JP2007324075A - Alkaline storage battery, positive electrode for alkaline storage battery, and manufacturing method of its mix paste - Google Patents

Alkaline storage battery, positive electrode for alkaline storage battery, and manufacturing method of its mix paste Download PDF

Info

Publication number
JP2007324075A
JP2007324075A JP2006155747A JP2006155747A JP2007324075A JP 2007324075 A JP2007324075 A JP 2007324075A JP 2006155747 A JP2006155747 A JP 2006155747A JP 2006155747 A JP2006155747 A JP 2006155747A JP 2007324075 A JP2007324075 A JP 2007324075A
Authority
JP
Japan
Prior art keywords
positive electrode
storage battery
alkaline storage
weight
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006155747A
Other languages
Japanese (ja)
Other versions
JP5194387B2 (en
Inventor
Toru Kawakatsu
徹 川勝
Yoshinori Ito
義則 伊藤
Takashi Ebihara
孝 海老原
Kazufumi Okawa
和史 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006155747A priority Critical patent/JP5194387B2/en
Publication of JP2007324075A publication Critical patent/JP2007324075A/en
Application granted granted Critical
Publication of JP5194387B2 publication Critical patent/JP5194387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To suppress sedimentation of positive mix paste of an alkaline storage battery by increasing its viscosity without increasing the amount of a thickening agent. <P>SOLUTION: The manufacturing method of the positive mix paste for the alkaline storage battery comprises a first process using nickel hydroxide powder as an active material, water as a solvent, and carbohydrates comprising a straight chain containing a monosaccharide and a side chain containing saturated six-membered ring structure, and a cellulose derivative as the thickening agent, and kneading the nickel hydroxide powder; and a second process kneading the kneaded material in the first process and the cellulose derivative. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルカリ蓄電池用正極合剤ペーストの製造方法に関し、より詳しくはアルカリ蓄電池の電極合剤ペーストの粘性を向上させる技術に関する。   The present invention relates to a method for producing a positive electrode mixture paste for an alkaline storage battery, and more particularly to a technique for improving the viscosity of an electrode mixture paste for an alkaline storage battery.

近年、情報機器の著しい普及にともない、高エネルギー密度なアルカリ蓄電池の開発が要望されている。この要望を受けて、ニッケルカドミウム蓄電池(以下、ニカド電池と称す)やニッケル水素蓄電池(以下、Ni/MHと称す)の正極として、従来の焼結式ニッケル正極よりも30〜60%高容量である発泡メタル式ニッケル正極を用いる技術が開発されてきた。この正極は、発泡ニッケル多孔体やニッケル繊維多孔体などの多孔度の高い三次元金属多孔体に、水酸化ニッケル粉末などの活物質を含む正極合剤を高密度に充填・圧延したものである。   In recent years, with the widespread use of information equipment, development of high energy density alkaline storage batteries has been demanded. In response to this demand, as a positive electrode of a nickel cadmium storage battery (hereinafter referred to as a nickel cadmium battery) or a nickel metal hydride storage battery (hereinafter referred to as Ni / MH), the capacity is 30 to 60% higher than that of a conventional sintered nickel positive electrode. Technology has been developed that uses certain foamed metal nickel cathodes. This positive electrode is a highly porous three-dimensional metal porous body such as a foamed nickel porous body or nickel fiber porous body filled with a positive electrode mixture containing an active material such as nickel hydroxide powder and rolled at high density. .

この正極は、上述した活物質などを含む正極合剤ペーストを3次元金属多孔体に充填して作製される。この正極合剤ペーストの沈降を抑制して長時間の充填を達成するのを目的として、様々な増粘剤が添加されている。一般的に正極合剤ペーストに含まれる増粘剤の種類によって増粘性が左右されるため、この組成などを適正化する技術が種々提案されている。   This positive electrode is produced by filling the three-dimensional metal porous body with the positive electrode mixture paste containing the active material described above. Various thickeners are added for the purpose of suppressing the sedimentation of the positive electrode mixture paste and achieving long-time filling. Generally, since the thickening depends on the type of thickener contained in the positive electrode mixture paste, various techniques for optimizing the composition have been proposed.

