JP2007326078A - Hydrogen producing substrate and its manufacturing method - Google Patents

Hydrogen producing substrate and its manufacturing method Download PDF

Info

Publication number
JP2007326078A
JP2007326078A JP2006161025A JP2006161025A JP2007326078A JP 2007326078 A JP2007326078 A JP 2007326078A JP 2006161025 A JP2006161025 A JP 2006161025A JP 2006161025 A JP2006161025 A JP 2006161025A JP 2007326078 A JP2007326078 A JP 2007326078A
Authority
JP
Japan
Prior art keywords
metal plate
plate
catalyst
aluminum
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006161025A
Other languages
Japanese (ja)
Inventor
Setsuo Ando
節夫 安藤
Tetsuo Minemura
哲郎 峯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006161025A priority Critical patent/JP2007326078A/en
Publication of JP2007326078A publication Critical patent/JP2007326078A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen producing substrate which is chemically stable and has a low possibility of causing drop in heat flux even if a highly corrosive fluid is used as a heat source, and a hydrogen producing substrate capable of carrying a large amount of a catalyst. <P>SOLUTION: The hydrogen producing substrate comprises a ceramic plate 2, a metal plate 1 bonded on the ceramic plate and having protrusions and recesses formed on the surface, an aluminum film 4 formed on the surface with the protrusions and recesses of the metal plate, an anodized film 5 formed on the aluminum film and a catalyst 6 carried in fine pores 5b formed in the anodized film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素を貯蔵又は放出することのできる有機ハイドライドから水素ガスを放出する化学反応を容易に起こさせることのできる水素発生基板およびその製造方法に関する。   The present invention relates to a hydrogen generating substrate capable of easily causing a chemical reaction for releasing hydrogen gas from an organic hydride capable of storing or releasing hydrogen, and a method for producing the same.

化石燃料の使用によって発生した二酸化炭素等の温暖化ガスの影響で地球温暖化の問題はますます深刻になっている。その対策の一つとして化石燃料から再生可能な水素へのエネルギー転換が進められつつある。   The problem of global warming is becoming more and more serious due to the effects of greenhouse gases such as carbon dioxide generated by the use of fossil fuels. As one of the countermeasures, energy conversion from fossil fuel to renewable hydrogen is being promoted.

水素エネルギーへの転換を実現するうえで解決しなければならない課題の一つに貯蔵の問題がある。製造された水素は燃料電池等へ直接供給されるのではなく一旦、貯蔵設備に蓄えられる。圧縮水素ボンベ、液化水素タンク、水素吸蔵合金、カーボンナノチューブなどの貯蔵手段があるが、大きさ、重量、水素ガスの漏洩、安全性等の貯蔵手段として求められる性能の全てを高水準で満たすものは未だ開発されていない。   One of the problems that must be solved to realize the conversion to hydrogen energy is the storage problem. The produced hydrogen is not directly supplied to a fuel cell or the like, but is temporarily stored in a storage facility. There are storage means such as compressed hydrogen cylinders, liquefied hydrogen tanks, hydrogen storage alloys, carbon nanotubes, etc., which satisfy all the performance required as storage means such as size, weight, hydrogen gas leakage, safety etc. at high level Has not been developed yet.

これらの求められる性能の全てを高水準で満たすことのできる水素貯蔵手段として近年注目されているのが有機ハイドライドである。ベンゼンやナフタレン等の芳香族化合物を貴金属触媒のもと特定条件におくと大量の水素ガスと結びついてシクロヘキサンやデカリン等の有機ハイドライドに変換される。逆の変換で水素ガスを放出させることも容易である。有機ハイドライドは常温常圧下では液体であるため水素に比べて貯蔵や取り扱いが容易である。   In recent years, organic hydride has attracted attention as a hydrogen storage means that can satisfy all of these required performances at a high level. When aromatic compounds such as benzene and naphthalene are subjected to specific conditions under a noble metal catalyst, they are combined with a large amount of hydrogen gas and converted into organic hydrides such as cyclohexane and decalin. It is also easy to release hydrogen gas by reverse conversion. Organic hydride is liquid at normal temperature and pressure, and is easier to store and handle than hydrogen.

