JP2007326923A - Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate - Google Patents

Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate Download PDF

Info

Publication number
JP2007326923A
JP2007326923A JP2006158092A JP2006158092A JP2007326923A JP 2007326923 A JP2007326923 A JP 2007326923A JP 2006158092 A JP2006158092 A JP 2006158092A JP 2006158092 A JP2006158092 A JP 2006158092A JP 2007326923 A JP2007326923 A JP 2007326923A
Authority
JP
Japan
Prior art keywords
metal
fluororesin
foil
adhesive layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006158092A
Other languages
Japanese (ja)
Inventor
Tetsuro Sato
哲朗 佐藤
Toshifumi Matsushima
敏文 松島
Akihiro Matsunaga
哲広 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006158092A priority Critical patent/JP2007326923A/en
Priority to PCT/JP2007/061562 priority patent/WO2008004399A1/en
Publication of JP2007326923A publication Critical patent/JP2007326923A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology prominently increasing adhesion of a fluorine resin substrate with a non-roughened metal foil by a simpler method and capable of forming fine pitch circuits. <P>SOLUTION: A resin composition for adhering a fluorine resin substrate, characterized by comprising 2-20 pts.wt polymer component soluble in a solvent and having one or more of hydroxy, carboxy and amino in a molecule as a functional group, and ≥50 pts.wt epoxy resin compound comprising an epoxy resin having ≥200°C boiling point and an amine-based epoxy resin curing agent having ≥200°C boiling point, is used as the resin composition for forming an adhesive layer for adhering a metal foil on a fluorine resin substrate. And, an adhesive for fluorine resin substrate and using the resin composition, a metal foil 4 with an adhesive layer in which a metal foil 2 and an adhesive layer 3 form a laminate structure, a copper-clad laminate using the fluorine resin substrate and a method for producing the laminate, are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本件出願に係る発明は、フッ素樹脂基材接着用樹脂組成物、そのフッ素樹脂基材接着用樹脂組成物を用いたフッ素樹脂基材用接着剤、そのフッ素樹脂基材用接着剤を用いて得られる金属張積層板及びプリント配線板、そして、その金属張積層板の製造方法に関する。特に、金属箔との張り合わせを行っても、良好な密着性を得ることが困難と言われるフッ素樹脂基材との密着性に優れた接着剤原料であるフッ素樹脂基材接着用樹脂組成物、そのフッ素樹脂基材接着用樹脂組成物を用いたフッ素樹脂基材用接着剤等に関する。   The invention according to the present application is obtained using a fluororesin substrate adhesive resin composition, a fluororesin substrate adhesive using the fluororesin substrate adhesive resin, and the fluororesin adhesive. The present invention relates to a metal-clad laminate, a printed wiring board, and a method for producing the metal-clad laminate. In particular, a resin composition for bonding a fluororesin base material, which is an adhesive raw material excellent in adhesiveness with a fluororesin base material, which is said to be difficult to obtain good adhesion even when pasted with a metal foil, The present invention relates to an adhesive for a fluororesin substrate and the like using the resin composition for bonding a fluororesin substrate.

近年のパーソナルコンピュータ、携帯電話等の電子機器は、高速通信及び高速演算を可能とするためクロック周波数をGHzレベルで高くする傾向にある。これに対応して、プリント配線板にも低誘電損失且つ低誘電率であるという誘電特性、クロストーク特性等の高周波特性、その他耐熱性、耐久性を備えることが要求されている。   Electronic devices such as personal computers and mobile phones in recent years tend to increase the clock frequency at the GHz level in order to enable high-speed communication and high-speed computation. Correspondingly, printed wiring boards are also required to have low dielectric loss and low dielectric constant, such as dielectric characteristics, high frequency characteristics such as crosstalk characteristics, and other heat resistance and durability.

また、衛星通信機器等の電子機器では、衛星放送、衛星通信の発達から、アンテナ、BSコンバータ等では、マイクロ波(30GHz以下)の周波数帯、より高速情報伝達に使用するミリ波(30GHz〜300GHz)の周波数帯での使用を考え、高周波回路対応のクロストーク特性等に優れたプリント配線板が開発されている。   In addition, in electronic devices such as satellite communication devices, due to the development of satellite broadcasting and satellite communication, in antennas, BS converters, etc., in the microwave (30 GHz or less) frequency band, millimeter waves (30 GHz to 300 GHz) used for higher-speed information transmission. ), A printed wiring board excellent in crosstalk characteristics and the like for high frequency circuits has been developed.

以上のような用途において、今後、使用する周波数帯域が更に高周波帯域に移行していくことが予想できる。このように周波数帯域が上がっていくにつれ、プリント配線板に関しては、特に誘電特性が重要となる。このような用途において、フッ素樹脂基材をプリント配線板の絶縁層に用いたものが使用されてきた。   In the above applications, it can be expected that the frequency band to be used will further shift to the high frequency band in the future. As the frequency band increases in this way, the dielectric characteristics are particularly important for the printed wiring board. In such a use, what used the fluororesin base material for the insulating layer of the printed wiring board has been used.

例えば、特許文献1には、低誘電率で低誘電正接のガラスクロスとフッ素樹脂の複合化により得られる誘電体と、この誘電体の少なくとも一主面に形成された電解銅箔とを具備する銅張積層板であり、誘電率が2.3(12GHz)以下で、誘電正接が0.001(12GHz)以下の特性をもつことを特徴とするフッ素樹脂銅張積層板が開示されている。この文献から、フッ素樹脂基材が誘電特性に優れ、高周波領域でのプリント配線板の絶縁層構成材料として極めて有用なものと理解できる。   For example, Patent Document 1 includes a dielectric obtained by combining a glass cloth having a low dielectric constant and a low dielectric loss tangent and a fluororesin, and an electrolytic copper foil formed on at least one main surface of the dielectric. A fluororesin copper-clad laminate having a dielectric constant of 2.3 (12 GHz) or lower and a dielectric loss tangent of 0.001 (12 GHz) or lower is disclosed. From this document, it can be understood that the fluororesin base material has excellent dielectric characteristics and is extremely useful as an insulating layer constituting material of a printed wiring board in a high frequency region.

ところが、フッ素樹脂基材を用いた場合、フッ素樹脂基材と金属箔との密着性が弱いことが欠点としてあった。特に、吸湿後の当該密着性が弱くなる傾向があった。   However, when a fluororesin base material is used, there is a drawback that the adhesion between the fluororesin base material and the metal foil is weak. In particular, the adhesion after moisture absorption tended to be weakened.

フッ素樹脂基材と金属箔との密着性を改善するため、特許文献2には、ガラスクロスにフッ素樹脂を含浸保持させたフッ素樹脂含浸層と金属箔との間にフッ素樹脂接着含浸層を設けたプリント配線板が開示されている。このときのフッ素樹脂接着含浸層は、樹脂特性に起因するアンカー効果によって金属箔と金属箔直下のフッ素樹脂含浸層との間の密着性を改善し、剥離強度を増強するために用いている。そして、このフッ素樹脂接着含浸層は、フッ素樹脂含浸層のフッ素樹脂としてPTFEを使用し、フッ素樹脂接着含浸層のフッ素樹脂としてPFAを使用することが好ましいとしている。即ち、基材にも接着層にもフッ素系樹脂を組み合わせている。   In order to improve the adhesion between the fluororesin substrate and the metal foil, Patent Document 2 provides a fluororesin adhesion impregnation layer between a fluororesin impregnation layer in which a glass cloth is impregnated with a fluororesin and a metal foil. A printed wiring board is disclosed. The fluororesin adhesion impregnated layer at this time is used to improve the adhesion between the metal foil and the fluororesin impregnated layer immediately below the metal foil by the anchor effect resulting from the resin characteristics, and to enhance the peel strength. The fluororesin adhesion impregnation layer preferably uses PTFE as the fluororesin of the fluororesin impregnation layer and PFA as the fluororesin of the fluororesin adhesion impregnation layer. That is, the fluororesin is combined with both the base material and the adhesive layer.

そして、特許文献3には、高温多湿条件下でも高い信頼性をもって使用できる配線板を提供することを目的に、ポリアリルスルフォン、芳香族ポリスルフィドおよび芳香族ポリエーテルの中から選ばれるいずれか少なくとも1種以上の熱可塑性樹脂とフッ素樹脂からなることを特徴とするフッ素樹脂組成物をプリント配線板の絶縁層構成材料として用いることが開示されている。   Patent Document 3 discloses at least one selected from polyallyl sulfone, aromatic polysulfide, and aromatic polyether for the purpose of providing a wiring board that can be used with high reliability even under high temperature and high humidity conditions. It is disclosed that a fluororesin composition characterized by comprising at least one kind of thermoplastic resin and fluororesin is used as an insulating layer constituting material of a printed wiring board.

更に、特許文献4には、フッ素樹脂基材と金属箔との密着性を改善するものではないが、フッ素樹脂基材とスクリーン印刷法により形成した導体との密着性を改善するために、基板の、導体配線を形成するための表面に、粗面化処理、プラズマ処理、粗面化処理をしたのちプラズマ処理、または粗面化処理をしたのちスパッタリング法による金属膜の被覆形成処理、のうちいずれか1つの表面処理を施したことを特徴とするプリント配線用基板が開示されている。   Further, Patent Document 4 does not improve the adhesion between the fluororesin substrate and the metal foil, but in order to improve the adhesion between the fluororesin substrate and the conductor formed by the screen printing method, The surface for forming the conductor wiring is subjected to a roughening treatment, a plasma treatment, a roughening treatment, a plasma treatment, or a roughening treatment and then a metal film coating formation treatment by a sputtering method. A printed wiring board characterized by any one surface treatment is disclosed.

特開2002−307611号公報JP 2002-307611 A WO01/003478号公報WO01 / 003478 publication 特開平11−199738号公報JP 11-199738 A WO2003/103352号公報WO2003 / 103352

しかしながら、フッ素樹脂銅張積層板から得られるプリント配線板にも、その用途を苦慮すれば、電子機器の多機能化、小型化を達成するため、より一層のファインピッチ回路化が要求されてきた。   However, printed wiring boards obtained from fluororesin copper-clad laminates have been required to have even finer pitch circuits in order to achieve multi-functionality and miniaturization of electronic devices if their use is difficult. .

そして、その回路形成には広く電解法若しくは圧延法で製造された銅箔が使用されてきた。この銅箔は、その接着面に粗化処理、防錆処理、シランカップリング剤処理が施されるのが通常である。このときの粗化処理のレベルによっては、要求されるレベルのファインピッチ回路をエッチング法で形成することは困難である。しかも、フッ素樹脂基材と銅箔との密着性が低いと、エッチング液等に対する耐薬品性能及び耐吸湿特性が著しく劣化するため、ファインピッチ回路の形成は不可能となる。近年では、FR−4基材を用いた銅張積層板では、無粗化の銅箔を使用して、従来不可能であったファインピッチ回路の形成が試みられている。これに対し、従来のフッ素樹脂基板ではフッ素樹脂基材と金属箔との密着性が低いため、無粗化の金属箔を使用すると密着力は殆ど得られず、無粗化箔の使用は検討すら出来なかった。   And the copper foil manufactured by the electrolytic method or the rolling method has been widely used for the circuit formation. This copper foil is usually subjected to a roughening treatment, an antirust treatment, and a silane coupling agent treatment on the bonding surface. Depending on the level of the roughening treatment at this time, it is difficult to form a required fine pitch circuit by an etching method. In addition, if the adhesion between the fluororesin substrate and the copper foil is low, the chemical resistance performance and the moisture absorption resistance against the etching solution and the like are significantly deteriorated, so that it is impossible to form a fine pitch circuit. In recent years, a copper-clad laminate using an FR-4 base material has been attempted to form a fine pitch circuit, which has been impossible in the past, using a non-roughened copper foil. In contrast, conventional fluororesin substrates have low adhesion between the fluororesin substrate and the metal foil, so almost no adhesion can be obtained when using a non-roughened metal foil. I couldn't even do it.

上記特許文献2及び特許文献3に開示の方法では、フッ素樹脂基材と無粗化の銅箔との密着性を十分に得ることは出来ず、一定の限界がある。その結果、ヒートショックが負荷されると、フッ素樹脂基材と無粗化の銅箔で形成した回路との剥離(デラミネーション現象)が起きていた。   In the methods disclosed in Patent Document 2 and Patent Document 3, sufficient adhesion between the fluororesin substrate and the non-roughened copper foil cannot be obtained, and there is a certain limit. As a result, when a heat shock was applied, peeling (delamination phenomenon) occurred between the fluororesin substrate and the circuit formed of the non-roughened copper foil.

従って、市場では、より簡便な方法で、フッ素樹脂基材と無粗化の金属箔との密着性を顕著に向上させ、ファインピッチ回路形成の可能な技術が望まれてきた。   Therefore, in the market, a technique capable of remarkably improving the adhesion between the fluororesin base material and the non-roughened metal foil by a simpler method and forming a fine pitch circuit has been desired.

そこで、本件発明者等は、鋭意研究の結果、以下に述べる樹脂組成物等を用いて、フッ素樹脂基材と金属箔との接着界面を形成することで、フッ素樹脂系プリント配線板の回路の引き剥がし強さを飛躍的に向上させ、無粗化の金属箔を用いることを可能としたのである。従って、以下の述べる金属箔とは、主に無粗化の金属箔を意味するものである。以下、本件発明を説明する。   Therefore, as a result of earnest research, the inventors of the present invention formed a bonding interface between the fluororesin base material and the metal foil using the resin composition described below, and thereby the circuit of the fluororesin-based printed wiring board. The peel strength was dramatically improved, and it became possible to use a non-roughened metal foil. Therefore, the metal foil described below mainly means a non-roughened metal foil. The present invention will be described below.

フッ素樹脂基材接着用樹脂組成物: 本件発明に係るフッ素樹脂基材接着用樹脂組成物は、フッ素樹脂基材に対し金属箔を張り合わせるための接着層を形成するための樹脂組成物において、当該樹脂組成物は、溶剤に可溶で且つ官能基として分子内に水酸基、カルボキシル基、アミノ基の1種又は2種以上を有するポリマー成分を2重量部〜50重量部、沸点200℃以上のエポキシ樹脂及び沸点200℃以上のアミン系エポキシ樹脂硬化剤からなるエポキシ樹脂配合物を50重量部以上、を含有することを特徴とするものである。 Resin composition for fluororesin substrate adhesion: The resin composition for adhesion of a fluororesin substrate according to the present invention is a resin composition for forming an adhesive layer for bonding a metal foil to a fluororesin substrate. The resin composition is soluble in a solvent and has 2 to 50 parts by weight of a polymer component having one or more of hydroxyl group, carboxyl group and amino group in the molecule as a functional group, and having a boiling point of 200 ° C. or more. It contains 50 parts by weight or more of an epoxy resin blend composed of an epoxy resin and an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher.