具体的には活物質である水酸化ニッケル粉末と水溶性セルロース誘導体および水溶性多糖類から選ばれる少なくとも1種と水溶性ポリオールとを併用する方法(例えば、特許文献1)、コバルト酸化物で被覆した水酸化ニッケル粉末に天然多糖類を水酸化ニッケル粉末100重量部に対して0.1〜0.5重量部含む方法(例えば、特許文献2)などが提案されている。
特開2002−184398号公報 特開2003−068293号公報
Specifically, nickel hydroxide powder, which is an active material, a method of using at least one selected from water-soluble cellulose derivatives and water-soluble polysaccharides and a water-soluble polyol (for example, Patent Document 1), and coating with cobalt oxide A method (for example, Patent Document 2) in which 0.1 to 0.5 parts by weight of a natural polysaccharide is added to 100 parts by weight of nickel hydroxide powder in the nickel hydroxide powder has been proposed.
JP 2002-184398 A JP 2003-068293 A

しかしながら特許文献1〜2の方法で作製した正極合剤ペーストは、放置しておくとペーストが沈降し、水と合剤組成とが分離するという課題を有する。この分離による沈降を抑制するためには増粘剤を増量しなければならないが、増粘剤を増量すると正極反応が阻害され、放電特性が低下するので好ましくない。   However, the positive electrode mixture paste produced by the methods of Patent Documents 1 and 2 has a problem that if left as it is, the paste settles and water and the mixture composition are separated. In order to suppress the sedimentation due to the separation, the amount of the thickener must be increased. However, if the amount of the thickener is increased, the positive electrode reaction is hindered and the discharge characteristics are deteriorated.

本発明は上記の課題を解決するものであり、増粘剤自体を増量することなくアルカリ蓄電池の正極合剤ペーストの粘性を向上させて沈降を抑制することを目的とする。   This invention solves said subject, and it aims at improving the viscosity of the positive mix paste of an alkaline storage battery and suppressing sedimentation, without increasing thickener itself.

上記課題を解決するために、本発明のアルカリ蓄電池用正極合剤ペーストの製造方法は、水酸化ニッケル粉末を活物質とし、水を溶媒とし、単糖類を含む直鎖と飽和6員環構造を含む側鎖とからなる糖質(以下、糖質Aと略記)とセルロース誘導体とを増粘剤として用い、水酸化ニッケル粉末を混練する第1の工程と、第1の工程の混練物とセルロース誘導体とを混練する第2の工程とからなることを特徴とする。   In order to solve the above-mentioned problems, a method for producing a positive electrode mixture paste for an alkaline storage battery according to the present invention comprises a linear and saturated six-membered ring structure containing monosaccharides, using nickel hydroxide powder as an active material, water as a solvent, and A first step of kneading nickel hydroxide powder using a saccharide (hereinafter abbreviated as saccharide A) and a cellulose derivative comprising a side chain, as a thickener, and a kneaded product and cellulose of the first step And a second step of kneading the derivative.

