the flow passage 211 is generally enlarged from the front side toward the rear side. In the present embodiment, the cross section of the flow passage 111 gradually expands toward the branch point, and the cross sections of the flow passage 111 from the branch point to the outlet 211B and the outlet 211C are constant.
  • the flow passage 211 is locally branched in a T-shape, and a central axis C3 at the branch point from the inflow port 211A (hereinafter referred to as “the front portion of the central axis C2”) is a straight line, and the branch point
  • the central axis C3 (hereinafter referred to as “the rear portion of the central axis C3”) at the outlet 211B and the outlet 211C has a curved portion.
  • the rear part of the central axis C3 is parallel to the bottom surface of the main body 210 and is orthogonal to the front part of the central axis C3.
  • the rear portion of the central axis C3 extends linearly from the branch point toward both side surfaces of the main body 210, and further extends linearly toward the outside of the bicycle B and obliquely rearward and upward with the curved portion interposed therebetween.
  • the outlets 211B and 211C are formed across the surface and side surfaces.
  • a sound measuring device 212 and a detection port 213 are provided in a portion from the inlet 211A to the branch point of the flow passage 211. That is, the sound measuring device 212 and the detection port 213 are disposed between the bottom surface of the main body 10 where the display unit 21 and the operation unit 31 are provided and the portion of the flow passage 211 from the inlet 211A to the branch point. Yes.
  • the sound measuring device 212 can measure sound (vibration), its structure and shape are not particularly limited.
  • a MEMS microphone packaged in a flat plate shape is used as the sound detector 212.
  • the detection port 213 is formed from the hole wall near the sound detector 212 of the flow passage 211 to the mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 212. That is, the flow path 211 and the sound port of the sound detector 212 are communicated with each other by the detection port 213. Therefore, the airflow flowing toward the bicycle B flows into the flow passage 211 from the inflow port 211A and circulates through the flow passage 211 toward the outflow ports 211B and 211C. At this time, when the air flow passes through the detection port 213, turbulent flow (aerodynamic noise) is generated and moves in the detection port 213 toward the sound measuring device 212. As a result, the sound measuring device 212 measures turbulence generated by an air flow such as wind as sound.
  • both the outlet 211B and the outlet 211C are wider than the inlet 211A, as in the case of the first embodiment, the cross-section of the flow passage 211 is expanded as a whole along the flow of the air flow.
  • the flow path 211 is different in that it is branched in the middle and extends toward the side surface.
  • the directivity of the wind detection device 101 with respect to the rear (180 degrees) of the bicycle B can be suppressed for the same reason as in the second embodiment (See FIG. 5).
  • the effect from the side of the bicycle B is the same, but the reason for the effect is different.
  • the wind detection devices 1, 101, and 201 of the present invention include the inlets 11 ⁇ / b> A, 111 ⁇ / b> A, and 211 ⁇ / b> A that allow an air flow to flow in, the outlets 11 ⁇ / b> B, 111 ⁇ / b> B, 211 ⁇ / b> B, and 211 ⁇ / b> C that allow an air flow to flow out.
  • 11A, 111A, 211A and air outlets 10, 110, 210 comprising flow passages 11, 111, 211 closed in the circumferential direction that communicate with the outlets 11B, 111B, 211B, 211C and circulate the air flow;
  • the sound measuring devices 12, 112, and 212 are arranged in the flow passages 11, 111, and 211 and measure sound.
  • the sum of the inflow ports 11B, 111B, 211B, and 211C is wider than the sum of the inflow ports 11A, 111A, and 211A.
  • the directivity of the sound measuring devices 12, 112, and 212 is made to be the moving direction of the moving body such as the bicycle B. (Forward and backward), in particular, it can be strengthened in the direction from the front of the moving body toward the moving body.
  • the direction orthogonal to the inflow ports 11A, 111A, 211A and the direction in which the moving body moves forward is preferably three-dimensional (spatially), but two-dimensional (planar) perpendicular to the vertical direction. )).
  • the wind detection devices 1, 101, 201 have sound generating means 13, 113, 213 for generating sound from the air flow between the inlets 11A, 111A, 211A and the sound measuring devices 12, 112, 212.
  • sound is generated in the flow path that is closed in the circumferential direction with respect to the direction in which the air flow flows (the axial direction of the air flow) and on the upstream side of the sound measuring devices 12, 112, and 212. Therefore, it is possible to measure the sound corresponding to the air flow flowing through the flow passages 11, 111, 211 while eliminating the sound generated outside the wind detection devices 1, 101, 201. As a result, the accuracy of the values measured by the sound measuring devices 12, 112, 212 can be increased.
  • the outlets 11B, 111B, 211B, and 211C may be inclined with respect to the inlets 11A, 111A, and 211A.
  • the outflow ports 11B, 111B, 211B, and 211C become the direction of the air flow that moves toward the moving body. Inclines against. Accordingly, the airflow flowing into the flow passages 11, 111, 211 from the flow inlets 11A, 111A, 211A moves toward the flow outlets 11B, 111B, 211B, 211C while securing an area as a discharge port to be discharged.
  • the projected area with respect to a plane perpendicular to the direction of the airflow is reduced. Therefore, it is possible to suppress the functions of the outlets 11B, 111B, and 211B that guide the airflow that moves toward the outlets 11B, 111B, and 211B to the flow passages 11, 111, and 211. Therefore, it is possible to suppress a decrease in directivity of the sound measuring devices 12, 112, and 212 in the direction from the front of the moving body toward the moving body.
  • the direction of the flow paths 11, 111, 211 changes between the portions of the flow paths 11, 111, 211 that are spatially connected to the sound measuring devices 12, 112, 212 and the flow outlets 11B, 111B, 211B, 211C.
  • the air flow flowing into the flow passages 11, 111, 211 from the outlets 11B, 111B, 211B is spatially connected to the sound measuring devices 12, 112, 212 of the flow passages 11, 111, 211. It can be attenuated before reaching. Therefore, it is possible to suppress a decrease in directivity of the sound measuring devices 12, 112, and 212 in the direction from the front of the moving body toward the moving body.
  • the portions of the flow passages 11, 111, 211 that are spatially connected to the sound measuring devices 12, 112, 212 are the flow passages 11, 111, 211 and the detection port 13. , 113 and 213 correspond to the overlapping portion.
  • the sound level (vibration amplitude) is measured by the sound measuring devices 12, 112, and 212 of the wind detection devices 1, 101, and 201.
  • the moving body measuring devices 100, 200, and 300 calculate the relative velocity of the air flow with respect to the bicycle B (hereinafter referred to as “opposing wind velocity”) based on the measurement values measured by the sound measuring devices 12, 112, and 212.
  • the moving body measuring devices 100, 200, and 300 include a wind speed calculation unit that is electrically connected to the sound measuring devices 12, 112, and 212.
  • the wind speed calculation unit includes at least a CPU that performs predetermined calculation processing, a table or graph in which a measurement value that is a loudness and an opposing wind speed are associated with each other, and a ROM that stores a predetermined program. It consists of a mounted board.
  • the CPU of the wind speed calculation unit is opposed based on a program, table, or the like stored in the ROM.
  • the speed is calculated and the calculated value is displayed on the display unit 21.
  • the CPU of the wind speed calculation unit or another CPU may calculate predetermined items such as a moving distance in the atmosphere based on the calculated value and display the predetermined items on the display unit 21.
  • the moving body measuring devices 100, 200, and 300 have information input by the input means 3, speed sensors and acceleration sensors provided in addition to the sound measuring devices 12, 112, and 212, GPS, and the like (not shown). It is also possible to calculate a value other than the moving distance in the atmosphere and the facing speed based on the information sent from and display on the display unit 21.
  • the main bodies 10, 110, and 210 in which the wind detection devices 1, 101, and 201 are incorporated constitute the air guide body of the present invention.
  • a substrate for calculating the wind speed, the display device 2, and the input device 3 are also incorporated and integrated. That is, the main body 10, 110, 210 is provided with functions other than the wind detection devices 1, 101, 201 having a sound measurement function on the premise that the wind speed is measured, so that unitized measurement for a moving body is performed.
  • the devices 100, 200, and 300 are established. However, it is not always required to be unitized.
  • a part or all of measuring instruments for measuring physical quantities as parameters necessary for calculating predetermined information such as the opposing speed are integrated into a unit. It is also possible to attach a portable information terminal such as a mobile phone that can receive data from a measuring instrument and calculate predetermined information to a mobile body such as a bicycle. Furthermore, a storage medium is connected to the unitized unit, and data can be stored in the storage medium, and after the data is collected, the storage medium is connected to a stationary information terminal, and predetermined information is obtained. Can also be calculated.
  • the moving body measuring devices 100, 200, and 300 in which the wind detection device is incorporated are attached to the handle B1 of the bicycle B. It can be attached to the driver's body or helmet. It is also possible to attach the moving body measuring devices 100, 200, and 300 to other moving bodies such as motorcycles and automobiles. Furthermore, the moving body measuring apparatus 100, 200, 300 can be attached to a person and used for walking, running, skiing, or skating.
  • the main bodies 10, 110, and 210 are configured as a single body (non-dividable structure), but the wind detection devices 1, 101, and 201 of the main bodies 10, 110, and 210 are configured. It is also possible to make it possible to separate the part provided with the other parts. In this way, if the main body can be separated for each function, when only a part of the functions breaks down, the running cost of the mobile measuring devices 100, 200, 300 can be suppressed by replacing only the part of the functions.
  • the moving body measuring devices 100, 200, and 300 can be visually recognized from the driver such as the handle B1.
  • voice is used instead of the display apparatus 2, it can also be attached to the position which cannot be visually recognized.
  • the degree of freedom of the attachment position increases, and the degree of freedom of the shape of the main body 10, 110, 210 and the structure of the attachment portion 100b also increases.
  • air resistance can be reduced by eliminating exposure by the display unit or the like.
  • the material of the main body 10, 110, 210 is not particularly limited, and is appropriately set.
  • the sound measuring device 12, 112, 212 is comprised by the MEMS microphone, it is not limited to this, The instrument which consists of another structure which can measure the magnitude
  • the sound measuring devices 12, 112, 212 and the detection ports 13, 113, 213 are disposed in the main bodies 10, 110, 210, but the flow passages 11, 111, 210, It may be configured to protrude from the hole wall 211.
  • the shapes of the cross sections of the inflow ports 11A, 111A, 211A, the outflow ports 11B, 111B, 211B, 211C, and the flow passages 11, 111, 211 are not particularly limited.
  • the shape of the central axis is not limited to the case of the first to third embodiments.
  • a set of sound measuring devices 12, 112, 212 and detection ports 13, 113, 213 are provided for one flow path 11, 111, 211.
  • a plurality of sets of sound measuring devices and detection ports may be provided. That is, a plurality of sounds can be measured, and a representative value such as an average value or a median value can be calculated. By using the representative value, the abnormal value can be eliminated and the non-uniformity is reduced, so that the accuracy of the measured wind speed can be improved.
  • one wind detection device 1, 101, 201 is provided for one bicycle B, but a plurality of wind detection devices may be provided.
  • the second moving body measuring device having a main body portion and a mounting portion, which is a main body in which only the wind detection device is incorporated, is installed on the seat post with the inlet facing the rear of the bicycle. Also good.
  • the wind detection device behind the driver the wind (following wind) from the rear of the bicycle B toward the bicycle B can be measured while blocking the wind blowing from the front by the driver. it can.
  • the predetermined information such as the moving distance in the atmosphere can be calculated more accurately.
  • the 2nd moving body measuring device it is desirable for the 2nd moving body measuring device to have a structure which can transmit a measured value to the main-body parts 100a, 200a, 300a wirelessly.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Disclosed is a low-cost wind detection device with increased directivity in the direction of travel. The disclosed wind detection device is provided with: a wind guide body (10, 110, 210) having an inlet (11A, 111A, 211A) where air enters, an outlet (11B, 111B, 211B, 211C) where air exits, and a flow passage (11, 111, 211) which connects the inlet (11A, 111A, 211A) and the outlet (11B, 111B, 211B, 211C) and through which air flows; and a sound measurement device (12, 112, 212) which measures sound and is positioned so as to be spatially connected with the flow passage (11, 111, 211). The flow passage (11, 111, 211) is closed circumferentially along the length direction, and the outlet (11B, 111B, 211B, 211C) is wider than the inlet (11A, 111A, 211A).