有機ハイドライドを媒体とする水素の貯蔵・供給装置については、例えば特許文献1で詳細に開示されている。特許文献1は媒体が流通する面状の流路と、流路に形成された触媒層と、生成された水素と、水素を貯蔵した媒体及び水素を放出した媒体とを各々分離する水素分離手段と、水素、水素を貯蔵した媒体及び水素を放出した媒体が各々流入又は流出する流通口とが一体に形成され水素貯蔵・供給装置を開示している。   A hydrogen storage / supply device using an organic hydride as a medium is disclosed in detail, for example, in Patent Document 1. Patent Document 1 discloses a hydrogen separation means for separating a planar flow path through which a medium flows, a catalyst layer formed in the flow path, generated hydrogen, a medium storing hydrogen, and a medium releasing hydrogen. A hydrogen storage / supply device is disclosed in which hydrogen, a medium storing hydrogen, and a flow port through which a medium releasing hydrogen flows in or out are integrally formed.

この水素貯蔵・供給装置のなかで特に重要なのが有機ハイドライドと触媒とを接触させる構造である。一例としてAlN高熱伝導基板上にスパッタ及び電気めっきによりCu膜を形成した後、エッチングにより金属パターンを形成し、パターンの腐食防止のためその表面に金めっきを施し、その上にPt粒子混合アルミナゾルを塗布し焼成することで触媒層を形成することを示している(段落0099、図12)。AlN高熱伝導基板を介して反応に必要な熱を得るため、熱エネルギー源が腐食性の高い流体であっても化学的に安定しており、熱流束が低下する恐れが少ないという利点がある。   Of particular importance among these hydrogen storage and supply devices is the structure in which the organic hydride and the catalyst are brought into contact with each other. As an example, after forming a Cu film by sputtering and electroplating on an AlN high thermal conductive substrate, a metal pattern is formed by etching, and gold plating is applied to the surface to prevent corrosion of the pattern, and Pt particle mixed alumina sol is applied thereon. It shows that a catalyst layer is formed by applying and baking (paragraph 0099, FIG. 12). In order to obtain the heat required for the reaction via the AlN high thermal conductive substrate, there is an advantage that the heat energy source is chemically stable even if the fluid is highly corrosive, and the heat flux is less likely to be lowered.

別の例として純アルミニウム板を高熱伝導基板として用い、エッチングで同じ金属からなる平面パターンを有する流路突起を形成した後、アルミニウム表面を陽極酸化、細孔拡大、最後に、白金コロイドを用いて触媒担持することを示している(段落0109〜0110、図15)。陽極酸化で得た多数の細孔に多量の触媒を担持させることができるため反応速度が向上する利点がある。
特開2005−126315号公報
As another example, a pure aluminum plate is used as a high thermal conductive substrate, and after forming flow path projections having a planar pattern made of the same metal by etching, the aluminum surface is anodized, pores expanded, and finally using a platinum colloid It shows that the catalyst is supported (paragraphs 0109 to 0110, FIG. 15). Since a large amount of catalyst can be supported on a large number of pores obtained by anodization, there is an advantage that the reaction rate is improved.
JP 2005-126315 A

特許文献1で記載している前者の例ではCu板をエッチングして得た凹凸パターン上に触媒を塗布しているため多量の触媒を担持させることができないという課題があった。後者の例では純アルミニウム板を介して反応に必要な熱を得るため、熱エネルギー源が腐食性の高い流体であると化学的に不安定であり、熱流束が低下する恐れがあるという課題があった。   In the former example described in Patent Document 1, there is a problem that a large amount of catalyst cannot be supported because the catalyst is applied on the uneven pattern obtained by etching the Cu plate. In the latter example, the heat required for the reaction is obtained via a pure aluminum plate, so that the thermal energy source is chemically unstable if it is a highly corrosive fluid, and the heat flux may decrease. there were.