本発明では増粘剤として糖質Aとセルロース誘導体とを併用するのが特徴である。ただし糖質Aは単糖類を含む直鎖のほかに飽和6員環を含む側鎖を有しているため、増粘作用
が高く高密度な正極合剤ペーストに耐沈降性を付与できるものの、流動性を付与し難い。一方セルロース誘導体は側鎖を有する多糖類に比べて増粘作用は低いものの、正極合剤ペーストに流動性を付与する効果が大きい。この両者の利点を活かすためには、セルロース誘導体を第2の工程で添加する必要がある。この理由として、本発明者らは鋭意検討の結果、活物質である水酸化ニッケル粉末を混練する第1の工程にセルロース誘導体を投入すると、大きな剪断力が生じるためにセルロース誘導体の直鎖が分断されて所望の流動性を正極合剤ペーストに付与できないことをつきとめた。なお剪断力を低下させるためには第1の工程で投入する水の量を増やせばよいが、この方法では水酸化ニッケル粉末や適宜用いる添加剤(導電剤であるコバルト化合物など)が正極合剤ペースト中で十分に分散されないという新たな課題を生じるので好ましくない。そこでセルロース誘導体を第2の工程で加えることにより、付与する剪断力を適正化して良質な流動性と分散性とが両立した正極合剤ペーストを作製できるので、放電特性などの電池特性が良好なアルカリ蓄電池用正極を得ることができる。
In the present invention, a carbohydrate A and a cellulose derivative are used in combination as a thickener. However, since saccharide A has a side chain containing a saturated 6-membered ring in addition to a straight chain containing a monosaccharide, it can impart sedimentation resistance to a high-density positive electrode mixture paste having a high thickening effect, It is difficult to impart fluidity. On the other hand, the cellulose derivative has a low effect of imparting fluidity to the positive electrode mixture paste, although the thickening action is lower than that of the polysaccharide having a side chain. In order to take advantage of both, it is necessary to add a cellulose derivative in the second step. The reason for this is that, as a result of intensive studies, the present inventors have introduced a cellulose derivative into the first step of kneading the nickel hydroxide powder, which is an active material. It has been found that the desired fluidity cannot be imparted to the positive electrode mixture paste. In order to reduce the shearing force, the amount of water added in the first step may be increased. However, in this method, nickel hydroxide powder or an appropriate additive (such as a cobalt compound as a conductive agent) is used as the positive electrode mixture. This is not preferable because it causes a new problem that the paste is not sufficiently dispersed. Therefore, by adding a cellulose derivative in the second step, it is possible to produce a positive electrode mixture paste having both good fluidity and dispersibility by optimizing the shearing force to be applied, so that battery characteristics such as discharge characteristics are good. A positive electrode for an alkaline storage battery can be obtained.

以上のように本発明によれば、2種の増粘剤の特徴を活かすことで、耐沈降性、流動性、分散性のいずれもが良好な正極合剤ペーストが作製できるので、良好な電池特性を発現するアルカリ蓄電池用正極を安定かつ多量に得ることができる。   As described above, according to the present invention, a positive electrode mixture paste having good sedimentation resistance, fluidity, and dispersibility can be produced by utilizing the characteristics of the two thickeners. A positive electrode for an alkaline storage battery that exhibits characteristics can be obtained stably and in large quantities.

以下に本発明のアルカリ蓄電池用正極合剤ペーストの製造方法について、図を用いて詳細に説明する。   Below, the manufacturing method of the positive mix paste for alkaline storage batteries of this invention is demonstrated in detail using figures.

第1の発明は、水酸化ニッケル粉末を活物質とし、水を溶媒とし、糖質Aとセルロース誘導体とを増粘剤として用いるアルカリ蓄電池用正極合剤ペーストの製造方法であって、水酸化ニッケル粉末を混練する第1の工程と、第1の工程の混練物とセルロース誘導体とを混練する第2の工程とからなることを特徴とする。   1st invention is the manufacturing method of the positive mix paste for alkaline storage batteries which uses nickel hydroxide powder as an active material, water as a solvent, and uses saccharide A and a cellulose derivative as a thickener, It consists of the 1st process of kneading | mixing powder, and the 2nd process of kneading | mixing the kneaded material and cellulose derivative of a 1st process, It is characterized by the above-mentioned.