Description

風検出装置Wind detector
 本発明は、指向性を有する風検出装置に関する。 The present invention relates to a wind detecting device having directivity.
 昨今の健康志向の高まりによって、世間では、ウォーキング、ランニング、サイクリング等のアウトドアスポーツが、趣味として広く行われている。このようなアウトドアスポーツを行う者の中には、移動速度や移動距離、又は、消費カロリーを計測する装置を利用する者もいる。すなわち、途中経過として移動距離や消費カロリー等をリアルタイムで確認する者、運動内容として移動速度をリアルタイムで確認する者、又は、実績として、移動距離や消費カロリーを確認若しくは記録する者がいる。このように、アウトドアスポーツを行う者は、所定の装置を活用して自分なりの指標を設けて測定することによって、アウトドアスポーツを楽しんでいる。 Due to the recent increase in health consciousness, outdoor sports such as walking, running, and cycling are widely used as hobbies. Some persons who perform such outdoor sports use a device that measures a movement speed, a movement distance, or calorie consumption. That is, there is a person who confirms the movement distance and calorie consumption in real time as the progress, a person who confirms the movement speed in real time as the exercise content, and a person who confirms or records the movement distance and calorie consumption as a result. As described above, a person who performs outdoor sports enjoys outdoor sports by using a predetermined device to set and measure his / her own indicators.
 ところで、ウォーキング等のアウトドアスポーツは、自然環境の中で行われるので、風の影響が大きい。例えば、自転車を走行している場合、向かい風が強くなる(向かい風の風速が大きくなる)と空気抵抗が大きくなるので、運転者の運動状態(運転者の走行に対する仕事)が一定であれば、走行速度は低下する。したがって、運転者の運動状態(例えば、ペダルの回転数)が走行の指標として用いられている場合、向かい風が吹くと、走行速度が低下してくる。この場合、運転者は、速度低下の原因が風にあったとしても、疲労度が増してきたので走行速度が低下したと勘違いし、快適に走行することができなくなる。なお、自転車の場合、30km/hを超えると、走行に対する抵抗のほとんどが空気抵抗となる。 By the way, outdoor sports such as walking are performed in the natural environment, so the influence of the wind is great. For example, when driving a bicycle, the air resistance increases when the head wind increases (the wind speed of the head wind increases). The speed is reduced. Therefore, when the driver's exercise state (for example, the number of rotations of the pedal) is used as an indicator of traveling, the traveling speed decreases when the headwind blows. In this case, even if the cause of the decrease in speed is in the wind, the driver misunderstands that the traveling speed has decreased because the degree of fatigue has increased, and the driver cannot travel comfortably. In the case of a bicycle, when it exceeds 30 km / h, most of the resistance to running becomes air resistance.
 また、走行速度が走行の指標として用いられる場合、風の変化に伴って空気抵抗も変化すると、運転手は、走行速度を一定に保つようにペダルの回転数等を調整する。したがって、同一コースを走行したとしても、風の強さに応じて、運転者が行う仕事に違いが生じる。強い向かい風の場合であれば、走行速度を一定に維持するためには、空気抵抗に対して能力以上の仕事を必要とすることもある。この場合、肉体的な疲労もさることながら、走行速度を一定に維持することができなくなるので、運転者は、不快感や屈辱感等を抱く。 Also, when the travel speed is used as an index of travel, if the air resistance also changes with the change of wind, the driver adjusts the number of rotations of the pedal so as to keep the travel speed constant. Therefore, even if the vehicle travels on the same course, a difference occurs in the work performed by the driver according to the strength of the wind. In the case of strong headwinds, in order to keep the running speed constant, work that exceeds the capacity for air resistance may be required. In this case, the driver cannot feel uncomfortable or humiliated because the running speed cannot be kept constant, as well as physical fatigue.
 このように、風に起因する空気抵抗は、精神的にも肉体的にも運転者に影響を及ぼすので、走行に関する重要な指標であるといえる。そして、空気抵抗と関連性を有する、移動者が空気(大気)に対して移動する距離(以下、「空気に対する移動距離」という)も、アウトドアスポーツの新たな指標になると考えられる。この「空気に対する移動距離」は、「空気(大気)に対する移動者(スポーツ実施者)の相対速度」を積算して算出することができる。 Thus, the air resistance caused by the wind affects the driver both mentally and physically, so it can be said that it is an important indicator for driving. The distance traveled by the mobile person relative to the air (atmosphere) (hereinafter referred to as “the travel distance relative to the air”), which is related to the air resistance, is considered to be a new indicator for outdoor sports. This “movement distance with respect to the air” can be calculated by integrating the “relative speed of the mobile person (sport performer) with respect to the air (atmosphere)”.
 空気に対する移動距離を算出するためには、空気に対する移動者の相対速度を測定する必要がある。ここで、空気に対する移動者の相対速度を直接測定することは困難であるが、風を検出する装置(例えば、特許文献1~3参照)を用いれば、移動者に対する空気の相対速度を容易に測定することができる。空気に対する移動者の相対速度と、移動者に対する大気の相対速度とは、向きについて反対であるが、大きさ(速さ)について同一である。したがって、風を検出する装置を用いて、移動者に対する空気の相対速度を測定することで、空気に対する移動距離を算出することができる。 In order to calculate the moving distance with respect to the air, it is necessary to measure the relative speed of the moving person with respect to the air. Here, it is difficult to directly measure the relative speed of the moving person with respect to the air. However, if a device for detecting wind (see, for example, Patent Documents 1 to 3) is used, the relative speed of the air with respect to the moving person can be easily determined. Can be measured. The relative speed of the moving person with respect to the air and the relative speed of the atmospheric air with respect to the moving person are opposite in direction, but are the same in size (speed). Therefore, the movement distance with respect to the air can be calculated by measuring the relative velocity of the air with respect to the moving person using the device that detects the wind.
 特許文献1に記載の風検出装置(以下、「先行技術1」という)は、風向センサと筒状の導風管とを有し、風向センサを構成するセンシング部が導風管の中に配置されている。ここで、風向センサは、風速・風力を計測することができる。先行技術1は、風を導風管の中に流すことで、風速の導入管の軸方向成分を測定する。 The wind detection device described in Patent Document 1 (hereinafter referred to as “prior art 1”) includes a wind direction sensor and a cylindrical wind guide tube, and a sensing unit constituting the wind direction sensor is disposed in the wind guide tube. Has been. Here, the wind direction sensor can measure wind speed and wind force. Prior art 1 measures the axial component of the introduction pipe of the wind speed by letting the wind flow through the wind guide pipe.
 特許文献2に記載の風検出装置(以下、「先行技術2」という)は、カルマン渦を発生させる第1の造渦体及び第2の造渦体と、各造渦体に取り付けられたマイクと、各造渦体に取り付けられたカルマン渦の圧力変動をマイクに伝達する圧力導管とを有する。先行技術2は、風を造渦体に衝突させてカルマン渦を発生させることで、風速を測定する。 A wind detection device described in Patent Document 2 (hereinafter referred to as “prior art 2”) includes a first vortex body and a second vortex body that generate Karman vortices, and microphones attached to the vortex bodies. And a pressure conduit for transmitting the pressure fluctuation of the Karman vortex attached to each vortex body to the microphone. Prior art 2 measures the wind speed by causing a wind to collide with the vortex and generating a Karman vortex.
 特許文献3に記載の風検出装置(以下、「先行技術3」という)は、開口部から吹き出す空気流を音響に変換する空気流/音響変換部と、空気流/音響変換部により変換された音響を収集して電気信号に変換するマイクロフォンとを有する。先行技術3は、空気流(風)を空気流/音響変換部に接触させることで、風速を測定する。 The wind detection device described in Patent Document 3 (hereinafter referred to as “prior art 3”) is converted by an air flow / acoustic conversion unit that converts an air flow blown from an opening into an acoustic wave, and an air flow / acoustic conversion unit. A microphone that collects sound and converts it into an electrical signal. Prior art 3 measures the wind speed by bringing the airflow (wind) into contact with the airflow / acoustic converter.
特開2000-162229号公報JP 2000-162229 A 特開平6-194374号公報JP-A-6-194374 特開2004-317191号公報JP 2004-317191 A
 先行技術1は、概ね双指向性を有し、進行方向等の特定方向に対する風速を計測することができるが、風速センサを具備しているので、高価となる。その点、先行技術2及び先行技術3は、マイクを具備しているので、先行技術1に比べると安価である。しかしながら、先行技術2は、指向性についての説明がなく、指向性について考慮されていない。また、先行技術3は、風向を検出することはできるが、構造が複雑であり、マイクが2つ必要でなるので、製造コストの低下を抑えることは困難である。 Prior art 1 is generally bi-directional and can measure the wind speed in a specific direction such as a traveling direction, but is expensive because it includes a wind speed sensor. In that respect, the prior art 2 and the prior art 3 are provided with a microphone, and therefore are less expensive than the prior art 1. However, the prior art 2 has no description of directivity and does not consider directivity. Further, although the prior art 3 can detect the wind direction, it has a complicated structure and requires two microphones, so it is difficult to suppress a reduction in manufacturing cost.
 本発明の目的は、上記の背景を鑑みて、進行方向の指向性を高めることができ、且つ、安価な風検出装置を提供することである。 An object of the present invention is to provide an inexpensive wind detection device that can improve the directivity in the traveling direction in view of the above background.
 上記課題を解決するために、本発明に係る風検出装置は、空気を流入させる流入口、空気を流出させる流出口、及び、前記流入口と前記流出口とに連通し、空気を流通させる流通路とを具備する導風体と、前記流通路に空間的につながりをもって配置され、音を測定する音測定器と、を有し、前記流通路は、その長さ方向に対する周方向に閉鎖され、前記流出口は前記流入口より広いことを特徴とする。 In order to solve the above problems, a wind detection device according to the present invention includes an inflow port through which air flows in, an outflow port through which air flows out, and a flow through which air is circulated in communication with the inflow port and the outflow port. A wind guide body having a path, and a sound measuring device that is spatially connected to the flow path and measures sound, and the flow path is closed in a circumferential direction with respect to its length direction, The outlet is wider than the inlet.
(a)は、風検出装置を有する移動体計測装置が取り付けられた自転車の側面図、(b)は図1(a)の自転車における移動体計測装置が取り付けられている部分の拡大図である。(A) is a side view of a bicycle to which a moving body measuring device having a wind detection device is attached, and (b) is an enlarged view of a portion to which the moving body measuring device is attached in the bicycle of FIG. . (a)は実施の形態1における移動体計測装置の正面図、(b)は実施の形態1における移動体計測装置の背面図、(c)は実施の形態1における移動体計測装置の縦断面図、(d)は図2(c)のA-A断面図である。(A) is a front view of the mobile body measuring device in Embodiment 1, (b) is a rear view of the mobile body measuring device in Embodiment 1, and (c) is a longitudinal section of the mobile body measuring device in Embodiment 1. FIG. 2D is a cross-sectional view taken along the line AA in FIG. (a)は実施の形態2における移動体計測装置の正面図、(b)は実施の形態2における移動体計測装置の縦断面図、(c)は実施の形態2における移動体計測装置の底面図である。(A) is a front view of the mobile body measuring device in Embodiment 2, (b) is a longitudinal sectional view of the mobile body measuring device in Embodiment 2, and (c) is the bottom surface of the mobile body measuring device in Embodiment 2. FIG. (a)は実施の形態3における移動体計測装置の正面図、(b)は実施の形態3における移動体計測装置の縦断面図、(c)は実施の形態3における移動体計測装置の底面図である。(A) is a front view of the mobile body measuring device in Embodiment 3, (b) is a longitudinal sectional view of the mobile body measuring device in Embodiment 3, and (c) is a bottom surface of the mobile body measuring device in Embodiment 3. FIG. 風検出装置の指向性を表すグラフである。It is a graph showing the directivity of a wind detection apparatus.
(実施の形態1)
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。図1は、本発明の風速測定構造が移動体用計測装置に使用され、当該移動体用計測装置が自転車Bに取り付けられている様子を表す外観図である。移動体用計測装置は、風等の空気流を取り込み、取り込んだ空気流から音を発生させて、その音の大きさ(音の原因となる振動の振幅)を測定する風検出装置(音測定構造)1、予め設定された事項を表示する表示装置2、及び、入力手段3が本体10に組み込まれて一体化された本体部100aと、本体部100aを自転車に固定するための取付部100bとを具備する。移動体用計測装置100は、風検出装置1によって測定された音の大きさから風速を計測し、当該風速を用いて消費カロリー、大気中の移動距離、仕事量等の予め設定された様々な値を算出して、表示装置2に表示させる。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is an external view showing a state in which the wind speed measuring structure of the present invention is used in a moving body measuring apparatus and the moving body measuring apparatus is attached to a bicycle B. A moving body measuring device takes in an air flow such as wind, generates sound from the captured air flow, and measures the volume of the sound (the amplitude of vibration that causes the sound) (sound measurement) (Structure) 1, a display device 2 for displaying preset items, and a main body portion 100a in which the input means 3 is integrated in the main body 10 and an attachment portion 100b for fixing the main body portion 100a to the bicycle. It comprises. The moving body measuring apparatus 100 measures the wind speed from the loudness of the sound measured by the wind detecting apparatus 1 and uses the wind speed to set various preset calorie consumption, movement distance in the atmosphere, work amount, and the like. The value is calculated and displayed on the display device 2.
 図1に示すように、取付部100bは、自転車BのハンドルB1を掴んだ状態でハンドルB1に固定される機構を有している。取付部100bは本体部100aに接続されており、移動体用計測装置100が正常に自転車Bに取り付けられると、ハンドルB1の上側に取付部100bが位置し、取付部100bの上側に本体部100aが位置する。 As shown in FIG. 1, the attachment portion 100b has a mechanism that is fixed to the handle B1 while gripping the handle B1 of the bicycle B. The attachment portion 100b is connected to the main body portion 100a. When the moving body measuring apparatus 100 is normally attached to the bicycle B, the attachment portion 100b is located above the handle B1, and the main body portion 100a is located above the attachment portion 100b. Is located.