したがって本発明の目的は、熱エネルギー源が腐食性の高い流体であっても化学的に安定しており、熱流束が低下する恐れが少ない水素発生基板を提供することである。本発明の別の目的は、多量の触媒を担持させることのできる水素発生基板を提供することである。   Accordingly, an object of the present invention is to provide a hydrogen generating substrate that is chemically stable even when the thermal energy source is a highly corrosive fluid and has a low risk of lowering heat flux. Another object of the present invention is to provide a hydrogen generating substrate capable of supporting a large amount of catalyst.

発明者等は、セラミックス板に金属板を接合し、金属板にアルミニウム被膜を形成し、アルミニウム被膜を陽極酸化して多数の微細孔を形成することで上記の目的を達成できることを見出した。   The inventors have found that the above object can be achieved by joining a metal plate to a ceramic plate, forming an aluminum coating on the metal plate, and anodizing the aluminum coating to form a large number of micropores.

すなわち本願第1の発明は、表面に凹凸が形成された金属板と、金属板の凹凸面に形成されたアルミニウム被膜と、アルミニウム被膜に形成された酸化膜と、酸化膜に形成された微細孔の中に担持された触媒を有することを特徴とする水素発生部材である。   That is, the first invention of the present application relates to a metal plate having an uneven surface, an aluminum film formed on the uneven surface of the metal plate, an oxide film formed on the aluminum film, and a fine hole formed in the oxide film. A hydrogen generating member characterized by having a catalyst supported therein.

本願第2の発明は、セラミックス板と、セラミックス板に接合され表面に凹凸が形成された金属板と、金属板の凹凸面に形成されたアルミニウム被膜と、アルミニウム被膜に形成された酸化膜と、酸化膜に形成された微細孔の中に担持された触媒を有することを特徴とする水素発生基板である。   The second invention of the present application includes a ceramic plate, a metal plate bonded to the ceramic plate and having irregularities formed on the surface thereof, an aluminum coating formed on the concave and convex surface of the metal plate, an oxide film formed on the aluminum coating, A hydrogen generating substrate comprising a catalyst supported in micropores formed in an oxide film.

本願第3の発明は、セラミックス板と金属板とを接合する接合工程と、金属板に凹凸を形成する加工工程と、金属板の凹凸面にアルミニウム被膜を形成する被膜形成工程と、アルミニウム被膜を陽極酸化する陽極酸化工程と、陽極酸化工程で形成された酸化膜の微細孔の中に触媒を担持させる触媒担持工程とからなることを特徴とする水素発生基板の製造方法である。   A third invention of the present application includes a joining step for joining a ceramic plate and a metal plate, a processing step for forming irregularities on the metal plate, a coating forming step for forming an aluminum coating on the irregular surface of the metal plate, and an aluminum coating. A method for producing a hydrogen generating substrate, comprising: an anodizing step for anodizing; and a catalyst supporting step for supporting a catalyst in micropores of an oxide film formed in the anodizing step.

本願第4の発明は、金属板に凹凸を形成する加工工程と、金属板の凹凸面にアルミニウム被膜を形成する被膜形成工程と、アルミニウム被膜を陽極酸化する陽極酸化工程と、セラミックス板と金属板とを接合する接合工程と、陽極酸化工程で形成された酸化膜の微細孔の中に触媒を担持させる触媒担持工程とからなることを特徴とする水素発生基板の製造方法である。   The fourth invention of the present application includes a processing step of forming irregularities on a metal plate, a coating forming step of forming an aluminum coating on the irregular surface of the metal plate, an anodizing step of anodizing the aluminum coating, a ceramic plate and a metal plate And a catalyst supporting step of supporting the catalyst in the micropores of the oxide film formed in the anodizing step.

上記の発明において金属板は銅板または銅合金板であることが好ましい。   In the above invention, the metal plate is preferably a copper plate or a copper alloy plate.

上記の発明においてセラミックス板に金属板を接合することに替えてセラミックス板に無電解めっきプロセスで金属被膜を形成してもよい。   In the above invention, instead of joining the metal plate to the ceramic plate, a metal film may be formed on the ceramic plate by an electroless plating process.