糖質Aは単糖類を含む直鎖のほかに飽和6員環を含む側鎖を有しているため、増粘作用が高く高密度な正極合剤ペーストに耐沈降性を付与できるものの、流動性を付与し難い。一方セルロース誘導体は側鎖を有する多糖類に比べて増粘作用は低いものの、正極合剤ペーストに流動性を付与する効果が大きい。さらに第1の工程の初期段階では水酸化ニッケル粉末が水によって湿潤するために大きな剪断力が発生するので、この工程でセルロース誘導体を投入すると、セルロース誘導体の直鎖が分断されて所望の流動性を正極合剤ペーストに付与できない。よって双方の増粘剤の利点を活かすためには、セルロース誘導体を第2の工程で添加する必要がある。セルロース誘導体を第2の工程で加えることにより、付与する剪断力を適正化して良質な流動性と分散性とが両立した正極合剤ペーストを作製できるので、放電特性などの電池特性が良好なアルカリ蓄電池用正極を得ることができる。   Carbohydrate A has a side chain containing a saturated 6-membered ring in addition to a straight chain containing a monosaccharide, so that it has high thickening action and can impart sedimentation resistance to a high-density positive electrode mixture paste. It is difficult to impart sex. On the other hand, the cellulose derivative has a low effect of imparting fluidity to the positive electrode mixture paste, although the thickening action is lower than that of the polysaccharide having a side chain. Furthermore, since the nickel hydroxide powder is wetted by water in the initial stage of the first step, a large shearing force is generated. Therefore, when a cellulose derivative is added in this step, the straight chain of the cellulose derivative is broken and the desired fluidity is obtained. Cannot be applied to the positive electrode mixture paste. Therefore, in order to take advantage of both thickeners, it is necessary to add a cellulose derivative in the second step. By adding a cellulose derivative in the second step, a positive electrode mixture paste having both good fluidity and dispersibility can be produced by optimizing the shearing force to be applied. A positive electrode for a storage battery can be obtained.

第2の発明は、第1の発明を前提として、第1の工程において糖質Aを添加することを特徴とする。図1は第2の発明のアルカリ蓄電池用正極合剤ペーストの製造方法を示すフローチャートである。第1の工程として、活物質(水酸化ニッケル粉末)および糖質Aを、適宜用いる添加剤(導電剤であるコバルト化合物など)とともに適量の水を加えて混練する。引続き第2の工程として、第1の工程の混練物にセルロース誘導体と適量の水とを加えて混練する。第2の発明の特徴は、糖質Aの増粘作用を活用して活物質や添加剤などの粉末の分散性を高めることにある。この正極合剤ペーストを用いて作製するアルカリ蓄電池用正極の密着性を高める場合、第3の工程として第2の工程の混練物に粒子状の結着剤を加えることになる。この粒子状の結着剤としては、ポリテトラフルオロエチレン(以下、PTFEと略記)などのディスパージョンを選択することができる。またセルロース
誘導体および糖質Aは、あらかじめ水に溶解させて水溶液として用いてもよい。
2nd invention presupposes 1st invention, Carbohydrate A is added in a 1st process, It is characterized by the above-mentioned. FIG. 1 is a flowchart showing a method for producing a positive electrode mixture paste for an alkaline storage battery of the second invention. In the first step, the active material (nickel hydroxide powder) and carbohydrate A are kneaded with an appropriate amount of water (such as a cobalt compound as a conductive agent) and an appropriate amount of water. Subsequently, as the second step, the cellulose derivative and an appropriate amount of water are added to the kneaded product of the first step and kneaded. The feature of the second invention resides in that the dispersibility of powders such as active materials and additives is enhanced by utilizing the thickening action of carbohydrate A. When the adhesion of the positive electrode for an alkaline storage battery produced using this positive electrode mixture paste is enhanced, a particulate binder is added to the kneaded product of the second step as the third step. A dispersion such as polytetrafluoroethylene (hereinafter abbreviated as PTFE) can be selected as the particulate binder. The cellulose derivative and carbohydrate A may be dissolved in water in advance and used as an aqueous solution.