 図2(a)~図2(c)に示すように、本体10は略平板状を呈し、一方の底面には取付部100bが設けられており、他方の底面には所定の情報を表示する表示装置2の表示部21及び入力操作可能な入力手段3の操作部31が設けられている。したがって、移動体用計測装置100が自転車Bに取り付けられると、一方の底面が自転車BのハンドルB1を向き、他方の底面が大気(運転者)に臨む。よって、運転者は表示装置2の表示部21及び入力装置3の操作部31を容易に視認することができる。 As shown in FIGS. 2 (a) to 2 (c), the main body 10 has a substantially flat plate shape, a mounting portion 100b is provided on one bottom surface, and predetermined information is displayed on the other bottom surface. A display unit 21 of the display device 2 and an operation unit 31 of the input means 3 capable of input operation are provided. Therefore, when the moving body measuring apparatus 100 is attached to the bicycle B, one bottom surface faces the handle B1 of the bicycle B, and the other bottom surface faces the atmosphere (driver). Therefore, the driver can easily visually recognize the display unit 21 of the display device 2 and the operation unit 31 of the input device 3.
 なお、本実施の形態では、本体10の両底面は略楕円状又は対角線の長さが異なる略楕円状を呈しており、移動体用計測装置100が正常に自転車Bに取り付けられた状態では、その底面の長軸方向と自転車の移動方向とが一致している。また、表示部21と操作部31とは、本体部100aの底面の長軸方向に並設されており、移動体用計測装置100が正常に自転車Bに取り付けられた状態では、表示部21が自転車Bの前方側に、操作部31が自転車Bの後方側に位置している。 In the present embodiment, both bottom surfaces of the main body 10 have a substantially elliptical shape or a substantially elliptical shape with different diagonal lengths, and the mobile body measuring device 100 is normally attached to the bicycle B. The major axis direction of the bottom surface coincides with the moving direction of the bicycle. Further, the display unit 21 and the operation unit 31 are arranged side by side in the long axis direction of the bottom surface of the main body unit 100a. When the moving body measuring device 100 is normally attached to the bicycle B, the display unit 21 is On the front side of the bicycle B, the operation unit 31 is located on the rear side of the bicycle B.
 本体10には、風検出装置1が設けられている。風検出装置1は、風等の空気流を流通させる流通路11、音(振動)を測定する音測定器12、及び、音検出器12の上流側で空気流から音(振動)を発生させるための検出口(音発生手段)13を具備する。 The main body 10 is provided with a wind detection device 1. The wind detection device 1 generates a sound (vibration) from the air flow on the upstream side of the flow passage 11 through which an air flow such as wind flows and the sound (vibration) is measured. A detection port (sound generating means) 13 is provided.
 流通路11は、本体10の底面の長軸方向に本体10を縦断する孔で構成されている。流通路11を構成する孔は、本体10の一方の端面から他方の端面まで形成されている。そして、自転車Bの進行方向側(前方側)の端面に形成されている孔の部分が流通路11の流入口11Aを構成し、他方の運転者側(後方側)の端面に形成されている孔の部分が流通路11の流出口11Bを構成する。流通路11は、その中心軸C1(長さ方向)に対する周方向全体を本体10に囲まれている。したがって、自転車Bの走行中に前方から来る風等の空気流は、流入口11Aから流通路11に流入し、流通路11を通って、流出口11Bから流出する。 The flow passage 11 includes a hole that vertically cuts the main body 10 in the major axis direction of the bottom surface of the main body 10. The holes constituting the flow passage 11 are formed from one end surface of the main body 10 to the other end surface. And the part of the hole currently formed in the end surface of the advancing direction side (front side) of the bicycle B comprises the inflow port 11A of the flow path 11, and is formed in the other driver side (rear side) end surface. The hole portion constitutes the outlet 11 </ b> B of the flow passage 11. The flow passage 11 is surrounded by the main body 10 in the entire circumferential direction with respect to the central axis C1 (length direction). Accordingly, an air flow such as wind coming from the front during traveling of the bicycle B flows into the flow passage 11 from the inflow port 11A, and flows out of the outflow port 11B through the flow passage 11.
 流通路11の断面は略矩形状を呈しており、前方側から後方側に向かって徐々に拡大している。すなわち、流入口11Aより流出口11Bの方が広い。ただし、本実施の形態では、流通路11の本体10の底面に直交する向きの長さは一定であり、流通路11の本体10の底面の長軸方向の長さのみが、進行方向側から運転者側に向かって拡大している。また、流通路11の中心軸C1は、本体10の底面に平行な直線となっている。 The cross section of the flow passage 11 has a substantially rectangular shape and gradually expands from the front side toward the rear side. That is, the outlet 11B is wider than the inlet 11A. However, in this embodiment, the length of the flow passage 11 in the direction perpendicular to the bottom surface of the main body 10 is constant, and only the length in the major axis direction of the bottom surface of the main body 10 of the flow passage 11 is from the traveling direction side. It is expanding towards the driver side. Further, the central axis C <b> 1 of the flow passage 11 is a straight line parallel to the bottom surface of the main body 10.
 実施の形態1では、流通路11の断面は略矩形状を呈しているが、流通路11の断面形状は特に限定されない。また、流通路11の本体10の底面の長軸方向の長さのみが、前方側から後方側に向かって拡大しているが、流通路11の断面がその方向に拡大していればよく、その拡大の態様は特に限定されない。また、流通路11の中心軸C1は、本体10の底面に平行な直線となっているが、本体10の底面に傾斜している直線でも、曲線でもよい。 In Embodiment 1, the cross-section of the flow passage 11 has a substantially rectangular shape, but the cross-sectional shape of the flow passage 11 is not particularly limited. Further, only the length in the major axis direction of the bottom surface of the main body 10 of the flow passage 11 is enlarged from the front side toward the rear side, but it is sufficient that the cross section of the flow passage 11 is enlarged in that direction. The mode of expansion is not particularly limited. Further, although the central axis C1 of the flow passage 11 is a straight line parallel to the bottom surface of the main body 10, it may be a straight line inclined to the bottom surface of the main body 10 or a curved line.
 流通路11の中央部には、音測定器12が設けられている。すなわち、表示部21及び操作部31が設けられている本体10の底面と流通路11との間に音測定器12が配設されている。音測定器12は、音(振動)を測定できるものであれば、その構造、形状は特に限定されない。本実施の形態では、音検出器12として、平板状にパッケージされたMEMSマイクが用いられている。 A sound measuring device 12 is provided at the center of the flow passage 11. That is, the sound measuring device 12 is disposed between the bottom surface of the main body 10 where the display unit 21 and the operation unit 31 are provided and the flow passage 11. As long as the sound measuring device 12 can measure sound (vibration), its structure and shape are not particularly limited. In the present embodiment, a MEMS microphone packaged in a flat plate shape is used as the sound detector 12.
 また、流通路11の孔壁から音測定器12の音を収集する口部分(図示なし、以下、「音口」という)まで検出口13が形成され、流通路11と音検出器12の音口とは連通している。自転車Bに向かって流れる空気流は、流入口11Aから流通路11に流入して、流通路11を流通する。そして、検出口13を通過すると、乱流(所謂、「風雑音」)が発生し、検出口13内を音測定器12に向かって移動する。その結果、音測定器12は、風等の空気流によって発生する乱流を音(所謂、「風雑音」)として測定する。なお、検出口14の形状は特に限定されないが、検出口13が柱状を呈していれば、曲がり損失による音(振動)の減衰を抑えることができるので、検出口13は柱状を呈していることが望ましい。 In addition, a detection port 13 is formed from the hole wall of the flow passage 11 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 12, It communicates with the mouth. The airflow flowing toward the bicycle B flows into the flow passage 11 from the inflow port 11 </ b> A and flows through the flow passage 11. When passing through the detection port 13, a turbulent flow (so-called “wind noise”) is generated and moves in the detection port 13 toward the sound measuring device 12. As a result, the sound measuring device 12 measures turbulent flow generated by an air flow such as wind as sound (so-called “wind noise”). The shape of the detection port 14 is not particularly limited, but if the detection port 13 has a columnar shape, sound (vibration) attenuation due to bending loss can be suppressed, and therefore the detection port 13 has a columnar shape. Is desirable.
 ここで、両端部が開放された出入口を有する中空構造体を大気中に配置した際の、空気流の挙動として、以下のことが経験的に知られている。中空構造体の空洞部が空気流の流れに沿って拡大している場合(以下、「ケース1」という)、中空構造体の出口に向かって空気流の流速が上昇する。一方、中空構造体の空洞部が空気流の流れに沿って縮小している場合(以下、「ケース2」という)、中空構造体の出口に向かって空気流の流速が減少する。ここで、中空構造体の出入口付近であっても大気中であるので、同一の大気圧下で比較すれば、いずれの場合も、空気流が中空構造体入口に入る直前の気圧も、中空構造出口から出た直後の気圧も同一となる。すなわち、空気流の流れに沿って、拡大するか縮小するかで、空洞部における空気流の速度分布が異なる。 Here, the following is empirically known as the behavior of the air flow when a hollow structure having an inlet / outlet opened at both ends is arranged in the atmosphere. When the hollow portion of the hollow structure expands along the air flow (hereinafter referred to as “case 1”), the flow velocity of the air flow increases toward the outlet of the hollow structure. On the other hand, when the hollow portion of the hollow structure is contracted along the air flow (hereinafter referred to as “case 2”), the flow velocity of the air flow decreases toward the outlet of the hollow structure. Here, since it is in the atmosphere even near the entrance / exit of the hollow structure, in any case, the pressure just before the air flow enters the hollow structure inlet is The air pressure immediately after exiting from the outlet is also the same. That is, the velocity distribution of the air flow in the cavity varies depending on whether the air flow is enlarged or reduced along the air flow.
 この傾向からすれば、例えば、本実施の形態のように、自転車Bの前方側から後方側に向かって流通路11が拡大する場合、自転車Bの後方から自転車Bに向かう空気流に対する指向性より、自転車Bの前方から自転車Bに向かう空気流に対する指向性の方が高くなる。この理由を以下に説明する。いずれのケースにおいても、入口直前の圧力及び出口直後の圧力は大気圧と同一になるので、出口直前での空気流の速度は異なり、入口直後における空気流の速度は、ケース1の場合、加速されて大気中の風速より速くなり、ケース2の場合、減速されて大気中の風速より遅くなる。したがって、同一の風速に対して、流通路11の途中に設けられている音測定器12が測定する音の大きさは、ケース1の場合の方が大きい。すなわち、自転車Bの前方から自転車Bに向かう風等の空気流によって発生する音の指向性は、空気流の流れに沿って流通路11が拡大する場合の方が、高い。さらに、音測定器12が測定する音の大きさは、ケース1の場合では大気中の風速より速くなり、ケース2の場合では大気中の風速より遅くなるので、自転車Bの移動方向に対する風検出装置1の指向性が全体的に自転車Bの前方側に偏る(図5参照)。 From this tendency, for example, when the flow path 11 expands from the front side to the rear side of the bicycle B as in the present embodiment, the directivity with respect to the air flow from the rear of the bicycle B toward the bicycle B The directivity with respect to the airflow from the front of the bicycle B toward the bicycle B becomes higher. The reason for this will be described below. In any case, the pressure immediately before the inlet and the pressure immediately after the outlet are the same as the atmospheric pressure, so the speed of the air flow immediately before the outlet is different. In this case, in the case 2, it is decelerated and becomes slower than the wind speed in the atmosphere. Therefore, the loudness of the sound measured by the sound measuring device 12 provided in the middle of the flow passage 11 with respect to the same wind speed is larger in the case 1. That is, the directivity of the sound generated by the airflow such as the wind from the front of the bicycle B toward the bicycle B is higher when the flow passage 11 expands along the airflow. Further, since the loudness of the sound measured by the sound measuring device 12 is faster than the wind speed in the atmosphere in the case 1 and slower than the wind speed in the atmosphere in the case 2, the wind detection with respect to the moving direction of the bicycle B is detected. The directivity of the device 1 is biased to the front side of the bicycle B as a whole (see FIG. 5).
 ここで、図5に示すグラフは、実施の形態1における風検出装置1の指向性、後述する実施の形態2における風検出装置101の指向性、実施の形態2における風検出装置201の指向性、及び、上述した先行技術1の風向センサを音測定器12に置換したもの(以下、置換先行技術1)の指向性を表すグラフである。図5において、原点からの距離は、風検出装置1のその方向に対する指向性のレベル、つまり、その方向に対する感度を表している。なお、指向性の対象となる方向は原点を中心とする角度に対応しており、0度は風検出装置1の前方、180度は風検出装置1の後方、90度及び270度は風検出装置1の側方を表している。 Here, the graph shown in FIG. 5 shows the directivity of the wind detection device 1 in the first embodiment, the directivity of the wind detection device 101 in the second embodiment to be described later, and the directivity of the wind detection device 201 in the second embodiment. FIG. 5 is a graph showing the directivity of a device in which the wind direction sensor of Prior Art 1 described above is replaced with a sound measuring device 12 (hereinafter referred to as Replacement Prior Art 1). In FIG. 5, the distance from the origin represents the level of directivity in the direction of the wind detection device 1, that is, the sensitivity to the direction. Note that the direction of directivity corresponds to an angle centered on the origin, where 0 degree is in front of the wind detection apparatus 1, 180 degrees is behind the wind detection apparatus 1, and 90 degrees and 270 degrees are wind detection. The side of the device 1 is shown.
 図5に示すように、置換先行技術1の指向性は、0度及び180度より90度及び270度に強い。この理由を以下に説明する。基本的には、風検出装置1の前方及び後方から風検出装置1に移動してくる風により、乱流が発生するが、風が風検出装置1の側方から風検出装置1に移動してくる場合、流路11の出入口付近でより大きな乱流(風雑音)が発生するので、置換先行技術1の音測定器12は音を検出する。このような理由から、置換先行技術の指向性は、風検出装置1の前方及び後方(0度及び180度)より側方(90度及び270)に強い。 As shown in FIG. 5, the directivity of the replacement prior art 1 is stronger at 90 degrees and 270 degrees than at 0 degrees and 180 degrees. The reason for this will be described below. Basically, turbulence is generated by the wind moving from the front and the rear of the wind detection device 1 to the wind detection device 1, but the wind moves from the side of the wind detection device 1 to the wind detection device 1. When this occurs, since a larger turbulent flow (wind noise) is generated near the entrance / exit of the flow path 11, the sound measuring device 12 of the replacement prior art 1 detects sound. For this reason, the directivity of the replacement prior art is stronger to the side (90 degrees and 270) than to the front and rear (0 degrees and 180 degrees) of the wind detection device 1.