上述のように、本発明の水素発生基板およびその製造方法によれば、熱エネルギー源が腐食性の高い流体であっても化学的に安定しており、熱流束が低下する恐れが少ないく、且つ多量の触媒を担持させることのできる水素発生基板を提供することができる。   As described above, according to the hydrogen generating substrate and the manufacturing method thereof of the present invention, even if the thermal energy source is a highly corrosive fluid, it is chemically stable, and the heat flux is less likely to be reduced. In addition, it is possible to provide a hydrogen generating substrate capable of supporting a large amount of catalyst.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

図1(a)〜(e)の各製造工程を順に説明する。
[接合工程](図1(a))
セラミックス基板2に30mm×50mm×厚さ0.5mmのAlN板を使用し、金属板1に30mm×50mm×厚さ2mmのCu板を使用した。両者を銀ろう材で接合した。接合にはスズ−アンチモン等のハンダを使用することもできる。Cu板を接合する替わりに無電解めっきでCu層をセラミックス基板2に形成してもよい。
Each manufacturing process of FIG. 1 (a)-(e) is demonstrated in order.
[Jointing Step] (FIG. 1 (a))
A 30 mm × 50 mm × 0.5 mm thick AlN plate was used for the ceramic substrate 2, and a 30 mm × 50 mm × 2 mm thick Cu plate was used for the metal plate 1. Both were joined with a silver brazing material. Solder such as tin-antimony can also be used for bonding. A Cu layer may be formed on the ceramic substrate 2 by electroless plating instead of joining the Cu plates.

[加工工程](図1(b))
AlN板と接合したCu板にエッチングによって500μm×50mm×深さ150μmの複数の溝部3をそれぞれ平行に形成した。Cu板の溝部を形成した側の面は凹凸面となる。溝部は有機ハイドライドが流れる流路となる。有機ハイドライドが流路を流れる間に分解反応が進む。例えばデカリンなら溝部でナフタレンと水素ガスとに分解される。
[Processing step] (FIG. 1B)
A plurality of groove portions 3 of 500 μm × 50 mm × depth 150 μm were formed in parallel on the Cu plate joined to the AlN plate by etching. The surface of the Cu plate on which the groove is formed is an uneven surface. The groove portion becomes a flow path through which the organic hydride flows. The decomposition reaction proceeds while the organic hydride flows through the flow path. For example, decalin is decomposed into naphthalene and hydrogen gas at the groove.

[被膜形成工程](図1(c))
Cu板の凹凸面にアルミニウム被膜を形成する。成膜速度が比較的速いことや凹凸面にも成膜が可能である等の理由から成膜手段は電解アルミニウムめっきが好ましい。具体的にはジメチルスルホンと無水塩化アルミニウムをモル比で5:1の割合で混合し、110℃で溶解して電解アルミニウムめっき液を建浴した。陽極には純度99.99%のAl板を使用し、陰極にはAlN板と接合したCu板を電気的に接合した。建浴した電解アルミニウムめっき液中で6A/dm2の電流密度で30分間通電した。その結果、Cu板の溝部3を含む凹凸面に平均厚さ100μmのアルミニウムめっき膜4が析出した。絶縁性であるAlN板には電流が流れないためAlN板にアルミニウムめっき膜は析出しない。
[Film Forming Step] (FIG. 1 (c))
An aluminum film is formed on the uneven surface of the Cu plate. Electrolytic aluminum plating is preferable as the film forming means because the film forming speed is relatively fast and the film can be formed on the uneven surface. Specifically, dimethyl sulfone and anhydrous aluminum chloride were mixed at a molar ratio of 5: 1 and dissolved at 110 ° C. to form an electrolytic aluminum plating solution. An aluminum plate having a purity of 99.99% was used for the anode, and a Cu plate joined to the AlN plate was electrically joined to the cathode. It was energized for 30 minutes at a current density of 6 A / dm 2 in the electrolytic aluminum plating solution. As a result, an aluminum plating film 4 having an average thickness of 100 μm was deposited on the uneven surface including the groove 3 of the Cu plate. Since no current flows through the insulating AlN plate, no aluminum plating film is deposited on the AlN plate.