本件発明に係るフッ素樹脂基材接着用樹脂組成物において、前記ポリマー成分は、ポリビニルアセタール樹脂、フェノキシ樹脂、芳香族ポリアミド樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂の群から選ばれた1種又は2種以上を混合したものであることが好ましい。   In the resin composition for bonding a fluororesin substrate according to the present invention, the polymer component is one selected from the group consisting of a polyvinyl acetal resin, a phenoxy resin, an aromatic polyamide resin, a polyether sulfone resin, and a polyamideimide resin. It is preferable to mix two or more kinds.

そして、本件発明に係るフッ素樹脂基材接着用樹脂組成物において、前記沸点200℃以上のエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂の群から選ばれる1種又は2種以上を混合したものであることが好ましい。   In the fluororesin substrate adhesive resin composition according to the present invention, the epoxy resin having a boiling point of 200 ° C. or higher is bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, biphenyl type epoxy. It is preferable to use one or a mixture of two or more selected from the group of resins.

また、本件発明に係るフッ素樹脂基材接着用樹脂組成物において、アミン系エポキシ樹脂硬化剤は、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンアダクト体の群から選ばれた1種又は2種以上を用いることが好ましい。   In the fluororesin substrate adhesive resin composition according to the present invention, the amine-based epoxy resin curing agent includes aromatic polyamines, polyamides, and amines obtained by polymerizing or condensing these with epoxy resins or polycarboxylic acids. It is preferable to use one or more selected from the group of adduct bodies.

フッ素樹脂基材用接着剤: 本件発明に係るフッ素樹脂基材用接着剤は、フッ素樹脂基板に対し金属箔を張り合わせるために用いる樹脂接着剤であって、上記フッ素樹脂基材接着用樹脂組成物に有機溶剤を添加して混合して得られることを特徴としたものである。 Adhesive for fluororesin substrate: The adhesive for fluororesin substrate according to the present invention is a resin adhesive used for bonding a metal foil to a fluororesin substrate, and the resin composition for adhering the fluororesin substrate It is obtained by adding an organic solvent to the product and mixing it.

そして、本件発明に係るフッ素樹脂基材用接着剤は、前記有機溶剤にメチルエチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンのいずれか1種の溶剤又はこれらの混合溶剤を用いることが好ましい。   The adhesive for a fluororesin substrate according to the present invention uses any one solvent of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone or a mixed solvent thereof as the organic solvent. Is preferred.

接着層付金属箔: 本件発明に係る接着層付金属箔は、金属箔の表面に基材に対する接着層を備えた接着層付金属箔において、当該接着層は、上記フッ素樹脂基板用樹脂接着剤を用いて形成したものであることを特徴とする。 Metal foil with an adhesive layer: The metal foil with an adhesive layer according to the present invention is a metal foil with an adhesive layer provided on the surface of the metal foil with an adhesive layer to the base material, and the adhesive layer is a resin adhesive for a fluororesin substrate. It is formed using.

そして、本件発明に係る接着層付金属箔において、前記接着層は、厚さ0.5μm〜3μmの半硬化樹脂層であることが好ましい。   In the metal foil with an adhesive layer according to the present invention, the adhesive layer is preferably a semi-cured resin layer having a thickness of 0.5 μm to 3 μm.

また、本件発明に係る接着層付金属箔において、前記接着層付金属箔の接着層は、MIL規格におけるMIL−P−13949Gに準拠して測定したときのレジンフローが5%以内という特性を備えることが好ましい。   In the metal foil with an adhesive layer according to the present invention, the adhesive layer of the metal foil with an adhesive layer has a characteristic that the resin flow is within 5% when measured according to MIL-P-13949G in the MIL standard. It is preferable.

更に、本件発明に係る接着層付金属箔において、前記金属箔は、銅箔、ニッケル箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、銅合金箔、ニッケル合金箔、スズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合金箔、コバルト合金箔のいずれかを用いることが好ましい。   Furthermore, in the metal foil with an adhesive layer according to the present invention, the metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil, tin alloy. It is preferable to use any of foil, gold alloy foil, silver alloy foil, platinum alloy foil, iron alloy foil, and cobalt alloy foil.

金属張積層板: 本件発明に係る金属張積層板は、フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層板であって、前記接着層は、上記樹脂組成物を含むことを特徴としたものである。 Metal-clad laminate: The metal-clad laminate according to the present invention is a metal-clad laminate obtained by laminating a metal layer on the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer has the resin composition described above. It is characterized by including things.

また、本件発明に係る金属張積層板は、フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層板であって、前記接着層は、前記フッ素樹脂基材用接着剤を用いて形成したことを特徴としたものである。   The metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, and the adhesive layer is used for the fluororesin substrate. It is formed using an adhesive.

プリント配線板: 本件発明に係るプリント配線板は、上記金属張積層板の金属箔をエッチング加工することにより得られるものである。 Printed wiring board: The printed wiring board according to the present invention is obtained by etching the metal foil of the metal-clad laminate.

金属張積層板の製造方法: 本件発明に係る金属張積層板の製造方法は、以下の工程A−1〜工程C−1を経ることを特徴とするものであり、説明の都合上、以下「第1製造方法」と称する。 Method for producing metal-clad laminate: The method for producing a metal-clad laminate according to the present invention is characterized by going through the following steps A-1 to C-1, and for convenience of explanation, This is referred to as “first manufacturing method”.

工程A−1: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。
工程B−1: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を金属箔の表面に塗布して乾燥することで、金属箔の表面に0.5μm〜3μm厚さの半硬化樹脂層を形成することで接着層付金属箔を製造する工程。
工程C−1: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、接着層付金属箔の接着層面を当接させて積層して熱間プレス成形することで金属張積層板とする工程。
Step A-1: A step of applying an activation treatment to the bonding surface of the fluororesin substrate with the metal foil.
Step B-1: A fluororesin substrate adhesive is prepared, and this fluororesin substrate adhesive is applied to the surface of the metal foil and dried, so that the thickness of the metal foil is 0.5 μm to 3 μm. The process of manufacturing metal foil with an adhesive layer by forming a semi-cured resin layer.
Step C-1: A metal-clad laminate is obtained by hot-pressing the adhesive layer surface of the metal foil with an adhesive layer in contact with the laminated surface subjected to the activation treatment of the fluororesin substrate and laminating it. Process.

また、本件発明に係る金属張積層板の製造方法は、以下の工程A−2〜工程C−2を経ることを特徴とするものを採用することも出来る。そして、説明の都合上、以下「第2製造方法」と称する。   Moreover, the manufacturing method of the metal-clad laminated board which concerns on this invention can also employ | adopt what is characterized by passing through the following process A-2-the process C-2. For convenience of explanation, it is hereinafter referred to as “second manufacturing method”.

工程A−2: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。
工程B−2: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を離型性プラスチックフィルムの表面に塗布して乾燥することで、当該離型性プラスチックフィルムと厚さ0.5μm〜3μmの半硬化樹脂層が積層状態にある離型性プラスチックフィルム付接着層を製造する工程。
工程C−2: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、離型性プラスチックフィルム付接着層の半硬化樹脂層を当接させ重ね合わせて仮接着し、離型性プラスチックフィルムを剥離除去して、当該半硬化樹脂層をフッ素樹脂基材の表面に残す工程。
工程D−2: 工程C−2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金属箔を積層して熱間プレス成形することで金属張積層板とする工程。
Step A-2: A step of performing an activation treatment on the bonding surface of the fluororesin base material with the metal foil.
Step B-2: An adhesive for a fluororesin substrate is prepared, and the adhesive for a fluororesin substrate is applied to the surface of the releasable plastic film and dried, so that the releasable plastic film and thickness A step of producing an adhesive layer with a releasable plastic film in which a semi-cured resin layer of 0.5 μm to 3 μm is in a laminated state.
Step C-2: The semi-cured resin layer of the adhesive layer with a releasable plastic film is brought into contact with the laminated surface subjected to the activation treatment of the fluororesin base material, and is temporarily bonded to each other. The process of peeling off and leaving the semi-cured resin layer on the surface of the fluororesin substrate.
Step D-2: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-2 and hot pressing it.

更に、本件発明に係る金属張積層板の製造方法は、以下の工程A−3〜工程C−3を経ることを特徴とするものを採用することも出来る。そして、説明の都合上、以下「第3製造方法」と称する。   Furthermore, the manufacturing method of the metal clad laminated board which concerns on this invention can also employ | adopt what is characterized by passing through the following process A-3-process C-3. For convenience of explanation, it is hereinafter referred to as “third manufacturing method”.

工程A−3: フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施す工程。
工程B−3: フッ素樹脂基材用接着剤を調製する工程。
工程C−3: フッ素樹脂基材の活性化処理した表面に、工程B−3で調製したフッ素樹脂基材用接着剤を塗布して乾燥させることで、0.5μm〜3μm厚さの半硬化樹脂層を形成する工程。
工程D−3: 工程C−3でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金属箔を積層して熱間プレス成形することで金属張積層板とする工程。
Step A-3: A step of performing activation treatment on the bonding surface of the metal foil of the fluororesin base material.
Process B-3: The process of preparing the adhesive for fluororesin base materials.
Step C-3: Applying the adhesive for the fluororesin substrate prepared in Step B-3 to the activated surface of the fluororesin substrate and drying it, semi-curing 0.5 μm to 3 μm in thickness Forming a resin layer;
Step D-3: Step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-3 and hot pressing it.

以上に述べてきた金属張積層板の製造方法において、前記活性化処理は、粗化処理、プラズマ処理、又はこれらを組み合わせた複合処理のいずれかを用いることが好ましい。   In the method for producing a metal-clad laminate as described above, it is preferable that the activation treatment is any one of a roughening treatment, a plasma treatment, or a composite treatment combining these.

本件発明に係るフッ素樹脂基材接着用樹脂組成物は、フッ素樹脂基材に対し無粗化の金属箔を張り合わせる場合の接着層の形成に適したものであり、フッ素樹脂基材と無粗化の金属箔との密着性を顕著に向上させ、ヒートショックを受けたときの回路のデラミネーション現象等を効果的に防止できる。そして、このフッ素樹脂基材接着用樹脂組成物で接着層を形成しようとする場合には、当該フッ素樹脂基板用樹脂組成物に有機溶剤を添加して、層形成に適し且つ最適なレジンフローを得ることのできる樹脂固形分量に調製しフッ素樹脂基材用接着剤として使用できる。   The resin composition for bonding a fluororesin base material according to the present invention is suitable for forming an adhesive layer when a non-roughened metal foil is laminated to a fluororesin base material. It is possible to remarkably improve the adhesion to the metal foil and to effectively prevent the delamination phenomenon of the circuit when subjected to a heat shock. When an adhesive layer is to be formed with this fluororesin substrate adhesive resin composition, an organic solvent is added to the fluororesin substrate resin composition to provide an optimal resin flow suitable for layer formation. The resin solid content can be obtained and used as an adhesive for a fluororesin substrate.

そして、上記フッ素樹脂基板用樹脂接着剤を用いて金属箔の表面に接着層を形成することも容易であり、フッ素樹脂基材用の接着層付金属箔の提供が可能となる。このとき、当該接着層の厚さを0.5μm〜3μmの半硬化樹脂層とすることで、フッ素樹脂基材に対し最も良好な密着性を得ることが出来る。そして、このときの金属箔には、種々の無粗化の金属箔の使用が可能であり、プリント配線板用途に限らず、広く使用可能である。   And it is also easy to form an adhesive layer on the surface of the metal foil using the resin adhesive for a fluororesin substrate, and it becomes possible to provide a metal foil with an adhesive layer for a fluororesin substrate. At this time, the best adhesiveness with respect to a fluororesin base material can be obtained by making the thickness of the said adhesive layer into the semi-hardened resin layer of 0.5 micrometer-3 micrometers. In addition, as the metal foil at this time, various non-roughened metal foils can be used, and the present invention is not limited to printed wiring board applications and can be widely used.

以上のフッ素樹脂基材接着用樹脂組成物、フッ素樹脂基板用樹脂接着剤、フッ素樹脂基材用の接着層付金属箔を用いることで、フッ素樹脂基材と金属層との密着性に優れた金属張積層板の提供が可能となる。従って、この金属張積層板を用いることで、高品質のプリント配線板の提供が可能となる。   By using the above resin composition for bonding a fluororesin substrate, a resin adhesive for a fluororesin substrate, and a metal foil with an adhesive layer for a fluororesin substrate, the adhesion between the fluororesin substrate and the metal layer is excellent. A metal-clad laminate can be provided. Therefore, by using this metal-clad laminate, it is possible to provide a high-quality printed wiring board.

更に、本件発明に係る金属張積層板の製造方法は、上記接着層が介在するために、熱間プレス加工する際のプレス温度が低温化でき、製造コストを安価に出来る。しかも、予めフッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施すことで、フッ素樹脂基材と金属層との密着性をより安定的に向上させることができる。   Furthermore, in the method for producing a metal-clad laminate according to the present invention, since the adhesive layer is interposed, the press temperature during hot pressing can be lowered, and the production cost can be reduced. In addition, the adhesiveness between the fluororesin substrate and the metal layer can be more stably improved by applying an activation treatment to the bonding surface of the metal foil of the fluororesin substrate in advance.

以下、本件発明に関する実施の形態に関して説明する。説明にあたっては、各項目に分別して説明する。   Hereinafter, embodiments relating to the present invention will be described. In the description, each item will be described separately.

フッ素樹脂基材接着用樹脂組成物の形態: 本件発明に係るフッ素樹脂基材接着用樹脂組成物は、(1)溶剤に可溶で且つ官能基として分子内に水酸基、カルボキシル基、アミノ基の1種又は2種以上を有するポリマー成分を2重量部〜50重量部、(2)沸点200℃以上のエポキシ樹脂及び沸点200℃以上のアミン系エポキシ樹脂硬化剤からなるエポキシ樹脂配合物を50重量部以上、を含有することを特徴とする。ここでは、前記ポリマー成分とエポキシ樹脂配合物との合計を100重量部とした場合である。 Form of resin composition for fluororesin substrate adhesion: The resin composition for fluororesin substrate adhesion according to the present invention is (1) soluble in a solvent and has a hydroxyl group, carboxyl group, amino group as a functional group in the molecule. 2 parts by weight to 50 parts by weight of a polymer component having one kind or two or more kinds, (2) 50 weights of an epoxy resin composition comprising an epoxy resin having a boiling point of 200 ° C. or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher Part or more. Here, it is a case where the sum total of the said polymer component and an epoxy resin compound is 100 weight part.