 また、風検出装置1の指向性は、上述したように、流入口11Aより流出口11Bの方が広いので、180度より0度の方強い。なお、図5のグラフは、風検出装置に、風検出装置の前方を0度として30度ずつ回転させながら所定の風速の風を与えたときに、風検出装置が音の大きさを計測した結果(実験結果)である。 Further, the directivity of the wind detection device 1 is stronger at 0 degree than 180 degrees because the outlet 11B is wider than the inlet 11A as described above. Note that the graph of FIG. 5 shows that the wind detection device measured the volume of sound when the wind detection device was given a wind of a predetermined wind speed while rotating 30 degrees at 0 degrees in front of the wind detection device. It is a result (experimental result).
(実施の形態2)
 次に、本発明の実施の形態2について説明する。実施の形態1と同一符号・同一名称については説明を省略する。移動体用計測装置200は、音を測定する風検出装置101、予め設定された事項を表示する表示装置102と、入力装置103とが本体110に組み込まれて一体化された本体部200aと、本体部200aを自転車に固定するための取付部100bとを具備する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The description of the same reference numerals and names as those in Embodiment 1 is omitted. The moving body measuring device 200 includes a wind detecting device 101 that measures sound, a display device 102 that displays preset items, and an input device 103 incorporated in a main body 110 and integrated into a main body portion 200a. And an attachment portion 100b for fixing the main body portion 200a to the bicycle.
 本体110の表示部121より自転車Bの前方側の範囲において、風検出装置101が設けられている。風検出装置101は、風等の空気流を流通させる流通路111、音(振動)を測定する音測定器112、及び、音検出器112の上流側で空気流から音(振動)を発生させるための検出口(音発生手段)113を具備する。 The wind detection device 101 is provided in a range in front of the bicycle B from the display unit 121 of the main body 110. The wind detection device 101 generates a sound (vibration) from the air flow on the upstream side of the flow path 111 through which an air flow such as wind flows and the sound (vibration) is measured. A detection port (sound generating means) 113 is provided.
 流通路111は、本体110の前方側端面から本体110の取付部100bが接続されている底面にかけて曲がって形成されている孔で構成されている。そして、本体110の端面に形成されている孔の部分が流通路111の流入口111Aを構成し、本体110の底面に形成されている孔の部分が流通路111の流出口111Bを構成する。流通路111は、その中心軸C2に対する周方向全体を本体110に囲まれている。したがって、自転車Bの走行中に前方からくる風等の空気流は、流入口111Aから流入し、流通路111を通って、流出口111Bから流出する。 The flow path 111 is configured by a hole that is bent from the front end surface of the main body 110 to the bottom surface to which the mounting portion 100b of the main body 110 is connected. The portion of the hole formed in the end surface of the main body 110 constitutes the inlet 111A of the flow passage 111, and the portion of the hole formed in the bottom surface of the main body 110 constitutes the outlet 111B of the flow passage 111. The flow passage 111 is surrounded by the main body 110 in the entire circumferential direction with respect to the central axis C2. Accordingly, an air flow such as wind coming from the front during the traveling of the bicycle B flows in from the inflow port 111A, flows out of the outflow port 111B through the flow path 111.
 本実施の形態では、流入口111Aは略矩形状を呈し、流出口111Bは略楕円形状を呈している。また、流入口111Aより流出口111Bの方が広く、流通路111の断面は前方側から後方側に向かって拡大している。なお、本実施の形態では、流通路111は途中で折れ曲がっており、流入口111Aから折れ点までの流通路111の断面は、流入口111Aと同一であり、折れ点から流出口111Bまでの流通路111の断面は流出口111Bに向かって拡大している。また、流通路111は、折れ点から上方に向かっており、流出口111Bが本体110の表面に形成されている。このように、流出口111Bが表面に形成されているので、地面で発生する検出目的外の音の検出が防止され、風雑音検出装置101の精度の低下を抑えることができる。 In the present embodiment, the inflow port 111A has a substantially rectangular shape, and the outflow port 111B has a substantially elliptical shape. In addition, the outlet 111B is wider than the inlet 111A, and the cross section of the inlet passage 111 expands from the front side toward the rear side. In the present embodiment, the flow path 111 is bent halfway, and the cross section of the flow path 111 from the inlet 111A to the break point is the same as the inlet 111A, and the flow from the break point to the outlet 111B. The cross section of the channel 111 is enlarged toward the outlet 111B. In addition, the flow passage 111 is directed upward from the break point, and an outlet 111 </ b> B is formed on the surface of the main body 110. Thus, since the outflow port 111B is formed in the surface, the detection of the sound outside the detection purpose which generate | occur | produces on the ground is prevented, and the fall of the precision of the wind noise detection apparatus 101 can be suppressed.
 流通路111の流入口111Aから折れ点までの部分には、音測定器112及び検出口113が設けられている。すなわち、表示部121及び操作部131が設けられている本体10の底面と、流通路111の流入口111Aから折れ点までの部分との間に音測定器112及び検出口113が配設されている。 A sound measuring instrument 112 and a detection port 113 are provided in a portion from the inlet 111 </ b> A to the break point of the flow passage 111. That is, the sound measuring instrument 112 and the detection port 113 are disposed between the bottom surface of the main body 10 where the display unit 121 and the operation unit 131 are provided and the portion of the flow passage 111 from the inlet 111A to the break point. Yes.
 音測定器112は、音(振動)を測定できるものであれば、その構造、形状は特に限定されない。本実施の形態では、音検出器112として、平板状にパッケージされたMEMSマイクが用いられている。 As long as the sound measuring instrument 112 can measure sound (vibration), its structure and shape are not particularly limited. In the present embodiment, a MEMS microphone packaged in a flat plate shape is used as the sound detector 112.
 また、検出口113は、流通路111の音検出器112寄りの孔壁から音測定器112の音を収集する口部分(図示なし、以下、「音口」という)まで形成されている。すなわち、流通路111と音検出器112の音口とは検出口113によって連通している。よって、自転車Bに向かって流れる空気流は、流入口111Aから流通路111に流入して、流通路111を流出口111Bに向かって流通する。このとき、空気流が検出口113を通過すると、乱流(所謂、「風雑音」)が発生し、検出口113内を音測定器112に向かって移動する。その結果、音測定器112は、風等の空気流によって発生する乱流を音として測定する。 Further, the detection port 113 is formed from a hole wall near the sound detector 112 in the flow passage 111 to a mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 112. That is, the flow path 111 and the sound port of the sound detector 112 are communicated with each other by the detection port 113. Therefore, the airflow flowing toward the bicycle B flows into the flow passage 111 from the inflow port 111A and flows through the flow passage 111 toward the outflow port 111B. At this time, when the air flow passes through the detection port 113, turbulent flow (so-called “wind noise”) is generated and moves in the detection port 113 toward the sound measuring instrument 112. As a result, the sound measuring device 112 measures turbulent flow generated by an air flow such as wind as sound.
 本実施の形態においても、実施の形態1の場合と同様に、空気流の流れに沿って流通路111の断面が拡大しているが、流通路111の出口111Bの向きと入口111Aの向きとが直交している点で異なる。すなわち、自転車Bの後方から自転車Bに向かう風等の空気流の向きは、実施の形態1の流通路11の後方側開口部の面方向とも、本実施の形態の出口111Bの面方向とも平行である。この空気流の向きと出口111Bの面方向とが平行であるという点では、実施の形態1の場合の自転車Bの側方から自転車Bに向かう風等の空気流と出口11Bの面方向との関係と同一である。 Also in the present embodiment, as in the first embodiment, the cross section of the flow passage 111 is enlarged along the air flow, but the direction of the outlet 111B and the direction of the inlet 111A of the flow passage 111 Are different in that they are orthogonal. That is, the direction of the airflow such as wind from the rear of the bicycle B toward the bicycle B is parallel to the surface direction of the rear opening of the flow passage 11 of the first embodiment and the surface direction of the outlet 111B of the present embodiment. It is. In the point that the direction of the air flow and the surface direction of the outlet 111B are parallel to each other, the air flow such as wind directed from the side of the bicycle B toward the bicycle B in the case of the first embodiment and the surface direction of the outlet 11B. Same as relationship.
 しかしながら、実施の形態1の場合と本実施の形態の場合とでは、自転車Bの側方から自転車Bに向かう風等の空気流が出口から流入した後の流通路の形状、すなわち、流通路が真っ直ぐか曲がるかが異なる。本実施の形態の場合において、自転車Bの進行方向とは逆向きに移動する空気流の向きも、自転車Bの側方から自転車Bに向って移動する空気流の向きも、流出口111Bの面方向に平行である。そして、前者の場合、流入してきた空気流の向きと流通路111の中心軸C2の向きが一致するが、後者の場合、流入してきた空気流の向きと流通路111の中心軸C2の向きとは直交する。すなわち、自転車Bの側方から自転車Bに向かって流れる場合の方が、空気流は流通路111を伝播し難い。この結果、自転車Bの測方から自転車Bに向かう空気流の向きに対する風検出装置101の指向性の方が、自転車Bの後方から自転車Bに向かう空気流の向きに対する風検出装置101の指向性より低い。この結果をまとめると、図5に示すようになる。すなわち、実施の形態2における風検出装置101の90度及び270度、すなわち、風検出装置101の側方に対する指向性の方が、実施の形態1における風検出装置1の90度及び270度の指向性より弱い。 However, in the case of the first embodiment and the case of the present embodiment, the shape of the flow passage after the air flow such as the wind from the side of the bicycle B toward the bicycle B flows from the outlet, that is, the flow passage is Whether it is straight or bent. In the case of the present embodiment, the direction of the air flow that moves in the direction opposite to the traveling direction of the bicycle B, the direction of the air flow that moves from the side of the bicycle B toward the bicycle B, and the surface of the outlet 111B. Parallel to the direction. In the former case, the direction of the incoming air flow matches the direction of the central axis C2 of the flow passage 111. In the latter case, the direction of the incoming air flow and the direction of the central axis C2 of the flow passage 111 Are orthogonal. That is, the air flow is less likely to propagate through the flow path 111 when flowing from the side of the bicycle B toward the bicycle B. As a result, the directivity of the wind detection device 101 with respect to the direction of the airflow from the measurement of the bicycle B toward the bicycle B is more directivity of the wind detection device 101 with respect to the direction of the airflow from the rear of the bicycle B toward the bicycle B. Lower. The results are summarized as shown in FIG. That is, 90 degrees and 270 degrees of the wind detection apparatus 101 in the second embodiment, that is, the directivity with respect to the side of the wind detection apparatus 101 is 90 degrees and 270 degrees of the wind detection apparatus 1 in the first embodiment. Weaker than directivity.
 また、本実施の形態では、流出口111Bの面方向と、自転車Bの後方から自転車に向かって移動する風等の空気流の風向とは平行である。したがって、その空気流は、流出口111Bからは、その空気流の風向と直交する風検出装置1の流出口111Bより流通路111に流入し難い。よって、自転車Bの後方、すなわち、180度の指向性は、風検出装置1より風検出装置101の方が強い(図5参照)。さらに、本実施の形態では、入口111Aから検出口113まで流通路111の断面は同一である。したがって、この場合、入口11Aから検出口13まで流通路11の断面が拡大している実施の形態1の場合に比べて、検出口113までに減少する空気流の速度は小さい。よって、本実施の形態の場合の方が、自転車Bの進行方向とは逆向きに対する風検出装置101の指向性が高い(図5参照)。 Further, in the present embodiment, the surface direction of the outlet 111B and the wind direction of an air flow such as wind moving from the rear of the bicycle B toward the bicycle are parallel to each other. Therefore, the air flow hardly flows into the flow path 111 from the outflow port 111B from the outflow port 111B of the wind detection device 1 orthogonal to the airflow direction of the air flow. Accordingly, the wind detection device 101 is stronger in the rear of the bicycle B, that is, the directivity of 180 degrees than the wind detection device 1 (see FIG. 5). Further, in the present embodiment, the cross section of the flow path 111 is the same from the inlet 111A to the detection port 113. Therefore, in this case, the velocity of the air flow that decreases to the detection port 113 is smaller than that in the first embodiment in which the cross section of the flow passage 11 is enlarged from the inlet 11A to the detection port 13. Therefore, the direction of the wind detection apparatus 101 with respect to the direction opposite to the advancing direction of the bicycle B is higher in the case of the present embodiment (see FIG. 5).
(実施の形態3)
 次に、本発明の実施の形態3について説明する。実施の形態1と同一符号・同一名称については説明を省略する。移動体用計測装置300は、音を測定する風検出装置201、予め設定された事項を表示する表示装置102と、入力装置103とが本体210に組み込まれて一体化された本体部300aと、本体部300aを自転車Bに固定するための取付部100bとを具備する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described. The description of the same reference numerals and names as those in Embodiment 1 is omitted. The moving body measuring device 300 includes a wind detecting device 201 that measures sound, a display device 102 that displays preset items, and a main body portion 300a in which an input device 103 is integrated into a main body 210, and And an attachment portion 100b for fixing the main body portion 300a to the bicycle B.
 本体210の表示部21より自転車Bの前方側の範囲において、風検出装置201が設けられている。風検出装置201は、風等の空気流を流通させる流通路211、音(振動)を測定する音測定器212、及び、音検出器212の上流側で空気流から音(振動)を発生させるための検出口(音発生手段)213を具備する。 A wind detection device 201 is provided in a range in front of the bicycle B from the display unit 21 of the main body 210. The wind detection device 201 generates sound (vibration) from the air flow on the upstream side of the flow path 211 through which an air flow such as wind circulates, the sound (vibration) is measured, and the sound detector 212. A detection port (sound generating means) 213 is provided.