[陽極酸化工程](図1(d))
アルミニウムめっき膜4を陽極酸化した。陽極酸化によりアルミニウムめっき膜4の表面は酸化膜5となりその下には一部のアルミニウムめっき膜4が残る。酸化膜5はセル5aの集合体であり各セル5aは微細孔5bを有している。図1(d)は陽極酸化した後の図1(c)A部の拡大図である。
[Anodic oxidation step] (FIG. 1 (d))
The aluminum plating film 4 was anodized. Due to the anodic oxidation, the surface of the aluminum plating film 4 becomes the oxide film 5, and a part of the aluminum plating film 4 remains below it. The oxide film 5 is an aggregate of cells 5a, and each cell 5a has a fine hole 5b. FIG. 1 (d) is an enlarged view of part A of FIG. 1 (c) after anodic oxidation.

[触媒担持工程](図1(e))
微細孔5bのなかに白金触媒6を担持させる。微細孔5bは極めて大きな被表面積を有しているために白金触媒を高密度に担持させることができる。
[Catalyst loading step] (FIG. 1 (e))
The platinum catalyst 6 is supported in the fine holes 5b. Since the micropores 5b have a very large surface area, the platinum catalyst can be supported at a high density.

本発明の水素発生基板は反応に必要な熱をセラミックス基板2を介して得ている。セラミックスは化学的に安定しているので熱の媒体が腐食性の高い流体であっても腐食等の恐れがない。本発明の水素発生基板は陽極酸化で形成した無数の微細孔5bに触媒を担持するので触媒を高密度に担持することができる。   The hydrogen generating substrate of the present invention obtains heat necessary for the reaction via the ceramic substrate 2. Since ceramics are chemically stable, there is no risk of corrosion even if the heat medium is a highly corrosive fluid. Since the hydrogen generating substrate of the present invention supports the catalyst in numerous fine holes 5b formed by anodic oxidation, the catalyst can be supported at a high density.

本発明の水素発生基板の製造工程は図1に限られるものではない。図2に示すように[加工工程][被膜形成工程][陽極酸化工程][接合工程][触媒担持工程]の順に製造することもできる。この場合、セラミックス基板2が加工工程、被膜形成工程、陽極酸化工程を経ることがないため、それらの工程でセラミックス基板2の受けるダメージが少ないという利点がある。   The manufacturing process of the hydrogen generating substrate of the present invention is not limited to FIG. As shown in FIG. 2, it can also be manufactured in the order of [processing step] [film forming step] [anodic oxidation step] [joining step] [catalyst supporting step]. In this case, since the ceramic substrate 2 does not go through the processing step, the film forming step, and the anodizing step, there is an advantage that the ceramic substrate 2 is less damaged in those steps.

本発明の構造においてCu板に替えてAl板をセラミックス基板に接合して、Al板に凹凸加工および陽極酸化を施せばアルミめっき工程を省略できる。しかし、このプロセスには次のような問題点がある。すなわち、Al板に直接凹凸加工をするにはある程度の厚さのAl板が必要であるが、セラミックス基板の熱膨張係数に対してAl板のそれはかなり大きいため熱膨張差による歪が生じやすい。歪を繰り返すことによりセラミックス基板に亀裂が生じる恐れがある。   In the structure of the present invention, the aluminum plating step can be omitted if the Al plate is bonded to the ceramic substrate instead of the Cu plate, and the Al plate is subjected to uneven processing and anodization. However, this process has the following problems. In other words, an Al plate having a certain thickness is required to directly process the Al plate, but since the Al plate is considerably larger than the thermal expansion coefficient of the ceramic substrate, distortion due to a difference in thermal expansion is likely to occur. There is a risk of cracks in the ceramic substrate due to repeated strain.

本発明の構造では、アルミニウム被膜はAl板に比べて十分に薄く、且つCu板が応力緩衝層として作用するため歪量は少ない。よってセラミックス基板に亀裂が生じる恐れは少ないのである。またセラミックス基板とアルミニウム被膜の間に熱伝導率の大きいCu板を設けることで反応に必要な熱を速やかに伝える効果も期待できる。   In the structure of the present invention, the aluminum coating is sufficiently thinner than the Al plate, and the amount of strain is small because the Cu plate acts as a stress buffer layer. Therefore, there is little risk of cracking in the ceramic substrate. In addition, an effect of promptly transferring the heat necessary for the reaction can be expected by providing a Cu plate having a high thermal conductivity between the ceramic substrate and the aluminum coating.