第3の発明は、第1の発明を前提として、第2の工程において糖質Aを添加することを特徴とする。図2は第3の発明のアルカリ蓄電池用正極合剤ペーストの製造方法を示すフローチャートである。第1の工程として、活物質(水酸化ニッケル粉末)を、適宜用いる添加剤(導電剤であるコバルト化合物など)とともに適量の水を加えて混練する。引続き第2の工程として、第1の工程の混練物に糖質Aとセルロース誘導体と適量の水とを加えて混練する。第3の発明の特徴は、糖質Aとセルロース誘導体とを同時に投入して混練することにより、糖質Aの増粘効果を最大限に引き出せるのでその添加量を低減し、アルカリ蓄電池の放電特性を向上させることにある。なお第2の発明と同様に、この正極合剤ペーストを用いて作製するアルカリ蓄電池用正極の密着性を高める場合、第3の工程として第2の工程の混練物にPTFEなどの粒子状の結着剤を加えることになる。またセルロース誘導体および糖質Aは、あらかじめ水に溶解させて水溶液として用いてもよい。   3rd invention presupposes 1st invention, Carbohydrate A is added in a 2nd process, It is characterized by the above-mentioned. FIG. 2 is a flowchart showing a method for producing a positive electrode mixture paste for an alkaline storage battery of the third invention. As a first step, an active material (nickel hydroxide powder) is kneaded with an appropriate amount of water (such as a cobalt compound as a conductive agent) and an appropriate amount of water. As the second step, the saccharide A, the cellulose derivative and an appropriate amount of water are added to the kneaded product of the first step and kneaded. The feature of the third invention is that, by simultaneously adding and kneading saccharide A and cellulose derivative, the thickening effect of saccharide A can be maximized, so the amount added is reduced, and the discharge characteristics of the alkaline storage battery Is to improve. As in the second invention, when enhancing the adhesion of the positive electrode for an alkaline storage battery produced using this positive electrode mixture paste, as a third step, a particulate binder such as PTFE is added to the kneaded product of the second step. Add a dressing. The cellulose derivative and carbohydrate A may be dissolved in water in advance and used as an aqueous solution.

第4の発明は、第1の発明を前提として、セルロース誘導体と糖質Aとの重量比を2:1〜1:2としたことを特徴とする。上記比率が2:1を超えてセルロース誘導体の重量比率が高くなると、糖質Aの増粘効果が十分に発揮されず、正極合剤ペーストがやや沈降しやすくなる。逆に上記比率が1:2を超えて糖質Aの重量比率が高くなると、セルロール誘導体の効果が十分に発揮されず、正極合剤ペーストの流動性が若干低下する。   The fourth invention is characterized in that, on the premise of the first invention, the weight ratio of the cellulose derivative and the saccharide A is 2: 1 to 1: 2. When the above ratio exceeds 2: 1 and the weight ratio of the cellulose derivative is increased, the thickening effect of the carbohydrate A is not sufficiently exhibited, and the positive electrode mixture paste is slightly settled. On the other hand, when the ratio exceeds 1: 2 and the weight ratio of the saccharide A is increased, the effect of the cellulose derivative is not sufficiently exhibited, and the fluidity of the positive electrode mixture paste is slightly lowered.

第5の発明は、第1の発明を前提として、水酸化ニッケル粉末100重量部に対し、セルロース誘導体と糖質Aとの合計を0.05〜0.5重量部としたことを特徴とする。セルロース誘導体と糖質Aとの合計が0.05重量部未満であると上述した増粘剤の効果が発揮されにくくなり、セルロース誘導体と糖質Aとの合計が0.5重量部を超えて添加量が過多になると電極の反応抵抗が大きくなって充放電反応を妨げ、特に放電特性が若干低下する。   On the premise of the first invention, the fifth invention is characterized in that the total of the cellulose derivative and the carbohydrate A is 0.05 to 0.5 parts by weight with respect to 100 parts by weight of the nickel hydroxide powder. . If the total of the cellulose derivative and the saccharide A is less than 0.05 parts by weight, the effect of the thickener described above becomes difficult to be exhibited, and the total of the cellulose derivative and the saccharide A exceeds 0.5 parts by weight. When the addition amount is excessive, the reaction resistance of the electrode is increased and the charge / discharge reaction is hindered, and in particular, the discharge characteristics are slightly deteriorated.

第6の発明は、第1の発明を前提として、セルロース誘導体をカルボキシメチルセルロース(以下、CMCと略記)およびその変性体としたことを特徴とする。CMCはセルロース誘導体の中でも比較的柔軟性が高いので、少量の添加でペーストの流動性をもたせる効果が大きいために特に好ましい。なおCMCの変性体としては、エーテル化した部分をナトリウム塩およびアンモニウム塩にしたものが挙げられる。   The sixth invention is characterized in that, based on the first invention, the cellulose derivative is carboxymethylcellulose (hereinafter abbreviated as CMC) and a modified product thereof. CMC is particularly preferable because it has a relatively high flexibility among cellulose derivatives and thus has a large effect of imparting the fluidity of the paste when added in a small amount. In addition, as a modified body of CMC, what made the etherified part into sodium salt and ammonium salt is mentioned.