 流通路211は、本体210の前方側端面から本体300bの取付部100bが接続されている底面にかけて曲がって形成されている孔で構成されている。この流通路211は途中で複数に(本実施の形態では2つに)分岐している。そして、本体210の端面に形成されている孔の部分が流通路211の流入口211Aを構成し、本体210の底面に形成されている孔の部分が流通路111の流出口111B、111Cを構成する。流通路111は、その中心軸C3に対する周方向全体を本体210に囲まれている。したがって、自転車Bの走行中に前方から当該測定装置300に向かってくる風等の空気流は、流入口211Aから入り、流通路211を通って、流出口211B及び流出口211Cから流出する。 The flow path 211 is configured by a hole formed by bending from the front end surface of the main body 210 to the bottom surface to which the attachment portion 100b of the main body 300b is connected. This flow passage 211 is branched into a plurality (in this embodiment, two) in the middle. The portion of the hole formed in the end surface of the main body 210 constitutes the inlet 211A of the flow passage 211, and the portion of the hole formed in the bottom surface of the main body 210 constitutes the outlets 111B and 111C of the flow passage 111. To do. The flow passage 111 is surrounded by the main body 210 in the entire circumferential direction with respect to the central axis C3. Accordingly, an air flow such as wind coming from the front toward the measurement apparatus 300 while the bicycle B is traveling enters from the inflow port 211A, passes through the flow path 211, and flows out from the outflow port 211B and the outflow port 211C.
 本実施の形態では、流入口211Aは略矩形状を呈し、流出口211B、211Cは略楕円形状を呈している。また、流入口211Aより流出口211B及び流出口211Cの方が広く。つまり、流通路211の断面は全体的に前方側から後方側に向かって拡大している。なお、本実施の形態では、流通路111の断面は、分岐点に向かって徐々に拡大し、分岐点から流出口211B及び流出口211Cまでの流通路111の断面はそれぞれ一定である。 In the present embodiment, the inflow port 211A has a substantially rectangular shape, and the outflow ports 211B and 211C have a substantially elliptical shape. Further, the outlet 211B and the outlet 211C are wider than the inlet 211A. That is, the cross section of the flow passage 211 is generally enlarged from the front side toward the rear side. In the present embodiment, the cross section of the flow passage 111 gradually expands toward the branch point, and the cross sections of the flow passage 111 from the branch point to the outlet 211B and the outlet 211C are constant.
 また、流通路211は、局所的にはT字状に分岐しており、流入口211Aから分岐点における中心軸C3(以下、「中心軸C2の前方部分」という)は直線であり、分岐点から流出口211B及び流出口211Cにおける中心軸C3(以下、「中心軸C3の後方部分」という)は曲部を有している。中心軸C3の後方部分は、本体210の底面に平行であり、中心軸C3の前方部分に直交している。また、中心軸C3の後方部分は、分岐点から本体210の両側面に向かって直線状に延び、曲部を挟んでさらに自転車Bの外側且つ斜め後ろ上方に向かって直線状に延びている。その結果、流出口211B、211Cは、表面及び側面に跨って形成されている。 The flow passage 211 is locally branched in a T-shape, and a central axis C3 at the branch point from the inflow port 211A (hereinafter referred to as “the front portion of the central axis C2”) is a straight line, and the branch point The central axis C3 (hereinafter referred to as “the rear portion of the central axis C3”) at the outlet 211B and the outlet 211C has a curved portion. The rear part of the central axis C3 is parallel to the bottom surface of the main body 210 and is orthogonal to the front part of the central axis C3. Further, the rear portion of the central axis C3 extends linearly from the branch point toward both side surfaces of the main body 210, and further extends linearly toward the outside of the bicycle B and obliquely rearward and upward with the curved portion interposed therebetween. As a result, the outlets 211B and 211C are formed across the surface and side surfaces.
 流通路211の流入口211Aから分岐点までの部分には、音測定器212及び検出口213が設けられている。すなわち、表示部21及び操作部31が設けられている本体10の底面と、流通路211の流入口211Aから分岐点までの部分との間に音測定器212及び検出口213が配設されている。 A sound measuring device 212 and a detection port 213 are provided in a portion from the inlet 211A to the branch point of the flow passage 211. That is, the sound measuring device 212 and the detection port 213 are disposed between the bottom surface of the main body 10 where the display unit 21 and the operation unit 31 are provided and the portion of the flow passage 211 from the inlet 211A to the branch point. Yes.
 音測定器212は、音(振動)を測定できるものであれば、その構造、形状は特に限定されない。本実施の形態では、音検出器212として、平板状にパッケージされたMEMSマイクが用いられている。 As long as the sound measuring device 212 can measure sound (vibration), its structure and shape are not particularly limited. In the present embodiment, a MEMS microphone packaged in a flat plate shape is used as the sound detector 212.
 また、検出口213は、流通路211の音検出器212寄りの孔壁から音測定器212の音を収集する口部分(図示なし、以下、「音口」という)まで形成されている。すなわち、流通路211と音検出器212の音口とは検出口213によって連通している。よって、自転車Bに向かって流れる空気流は、流入口211Aから流通路211に流入して、流通路211を流出口211B、211Cに向かって流通する。このとき、空気流が検出口213を通過すると、乱流(空力騒音)が発生し、検出口213内を音測定器212に向かって移動する。その結果、音測定器212は、風等の空気流によって発生する乱流を音として測定する。 Further, the detection port 213 is formed from the hole wall near the sound detector 212 of the flow passage 211 to the mouth portion (not shown, hereinafter referred to as “sound port”) for collecting the sound of the sound measuring device 212. That is, the flow path 211 and the sound port of the sound detector 212 are communicated with each other by the detection port 213. Therefore, the airflow flowing toward the bicycle B flows into the flow passage 211 from the inflow port 211A and circulates through the flow passage 211 toward the outflow ports 211B and 211C. At this time, when the air flow passes through the detection port 213, turbulent flow (aerodynamic noise) is generated and moves in the detection port 213 toward the sound measuring device 212. As a result, the sound measuring device 212 measures turbulence generated by an air flow such as wind as sound.
 流出口211B及び流出口211Cが共に、流入口211Aより広いことから、実施の形態1の場合と同様に、流通路211の断面は空気流の流れに沿って全体的に拡大しているが、流通路211が途中で分岐し、側面に向かって延びている点で異なる。これにより、自転車Bの後方からの風については実施の形態2の場合と同様の理由で、風検出装置101の自転車Bの後方(180度)に対する指向性が抑えることができるという効果を奏する(図5参照)。一方、自転車Bの側方からの風についても、効果は同様であるが、その効果を奏する理由が異なる。すなわち、自転車Bの側方から自転車Bに向かって移動する空気流が、一方の流出口211B(又は、211C)から流入すると、基本的には流通路211の後方部分を流通して、他方の流出口211C(又は、211B)から流出する。つまり、いずれかの流出口211B、211Cから流入する空気流が検出口213を通って、乱流(風雑音)が発生することはない、又は、ほとんどない。よって、本実施の形態においても、実施の形態2の場合と同様に、風検出装置201の自転車Bの側方(90度及び270度)に対する指向性を抑えることができるという効果を奏する(図5参照)。また、流通路211の孔壁と表示部21が設けられている表面との間に所定の体積を確保することができるので、例えば、GPSアンテナ等の他の機能を有する部品等を効率的に配置させることもできる。 Since both the outlet 211B and the outlet 211C are wider than the inlet 211A, as in the case of the first embodiment, the cross-section of the flow passage 211 is expanded as a whole along the flow of the air flow. The flow path 211 is different in that it is branched in the middle and extends toward the side surface. Thus, for the wind from the rear of the bicycle B, the directivity of the wind detection device 101 with respect to the rear (180 degrees) of the bicycle B can be suppressed for the same reason as in the second embodiment ( (See FIG. 5). On the other hand, the effect from the side of the bicycle B is the same, but the reason for the effect is different. That is, when the air flow moving from the side of the bicycle B toward the bicycle B flows in from the one outlet 211B (or 211C), the air flows basically through the rear portion of the flow passage 211 and the other Outflow from the outlet 211C (or 211B). That is, the airflow flowing in from any one of the outlets 211B and 211C passes through the detection port 213, and turbulence (wind noise) is not generated or hardly occurs. Therefore, also in the present embodiment, as in the case of the second embodiment, there is an effect that the directivity with respect to the side (90 degrees and 270 degrees) of the bicycle B of the wind detection device 201 can be suppressed (FIG. 5). In addition, since a predetermined volume can be secured between the hole wall of the flow path 211 and the surface on which the display unit 21 is provided, for example, a component having another function such as a GPS antenna can be efficiently used. It can also be arranged.
 以上のように、本発明の風検出装置1、101、201は、空気流を流入させる流入口11A、111A、211A、空気流を流出させる流出口11B、111B、211B、211C、及び、流入口11A、111A、211A並びに流出口11B、111B、211B、211Cに連通し、空気流を流通させる周方向に閉鎖された流通路11、111、211とを具備する導風体10、110、210と、流通路11、111、211に配置され、音を計測する音測定器12、112、212と、を有する。そして、流入口11A、111A、211Aの合計より流入口11B、111B、211B、211Cの合計の方が広い。よって、流入口11A、111A、211Aに直交する向きと、移動体の前進する向きとを一致させることで、音測定器12、112、212の指向性を、自転車B等の移動体の移動方向(前進及び後進)、特に、移動体の正面から移動体に向かう方向に強めることができる。なお、「流入口11A、111A、211Aに直交する向きと、移動体の前進する向きとを一致」というのは、3次元(空間的に)が望ましいが、鉛直方向に直交する2次元(平面的に)であってもよい。 As described above, the wind detection devices 1, 101, and 201 of the present invention include the inlets 11 </ b> A, 111 </ b> A, and 211 </ b> A that allow an air flow to flow in, the outlets 11 </ b> B, 111 </ b> B, 211 </ b> B, and 211 </ b> C that allow an air flow to flow out. 11A, 111A, 211A and air outlets 10, 110, 210 comprising flow passages 11, 111, 211 closed in the circumferential direction that communicate with the outlets 11B, 111B, 211B, 211C and circulate the air flow; The sound measuring devices 12, 112, and 212 are arranged in the flow passages 11, 111, and 211 and measure sound. The sum of the inflow ports 11B, 111B, 211B, and 211C is wider than the sum of the inflow ports 11A, 111A, and 211A. Therefore, by making the direction orthogonal to the inflow ports 11A, 111A, and 211A coincide with the direction in which the moving body moves forward, the directivity of the sound measuring devices 12, 112, and 212 is made to be the moving direction of the moving body such as the bicycle B. (Forward and backward), in particular, it can be strengthened in the direction from the front of the moving body toward the moving body. Note that “the direction orthogonal to the inflow ports 11A, 111A, 211A and the direction in which the moving body moves forward” is preferably three-dimensional (spatially), but two-dimensional (planar) perpendicular to the vertical direction. )).
 また、風検出装置1、101、201は、流入口11A、111A、211Aと音測定器12、112、212との間に、空気流から音を発生させる音発生手段13、113、213を有する場合がある。この場合、空気流が流れる方向(空気流の軸方向)に対する周方向は閉鎖されている流通路、且つ、音測定器12、112、212の上流側で音が発生する。したがって、風検出装置1、101、201の外部で発生する音を排除しつつ、流通路11、111、211を流通する空気流に対応する音を計測することができる。この結果、音測定器12、112、212によって計測された値の精度を高めることができる。 Further, the wind detection devices 1, 101, 201 have sound generating means 13, 113, 213 for generating sound from the air flow between the inlets 11A, 111A, 211A and the sound measuring devices 12, 112, 212. There is a case. In this case, sound is generated in the flow path that is closed in the circumferential direction with respect to the direction in which the air flow flows (the axial direction of the air flow) and on the upstream side of the sound measuring devices 12, 112, and 212. Therefore, it is possible to measure the sound corresponding to the air flow flowing through the flow passages 11, 111, 211 while eliminating the sound generated outside the wind detection devices 1, 101, 201. As a result, the accuracy of the values measured by the sound measuring devices 12, 112, 212 can be increased.
 また、流入口11A、111A、211Aに対して流出口11B、111B、211B、211Cが傾斜している場合がある。ここで、流入口11A、111A、211Aに直交する向きと、移動体の前進する向きとを一致させると、流出口11B、111B、211B、211Cは移動体に向かって移動する空気流の向きに対して傾斜する。したがって、流入口11A、111A、211Aから流通路11、111、211に流入した空気流が排出させる排出口としての面積を確保しつつ、流出口11B、111B、211B、211Cに向かって移動してくる空気流の流れの向きに直交する平面に対する投影面積が相対的に縮小される。したがって、流出口11B、111B、211Bの、これらに向かって移動してくる空気流を流通路11、111、211に導く機能を抑えることができる。よって、音測定器12、112、212の、移動体の正面から移動体に向かう方向に対する指向性の低下を抑えることができる。 Also, the outlets 11B, 111B, 211B, and 211C may be inclined with respect to the inlets 11A, 111A, and 211A. Here, when the direction orthogonal to the inflow ports 11A, 111A, and 211A and the direction in which the moving body moves forward are matched, the outflow ports 11B, 111B, 211B, and 211C become the direction of the air flow that moves toward the moving body. Inclines against. Accordingly, the airflow flowing into the flow passages 11, 111, 211 from the flow inlets 11A, 111A, 211A moves toward the flow outlets 11B, 111B, 211B, 211C while securing an area as a discharge port to be discharged. The projected area with respect to a plane perpendicular to the direction of the airflow is reduced. Therefore, it is possible to suppress the functions of the outlets 11B, 111B, and 211B that guide the airflow that moves toward the outlets 11B, 111B, and 211B to the flow passages 11, 111, and 211. Therefore, it is possible to suppress a decrease in directivity of the sound measuring devices 12, 112, and 212 in the direction from the front of the moving body toward the moving body.