本発明は、水素を貯蔵又は放出することのできる有機ハイドライドから水素ガスを放出する化学反応を容易に起こさせることのできる水素発生基板およびその製造方法に利用出来る。   INDUSTRIAL APPLICABILITY The present invention can be used for a hydrogen generating substrate that can easily cause a chemical reaction for releasing hydrogen gas from an organic hydride that can store or release hydrogen, and a method for manufacturing the same.

本発明の水素発生基板の製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the hydrogen generating board | substrate of this invention. 本発明の水素発生基板の別の製造工程を模式的に示す図である。It is a figure which shows typically another manufacturing process of the hydrogen generating board | substrate of this invention.

符号の説明Explanation of symbols

2 セラミックス基板
1 金属板
3 溝部
4 アルミニウムめっき膜
5 酸化膜
5a セル
5b 微細孔
6 白金触媒
2 Ceramic substrate 1 Metal plate 3 Groove 4 Aluminum plating film 5 Oxide film 5a Cell 5b Micropore 6 Platinum catalyst

Claims (4)

表面に凹凸が形成された金属板と、金属板の凹凸面に形成されたアルミニウム被膜と、アルミニウム被膜に形成された酸化膜と、酸化膜に形成された微細孔の中に担持された触媒を有することを特徴とする水素発生部材。 A metal plate having irregularities formed on the surface, an aluminum film formed on the irregular surface of the metal plate, an oxide film formed on the aluminum film, and a catalyst supported in the micropores formed in the oxide film A hydrogen generating member comprising: セラミックス板と、セラミックス板に接合され表面に凹凸が形成された金属板と、金属板の凹凸面に形成されたアルミニウム被膜と、アルミニウム被膜に形成された酸化膜と、酸化膜に形成された微細孔の中に担持された触媒を有することを特徴とする水素発生基板。 Ceramic plate, metal plate bonded to the ceramic plate and having irregularities formed on the surface, an aluminum coating formed on the concave and convex surface of the metal plate, an oxide film formed on the aluminum coating, and a fine film formed on the oxide film A hydrogen generating substrate comprising a catalyst supported in pores. セラミックス板と金属板とを接合する接合工程と、金属板に凹凸を形成する加工工程と、金属板の凹凸面にアルミニウム被膜を形成する被膜形成工程と、アルミニウム被膜を陽極酸化する陽極酸化工程と、陽極酸化工程で形成された酸化膜の微細孔の中に触媒を担持させる触媒担持工程とからなることを特徴とする水素発生基板の製造方法。 A joining step of joining the ceramic plate and the metal plate, a processing step of forming irregularities on the metal plate, a coating forming step of forming an aluminum coating on the irregular surface of the metal plate, and an anodizing step of anodizing the aluminum coating; And a catalyst supporting step of supporting the catalyst in the fine pores of the oxide film formed in the anodizing step. 金属板に凹凸を形成する加工工程と、金属板の凹凸面にアルミニウム被膜を形成する被膜形成工程と、アルミニウム被膜を陽極酸化する陽極酸化工程と、セラミックス板と金属板とを接合する接合工程と、陽極酸化工程で形成された酸化膜の微細孔の中に触媒を担持させる触媒担持工程とからなることを特徴とする水素発生基板の製造方法。
A processing step for forming irregularities on the metal plate, a film forming step for forming an aluminum coating on the irregular surface of the metal plate, an anodizing step for anodizing the aluminum coating, and a joining step for joining the ceramic plate and the metal plate And a catalyst supporting step of supporting the catalyst in the fine pores of the oxide film formed in the anodizing step.
JP2006161025A 2006-06-09 2006-06-09 Hydrogen producing substrate and its manufacturing method Pending JP2007326078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161025A JP2007326078A (en) 2006-06-09 2006-06-09 Hydrogen producing substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161025A JP2007326078A (en) 2006-06-09 2006-06-09 Hydrogen producing substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007326078A true JP2007326078A (en) 2007-12-20