ここで「溶剤に可溶であり官能基として分子内に水酸基、カルボキシル基、アミノ基の1種又は2種以上を有するポリマー成分」(以下、単に「ポリマー成分」と称する。)とは、ポリビニルアセタール樹脂、フェノキシ樹脂、芳香族ポリアミド樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂の群から選ばれた1種又は2種以上を混合したものであることが好ましい。ここで言うポリマー成分には、まず溶剤に可溶であるという性質が求められる。可能でなければ、溶剤を用いての固形分調整等が困難となる。そして、このポリマー成分が2重量部未満の場合には、銅張積層板のプレス成形後の硬度が高く、脆くなるため靱性が得られない。一方、このポリマー成分が50重量部を超える場合には、耐熱性が低くなり、銅張積層板のプレス成形温度に耐えられなくなり、樹脂劣化を引き起こす。そして、より好ましくは、当該ポリマー成分は2重量部〜30重量部とする。硬化後の樹脂としての耐熱性及びフレキシビリティが最も良好となる。   Here, “a polymer component that is soluble in a solvent and has one or more of a hydroxyl group, a carboxyl group, and an amino group in a molecule as a functional group” (hereinafter simply referred to as “polymer component”) means polyvinyl. It is preferable to use one or a mixture of two or more selected from the group of acetal resins, phenoxy resins, aromatic polyamide resins, polyether sulfone resins, and polyamideimide resins. The polymer component here is required to be soluble in a solvent. If not possible, it will be difficult to adjust the solid content using a solvent. And when this polymer component is less than 2 weight part, since the hardness after press molding of a copper clad laminated board is high and it becomes weak, toughness cannot be obtained. On the other hand, when the polymer component exceeds 50 parts by weight, the heat resistance is lowered, and it becomes impossible to withstand the press molding temperature of the copper clad laminate, thereby causing resin deterioration. More preferably, the polymer component is 2 to 30 parts by weight. The heat resistance and flexibility as the cured resin are the best.

「沸点200℃以上のエポキシ樹脂」とは、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂の群から選ばれる一種又は2種以上を混合して用いることが好ましい。線形(2官能)のエポキシ樹脂を用いることでフッ素樹脂基材と金属箔との間での密着性を高くする事が出来る。従って、この樹脂組成物の主体をなす「沸点200℃以上のエポキシ樹脂」と「沸点200℃以上のアミン系エポキシ樹脂硬化剤」との合計をエポキシ樹脂配合物といい、これが50重量部以上となる事が好ましい。そして、より好ましくは50重量部〜80重量部の配合割合で用いられる。従って、当該エポキシ樹脂配合物が50重量部未満の場合には、フッ素樹脂基材と金属箔との密着性を十分に向上させ得ず、80重量部を越えると樹脂溶液としたとき流動性が高くなり、後述するレジンフローの範囲を維持できなくなる。   “Epoxy resin having a boiling point of 200 ° C. or higher” is a mixture of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, and biphenyl type epoxy resin. It is preferable to use it. By using a linear (bifunctional) epoxy resin, the adhesion between the fluororesin substrate and the metal foil can be increased. Therefore, the total of “epoxy resin having a boiling point of 200 ° C. or higher” and “amine-based epoxy resin curing agent having a boiling point of 200 ° C. or higher”, which is the main component of this resin composition, is referred to as an epoxy resin compound, which is 50 parts by weight or more. It is preferable that More preferably, it is used at a blending ratio of 50 to 80 parts by weight. Therefore, when the epoxy resin compound is less than 50 parts by weight, the adhesion between the fluororesin substrate and the metal foil cannot be sufficiently improved. It becomes high, and the range of the resin flow described later cannot be maintained.

そして、エポキシ樹脂硬化剤としては、単に硬化させることのみを目的とすれば、ジシアンジアミド、イミダゾール類、芳香族アミン等のアミン類、ビスフェノールA、ブロム化ビスフェノールA等のフェノール類、フェノールノボラック樹脂及びクレゾールノボラック樹脂等のノボラック類、無水フタル酸等の酸無水物等のあらゆる硬化剤を用いることができる。しかしながら、沸点200℃以上のアミン系エポキシ樹脂硬化剤を用いることが、フッ素樹脂基材と金属箔との密着性を顕著に向上させるという観点から最も好ましい。プレス成形温度が180℃付近であり、このプレス成形温度付近に硬化剤の沸点があると、プレス成形によりエポキシ樹脂硬化剤が沸騰するため硬化した絶縁樹脂層内に気泡が発生しやすくなる。そして、フッ素樹脂基材と金属箔との間に接着層を構成するのにアミン系エポキシ樹脂硬化剤を用いると最も安定した密着性が得られる。即ち、「沸点200℃以上のアミン系エポキシ樹脂硬化剤」とは、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンアダクト体の群から選ばれた一種又は二種以上を用いる場合を言う。そして、これをより具体的に言えば、4,4’−ジアミノジフェニレンサルフォン、3,3’−ジアミノジフェニレンサルフォン、4,4−ジアミノジフェニレル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]サルフォンのいずれかを用いることが好ましい。また、当該アミン系エポキシ樹脂硬化剤のエポキシ樹脂に対する添加量は、それぞれの当量から自ずと導き出されるものであるため、本来厳密にその配合割合を明記する必要性はないものと考える。従って、本件発明では、硬化剤の添加量を特に限定していない。   And as an epoxy resin curing agent, if only for the purpose of curing, dicyandiamide, imidazoles, amines such as aromatic amines, phenols such as bisphenol A and brominated bisphenol A, phenol novolac resins and cresols Any curing agent such as novolaks such as novolak resins and acid anhydrides such as phthalic anhydride can be used. However, it is most preferable to use an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher from the viewpoint of significantly improving the adhesion between the fluororesin substrate and the metal foil. If the press molding temperature is around 180 ° C. and the boiling point of the curing agent is near the press molding temperature, the epoxy resin curing agent will boil due to the press molding, and bubbles are likely to be generated in the cured insulating resin layer. The most stable adhesion can be obtained when an amine-based epoxy resin curing agent is used to form an adhesive layer between the fluororesin substrate and the metal foil. That is, the “amine epoxy resin curing agent having a boiling point of 200 ° C. or more” is selected from the group of aromatic polyamines, polyamides, and amine adducts obtained by polymerizing or condensing these with epoxy resins or polyvalent carboxylic acids. The case where one kind or two kinds or more are used. More specifically, 4,4′-diaminodiphenylenesulfone, 3,3′-diaminodiphenylenesulfone, 4,4-diaminodiphenylel, 2,2-bis [4- It is preferable to use either (4-aminophenoxy) phenyl] propane or bis [4- (4-aminophenoxy) phenyl] sulfone. Moreover, since the addition amount with respect to the epoxy resin of the said amine epoxy resin hardening | curing agent is derived from each equivalent naturally, it thinks that it is not necessary to specify the compounding ratio strictly strictly. Therefore, in this invention, the addition amount of a hardening | curing agent is not specifically limited.

また、必要に応じて適宜量添加する硬化促進剤を用いることも好ましい。ここで言う硬化促進剤とは、3級アミン、イミダゾール、尿素系硬化促進剤等である。本件発明では、この硬化促進剤の配合割合は、特に限定を設けていない。なぜなら、硬化促進剤は、プレス加工時の加熱条件等を考慮して、製造者が任意に選択的に添加量を定めて良いものであるからである。   It is also preferable to use a curing accelerator that is added in an appropriate amount as required. The curing accelerator referred to here is a tertiary amine, imidazole, urea curing accelerator or the like. In the present invention, the mixing ratio of the curing accelerator is not particularly limited. This is because the amount of the hardening accelerator can be arbitrarily determined by the manufacturer in consideration of heating conditions during press working.

そして、本件発明に言う樹脂組成物にはゴム性樹脂を添加することも好ましい。ここで言うゴム性樹脂とは、天然ゴム及び合成ゴムを含む概念として記載しており、後者の合成ゴムにはスチレン−ブタジエンゴム、ブタジエンゴム、ブチルゴム、エチレン−プロピレンゴム等がある。更に、耐熱性を要求される場合には、ニトリルゴム、クロロプレンゴム、シリコンゴム、ウレタンゴム等の耐熱性合成ゴムを選択使用することも有用である。これらのゴム性樹脂に関しては、上記ポリマー成分と反応して共重合体を形成するように、両末端に種々の官能基を備えるものであることが望ましい。   And it is also preferable to add rubber-like resin to the resin composition said to this invention. The rubber resin referred to here is described as a concept including natural rubber and synthetic rubber, and the latter synthetic rubber includes styrene-butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber and the like. Furthermore, when heat resistance is required, it is also useful to selectively use heat-resistant synthetic rubbers such as nitrile rubber, chloroprene rubber, silicon rubber, urethane rubber. Regarding these rubber resins, it is desirable to have various functional groups at both ends so as to react with the polymer component to form a copolymer.

更に、上記高分子ポリマーの架橋剤を必要に応じて添加して用いることも好ましい。例えば、上記高分子ポリマーとして、ポリビニルアセタール樹脂を用いる場合には、ウレタン樹脂を架橋材として用いる等である。   Furthermore, it is also preferable to add the above-mentioned high-molecular polymer crosslinking agent as necessary. For example, when a polyvinyl acetal resin is used as the polymer, a urethane resin is used as a cross-linking material.

以上に述べてきた樹脂組成物の構成成分を全て含むとすれば、樹脂組成物を100重量部としたとき、エポキシ樹脂が50重量部〜80重量部、硬化剤が1重量部〜15重量部、硬化促進剤が0.01重量部〜1.0重量部、ポリマー成分が2重量部〜50重量部、架橋剤が1重量部〜5重量部、ゴム性樹脂が1重量部〜10重量部の範囲の組成を採用することが好ましい。この組成範囲に含まれる限り、フッ素樹脂基材と金属箔との良好な密着性を維持し、且つ、製品の密着性のバラツキが少なくなる。   If all the components of the resin composition described above are included, when the resin composition is 100 parts by weight, the epoxy resin is 50 parts by weight to 80 parts by weight, and the curing agent is 1 part by weight to 15 parts by weight. , 0.01 to 1.0 part by weight of the curing accelerator, 2 to 50 parts by weight of the polymer component, 1 to 5 parts by weight of the crosslinking agent, and 1 to 10 parts by weight of the rubber resin. It is preferable to adopt a composition in the range. As long as it is included in this composition range, good adhesion between the fluororesin substrate and the metal foil is maintained, and variation in product adhesion is reduced.

フッ素樹脂基材用接着剤の形態: 一般的に、上記フッ素樹脂基材接着用樹脂組成物は、そのままの状態で接着層の形成に用いることは困難である。そこで、上記フッ素樹脂基材接着用樹脂組成物に有機溶剤を添加して混合するしてフッ素樹脂基材用接着剤として用いる。かかる場合、樹脂固形分10wt%〜40wt%に調製する事が好ましい。樹脂固形分が10wt%未満の場合には、粘度が低すぎて、接着層を形成するための樹脂膜を形成しても塗布直後に流れて膜厚均一性を確保しにくい。これに対し、樹脂固形分が40wt%を越えると、粘度が高く、薄い樹脂膜の形成が困難となる。 Form of Adhesive for Fluororesin Substrate: Generally, it is difficult to use the resin composition for adhering a fluororesin substrate as it is to form an adhesive layer. Therefore, an organic solvent is added to and mixed with the resin composition for bonding a fluororesin base material and used as an adhesive for a fluororesin base material. In such a case, it is preferable to adjust the resin solid content to 10 wt% to 40 wt%. When the resin solid content is less than 10 wt%, the viscosity is too low, and even if a resin film for forming an adhesive layer is formed, it flows immediately after coating and it is difficult to ensure film thickness uniformity. On the other hand, when the resin solid content exceeds 40 wt%, the viscosity is high and it is difficult to form a thin resin film.

このときの有機溶剤として、メチルエチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンのいずれか1種の溶剤又はこれらの混合溶剤を用いることが好ましい。ここで言う溶剤は、上記樹脂組成物の溶解可能なものを選択している。しかし、溶剤としてメチルエチルケトン及び/又はシクロペンタノンを用いると、金属積層板の製造のプレス加工時の熱により効率よく揮発除去することが容易であり、且つ、揮発ガスの浄化処理も容易で、しかも、樹脂膜形成に適した樹脂溶液粘度の調節が容易である。そして、メチルエチルケトンとシクロペンタノンとの混合溶剤の場合、その混合割合にも特に限定はないが、シクロペンタノンに対しメチルエチルケトンを共存溶媒とすると、揮発除去の速度が速くなり好ましい。   As the organic solvent at this time, it is preferable to use any one of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, or a mixed solvent thereof. The solvent said here has selected the thing which can melt | dissolve the said resin composition. However, when methyl ethyl ketone and / or cyclopentanone is used as a solvent, it is easy to efficiently volatilize and remove by heat at the time of press working in the production of a metal laminate, and the purification treatment of volatile gas is easy. The resin solution viscosity suitable for resin film formation can be easily adjusted. In the case of a mixed solvent of methyl ethyl ketone and cyclopentanone, the mixing ratio is not particularly limited, but it is preferable to use methyl ethyl ketone as a co-solvent for cyclopentanone because the speed of devolatilization is increased.

しかし、上記メチルエチルケトンやシクロペンタノン等での溶解が困難なポリマー成分の場合には、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を溶媒として用いる。特に、これらの溶媒を複数種混合した溶媒を用いると、得られる樹脂溶液の品質安定性の長期確保が可能となる傾向にある。かかる溶媒を用いる場合も、樹脂溶液の樹脂固形分は、同様の理由で上記10wt%〜40wt%とする事が好ましい。   However, in the case of a polymer component that is difficult to dissolve in methyl ethyl ketone or cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, or the like is used as a solvent. In particular, when a solvent obtained by mixing a plurality of these solvents is used, the quality stability of the obtained resin solution tends to be ensured for a long period of time. Even when such a solvent is used, the resin solid content of the resin solution is preferably 10 wt% to 40 wt% for the same reason.

接着層付金属箔の形態: 本件発明に係る接着層付金属箔は、図1に示すように、金属箔2の表面に基材に対する接着層3を備えた接着層付金属箔4であって、当該接着層を上記フッ素樹脂基板用樹脂接着剤を用いて形成したものである。この形成方法に関しては、後述する。 Form of Metal Foil with Adhesive Layer: As shown in FIG. 1, the metal foil with an adhesive layer according to the present invention is a metal foil 4 with an adhesive layer provided with an adhesive layer 3 for a substrate on the surface of the metal foil 2. The adhesive layer is formed by using the resin adhesive for a fluororesin substrate. This forming method will be described later.