 流通路11、111、211の音測定器12、112、212と空間的につながっている部分と流出口11B、111B、211B、211Cとの間で、流通路11、111、211の向きが変化する場合がある。この場合、流出口11B、111B、211Bから流通路11、111、211に流入した空気流を、流通路11、111、211の音測定器12、112、212と空間的につながっている部分に到達するまでに、減衰させることができる。よって、音測定器12、112、212の、移動体の正面から移動体に向かう方向に対する指向性の低下を抑えることができる。なお、実施の形態1~実施の形態3において、流通路11、111、211の音測定器12、112、212と空間的につながっている部分は、流通路11、111、211と検出口13、113、213とが重なる部分に相当する。 The direction of the flow paths 11, 111, 211 changes between the portions of the flow paths 11, 111, 211 that are spatially connected to the sound measuring devices 12, 112, 212 and the flow outlets 11B, 111B, 211B, 211C. There is a case. In this case, the air flow flowing into the flow passages 11, 111, 211 from the outlets 11B, 111B, 211B is spatially connected to the sound measuring devices 12, 112, 212 of the flow passages 11, 111, 211. It can be attenuated before reaching. Therefore, it is possible to suppress a decrease in directivity of the sound measuring devices 12, 112, and 212 in the direction from the front of the moving body toward the moving body. In the first to third embodiments, the portions of the flow passages 11, 111, 211 that are spatially connected to the sound measuring devices 12, 112, 212 are the flow passages 11, 111, 211 and the detection port 13. , 113 and 213 correspond to the overlapping portion.
 なお、実施の形態1~実施の形態3において、風検出装置1、101、201の音測定器12、112、212によって音の大きさ(振動の振幅)が測定されている。移動体用計測装置100、200、300は、この音測定器12、112、212によって測定された測定値に基づいて自転車Bに対する空気流の相対速度(以下、「対向風速」という)を算出する。例えば、移動体用計測装置100、200、300は、音測定器12、112、212に電気的に接続された風速算出部を有する。この風速算出部は、少なくとも所定の演算処理を行うCPUと、音の大きさである計測値と対向風速とが対応付けられたテーブル又はグラフ、及び、所定のプログラムを格納しているROMとが実装された基板からなる。 In the first to third embodiments, the sound level (vibration amplitude) is measured by the sound measuring devices 12, 112, and 212 of the wind detection devices 1, 101, and 201. The moving body measuring devices 100, 200, and 300 calculate the relative velocity of the air flow with respect to the bicycle B (hereinafter referred to as “opposing wind velocity”) based on the measurement values measured by the sound measuring devices 12, 112, and 212. . For example, the moving body measuring devices 100, 200, and 300 include a wind speed calculation unit that is electrically connected to the sound measuring devices 12, 112, and 212. The wind speed calculation unit includes at least a CPU that performs predetermined calculation processing, a table or graph in which a measurement value that is a loudness and an opposing wind speed are associated with each other, and a ROM that stores a predetermined program. It consists of a mounted board.
 音測定器12、112、212が測定した音の大きさを電気信号に変換して風速算出部に出力すると、風速算出部のCPUが、ROMに格納されているプログラムやテーブル等に基づいて対向速度を算出し、当該算出値を表示部21に表示させる。また、風速算出部のCPU又は別のCPUが、当該算出値に基づいて大気中の移動距離等の所定事項を算出し、表示部21に表示させるようにすることもできる。さらに、移動体用計測装置100、200、300が、入力手段3によって入力された情報や、音測定器12、112、212以外に設けられた速度センサや加速度センサ、GPS等(図示せず)から送られてくる情報に基づいて、大気中の移動距離や対向速度以外の値を算出し、表示部21に表示するようにすることもできる。 When the sound volume measured by the sound measuring devices 12, 112, and 212 is converted into an electrical signal and output to the wind speed calculation unit, the CPU of the wind speed calculation unit is opposed based on a program, table, or the like stored in the ROM. The speed is calculated and the calculated value is displayed on the display unit 21. Further, the CPU of the wind speed calculation unit or another CPU may calculate predetermined items such as a moving distance in the atmosphere based on the calculated value and display the predetermined items on the display unit 21. Further, the moving body measuring devices 100, 200, and 300 have information input by the input means 3, speed sensors and acceleration sensors provided in addition to the sound measuring devices 12, 112, and 212, GPS, and the like (not shown). It is also possible to calculate a value other than the moving distance in the atmosphere and the facing speed based on the information sent from and display on the display unit 21.
(その他の実施の形態)
 実施の形態1~実施の形態3では、風検出装置1、101、201が組み込まれた本体10、110、210が本発明の導風体を構成している。そして、本体10、110、210には、風速を算出する基板、表示装置2及び入力装置3も組み込まれて一体化されている。すなわち、本体10、110、210に、風速を計測することを前提とした音の測定機能を有する風検出装置1、101、201以外の機能が設けられることによって、ユニット化された移動体用計測装置100、200、300が成立している。しかしながら、必ずしもユニット化される必要はなく、例えば、対向速度等の所定の情報を算出するために必要なパラメータとしての物理量を測定するための測定器の一部又は全部を集約してユニット化したもの、及び、測定器からのデータを受信し、所定の情報を算出可能な携帯電話等の携帯情報端末を自転車等の移動体に取り付けるようにすることもできる。さらに、このユニット化されたものに、記憶媒体を接続し、且つ、その記憶媒体にデータを保存できるようにして、データ収集後に設置型の情報端末にその記憶媒体を接続して、所定の情報を算出するようにすることもできる。
(Other embodiments)
In Embodiments 1 to 3, the main bodies 10, 110, and 210 in which the wind detection devices 1, 101, and 201 are incorporated constitute the air guide body of the present invention. In the main bodies 10, 110, and 210, a substrate for calculating the wind speed, the display device 2, and the input device 3 are also incorporated and integrated. That is, the main body 10, 110, 210 is provided with functions other than the wind detection devices 1, 101, 201 having a sound measurement function on the premise that the wind speed is measured, so that unitized measurement for a moving body is performed. The devices 100, 200, and 300 are established. However, it is not always required to be unitized. For example, a part or all of measuring instruments for measuring physical quantities as parameters necessary for calculating predetermined information such as the opposing speed are integrated into a unit. It is also possible to attach a portable information terminal such as a mobile phone that can receive data from a measuring instrument and calculate predetermined information to a mobile body such as a bicycle. Furthermore, a storage medium is connected to the unitized unit, and data can be stored in the storage medium, and after the data is collected, the storage medium is connected to a stationary information terminal, and predetermined information is obtained. Can also be calculated.
 また、実施の形態1~実施の形態3では、風検出装置が組み込まれた移動体用計測装置100、200、300は自転車BのハンドルB1に取り付けられていたが、自転車Bの他の部分であっても良いし、運転者の身体やヘルメットに取り付けることもできる。また、移動体用計測装置100、200、300を自動二輪、自動車等の他の移動体に取り付けることも可能である。さらに、移動体用計測装置100、200、300を人に取り付けて、ウォーキングやランニング、又は、スキーやスケートにおいて利用することもできる。 In the first to third embodiments, the moving body measuring devices 100, 200, and 300 in which the wind detection device is incorporated are attached to the handle B1 of the bicycle B. It can be attached to the driver's body or helmet. It is also possible to attach the moving body measuring devices 100, 200, and 300 to other moving bodies such as motorcycles and automobiles. Furthermore, the moving body measuring apparatus 100, 200, 300 can be attached to a person and used for walking, running, skiing, or skating.
 さらに、実施の形態1~実施の形態3では、本体10、110、210が単体(分割不可能な構造)で構成されているが、本体10、110、210の風検出装置1、101、201が設けられている部分を他の部分から分離可能とするようにすることもできる。このように、機能毎に本体を分離できれば、一部の機能のみが故障した場合、その機能の部分のみ交換することで移動体用計測装置100、200、300のランニングコストを抑えることができる。 Further, in the first to third embodiments, the main bodies 10, 110, and 210 are configured as a single body (non-dividable structure), but the wind detection devices 1, 101, and 201 of the main bodies 10, 110, and 210 are configured. It is also possible to make it possible to separate the part provided with the other parts. In this way, if the main body can be separated for each function, when only a part of the functions breaks down, the running cost of the mobile measuring devices 100, 200, 300 can be suppressed by replacing only the part of the functions.
 また、実施の形態1~実施の形態3では、表示装置2がユーザインターフェースの一部として機能しているので、移動体用計測装置100、200、300をハンドルB1等の運転者から視認可能な位置に取り付ける必要があるが、音声を出力する音声装置を表示装置2の代わりに用いれば、視認不能な位置に取り付けることもできる。この場合、取り付け位置の自由度が増すことで、本体10、110、210の形状及び取付部100bの構造の自由度も増す。また、表示部等による露出がなくなることで、空気抵抗を軽減することができる。 In the first to third embodiments, since the display device 2 functions as a part of the user interface, the moving body measuring devices 100, 200, and 300 can be visually recognized from the driver such as the handle B1. Although it is necessary to attach to a position, if the audio | voice apparatus which outputs an audio | voice is used instead of the display apparatus 2, it can also be attached to the position which cannot be visually recognized. In this case, the degree of freedom of the attachment position increases, and the degree of freedom of the shape of the main body 10, 110, 210 and the structure of the attachment portion 100b also increases. In addition, air resistance can be reduced by eliminating exposure by the display unit or the like.
 さらに、本体10、110、210の材料は特に限定されず、適宜に設定される。また、音測定器12、112、212は、MEMSマイクで構成されているが、これに限定されず、空気の乱流の大きさを測定できる他の構成からなる器具であってもよい。 Furthermore, the material of the main body 10, 110, 210 is not particularly limited, and is appropriately set. Moreover, although the sound measuring device 12, 112, 212 is comprised by the MEMS microphone, it is not limited to this, The instrument which consists of another structure which can measure the magnitude | size of the turbulent flow of air may be sufficient.
 また、実施の形態1~実施の形態3では、音測定器12、112、212及び検出口13、113、213が本体10、110、210に配設されているが、流通路11、111、211の孔壁から突出して構成されるようにしてもよい。また、流入口11A、111A、211A、流出口11B、111B、211B、211C、流通路11、111、211の断面の形状も特に限定されない。また、中心軸の形状も、実施の形態1~実施の形態3の場合に限定されない。 In the first to third embodiments, the sound measuring devices 12, 112, 212 and the detection ports 13, 113, 213 are disposed in the main bodies 10, 110, 210, but the flow passages 11, 111, 210, It may be configured to protrude from the hole wall 211. Further, the shapes of the cross sections of the inflow ports 11A, 111A, 211A, the outflow ports 11B, 111B, 211B, 211C, and the flow passages 11, 111, 211 are not particularly limited. Also, the shape of the central axis is not limited to the case of the first to third embodiments.
 また、実施の形態1~実施の形態3では、1つの流通路11、111、211に対して1組の音測定器12、112、212と検出口13、113、213とが設けられているが、複数組の音測定器と検出口とが設けられていてもよい。すなわち、複数の音を測定し、平均値や中央値等の代表値を算出することもできる。代表値を用いることによって、異常値を排除することができ、不均一性が軽減されるので、計測された風速の精度を向上させることができる。 In the first to third embodiments, a set of sound measuring devices 12, 112, 212 and detection ports 13, 113, 213 are provided for one flow path 11, 111, 211. However, a plurality of sets of sound measuring devices and detection ports may be provided. That is, a plurality of sounds can be measured, and a representative value such as an average value or a median value can be calculated. By using the representative value, the abnormal value can be eliminated and the non-uniformity is reduced, so that the accuracy of the measured wind speed can be improved.
 さらに、実施の形態1~実施の形態3では、1つの自転車Bに対して1つの風検出装置1、101、201が設けられているが、複数の風検出装置が設けられていてもよい。例えば、風検出装置のみが組み込まれた本体からなる本体部と取付部とを具備する第2移動体用計測装置が、シートポストに、流入口が自転車の後方を向いて設置されるようにしてもよい。このように、運転者の後方に風検出装置を設置することによって、前方から吹いてくる風を運転者で遮らせながら、自転車Bの後方から自転車Bに向かう風(追い風)も計測することができる。この結果、大気中の移動距離等の所定情報をさらに正確に算出することができる。なお、第2移動体用計測装置が設けられている場合、第2移動体用計測装置は、測定値を無線で本体部100a、200a、300aに送信することができる構造を有することが望ましい。 Furthermore, in Embodiment 1 to Embodiment 3, one wind detection device 1, 101, 201 is provided for one bicycle B, but a plurality of wind detection devices may be provided. For example, the second moving body measuring device having a main body portion and a mounting portion, which is a main body in which only the wind detection device is incorporated, is installed on the seat post with the inlet facing the rear of the bicycle. Also good. In this way, by installing the wind detection device behind the driver, the wind (following wind) from the rear of the bicycle B toward the bicycle B can be measured while blocking the wind blowing from the front by the driver. it can. As a result, the predetermined information such as the moving distance in the atmosphere can be calculated more accurately. In addition, when the 2nd moving body measuring device is provided, it is desirable for the 2nd moving body measuring device to have a structure which can transmit a measured value to the main- body parts 100a, 200a, 300a wirelessly.
1    風検出装置
2    表示装置
3    入力装置
10   本体
11   流通路
11A  流入口
11B  流出口
12   音測定器
13   検出口(音発生手段)
21   表示部
31   操作部
100  移動体用計測装置
100a 本体部
100b 取付部
101  風検出装置
110  本体
111  流通路
111A 流入口
111B 流出口
112  音測定器
113  検出口(音発生手段)
200  移動体用計測装置
200a 本体部
201  風検出装置
210  本体
211  流通路
211A 流入口
211B 流出口
211C 流出口
212  音測定器
213  検出口(音発生手段)
300  移動体用計測装置
300a 本体部
B    自転車
B1   ハンドル
DESCRIPTION OF SYMBOLS 1 Wind detection apparatus 2 Display apparatus 3 Input apparatus 10 Main body 11 Flow path 11A Inlet 11B Outlet 12 Sound measuring device 13 Detection port (sound generation means)
21 Display unit 31 Operation unit 100 Measuring device for moving body 100a Main body unit 100b Mounting unit 101 Wind detection device 110 Main body 111 Flow path 111A Inlet port 111B Outlet port 112 Sound measuring device 113 Detection port (sound generating means)
200 Measuring Device for Moving Body 200a Main Body 201 Wind Detection Device 210 Main Body 211 Flow Path 211A Inlet 211B Outlet 211C Outlet 212 Sound Measuring Device 213 Detection Port (Sound Generation Means)
300 Measuring Device 300a for Moving Body Main Body B Bicycle B1 Handle