Family

ID=38926935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161025A Pending JP2007326078A (en) 2006-06-09 2006-06-09 Hydrogen producing substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007326078A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322185A (en) * 1976-08-13 1978-03-01 Riken Keikinzoku Kogyo Kk Catalyst body and manufacture
JPH0515778A (en) * 1991-07-09 1993-01-26 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst
JP2000086368A (en) * 1998-09-16 2000-03-28 Fuji Electric Co Ltd Nitride ceramic substrate
JP2002314280A (en) * 2001-04-10 2002-10-25 Denki Kagaku Kogyo Kk Structure and method for cooling circuit board
JP2002359453A (en) * 2001-03-29 2002-12-13 Ngk Insulators Ltd Circuit board and manufacturing method therefor
JP2003265949A (en) * 2002-03-15 2003-09-24 Casio Comput Co Ltd Micro flow passage structure and production method thereof
JP2004076031A (en) * 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Plating bath for electroplating and plating bath for composite plating, and their production method
JP2005126315A (en) * 2003-09-30 2005-05-19 Hitachi Ltd Hydrogen storage and supply device, its system, and distributed power and car using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322185A (en) * 1976-08-13 1978-03-01 Riken Keikinzoku Kogyo Kk Catalyst body and manufacture
JPH0515778A (en) * 1991-07-09 1993-01-26 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst
JP2000086368A (en) * 1998-09-16 2000-03-28 Fuji Electric Co Ltd Nitride ceramic substrate
JP2002359453A (en) * 2001-03-29 2002-12-13 Ngk Insulators Ltd Circuit board and manufacturing method therefor
JP2002314280A (en) * 2001-04-10 2002-10-25 Denki Kagaku Kogyo Kk Structure and method for cooling circuit board
JP2003265949A (en) * 2002-03-15 2003-09-24 Casio Comput Co Ltd Micro flow passage structure and production method thereof
JP2004076031A (en) * 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Plating bath for electroplating and plating bath for composite plating, and their production method
JP2005126315A (en) * 2003-09-30 2005-05-19 Hitachi Ltd Hydrogen storage and supply device, its system, and distributed power and car using the same

Similar Documents

Publication Publication Date Title
JP4977945B2 (en) Membrane electrode assembly, method for producing the same, and fuel cell
JP2005327732A (en) Reformer for fuel cell system, its manufacturing method, and fuel cell including this
JPWO2004084333A1 (en) FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL
JP2007117905A (en) Hydrogen separating membrane with support body, fuel cell and apparatus for separating hydrogen provided with the same and method for manufacturing them
Zhou et al. Novel superaerophobic anode with fern‐shaped Pd nanoarray for high‐performance direct formic acid fuel cell
JP2005327729A (en) Reformer for fuel cell system and manufacturing method for reaction substrate used for it
JP2007012287A (en) Cell for fuel cell, fuel cell stack and fuel cell
JP6438664B2 (en) Method for manufacturing membrane electrode assembly
JP4507833B2 (en) Fuel cell and manufacturing method thereof
Zichu et al. the variation of anodization conditions and the structural properties of nanoporous anodic alumina (NAA) within different acidic solutions
JP2007245010A (en) Hydrogen refining filter and its manufacturing method
CN212587492U (en) Immersion cooling radiator and immersion cooling radiating system
JP2010189708A (en) Electrolyzer
JP2005132712A (en) Microreactor for producing hydrogen
JP2009252399A (en) Metallic porous separator for fuel, cell and manufacturing method therefor
US8277873B2 (en) Method for manufacturing hydrogen separation membrane fuel cell
JP2007326078A (en) Hydrogen producing substrate and its manufacturing method
JP2006290718A (en) Hydrogen production apparatus and its production method
JP5173931B2 (en) Hydrogen permselective membrane and method for producing the same
JP2006147371A (en) Electrode catalyst for polymer electrolyte fuel cell, its manufacturing method and fuel cell
JP5266652B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2005238099A (en) Reactor and channel structure
JP4438569B2 (en) Reactor
JP2010234278A (en) Hydrogen catalyst member
JP2005166531A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111021