そして、本件発明に係る接着層付金属箔において、前記接着層は、厚さ0.5μm〜3μmの半硬化樹脂層である。ここで、半硬化樹脂層でなければ、熱間プレス加工により再流動化しないため、フッ素樹脂基材と金属箔との張り合わせが出来ないことになる。このように薄樹脂層を形成することとしたのは、プレス加工時に以下に述べるレジンフローが殆ど起こらない状態を確実に作り出すためである。この接着層の厚さが0.5μm未満となると、厚さを均一に作り込むことも困難で、フッ素樹脂基材と金属箔との間で均一な厚さの樹脂層として残すことが困難で、ワークサイズの1枚の金属張積層板の面内において、引き剥がし強さのバラツキが大きくなる。これに対し、当該接着層の厚さが3μmを超えると、フッ素樹脂基材の持つ良好な電気特性を劣化させる。なお、この接着層の厚さは、1mあたりの完全平面に樹脂を塗布したと考えたときの換算厚さである。 In the metal foil with an adhesive layer according to the present invention, the adhesive layer is a semi-cured resin layer having a thickness of 0.5 μm to 3 μm. Here, if it is not a semi-cured resin layer, it will not be reflowed by hot pressing, so that the fluororesin substrate and the metal foil cannot be bonded together. The reason why the thin resin layer is formed in this way is to surely create a state in which the resin flow described below hardly occurs during press working. When the thickness of the adhesive layer is less than 0.5 μm, it is difficult to make the thickness uniform, and it is difficult to leave a resin layer having a uniform thickness between the fluororesin substrate and the metal foil. In the surface of a single metal-clad laminate having a workpiece size, the peeling strength varies greatly. On the other hand, when the thickness of the adhesive layer exceeds 3 μm, good electrical characteristics of the fluororesin substrate are deteriorated. In addition, the thickness of this adhesive layer is a converted thickness when it is considered that the resin is applied to a complete plane per 1 m 2 .

また、本件発明に係る接着層付金属箔において、前記接着層付金属箔の接着層は、MIL規格におけるMIL−P−13949Gに準拠して測定したときのレジンフローが5%以内という特性を備えることが好ましい。このレジンフローが5%以内でなければ、フッ素樹脂基材と金属箔との良好な密着性を得ることが出来ないのである。なお、下限に関して特に規定していないが、1%程度である。レジンフローに関しては、接着層の厚さ、接着層を形成する際に用いたフッ素樹脂基板用樹脂接着剤の樹脂固形分量等が特性を決める要因となるが、上記樹脂組成物の本来持つレジンフローが重要であることは当然である。通常、金属箔とフッ素樹脂基材との張り合わせを行う場合、その界面にエアーの噛み混み等を起こす場合もある。そこで、銅張積層板を製造する場合を例にとれば、このエアー抜きを兼ねて1mサイズの銅張積層板で端部から5mm〜15mm程度のレジンフローを意図的に起こさせる。ところが、本件発明で用いる接着層の場合には、このレジンフローが殆ど起こらないことが、フッ素樹脂基材と金属箔との良好な密着性を確保する上で重要な要因となる。 In the metal foil with an adhesive layer according to the present invention, the adhesive layer of the metal foil with an adhesive layer has a characteristic that the resin flow is within 5% when measured according to MIL-P-13949G in the MIL standard. It is preferable. If this resin flow is not within 5%, good adhesion between the fluororesin substrate and the metal foil cannot be obtained. In addition, although it does not prescribe | regulate especially regarding a minimum, it is about 1%. Regarding the resin flow, the thickness of the adhesive layer and the resin solid content of the resin adhesive for the fluororesin substrate used when forming the adhesive layer are factors that determine the characteristics. Of course it is important. Usually, when laminating a metal foil and a fluororesin base material, air may be jammed at the interface. Therefore, taking the case of producing a copper clad laminate as an example, a resin flow of about 5 mm to 15 mm from the end is intentionally caused by a 1 m 2 size copper clad laminate also serving as the air vent. However, in the case of the adhesive layer used in the present invention, the fact that this resin flow hardly occurs is an important factor in securing good adhesion between the fluororesin substrate and the metal foil.

本件明細書において、レジンフローはMIL規格のMIL−P−13949Gに準拠して測定したときの値で判断している。即ち、レジンフローの測定精度を確保するため、上記接着層を40μm厚さで電解銅箔の表面に意図的に形成し、10cm角試料を4枚製造する。そして、この4枚の10cm角試料を重ねた状態でプレス温度171℃、プレス圧14kgf/cm、プレス時間10分の条件で張り合わせ、そのときのレジンフロ−を数1に従って計算して求めた。なお、通常のプリプレグを用いたとき及び通常の樹脂付銅箔(40μm厚さ樹脂層)のレジンフローは、20%前後である。 In this specification, the resin flow is determined by a value measured according to MIL-standard MIL-P-13949G. That is, in order to ensure the measurement accuracy of the resin flow, the adhesive layer is intentionally formed on the surface of the electrolytic copper foil with a thickness of 40 μm, and four 10 cm square samples are manufactured. Then, the four 10 cm square samples were stacked and bonded together under the conditions of a press temperature of 171 ° C., a press pressure of 14 kgf / cm 2 , and a press time of 10 minutes, and the resin flow at that time was calculated according to Equation 1. In addition, when using a normal prepreg and the resin flow of a normal copper foil with resin (40 μm thick resin layer) is about 20%.

Figure 2007326923
Figure 2007326923

更に、本件発明に係る接着層付金属箔において、前記金属箔は、銅箔、ニッケル箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、銅合金箔、ニッケル合金箔、スズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合金箔、コバルト合金箔のいずれかを用いることが好ましい。即ち、電子材料用途に使用可能な全ての金属箔という概念で記載している。そして、前記金属箔の全ては、その製造方法を問わず、電解法で得られたものでも、圧延法で得られたものでも、物理蒸着法で得られたものでも構わない。また、その厚さに関しても特段の限定はない。   Furthermore, in the metal foil with an adhesive layer according to the present invention, the metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil, tin alloy. It is preferable to use any of foil, gold alloy foil, silver alloy foil, platinum alloy foil, iron alloy foil, and cobalt alloy foil. That is, it describes with the concept of all the metal foils which can be used for an electronic material use. And all of the said metal foil may be obtained by an electrolytic method, obtained by a rolling method, or obtained by a physical vapor deposition method regardless of the production method. Moreover, there is no special limitation regarding the thickness.

しかし、上記金属箔の表面に対し、防錆処理、シランカップリング剤処理等を施すことで、より密着性を向上させることも可能である。従って、本件発明で用いる金属箔とは、粗化処理を省略したものを対象にしている。しかし、仮に粗化処理を施した金属箔を使用することに、何ら問題はない。なお、粗化処理とは、金属箔の表面に微細な金属粒を付着形成したり、金属箔表面を化学的に処理して凹凸形状を形成したりするものであり、その手法に関しては問わない。特に、一般的に広く知られた粗化処理は、電解銅箔及び圧延銅箔に施す微細銅粒を付着形成させて行う粗化処理である。   However, it is possible to further improve the adhesion by subjecting the surface of the metal foil to rust prevention treatment, silane coupling agent treatment, and the like. Therefore, the metal foil used in the present invention is intended for the one in which the roughening treatment is omitted. However, there is no problem in using a metal foil that has been subjected to roughening treatment. The roughening treatment is a method in which fine metal particles are adhered and formed on the surface of the metal foil, or the surface of the metal foil is chemically treated to form an uneven shape. . In particular, the generally well-known roughening treatment is a roughening treatment performed by depositing and forming fine copper grains applied to the electrolytic copper foil and the rolled copper foil.

ここで言う防錆処理とは、フッ素樹脂基材の種類に応じて適宜選択して用いるものであり特段の限定はない。防錆処理としては、ベンゾトリアゾール、イミダゾール等を用いる有機防錆、若しくは亜鉛、クロメート、亜鉛合金、ニッケル合金等を用いる無機防錆のいずれを採用しても良い。有機防錆の場合は、有機防錆剤を浸漬塗布、シャワーリング塗布、電着する等の手法を採用できる。無機防錆の場合は、電解で防錆元素を銅箔の表面上に析出させる方法、その他いわゆる置換析出法等を用いることが可能である。なお、図面中では、防錆処理層は特に記載せず省略している。   The antirust treatment referred to here is appropriately selected and used according to the type of the fluororesin base material, and there is no particular limitation. As the rust prevention treatment, any of organic rust prevention using benzotriazole, imidazole or the like, or inorganic rust prevention using zinc, chromate, zinc alloy, nickel alloy or the like may be adopted. In the case of organic rust prevention, techniques such as dip coating, shower ring coating, and electrodeposition of an organic rust preventive agent can be employed. In the case of inorganic rust prevention, it is possible to use a method of depositing a rust-preventive element on the surface of the copper foil by electrolysis or other so-called substitution deposition method. In the drawing, the rust-proofing layer is omitted without being particularly described.

そして、シランカップリング剤処理は、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤のいずれか一種又は二種以上を用いて行うものが一般的である。シランカップリング剤処理は、シランカップリング剤として最も一般的なエポキシ官能性シランカップリング剤を始めオレフィン官能性シラン、アクリル官能性シラン等種々のものを用いるのが可能である。しかし、アミノ官能性シランカップリング剤又はメルカプト官能性シランカップリング剤を用いると、フッ素樹脂基材と金属箔との密着性をより高めることが可能で特に好ましい。プリント配線板の回路の引き剥がし強度は、従来から高いほどよいと言われた。ところが、近年は、エッチング技術の精度の向上によりエッチング時の回路剥離は無くなり、プリント配線板業界におけるプリント配線板の取り扱い方法が確立され、回路を誤って引っかけて起こる断線剥離の問題も解消されてきた。そのため、近年は少なくとも0.8kgf/cm以上の引き剥がし強度があれば、現実の使用が可能といわれ、1.0kgf/cm以上あれば何ら問題ないと言われる。   The silane coupling agent treatment is generally performed using one or more of an amino silane coupling agent, an epoxy silane coupling agent, and a mercapto silane coupling agent. In the silane coupling agent treatment, various types such as an olefin functional silane, an acrylic functional silane, the most common epoxy functional silane coupling agent as a silane coupling agent can be used. However, it is particularly preferable to use an amino-functional silane coupling agent or a mercapto-functional silane coupling agent because the adhesion between the fluororesin substrate and the metal foil can be further increased. It has been said that the higher the peel strength of a printed wiring board circuit, the better. However, in recent years, circuit peeling during etching has been eliminated by improving the precision of etching technology, and a method for handling printed wiring boards in the printed wiring board industry has been established, and the problem of disconnection peeling caused by accidentally hooking a circuit has been solved. It was. Therefore, in recent years, it is said that actual use is possible if the peel strength is at least 0.8 kgf / cm or more, and it is said that there is no problem if it is 1.0 kgf / cm or more.

これらシランカップリング剤を、より具体的に明示しておくことにする。プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、4−グリシジルブチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−3−(4−(3−アミノプロポキシ)プトキシ)プロピル−3−アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ−メルカプトプロピルトリメトキシシラン等を用いることが可能である。   These silane coupling agents will be described more specifically. Vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, mainly for coupling agents similar to those used for prepreg glass cloth for printed wiring boards 4-glycidylbutyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3 -Aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane, etc. can be used.

そして、シランカップリング剤処理の方法は、一般的に用いられる浸漬法、シャワーリング法、噴霧法等、特に方法は限定されない。工程設計に合わせて、最も均一に金属箔とシランカップリング剤を含んだ溶液とを接触させ吸着させることのできる方法を任意に採用すれば良い。シランカップリング剤は、溶媒としての水に0.5〜10g/l溶解させて、室温レベルの温度で用いるものである。シランカップリング剤濃度が0.5g/lを下回る場合は、シランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず、吸着も不均一なものとなる。また、10g/lを超える濃度であっても、特に吸着速度が速くなることもなく不経済となる。なお、図面中では、シランカップリング剤処理層は特に記載せず省略している。   The method for treating the silane coupling agent is not particularly limited, such as a commonly used dipping method, showering method, spraying method, and the like. In accordance with the process design, a method that allows the metal foil and the solution containing the silane coupling agent to be brought into contact and adsorbed most uniformly may be arbitrarily employed. The silane coupling agent is used at a temperature of room temperature by dissolving 0.5 to 10 g / l in water as a solvent. When the silane coupling agent concentration is less than 0.5 g / l, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profitability, and the adsorption is not uniform. Moreover, even if the concentration exceeds 10 g / l, the adsorption rate is not particularly increased, which is uneconomical. In the drawings, the silane coupling agent-treated layer is not particularly described and is omitted.

金属張積層板の形態: 本件発明に係る金属張積層板は、フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層板であって、前記接着層が上記樹脂組成物を含むことを特徴としたものである。また、前記接着層が前記フッ素樹脂基材用接着剤を用いて形成したことを特徴としたものである。本件発明に係る金属張積層板の断面構成を図2に示す。図2(a)には片面金属張積層板1aを、図2(b)には両面金属張積層板1bを、図2(c)には内層回路9を内部に備える4層金属張積層板1cを示している。従って、本件発明に係る金属張積層板とは、その層構成には関係なく、外層に金属箔2が張り合わせられた状態のものであって、その内層にフッ素樹脂基材層5を備え、金属箔2とフッ素樹脂基材層5との間に接着層3を備えた構成の積層体を言う。 Form of metal-clad laminate: The metal-clad laminate according to the present invention is a metal-clad laminate obtained by attaching a metal layer to the surface of a fluororesin substrate via an adhesive layer, wherein the adhesive layer is the resin described above. It is characterized by including a composition. Further, the adhesive layer is formed using the fluororesin substrate adhesive. FIG. 2 shows a cross-sectional configuration of the metal-clad laminate according to the present invention. 2 (a) shows a single-sided metal-clad laminate 1a, FIG. 2 (b) shows a double-sided metal-clad laminate 1b, and FIG. 2 (c) shows a 4-layer metal-clad laminate with an inner layer circuit 9 inside. 1c is shown. Therefore, the metal-clad laminate according to the present invention is a state in which the metal foil 2 is bonded to the outer layer regardless of the layer configuration, and the inner layer includes the fluororesin base layer 5 and is a metal A laminate having a configuration in which the adhesive layer 3 is provided between the foil 2 and the fluororesin substrate layer 5 is referred to.