Claims (4)

  1.  空気を流入させる流入口、空気を流出させる流出口、及び、前記流入口と前記流出口とに連通し、空気を流通させる流通路を具備する導風体と、
     前記流通路と空間的なつながりをもって配置され、音を測定する音測定器と、を有し、
     前記流通路は、その長さ方向に対する周方向に閉鎖され、
     前記流出口は前記流入口より広いことを特徴とする風検出装置。
    An air inlet into which air flows in, an air outlet through which air flows out, and an air guide body including an inflow path that communicates with the inflow port and the outflow port to circulate air;
    A sound measuring device arranged in spatial connection with the flow path and measuring sound;
    The flow passage is closed in a circumferential direction relative to its length direction;
    The wind detection device, wherein the outlet is wider than the inlet.
  2.  前記流入口と前記音測定器との間に、前記流通路を流通する空気から音を発生させる音発生手段が設けられていることを特徴とする風検出装置。 A wind detecting device characterized in that sound generating means for generating sound from the air flowing through the flow passage is provided between the inlet and the sound measuring device.
  3.  前記流入口に対して前記流出口は傾斜していることを特徴とする請求項1又は2に記載の風検出装置。 The wind detection device according to claim 1 or 2, wherein the outlet is inclined with respect to the inlet.
  4.  前記流通路の前記音測定器と空間的につながっている部分と前記流出口との間で、前記流通路の向きが変化することを特徴とする請求項1乃至3のいずれかに記載の風検出装置。 The wind according to any one of claims 1 to 3, wherein a direction of the flow passage is changed between a portion of the flow passage that is spatially connected to the sound measuring device and the outlet. Detection device.
PCT/JP2010/062922 2010-07-30 2010-07-30 Wind detection device WO2012014321A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012526264A JP5489137B2 (en) 2010-07-30 2010-07-30 Wind detector
PCT/JP2010/062922 WO2012014321A1 (en) 2010-07-30 2010-07-30 Wind detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062922 WO2012014321A1 (en) 2010-07-30 2010-07-30 Wind detection device