ここで、図2(c)には内層回路9を内部に備える4層金属張積層板1cの製造方法に関して簡単に述べておく。例えば、図2(b)に示す両面金属張積層板1bの両面の金属層をエッチング加工して回路20を形成して両面プリント配線板21とする。そして、2枚の両面プリント配線板21、FR−4等のプリプレグ22等を用いて、図3に示すように積層し、熱間プレス加工することで4層金属張積層板1cが得られる。また、2枚の両面プリント配線板21と、両面に本件発明に係るフッ素樹脂材料接着剤を用いた接着層3を備えるフッ素樹脂基材5とを用いて、図4に示すように積層し、熱間プレス加工することで4層金属張積層板1cが得られる。   Here, FIG. 2C briefly describes a method for manufacturing the four-layer metal-clad laminate 1c having the inner layer circuit 9 therein. For example, the double-sided printed wiring board 21 is formed by etching the metal layers on both sides of the double-sided metal-clad laminate 1b shown in FIG. Then, using the two double-sided printed wiring boards 21 and the prepregs 22 such as FR-4, etc., the four-layer metal-clad laminate 1c is obtained by laminating as shown in FIG. Further, using two double-sided printed wiring boards 21 and a fluororesin substrate 5 provided with an adhesive layer 3 using a fluororesin material adhesive according to the present invention on both sides, as shown in FIG. A four-layer metal-clad laminate 1c is obtained by hot pressing.

そして、ここで言うフッ素樹脂基材とは、PTFE(ポリテトラフルオロエチレン(4フッ化))、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(4.6フッ化))、ETFE(テトラフルオロエチレン・エチレン共重合体)、PVDF(ポリビニリデンフルオライド(2フッ化))、PCTFE(ポリクロロトリフルオロエチレン(3フッ化))、その他特許文献3に開示されたようなポリアリルスルフォン、芳香族ポリスルフィドおよび芳香族ポリエーテルの中から選ばれるいずれか少なくとも1種の熱可塑性樹脂とフッ素樹脂とからなるフッ素系樹脂等を用いた基材であり、ガラスクロス等の骨格材を含んでも含まなくとも構わない。また、このフッ素樹脂基材の厚さに関しても、特段の限定はない。   The fluororesin base material referred to here is PTFE (polytetrafluoroethylene (tetrafluoroethylene)), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer). Polymer (4.6 fluoride)), ETFE (tetrafluoroethylene / ethylene copolymer), PVDF (polyvinylidene fluoride (difluoride)), PCTFE (polychlorotrifluoroethylene (trifluoride)), In addition, a group using a fluororesin composed of at least one thermoplastic resin and fluororesin selected from polyallyl sulfone, aromatic polysulfide and aromatic polyether as disclosed in Patent Document 3 It is a material, and even if it contains skeletal materials such as glass cloth It does not matter. Moreover, there is no special limitation also about the thickness of this fluororesin base material.

プリント配線板の形態: 本件発明に係るプリント配線板は、上記金属張積層板の金属箔をエッチング加工することにより得られるものである。このときのエッチングプロセスは、特に限定されないが、金属箔の表面にエッチングレジスト層を設け、エッチングパターンを露光、現像し、レジストパターンを形成し、金属箔の構成金属成分を溶解可能なエッチング液で回路エッチングを行うのが一般的である。 Form of printed wiring board: The printed wiring board according to the present invention is obtained by etching the metal foil of the metal-clad laminate. The etching process at this time is not particularly limited, but an etching resist layer is provided on the surface of the metal foil, the etching pattern is exposed and developed, a resist pattern is formed, and an etching solution that can dissolve the constituent metal components of the metal foil. It is common to perform circuit etching.

金属張積層板の製造方法の形態: 本件発明に係る金属張積層板の第1製造方法に関して説明する。以下、工程A−1〜工程C−1を順次説明する。 Form of manufacturing method of metal-clad laminate: A first method of manufacturing a metal-clad laminate according to the present invention will be described. Hereinafter, step A-1 to step C-1 will be sequentially described.

工程A−1: この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施す。ここで言う活性化処理とは、フッ素樹脂基材と接着層との密着性を向上させ、結果としてフッ素樹脂基材表面に対する金属箔の密着性を向上させるために行うものである。この活性化処理を具体的に言えば、粗化処理、プラズマ処理、又はこれらを組み合わせた複合処理の事である。このフッ素樹脂基材の粗化処理とは、湿式又は乾式のブラスト法、湿式エッチング法、ドライエッチング法等を使用できる。特に、化学的手法を用いて行う湿式エッチング粗化処理で、ナトリウムエッチングと称される手法が多く採用される。そして、この粗化処理によって形成される粗化面は、平均粗さ(Ra)が20nm〜100nmとする事が好ましい。この平均粗さ(Ra)が20nm未満の場合には、フッ素樹脂基材と接着層との密着性を向上させ得ない。一方、平均粗さ(Ra)が100nmを超えても、粗化によるフッ素樹脂基材と接着層との密着性向上効果は、それ以上に上昇しない。 Step A-1: In this step, an activation treatment is performed on the bonding surface of the metal foil of the fluororesin base material. The activation treatment referred to here is performed in order to improve the adhesion between the fluororesin substrate and the adhesive layer, and as a result, improve the adhesion of the metal foil to the surface of the fluororesin substrate. More specifically, this activation process is a roughening process, a plasma process, or a combined process combining them. For the roughening treatment of the fluororesin substrate, a wet or dry blast method, a wet etching method, a dry etching method, or the like can be used. In particular, a wet etching roughening process performed using a chemical technique often employs a technique called sodium etching. The roughened surface formed by this roughening treatment preferably has an average roughness (Ra) of 20 nm to 100 nm. When this average roughness (Ra) is less than 20 nm, the adhesion between the fluororesin substrate and the adhesive layer cannot be improved. On the other hand, even if the average roughness (Ra) exceeds 100 nm, the effect of improving the adhesion between the fluororesin substrate and the adhesive layer due to the roughening does not increase further.

そして、プラズマ処理とは、窒素ガス、アルゴンガス等の不活性ガスでプラズマ気流を生成し、そのプラズマ気流に、フッ素樹脂基材の表面を接触させる処理のことである。前記不活性ガスを、減圧し雰囲気に導入し、平板型の一対の電極を平行に配置して、その電極間に電圧を印加してプラズマ気流を発生させ、そのプラズマ気流中にフッ素樹脂基板を入れて一定時間処理する。または、高周波電極等の間にプラズマ気流を発生させ、そのプラズマ気流中にフッ素樹脂基板を入れて一定時間処理する。このときのプラズマ処理条件に特段の限定はないが、投入電力(W)と電極面積(cm)とから算出される電力密度(W/cm)が0.05W/cm〜1W/cmとすると30秒〜1分程度の処理時間を採用する。このプラズマ処理時間は、いたずらに長くしてもフッ素樹脂基材と金属箔との密着性を顕著に向上させることにはならないからである。 The plasma treatment is a treatment in which a plasma stream is generated with an inert gas such as nitrogen gas or argon gas, and the surface of the fluororesin substrate is brought into contact with the plasma stream. The inert gas is decompressed and introduced into the atmosphere, a pair of flat plate electrodes are arranged in parallel, a voltage is applied between the electrodes to generate a plasma stream, and a fluororesin substrate is placed in the plasma stream. Put in and process for a certain time. Alternatively, a plasma stream is generated between the high-frequency electrodes and the like, and a fluororesin substrate is placed in the plasma stream and processed for a certain period of time. Is no particular limitation to the plasma treatment conditions at this time, but the power density is calculated from the input power (W) and the electrode area as (cm 2) (W / cm 2) is 0.05W / cm 2 ~1W / cm Assuming 2 , a processing time of about 30 seconds to 1 minute is adopted. This is because even if this plasma treatment time is unnecessarily long, the adhesion between the fluororesin substrate and the metal foil is not significantly improved.

また、上記粗化処理とプラズマ処理とを組み合わせた複合処理を行う場合には、いずれの処理を最初に行っても構わない。図5(a)に、活性化処理したフッ素樹脂基材5を概念的に示した。   Moreover, when performing the combined process which combined the said roughening process and the plasma process, any process may be performed first. FIG. 5A conceptually shows the activated fluororesin substrate 5.

工程B−1: この工程では、フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を金属箔の表面に塗布して乾燥することで、金属箔の表面に0.5μm〜3μm厚さの半硬化樹脂層を形成することで接着層付金属箔を製造する。フッ素樹脂基材用接着剤の調製に関しては上述のとおりである。 Step B-1: In this step, an adhesive for a fluororesin substrate is prepared, and this adhesive for a fluororesin substrate is applied to the surface of the metal foil and dried, so that the surface of the metal foil has a thickness of 0.5 μm. A metal foil with an adhesive layer is produced by forming a semi-cured resin layer having a thickness of ˜3 μm. The preparation of the fluororesin substrate adhesive is as described above.

そして、このフッ素樹脂基材用接着剤を金属箔2の表面に塗布して乾燥することで、金属箔2の表面に0.5μm〜3μm厚さの半硬化樹脂層(図面中は、単に「接着層3」として示す。)を形成することで、図5(b)に示す接着層付金属箔4を製造する。   And by apply | coating this adhesive for fluororesin base materials to the surface of the metal foil 2, and drying, the semi-hardened resin layer (in the drawing, " By forming the adhesive layer 3 ", the metal foil 4 with an adhesive layer shown in FIG. 5B is manufactured.

工程C−1: この工程では、図5(c)に示すように、工程A−1でフッ素樹脂基材の活性化処理を施した張り合わせ面に対し、工程B−1で得られた接着層付金属箔4の接着層3を当接させて積層し、熱間プレス成形することで図5(d)に示す金属張積層板1aを得る。このときの熱間プレス加工条件に関しては、特段の限定はない。しかし、本件発明に係る製造方法の場合、従来のフッ素樹脂基材を用いたプレス加工には260℃〜400℃程度のプレス温度が採用されてきたが、200℃前後(190℃〜220℃)の低温でのプレス加工が可能である。従って、プレス加工に要する熱エネルギーが低く、製造コストを安価にすることが可能となる利点がある。以下、同様である。 Step C-1: In this step, as shown in FIG. 5 (c), the adhesive layer obtained in Step B-1 is applied to the bonded surface subjected to the activation treatment of the fluororesin substrate in Step A-1. The metal-clad laminate 1a shown in FIG. 5 (d) is obtained by laminating the adhesive layer 3 of the attached metal foil 4 in contact with each other and performing hot press molding. There is no particular limitation on the hot pressing conditions at this time. However, in the case of the manufacturing method according to the present invention, a press temperature of about 260 ° C. to 400 ° C. has been adopted for press processing using a conventional fluororesin substrate, but around 200 ° C. (190 ° C. to 220 ° C.). Can be pressed at low temperatures. Therefore, there is an advantage that the heat energy required for the press working is low and the manufacturing cost can be reduced. The same applies hereinafter.

また、本件発明に係る金属張積層板の第2製造方法は、以下の工程A−2〜工程C−2を経ることを特徴とするものである。   Moreover, the 2nd manufacturing method of the metal clad laminated board which concerns on this invention passes through the following process A-2-the process C-2, It is characterized by the above-mentioned.

工程A−2: この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施すのであり、上記第1製造方法の場合と同様である。従って、説明を省略する。図6(a)に、活性化処理したフッ素樹脂基材5を概念的に示した。 Step A-2: In this step, the activation surface is applied to the bonding surface of the metal foil of the fluororesin substrate, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted. FIG. 6A conceptually shows the activated fluororesin substrate 5.

工程B−2: この工程は、上述の方法でフッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を離型性プラスチックフィルム7の表面に塗布して乾燥することで、図6(b)に示すように、当該離型性プラスチックフィルムと厚さ0.5μm〜3μmの半硬化樹脂層(図面中は、単に「接着層3」として示す。)が積層状態にある離型性プラスチックフィルム付接着層8を製造する。 Step B-2: In this step, the fluororesin substrate adhesive is prepared by the above-described method, and this fluororesin substrate adhesive is applied to the surface of the releasable plastic film 7 and dried. As shown in FIG. 6 (b), the release plastic film and a semi-cured resin layer having a thickness of 0.5 μm to 3 μm (in the drawing, simply indicated as “adhesive layer 3”) are in a laminated state. The adhesive layer with moldable plastic film 8 is manufactured.

ここで、離型性プラスチックフィルムとは、剥離性を備えるフィルムを選択的に用いる意味で使用しており、その材質及び厚さ等に関しての特段の限定はない。具体的には、PETフィルム、熱可塑性フッ素樹脂フィルム、ポリイミド樹脂フィルム等を用いることが好ましい。そして、このときの離型性プラスチックフィルムへのフッ素樹脂基材用接着剤の塗布方法に関しては、特段の限定はなく、エッジコータ、コンマコータ、グラビアコータ等を使用できる。   Here, the releasable plastic film is used in the sense of selectively using a film having releasability, and there is no particular limitation on the material, thickness, and the like. Specifically, it is preferable to use a PET film, a thermoplastic fluororesin film, a polyimide resin film, or the like. The method for applying the adhesive for the fluororesin substrate to the releasable plastic film at this time is not particularly limited, and an edge coater, comma coater, gravure coater, or the like can be used.

工程C−2: この工程では、フッ素樹脂基材5の活性化処理を施した張り合わせ面に対し、図6(c)に示すように離型性プラスチックフィルム付接着層8の半硬化樹脂層(図面中は、単に「接着層3」として示す。)を当接させ重ね合わせて仮接着し、離型性プラスチックフィルム7を剥離除去する。 Step C-2: In this step, as shown in FIG. 6C, the semi-cured resin layer of the adhesive layer 8 with the releasable plastic film (on the bonded surface subjected to the activation treatment of the fluororesin substrate 5 ( In the drawing, it is simply shown as “adhesive layer 3”), and they are brought into contact with each other to be temporarily bonded, and the releasable plastic film 7 is peeled and removed.

工程D−2: この工程では、工程C−2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に、図6(d)に示すように金属箔2を積層して熱間プレス成形することで、図6(e)に示す金属張積層板1aとする。 Step D-2: In this step, hot pressing is performed by laminating the metal foil 2 on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-2 as shown in FIG. By doing so, the metal-clad laminate 1a shown in FIG.

そして、本件発明に係る金属張積層板の第3製造方法は、以下の工程A−3〜工程C−3を経ることを特徴とする。   And the 3rd manufacturing method of the metal-clad laminated board which concerns on this invention passes through the following process A-3-process C-3, It is characterized by the above-mentioned.

工程A−3: この工程では、フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施すのであり、上記第1製造方法の場合と同様である。従って、説明を省略する。図7(a)に、活性化処理したフッ素樹脂基材5を概念的に示した。 Step A-3: In this step, activation treatment is performed on the bonding surface of the metal foil of the fluororesin base material, which is the same as in the case of the first manufacturing method. Therefore, the description is omitted. FIG. 7A conceptually shows the activated fluororesin base material 5.

工程B−3: この工程では、フッ素樹脂基材用接着剤を調製する。従って、この調整に関しての説明は上述したとおりであるので、ここでの重複した説明は省略する。 Step B-3: In this step, an adhesive for a fluororesin substrate is prepared. Therefore, since the description regarding this adjustment is as above-mentioned, the overlapping description here is abbreviate | omitted.

工程C−3: この工程では、フッ素樹脂基材5の活性化処理した表面に、工程Bで調製したフッ素樹脂基材用接着剤を塗布して乾燥させることで、図7(b)に示すように、0.5μm〜3μm厚さの半硬化樹脂層(図面中は、単に「接着層3」として示す。)を形成する。このときのフッ素樹脂基材用接着剤の塗布方法に関しては、特段の限定はなく、エッジコータ、コンマコータ、グラビアコータ等を使用できる。 Step C-3: In this step, the surface of the fluororesin substrate 5 subjected to the activation treatment is coated with the adhesive for fluororesin substrate prepared in Step B and dried, as shown in FIG. 7B. In this manner, a semi-cured resin layer (indicated as simply “adhesive layer 3” in the drawing) having a thickness of 0.5 μm to 3 μm is formed. The method for applying the adhesive for the fluororesin substrate at this time is not particularly limited, and an edge coater, a comma coater, a gravure coater, or the like can be used.

工程D−3: この工程では、工程C−3でフッ素樹脂基材5の表面に設けた半硬化樹脂層(図面中は、単に「接着層3」として示す。)の表面に金属箔2を積層して熱間プレス成形することで図7(c)に示す金属張積層板1aとする。 Step D-3: In this step, the metal foil 2 is applied to the surface of the semi-cured resin layer (shown as “adhesive layer 3” in the drawing) provided on the surface of the fluororesin substrate 5 in Step C-3. By laminating and hot press forming, a metal-clad laminate 1a shown in FIG.

以上に述べてきた金属張積層板の製造方法の説明では、片面金属張積層板のみを例示して説明してきたが、当業者であれば同じ技術的思想の基、容易に両面銅張積層板、多層銅張積層板を製造することが可能である。   In the above description of the method for manufacturing a metal-clad laminate, only a single-sided metal-clad laminate has been described as an example. However, those skilled in the art can easily perform a double-sided copper-clad laminate on the basis of the same technical idea. It is possible to produce a multilayer copper-clad laminate.

本実施例においては、第1製造方法を用いて、銅張積層板を製造し、銅箔の引き剥がし強さの測定を行った。以下、工程毎に説明する。   In this example, a copper clad laminate was produced using the first production method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.

工程A−1: この工程では、0.6mm厚さのPTFEフッ素樹脂基材(淀川ヒューテック株式会社製)の金属箔の張り合わせ面に活性化処理を施した。この活性化処理は、金属ナトリウム処理、プラズマ処理、金属ナトリウム処理とプラズマ処理とを順次行った複合処理の3種類を行い。3種類のフッ素樹脂基材、試料1、試料2、試料3を製造した。 Step A-1: In this step, an activation treatment was performed on the bonding surface of the metal foil of the PTFE fluororesin base material (manufactured by Yodogawa Hutec Co., Ltd.) having a thickness of 0.6 mm. This activation treatment includes three types of metal treatment, plasma treatment, and composite treatment in which metal sodium treatment and plasma treatment are sequentially performed. Three types of fluororesin base materials, Sample 1, Sample 2, and Sample 3 were manufactured.

このときの金属ナトリウム処理は、金属ナトリウムやナトリウム錯体の作用によりフッ素樹脂基材の表面からフッ素原子を引き抜き、その表面に水酸基やカルボニル基、カルボキシル基を生成させることでフッ素樹脂基材表面の活性化を図るものであり、ここでは株式会社潤工社製のテトラエッチ処理液を用いて行った。   Metal sodium treatment at this time is the activity of the surface of the fluororesin substrate by drawing out fluorine atoms from the surface of the fluororesin substrate by the action of metal sodium or sodium complex, and generating hydroxyl, carbonyl or carboxyl groups on the surface. Here, a tetra-etch treatment solution manufactured by Junkosha Co., Ltd. was used.

そして、プラズマ処理は、真空チャンバー内に、一対の板状電極を平行に離間配置し、真空度が1×10−3Paオーダーまで排気して、真空チャンバー内に窒素ガスをスローリークし、真空度が0.2Paになるように調整し、電力密度0.12W/cmで低温プラズマ気流を発生させた。そして、この低温プラズマ気流中に、フッ素樹脂基材を1分間入れることでプラズマ処理を行った。 In the plasma treatment, a pair of plate-like electrodes are disposed in parallel in the vacuum chamber, the vacuum degree is evacuated to the order of 1 × 10 −3 Pa, nitrogen gas is slowly leaked into the vacuum chamber, and the vacuum treatment is performed. The temperature was adjusted to 0.2 Pa, and a low-temperature plasma stream was generated at a power density of 0.12 W / cm 2 . And the plasma processing was performed by putting a fluororesin base material into this low-temperature plasma stream for 1 minute.

また、金属ナトリウム処理とプラズマ処理とを順次行った複合処理は、上記条件の金属ナトリウム処理とプラズマ処理とを順次行った。   Further, in the combined treatment in which the metal sodium treatment and the plasma treatment were sequentially performed, the metal sodium treatment and the plasma treatment under the above conditions were sequentially performed.

以上の活性化処理を行って、図5(a)に模式的に示す活性化処理したフッ素樹脂基材5を得た。   The activation treatment described above was performed to obtain an activated fluorine resin base material 5 schematically shown in FIG.

工程B−1: ここでは、エポキシ樹脂69重量部、硬化剤11重量部、硬化促進剤0.25重量部、ポリマー成分15重量部、架橋剤3重量部、ゴム性樹脂3重量部のフッ素樹脂基材接着用樹脂組成物を調整した。具体的には、以下の表1に示している。 Step B-1: Here, fluorine resin of 69 parts by weight of epoxy resin, 11 parts by weight of curing agent, 0.25 part by weight of curing accelerator, 15 parts by weight of polymer component, 3 parts by weight of crosslinking agent, and 3 parts by weight of rubber resin A resin composition for substrate adhesion was prepared. Specifically, it is shown in Table 1 below.

Figure 2007326923
Figure 2007326923

そして、表1に示す樹脂組成物を、メチルエチルケトンとジメチルアセトアミドとを用いて樹脂固形分を30重量%に調整ですることでフッ素樹脂基材用接着剤とした。そして、このフッ素樹脂基材用接着剤を、グラビアコーターを用いて、無粗化の電解銅箔(厚さ:18μm、防錆処理層:亜鉛−ニッケル合金層、シランカップリング剤処理:γ−アミノプロピルトリエトキシシラン)の張り合わせ面に塗布した。そして、5分間の風乾を行い、その後140℃の加熱雰囲気中で3分間の乾燥処理を行い、半硬化状態の1.5μm厚さの半硬化樹脂層(接着層)を形成し、図5(b)に示す接着層付金属箔4を製造した。   And the resin composition shown in Table 1 was made into the adhesive for fluororesin base materials by adjusting resin solid content to 30 weight% using methyl ethyl ketone and dimethylacetamide. And this adhesive agent for fluororesin base materials is a roughened electrolytic copper foil (thickness: 18 μm, rust prevention treatment layer: zinc-nickel alloy layer, silane coupling agent treatment: γ-) using a gravure coater. Aminopropyltriethoxysilane) was applied to the bonding surface. Then, it is air-dried for 5 minutes, and then subjected to a drying process for 3 minutes in a heated atmosphere at 140 ° C. to form a semi-cured 1.5 μm-thick semi-cured resin layer (adhesive layer). The metal foil 4 with an adhesive layer shown in b) was produced.

このときに得られた半硬化樹脂層(接着層)のレジンフローの測定は、上記フッ素樹脂基材用接着剤で40μm厚さの半硬化樹脂層を18μm厚さの銅箔の片面に設けたものを製造し、これをレジンフロー測定用試料とした。そして、このレジンフロー測定用試料から10cm角試料を4枚採取し、上述したMIL−P−13949Gに準拠してレジンフローの測定を行った。その結果、レジンフローは1.5%であった。   The resin flow of the semi-cured resin layer (adhesive layer) obtained at this time was measured by providing a 40 μm-thick semi-cured resin layer on one side of an 18 μm-thick copper foil with the above-mentioned adhesive for fluororesin substrate. A product was manufactured and used as a resin flow measurement sample. And four 10 cm square samples were extract | collected from this resin flow measurement sample, and the resin flow was measured based on MIL-P-13949G mentioned above. As a result, the resin flow was 1.5%.

工程C−1: この工程では、図5(c)に示すように、工程A−1で得られた3つの試料(試料1、試料2、試料3)のフッ素樹脂基材の活性化処理を施した張り合わせ面に対し、工程B−1で得られた接着層付金属箔4の接着層3を当接させて積層し、200℃×60分、32kgf/cmの圧力で熱間プレス成形することで、図5(d)に示す3種(CL1−1、CL1−2、CL1−3)の金属張積層板1aを得た。 Step C-1: In this step, as shown in FIG. 5C, the activation treatment of the fluororesin base material of the three samples (sample 1, sample 2, sample 3) obtained in step A-1 is performed. The adhesive layer 3 of the metal foil 4 with an adhesive layer obtained in Step B-1 is laminated on the laminated surface thus applied, and hot press-molded at 200 ° C. for 60 minutes at a pressure of 32 kgf / cm 2. As a result, three types (CL1-1, CL1-2, CL1-3) of the metal-clad laminate 1a shown in FIG. 5D were obtained.

引き剥がし強さ測定用試料の製造: 上記金属張積層板1a(CL1−1、CL1−2、CL1−3)の銅箔層に、ドライフィルムを用いてエッチングレジスト層形成し、このエッチングレジスト層に引き剥がし強さ測定用の直線回路を形成するためのエッチングパターンを露光、現像し、レジストパターンを形成し、金属箔の構成金属成分を銅エッチング液で回路エッチングを行い、レジスト剥離することにより、引き剥がし強さ測定用回路の形成を行った。なお、0.2mm幅の直線回路を常態及び耐塩酸性測定用として用い、0.8mm幅の直線回路を耐湿性測定用として用いる。 Manufacture of peel strength measurement sample: An etching resist layer is formed on a copper foil layer of the metal-clad laminate 1a (CL1-1, CL1-2, CL1-3) using a dry film, and this etching resist layer By exposing and developing the etching pattern for forming a linear circuit for measuring the peel strength, forming a resist pattern, etching the circuit with the copper etching solution with the metal component of the metal foil, and peeling the resist Then, a circuit for measuring the peel strength was formed. A 0.2 mm wide linear circuit is used for measuring normal and hydrochloric acid resistance, and a 0.8 mm wide linear circuit is used for measuring moisture resistance.

そして、フッ素樹脂基材と銅箔回路との引き剥がし強さ測定を行った。この結果に関しては表2に示す。本件明細書に言う引き剥がし強さとは、基材から銅箔回路を90°方向(基板に対して垂直方向)に引き剥がしたときの強度のことである。その中で、常態の引き剥がし強さとは、上述のエッチングして回路を製造した直後、何ら処理を行うことなく測定した引き剥がし強さである。そして、加熱後の引き剥がし強さとは、260℃の半田バスに20秒間フローティングさせた後に、室温まで冷まして、測定した引き剥がし強さである。   And the peeling strength measurement of a fluororesin base material and a copper foil circuit was performed. The results are shown in Table 2. The peel strength referred to in this specification is the strength when the copper foil circuit is peeled from the base material in the 90 ° direction (perpendicular to the substrate). Among them, the normal peel strength is the peel strength measured without performing any treatment immediately after the circuit is manufactured by etching as described above. The peeling strength after heating is the peeling strength measured after floating in a solder bath at 260 ° C. for 20 seconds and then cooled to room temperature.

そして、耐塩酸性劣化率は、試験用回路を作成し、直ぐに測定した常態引き剥がし強さから、各表中に記載した塩酸処理後(塩酸:水=1:1に室温で60分間浸漬後。)にどの程度の引き剥がし強さの劣化が生じているかを示すものであり、[耐塩酸性劣化率(%)]= ([常態引き剥がし強さ]−[塩酸処理後の引き剥がし強さ])/[常態引き剥がし強さ]×100の計算式で算出したものである。   The hydrochloric acid resistance deterioration rate was determined by preparing a test circuit and measuring the normal peel strength immediately after the hydrochloric acid treatment described in each table (hydrochloric acid: water = 1: 1 after immersion for 60 minutes at room temperature). ) Shows how much the peel strength is deteriorated, [Hydrochloric acid resistance deterioration rate (%)] = ([Normal peel strength] − [Peel strength after hydrochloric acid treatment] ) / [Normal peel strength] × 100.

また、耐湿性劣化率は、試験用回路を作成し、直ぐに測定した常態引き剥がし強さから、各表中に記載した吸湿処理後(沸騰したイオン交換水中で2時間保持後)にどの程度の引き剥がし強さの劣化が生じているかを示すものであり、[耐湿性劣化率(%)]= ([常態引き剥がし強さ]−[吸湿処理後の引き剥がし強さ])/[常態引き剥がし強さ]×100の計算式で算出したものである。従って、これらの劣化率が小さな値であるほど、フッ素樹脂基材と銅箔回路との優れた密着性を有することになる。   In addition, the moisture resistance deterioration rate is determined from the normal peel strength measured immediately after creating a test circuit, after the moisture absorption treatment described in each table (after holding in boiling ion exchange water for 2 hours). This indicates whether or not the peel strength has deteriorated. [Deterioration rate of moisture resistance (%)] = ([Normal peel strength]-[Peel strength after moisture absorption]) / [Normal pull Peeling strength] × 100. Therefore, the smaller the deterioration rate, the better the adhesion between the fluororesin substrate and the copper foil circuit.

Figure 2007326923
Figure 2007326923

本実施例においては、第2製造方法を用いて、銅張積層板を製造し、銅箔の引き剥がし強さの測定を行った。以下、工程毎に説明する。   In this example, a copper clad laminate was produced using the second production method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.

工程A−2: この工程は、実施例1と同様であるため省略する。従って、ここでも3種類のフッ素樹脂基材、試料1、試料2、試料3を製造した。図6(a)に、活性化処理したフッ素樹脂基材5を概念的に示した。 Step A-2: Since this step is the same as that of the first embodiment, a description thereof will be omitted. Therefore, three types of fluororesin base materials, Sample 1, Sample 2, and Sample 3 were also produced here. FIG. 6A conceptually shows the activated fluororesin substrate 5.