Publications (1)

Publication Number Publication Date
WO2012014321A1 true WO2012014321A1 (en) 2012-02-02

Family

ID=45529564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062922 WO2012014321A1 (en) 2010-07-30 2010-07-30 Wind detection device

Country Status (2)

Country Link
JP (1) JP5489137B2 (en)
WO (1) WO2012014321A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519917A (en) * 2014-07-03 2017-07-20 レイザー スポルト ナムローゼ フェンノートシャップ Helmet providing position feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210782A (en) * 1975-07-15 1977-01-27 Rion Co Ltd Simplified anemometer
JPH11326357A (en) * 1998-05-08 1999-11-26 Muneo Yamaguchi Speed measuring apparatus
JP2007327790A (en) * 2006-06-06 2007-12-20 Hitachi Ltd Heat generation resistor type flow measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210782A (en) * 1975-07-15 1977-01-27 Rion Co Ltd Simplified anemometer
JPH11326357A (en) * 1998-05-08 1999-11-26 Muneo Yamaguchi Speed measuring apparatus
JP2007327790A (en) * 2006-06-06 2007-12-20 Hitachi Ltd Heat generation resistor type flow measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519917A (en) * 2014-07-03 2017-07-20 レイザー スポルト ナムローゼ フェンノートシャップ Helmet providing position feedback

Also Published As

Publication number Publication date
JP5489137B2 (en) 2014-05-14
JPWO2012014321A1 (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US11408906B2 (en) Method and apparatus for monitoring fluid dynamic drag
EP2583887B1 (en) Work rate measurement device
US7093501B2 (en) Process and device for measuring flow parameters
CN110662946B (en) Flow rate measuring device and flow rate measuring method
JP5489137B2 (en) Wind detector
JP5489136B2 (en) Wind detector
WO2018214839A1 (en) Flow rate flowmeter, and method for measuring flow rate and flow amount
JP5489135B2 (en) Wind speed measuring device
JP3119782B2 (en) Flowmeter
JP2869054B1 (en) Insertion type vortex flowmeter and method for determining its probe line length
TWI652043B (en) Spirometer, mouthpiece and detection method thereof
JP2004294147A (en) Current meter
JP4887545B2 (en) Railway vehicle
CN210310314U (en) Braking wave collecting equipment and braking wave speed collecting system
JPH10170320A (en) Flowmeter
CN111766023B (en) Air leakage detector with anti-interference function
US20200371133A1 (en) Multi-speed meter capable of performing wind speed measurement having self-correction function, wind speed measurement method having self-correction function, and traveling object having multi-speed meter installed therein
JP2005083751A (en) Ultrasonic fluid measuring device
JPH08159864A (en) Acoustic characteristics measuring apparatus
TWM577941U (en) Bicycle dashboard device
KR101195491B1 (en) Hybrid-type gas flowmeter
JPH06194374A (en) Wind direction/wind speed detector
JP2006220632A (en) Speedometer
JPH09288121A (en) Wind vane and anemometer
JP3141622B2 (en) Airflow measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526264

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855330

Country of ref document: EP

Kind code of ref document: A1