工程B−2: この工程は、実施例1で調整したと同様のフッ素樹脂基材用接着剤を用いて、このフッ素樹脂基材用接着剤を離型性プラスチックフィルム7としてPETフィルムを用いて、その表面にグラビアコータを用いて塗布し、5分間の風乾を行い、その後140℃の加熱雰囲気中で3分間の乾燥処理することで、図6(b)に示すように、当該離型性プラスチックフィルムと1.5μmの半硬化樹脂層(図面中は、単に「接着層3」として示す。)が積層状態にある離型性プラスチックフィルム付接着層8を製造した。 Step B-2: This step uses the same adhesive for a fluororesin substrate as prepared in Example 1, and uses this adhesive for a fluororesin substrate as a releasable plastic film 7 using a PET film. Then, the surface is coated with a gravure coater, air-dried for 5 minutes, and then dried in a heated atmosphere at 140 ° C. for 3 minutes, as shown in FIG. An adhesive layer 8 with a releasable plastic film in which a plastic film and a 1.5 μm semi-cured resin layer (indicated as simply “adhesive layer 3” in the drawing) are in a laminated state was produced.

工程C−2: この工程では、フッ素樹脂基材5の活性化処理を施した張り合わせ面に対し、図6(c)に示すように離型性プラスチックフィルム付接着層8の半硬化樹脂層(図面中は、単に「接着層3」として示す。)を当接させ重ね合わせ、緩やかな加圧を行うことで仮接着し、離型性プラスチックフィルム7を剥離除去した。 Step C-2: In this step, as shown in FIG. 6C, the semi-cured resin layer of the adhesive layer 8 with the releasable plastic film (on the bonded surface subjected to the activation treatment of the fluororesin substrate 5 ( In the drawing, it is simply shown as “adhesive layer 3”), and they are brought into contact with each other and are temporarily bonded by gentle pressure, and the releasable plastic film 7 is peeled and removed.

工程D−2: この工程では、工程C−2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に、実施例1で用いたと同様の無粗化の銅箔(金属箔)2を、図6(d)に示すように積層して、200℃×60分、32kgf/cmの圧力で熱間プレス成形することで、図6(e)に示す層構成の3種(CL2−1、CL2−2、CL2−3)の金属張積層板1aとした。 Step D-2: In this step, the same non-roughened copper foil (metal foil) 2 used in Example 1 is applied to the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-2. 6 (d) are laminated, and are subjected to hot press molding at a pressure of 32 kgf / cm 2 at 200 ° C. for 60 minutes, so that three kinds of layers (CL2− 1, CL2-2, CL2-3) metal-clad laminate 1a.

以下、実施例1と同様にして引き剥がし強さ測定用試料を製造し、フッ素樹脂基材と銅箔回路との引き剥がし強さ測定を行った。この結果に関しては表3に示す。   Hereinafter, the sample for peeling strength measurement was manufactured like Example 1, and the peeling strength measurement of a fluororesin base material and a copper foil circuit was performed. The results are shown in Table 3.

Figure 2007326923
Figure 2007326923

本実施例においては、第3製造方法を用いて、銅張積層板を製造し、銅箔の引き剥がし強さの測定を行った。以下、工程毎に説明する。   In this example, a copper clad laminate was produced using the third production method, and the peel strength of the copper foil was measured. Hereinafter, it demonstrates for every process.

工程A−3: この工程は、実施例1と同様であるため省略する。従って、ここでも3種類のフッ素樹脂基材、試料1、試料2、試料3を製造した。図7(a)に、活性化処理したフッ素樹脂基材5を概念的に示した。 Process A-3: Since this process is the same as that of Example 1, it abbreviate | omits. Therefore, three types of fluororesin base materials, Sample 1, Sample 2, and Sample 3 were also produced here. FIG. 7A conceptually shows the activated fluororesin base material 5.

工程B−3: この工程では、実施例1で調整したと同様のフッ素樹脂基材用接着剤を調整した。 Step B-3: In this step, the same adhesive for a fluororesin substrate as that prepared in Example 1 was prepared.

工程C−3: この工程では、フッ素樹脂基材5の活性化処理した表面に、工程B−3で調製したフッ素樹脂基材用接着剤を塗布し、5分間の風乾を行い、その後140℃の加熱雰囲気中で3分間の乾燥処理することで、図7(b)に示すように、1.5μm厚さの半硬化樹脂層(図面中は、単に「接着層3」として示す。)を形成した。このときのフッ素樹脂基材用接着剤の塗布は、エッジコータを用いて行った。 Step C-3: In this step, the fluororesin substrate adhesive prepared in Step B-3 is applied to the activated surface of the fluororesin substrate 5 and air-dried for 5 minutes, and then 140 ° C. By drying in a heated atmosphere for 3 minutes, a semi-cured resin layer having a thickness of 1.5 μm (shown as “adhesive layer 3” in the drawing) as shown in FIG. Formed. Application of the adhesive for a fluororesin substrate at this time was performed using an edge coater.

工程D−3: ここでは、工程C−3でフッ素樹脂基材5の表面に設けた半硬化樹脂層(図面中は、単に「接着層3」として示す。)の表面に、18μm厚さの実施例1で用いたと同じ銅箔(金属箔)2を積層して、200℃×60分、32kgf/cmの圧力で熱間プレス成形することで、図7(c)に示す層構成の3種(CL3−1、CL3−2、CL3−3)の金属張積層板1aとした。 Step D-3: Here, on the surface of the semi-cured resin layer (in the drawing, simply indicated as “adhesive layer 3”) provided on the surface of the fluororesin substrate 5 in Step C-3, a thickness of 18 μm is provided. By laminating the same copper foil (metal foil) 2 as used in Example 1 and hot pressing at a pressure of 32 kgf / cm 2 at 200 ° C. for 60 minutes, the layer structure shown in FIG. Three types (CL3-1, CL3-2, CL3-3) of the metal-clad laminate 1a were used.

以下、実施例1と同様にして引き剥がし強さ測定用試料を製造し、フッ素樹脂基材と銅箔回路との引き剥がし強さ測定を行った。この結果に関しては表4に示す。   Hereinafter, the sample for peeling strength measurement was manufactured like Example 1, and the peeling strength measurement of a fluororesin base material and a copper foil circuit was performed. This result is shown in Table 4.

Figure 2007326923
Figure 2007326923

以上に述べてきた実施例を見るに、全ての実施態様において、無粗化の金属箔を用いているが常態引き剥がし強さ及び加熱後引き剥がし強さの全てが、1.0kgf/cmを超えている。これは、従来のフッ素樹脂基材と金属箔との引き剥がし強さが、0.8kgf/cm前後であることを考えれば、飛躍的に高くなっていると言える。   As seen from the examples described above, in all embodiments, a non-roughened metal foil is used, but the normal peel strength and the peel strength after heating are all 1.0 kgf / cm. Over. This can be said to be drastically increased considering that the peel strength between the conventional fluororesin substrate and the metal foil is around 0.8 kgf / cm.

そして、全ての実施態様において、耐塩酸性劣化率は5%以内であり、耐湿性劣化率は10%以内に収まっている。これは、従来のフッ素樹脂プリント配線板の場合、耐塩酸性劣化率が10%前後、耐湿性劣化率は15%以上であることを考えれば、無粗化の金属箔を用いた場合でも飛躍的にフッ素樹脂基材と金属箔との密着性が向上していると言える。   In all the embodiments, the hydrochloric acid resistance deterioration rate is within 5%, and the moisture resistance deterioration rate is within 10%. In the case of conventional fluororesin printed wiring boards, considering that the hydrochloric acid resistance deterioration rate is around 10% and the moisture resistance deterioration rate is 15% or more, even when using a non-roughened metal foil, It can be said that the adhesion between the fluororesin substrate and the metal foil is improved.

以上述べてきた本件発明に係る内容をもってすると、無粗化の金属箔とフッ素樹脂基材とが非常に高い密着性示し、ヒートショックを受けたときの回路のデラミネーション現象等を効果的に防止できフッ素樹脂銅張積層板及びフッ素樹脂プリント配線板の提供が可能となる。しかも、無粗化の金属箔を使用できるため、エッチング法で回路形成を行う場合にも、ファインピッチパターンの形成が容易となる。従って、低誘電損失且つ低誘電率であるという誘電特性、クロストーク特性等に関する良好な高周波特性、その他耐熱性、耐久性を備え、回路と基材との密着性に優れ、且つ、ファインピッチパターンを備える高品質のフッ素樹脂プリント配線板を市場に安価に供給できるようになる。また、本件発明に係る金属張積層板の製造方法は、新たな装置を必要とするものでもなく、従来の設備の使用が可能であり、低温でのプレス加工が可能であるため製造コストが安価である。   With the contents according to the present invention as described above, the non-roughened metal foil and the fluororesin base material exhibit extremely high adhesion, and effectively prevent the delamination phenomenon of the circuit when subjected to a heat shock. It is possible to provide a fluororesin copper-clad laminate and a fluororesin printed wiring board. In addition, since a non-roughened metal foil can be used, the fine pitch pattern can be easily formed even when the circuit is formed by an etching method. Therefore, it has good dielectric properties such as low dielectric loss and low dielectric constant, good high-frequency characteristics related to crosstalk characteristics, etc., other heat resistance and durability, excellent adhesion between circuit and substrate, and fine pitch pattern A high-quality fluororesin printed wiring board equipped with can be supplied to the market at a low cost. In addition, the method for manufacturing a metal-clad laminate according to the present invention does not require a new apparatus, can use conventional equipment, and can be pressed at a low temperature, so that the manufacturing cost is low. It is.

本件発明に係る接着層付金属箔の層構成を示す模式断面図である。It is a schematic cross section which shows the layer structure of the metal foil with an adhesive layer which concerns on this invention. 本件発明に係る金属張積層板の層構成のバリエーションの一例を示す模式断面図である。It is a schematic cross section which shows an example of the variation of the layer structure of the metal-clad laminated board which concerns on this invention. 多層プリント配線板製造のイメージを示す模式図である。It is a schematic diagram which shows the image of multilayer printed wiring board manufacture. 多層プリント配線板製造のイメージを示す模式図である。It is a schematic diagram which shows the image of multilayer printed wiring board manufacture. 本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing process of the metal-clad laminated board which concerns on this invention. 本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing process of the metal-clad laminated board which concerns on this invention. 本件発明に係る金属張積層板の製造プロセスを説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing process of the metal-clad laminated board which concerns on this invention.

符号の説明Explanation of symbols

1a,1b,1c 金属張積層板
2 金属箔
3 接着層
4 接着層付金属箔
5 フッ素樹脂基材層
7 離型性プラスチックフィルム
8 離型性プラスチックフィルム付接着層
9 内層回路
20 回路
21 両面プリント配線板
22 プリプレグ
1a, 1b, 1c Metal-clad laminate 2 Metal foil 3 Adhesive layer 4 Metal foil with adhesive layer 5 Fluororesin substrate layer 7 Releasable plastic film 8 Adhesive layer with releasable plastic film 9 Inner layer circuit 20 Circuit 21 Double-sided printing Wiring board 22 prepreg

Claims (17)

フッ素樹脂基材に対し金属箔を張り合わせるための接着層を形成するための樹脂組成物において、
当該樹脂組成物は、溶剤に可溶で且つ官能基として分子内に水酸基、カルボキシル基、アミノ基の1種又は2種以上を有するポリマー成分を2重量部〜50重量部、
沸点200℃以上のエポキシ樹脂及び沸点200℃以上のアミン系エポキシ樹脂硬化剤からなるエポキシ樹脂配合物を50重量部以上、
を含有することを特徴とするフッ素樹脂基材接着用樹脂組成物。
In the resin composition for forming an adhesive layer for bonding the metal foil to the fluororesin substrate,
The resin composition is 2 to 50 parts by weight of a polymer component that is soluble in a solvent and has one or more of hydroxyl group, carboxyl group, and amino group in the molecule as a functional group,
50 parts by weight or more of an epoxy resin compound comprising an epoxy resin having a boiling point of 200 ° C. or higher and an amine epoxy resin curing agent having a boiling point of 200 ° C. or higher,
A resin composition for adhering a fluororesin base material, comprising:
前記ポリマー成分は、ポリビニルアセタール樹脂、フェノキシ樹脂、芳香族ポリアミド樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂の群から選ばれた1種又は2種以上を混合したものである請求項1に記載のフッ素樹脂基材接着用樹脂組成物。 The said polymer component is what mixed 1 type, or 2 or more types chosen from the group of polyvinyl acetal resin, phenoxy resin, aromatic polyamide resin, polyether sulfone resin, and polyamide-imide resin. Resin composition for fluororesin substrate adhesion. 前記沸点200℃以上のエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ゴム変性ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂の群から選ばれる1種又は2種以上を混合したものである請求項1又は請求項2に記載のフッ素樹脂基材接着用樹脂組成物。 The epoxy resin having a boiling point of 200 ° C. or higher is a mixture of one or more selected from the group of bisphenol A type epoxy resin, bisphenol F type epoxy resin, rubber-modified bisphenol A type epoxy resin, and biphenyl type epoxy resin. A resin composition for adhering a fluororesin substrate according to claim 1 or 2. アミン系エポキシ樹脂硬化剤は、芳香族ポリアミン、ポリアミド類及びこれらをエポキシ樹脂や多価カルボン酸と重合或いは縮合させて得られるアミンアダクト体の群から選ばれた1種又は2種以上を用いる請求項1〜請求項3のいずれかに記載のフッ素樹脂基材接着用樹脂組成物。 The amine-based epoxy resin curing agent is an aromatic polyamine, polyamides, and one or more selected from the group of amine adducts obtained by polymerizing or condensing these with an epoxy resin or a polyvalent carboxylic acid. Item 4. The resin composition for bonding a fluororesin substrate according to any one of Items 1 to 3. フッ素樹脂基板に対し金属箔を張り合わせるために用いる樹脂接着剤であって、
請求項1〜請求項4のいずれかに記載のフッ素樹脂基板用樹脂組成物に有機溶剤を添加して混合して得られることを特徴としたフッ素樹脂基材用接着剤。
A resin adhesive used for laminating a metal foil to a fluororesin substrate,
An adhesive for a fluororesin substrate obtained by adding an organic solvent to the resin composition for a fluororesin substrate according to any one of claims 1 to 4 and mixing them.
前記有機溶剤は、メチルエチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンのいずれか1種の溶剤又はこれらの混合溶剤である請求項5に記載のフッ素樹脂基材用接着剤。 6. The adhesive for a fluororesin substrate according to claim 5, wherein the organic solvent is any one of methyl ethyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, or a mixed solvent thereof. 金属箔の表面に基材に対する接着層を備えた接着層付金属箔において、
当該接着層は、前記請求項5又は請求項6に記載のフッ素樹脂基板用樹脂接着剤を用いて形成したものであることを特徴としたフッ素樹脂基材用の接着層付金属箔。
In the metal foil with an adhesive layer provided with an adhesive layer for the substrate on the surface of the metal foil,
The said adhesive layer is formed using the resin adhesive for fluororesin substrates of the said Claim 5 or Claim 6, The metal foil with the adhesive layer for fluororesin base materials characterized by the above-mentioned.
前記接着層付金属箔の接着層は、厚さ0.5μm〜3μmの半硬化樹脂層である請求項7に記載のフッ素樹脂基材用の接着層付金属箔。 The metal foil with an adhesive layer for a fluororesin substrate according to claim 7, wherein the adhesive layer of the metal foil with an adhesive layer is a semi-cured resin layer having a thickness of 0.5 μm to 3 μm. 前記接着層付金属箔の接着層は、MIL規格におけるMIL−P−13949Gに準拠して測定したときのレジンフローが5%以内という特性を備えるものである請求項7又は請求項8に記載のフッ素樹脂基材用の接着層付金属箔。 The adhesive layer of the metal foil with an adhesive layer has a characteristic that the resin flow is within 5% when measured according to MIL-P-13949G in the MIL standard. Metal foil with adhesive layer for fluororesin substrate. 前記金属箔は、銅箔、ニッケル箔、スズ箔、金箔、銀箔、白金箔、鉄箔、コバルト箔、銅合金箔、ニッケル合金箔、スズ合金箔、金合金箔、銀合金箔、白金合金箔、鉄合金箔、コバルト合金箔のいずれかを用いる請求項7〜請求項9のいずれかに記載のフッ素樹脂基材用の接着層付金属箔。 The metal foil is copper foil, nickel foil, tin foil, gold foil, silver foil, platinum foil, iron foil, cobalt foil, copper alloy foil, nickel alloy foil, tin alloy foil, gold alloy foil, silver alloy foil, platinum alloy foil The metal foil with an adhesive layer for a fluororesin substrate according to any one of claims 7 to 9, wherein any one of iron alloy foil and cobalt alloy foil is used. フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層板であって、
前記接着層は、請求項1〜請求項4のいずれかに記載の樹脂組成物を含むことを特徴とした金属張積層板。
A metal-clad laminate obtained by laminating a metal layer on the surface of a fluororesin substrate via an adhesive layer,
The said adhesion layer contains the resin composition in any one of Claims 1-4, The metal-clad laminated board characterized by the above-mentioned.
フッ素樹脂基材の表面に接着層を介して金属層を張り合わせて得られる金属張積層板であって、
前記接着層は、請求項5又は請求項6に記載のフッ素樹脂基材用接着剤を用いて形成したことを特徴とした金属張積層板。
A metal-clad laminate obtained by laminating a metal layer on the surface of a fluororesin substrate via an adhesive layer,
The metal-clad laminate, wherein the adhesive layer is formed using the fluororesin substrate adhesive according to claim 5.
請求項11又は請求項12の金属張積層板の金属箔をエッチング加工することにより得られることを特徴としたプリント配線板。 A printed wiring board obtained by etching a metal foil of the metal-clad laminate according to claim 11 or 12. 請求項11又は請求項12に記載の金属張積層板の製造方法であって、以下の工程A−1〜工程C−1を経ることを特徴とする金属張積層板の製造方法。
工程A−1: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。
工程B−1: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を金属箔の表面に塗布して乾燥することで、金属箔の表面に0.5μm〜3μm厚さの半硬化樹脂層を形成することで接着層付金属箔を製造する工程。
工程C−1: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、接着層付金属箔の接着層面を当接させて積層して熱間プレス成形することで金属張積層板とする工程。
It is a manufacturing method of the metal-clad laminated board of Claim 11 or Claim 12, Comprising: It passes through the following process A-1-process C-1, The manufacturing method of the metal-clad laminated board characterized by the above-mentioned.
Step A-1: A step of applying an activation treatment to the bonding surface of the fluororesin substrate with the metal foil.
Step B-1: A fluororesin substrate adhesive is prepared, and this fluororesin substrate adhesive is applied to the surface of the metal foil and dried, so that the thickness of the metal foil is 0.5 μm to 3 μm. The process of manufacturing metal foil with an adhesive layer by forming a semi-cured resin layer.
Step C-1: A metal-clad laminate is obtained by hot-pressing the adhesive layer surface of the metal foil with an adhesive layer in contact with the laminated surface subjected to the activation treatment of the fluororesin substrate and laminating it. Process.
請求項11又は請求項12に記載の金属張積層板の製造方法であって、以下の工程A−2〜工程C−2を経ることを特徴とする金属張積層板の製造方法。
工程A−2: フッ素樹脂基材の金属箔との張り合わせ面に活性化処理を施す工程。
工程B−2: フッ素樹脂基材用接着剤を調製し、このフッ素樹脂基材用接着剤を離型性プラスチックフィルムの表面に塗布して乾燥することで、当該離型性プラスチックフィルムと厚さ0.5μm〜3μmの半硬化樹脂層が積層状態にある離型性プラスチックフィルム付接着層を製造する工程。
工程C−2: フッ素樹脂基材の活性化処理を施した張り合わせ面に対し、離型性プラスチックフィルム付接着層の半硬化樹脂層を当接させ重ね合わせて仮接着し、離型性プラスチックフィルムを剥離除去して、当該半硬化樹脂層をフッ素樹脂基材の表面に残す工程。
工程D−2: 工程C−2でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金属箔を積層して熱間プレス成形することで金属張積層板とする工程。
It is a manufacturing method of the metal-clad laminated board of Claim 11 or Claim 12, Comprising: The manufacturing method of the metal-clad laminated board which passes through following process A-2-process C-2.
Step A-2: A step of performing an activation treatment on the bonding surface of the fluororesin base material with the metal foil.
Step B-2: An adhesive for a fluororesin substrate is prepared, and the adhesive for a fluororesin substrate is applied to the surface of the releasable plastic film and dried, so that the releasable plastic film and thickness A step of producing an adhesive layer with a releasable plastic film in which a semi-cured resin layer of 0.5 μm to 3 μm is in a laminated state.
Step C-2: The semi-cured resin layer of the adhesive layer with a releasable plastic film is brought into contact with the laminated surface subjected to the activation treatment of the fluororesin base material, and is temporarily bonded to each other. The process of peeling off and leaving the semi-cured resin layer on the surface of the fluororesin substrate.
Step D-2: A step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-2 and hot pressing it.
請求項11又は請求項12に記載の金属張積層板の製造方法であって、以下の工程A−3〜工程D−3を経ることを特徴とする金属張積層板の製造方法。
工程A−3: フッ素樹脂基材の金属箔の張り合わせ面に活性化処理を施す工程。
工程B−3: フッ素樹脂基材用接着剤を調製する工程。
工程C−3: フッ素樹脂基材の活性化処理した表面に、工程B−3で調製したフッ素樹脂基材用接着剤を塗布して乾燥させることで、0.5μm〜3μm厚さの半硬化樹脂層を形成する工程。
工程D−3: 工程C−3でフッ素樹脂基材表面に設けた半硬化樹脂層の表面に金属箔を積層して熱間プレス成形することで金属張積層板とする工程。
It is a manufacturing method of the metal-clad laminated board of Claim 11 or Claim 12, Comprising: It passes through the following process A-3-process D-3, The manufacturing method of the metal-clad laminated board characterized by the above-mentioned.
Step A-3: A step of performing activation treatment on the bonding surface of the metal foil of the fluororesin base material.
Process B-3: The process of preparing the adhesive for fluororesin base materials.
Step C-3: Applying the adhesive for the fluororesin substrate prepared in Step B-3 to the activated surface of the fluororesin substrate and drying it, semi-curing 0.5 μm to 3 μm in thickness Forming a resin layer;
Step D-3: Step of forming a metal-clad laminate by laminating a metal foil on the surface of the semi-cured resin layer provided on the surface of the fluororesin substrate in Step C-3 and hot pressing it.
前記活性化処理は、粗化処理、プラズマ処理、又はこれらを組み合わせた複合処理のいずれかである請求項14又は請求項15のいずれかに記載の金属張積層板の製造方法。 The method for producing a metal-clad laminate according to any one of claims 14 and 15, wherein the activation treatment is any one of a roughening treatment, a plasma treatment, or a composite treatment combining these.
JP2006158092A 2006-06-07 2006-06-07 Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate Pending JP2007326923A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006158092A JP2007326923A (en) 2006-06-07 2006-06-07 Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate
PCT/JP2007/061562 WO2008004399A1 (en) 2006-06-07 2007-06-07 Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158092A JP2007326923A (en) 2006-06-07 2006-06-07 Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate

Publications (1)

Publication Number Publication Date
JP2007326923A true JP2007326923A (en) 2007-12-20

Family

ID=38894372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158092A Pending JP2007326923A (en) 2006-06-07 2006-06-07 Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate

Country Status (2)

Country Link
JP (1) JP2007326923A (en)
WO (1) WO2008004399A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
JP2015150813A (en) * 2014-02-17 2015-08-24 住友電工プリントサーキット株式会社 Protective film for distributing board, coverlay and printed circuit board
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
JPWO2014192718A1 (en) * 2013-05-31 2017-02-23 住友電気工業株式会社 Metal resin composite, wiring material, and method for producing metal resin composite
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device
JPWO2017030190A1 (en) * 2015-08-20 2018-05-31 旭硝子株式会社 LAMINATED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
KR102122938B1 (en) * 2019-12-30 2020-06-15 (주)아이피아이테크 Bond ply layer for flexible copper clad laminated film and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194930A (en) * 2009-02-26 2010-09-09 Sumitomo Bakelite Co Ltd Method of manufacturing supporting material with insulating layer, supporting material with insulating layer, printed wiring board, and method of manufacturing supporting material with insulating layer
TW202206286A (en) 2020-07-28 2022-02-16 美商聖高拜塑膠製品公司 Dielectric substrate and method of forming the same
CN112048249A (en) * 2020-09-02 2020-12-08 江西省信合新材料科技有限公司 Multilayer protective film for flexible circuit board
WO2022133402A1 (en) 2020-12-16 2022-06-23 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
JP7348673B2 (en) * 2021-12-03 2023-09-21 ニッカン工業株式会社 Resin composition, and coverlay film, adhesive sheet, resin-coated metal foil, metal-clad laminate, or printed wiring board using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177103B2 (en) * 1994-02-22 2001-06-18 株式会社ジャパンエナジー Adhesive for metal foil-clad laminate and metal foil-clad laminate using the same
WO2001003478A1 (en) * 1999-07-05 2001-01-11 Nippon Pillar Packing Co., Ltd. Printed wiring board and prepreg for printed wiring board
JP3740962B2 (en) * 1999-07-29 2006-02-01 三菱化学株式会社 Modified polyvinyl acetal resin
JP2001089734A (en) * 1999-09-24 2001-04-03 Sumitomo Bakelite Co Ltd Interlayer insulating adhesive for multilayer printed circuit board
JP2002307611A (en) * 2001-04-12 2002-10-23 Chuko Kasei Kogyo Kk Fluoroplastic copper-clad laminated sheet
JP4144732B2 (en) * 2002-05-30 2008-09-03 ジャパンエポキシレジン株式会社 High molecular weight epoxy resin, resin composition for electric laminate and electric laminate
JP4565821B2 (en) * 2003-07-08 2010-10-20 日本化薬株式会社 Adhesive composition
JP4815767B2 (en) * 2004-08-11 2011-11-16 日立化成工業株式会社 Thermosetting resin composition and resin varnish using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014192718A1 (en) * 2013-05-31 2017-02-23 住友電気工業株式会社 Metal resin composite, wiring material, and method for producing metal resin composite
WO2015012327A1 (en) 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method
WO2015012376A1 (en) 2013-07-24 2015-01-29 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper-clad laminate, and method for manufacturing printed circuit board
JP2015150813A (en) * 2014-02-17 2015-08-24 住友電工プリントサーキット株式会社 Protective film for distributing board, coverlay and printed circuit board
EP3046400A2 (en) 2015-01-16 2016-07-20 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device, and method for fabricating printed wiring board
EP3048864A2 (en) 2015-01-21 2016-07-27 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, and method for fabricating printed wiring board
EP3054751A2 (en) 2015-02-06 2016-08-10 JX Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
US9839124B2 (en) 2015-02-06 2017-12-05 Jx Nippon Mining & Metals Corporation Copper foil provided with carrier, laminate, printed wiring board, electronic device and method for fabricating printed wiring board
JPWO2017030190A1 (en) * 2015-08-20 2018-05-31 旭硝子株式会社 LAMINATED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME
EP3232747A1 (en) 2016-04-15 2017-10-18 JX Nippon Mining & Metals Corp. Copper foil, copper foil for high-frequency circuit, carrier-attached copper foil, carrier-attached copper foil for high-frequency circuit, laminate, method of manufacturing printed wiring board, and method of manufacturing electronic device
KR102122938B1 (en) * 2019-12-30 2020-06-15 (주)아이피아이테크 Bond ply layer for flexible copper clad laminated film and method for manufacturing the same

Also Published As

Publication number Publication date
WO2008004399A1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP2007326923A (en) Resin composition for adhering fluorine resin substrate and metal-clad laminate obtained by using the resin composition for adhering fluorine resin substrate
JP6475781B2 (en) Surface treated copper foil, copper foil with carrier, substrate manufacturing method, printed wiring board manufacturing method, printed circuit board manufacturing method, copper clad laminate
TWI609043B (en) Resin copper foil, copper-clad laminate and printed wiring board
KR100655557B1 (en) Copper foil with extremely thin adhesive layer and method for producing the copper foil with extremely thin adhesive layer
JP5430563B2 (en) Resin composition for forming an adhesive layer of a multilayer flexible printed wiring board
JP5636159B2 (en) Copper foil with resin and method for producing copper foil with resin
JP2015509113A (en) Cyanate ester resin composition for circuit board production and flexible metal foil laminate including the same
JP5521099B1 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
WO2014017606A1 (en) Copper foil with carrier
JP5544444B1 (en) Resin base material, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
WO2009084533A1 (en) Copper foil with resin and process for producing copper foil with resin
JP6335449B2 (en) Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
TWI821399B (en) Laminated body, printed circuit board and manufacturing method thereof
CN111201277B (en) Resin composition for printed wiring board, copper foil with resin, copper-clad laminate, and printed wiring board
KR20130123765A (en) Copper foil with primer resin layer, copper-clad laminate comprising the copper foil for a printed circuit board, preparation method of the copper foil, and primer resin composition used for the copper foil
TW202146582A (en) Resin composition
JP6816566B2 (en) Resin compositions, adhesive films, prepregs, multilayer printed wiring boards and semiconductor devices
JP7354774B2 (en) resin composition
JP2004047680A (en) Method for manufacturing multilayer printed circuit board