第7の発明は、第1の発明を前提として、糖質Aをキサンタンガムとしたことを特徴とする。キサンタンガムはグルコースの結合による主鎖部分と、マンノースなどからなる側鎖部分とから成るので、糖質Aの中でもアルカリ水溶液(アルカリ蓄電池の電解液)の中で比較的安定で増粘効果が大きいという観点から特に好ましく、比重の大きな添加剤を加えた場合でも正極合剤ペーストの沈降を抑制することができる。   The seventh invention is characterized in that the carbohydrate A is xanthan gum on the premise of the first invention. Xanthan gum is composed of a main chain part due to glucose bonding and a side chain part composed of mannose, etc., so that it is relatively stable in an alkaline aqueous solution (alkaline battery electrolyte) among carbohydrates A and has a large thickening effect. It is particularly preferable from the viewpoint, and even when an additive having a large specific gravity is added, the precipitation of the positive electrode mixture paste can be suppressed.

第8の発明は、第1〜7の発明のいずれかのアルカリ蓄電池用正極合剤ペーストの製造方法によって得られたアルカリ蓄電池用正極合剤ペーストを用いたことを特徴とするアルカリ蓄電池用正極に関する。図1あるいは図2に示すフローチャートに基づいて作製された正極合剤ペーストを、発泡ニッケル三次元多孔体などの芯材に塗布あるいは充填してこれを乾燥・圧延・切断することにより、第8のアルカリ蓄電池用正極が作製される。   An eighth invention relates to a positive electrode for an alkaline storage battery using the positive electrode mixture paste for an alkaline storage battery obtained by the method for producing a positive electrode mixture paste for an alkaline storage battery according to any one of the first to seventh inventions. . The positive electrode mixture paste prepared based on the flowchart shown in FIG. 1 or FIG. 2 is applied to or filled in a core material such as a foamed nickel three-dimensional porous body, and this is dried, rolled, and cut. A positive electrode for an alkaline storage battery is produced.

ここで図1〜2に示した添加剤について詳述する。第8のアルカリ蓄電池用正極の導電性を高めるために、導電剤としてコバルト化合物(金属コバルトや水酸化コバルト)などの導電剤を加えることができる。また第8のアルカリ蓄電池用正極の高温特性を高めるために、酸化イットリウムや酸化イッテルビウムなどの希土類酸化物などを加えることができる。   Here, the additive shown in FIGS. In order to increase the conductivity of the eighth alkaline storage battery positive electrode, a conductive agent such as a cobalt compound (metal cobalt or cobalt hydroxide) can be added as a conductive agent. In order to enhance the high temperature characteristics of the eighth alkaline storage battery positive electrode, rare earth oxides such as yttrium oxide and ytterbium oxide can be added.

第9の発明は、第8の発明のアルカリ蓄電池用正極を用いたことを特徴とするアルカリ蓄電池に関する。安定かつ大量に作製できる第8の発明のアルカリ蓄電池用正極を用いることで、高出力なアルカリ蓄電池が実現できる。   The ninth invention relates to an alkaline storage battery using the alkaline storage battery positive electrode of the eighth invention. By using the positive electrode for alkaline storage battery according to the eighth aspect of the invention, which can be produced stably and in large quantities, a high output alkaline storage battery can be realized.

以下に第9の発明のアルカリ蓄電池について詳述する。第8の発明のアルカリ蓄電池用正極と負極とを、セパレータを介して対峙させた電極群をケースに挿入し、アルカリ電解液を注入した後、封口板を用いて封口することにより構成される。   The alkaline storage battery according to the ninth aspect will be described in detail below. An electrode group in which the positive electrode and the negative electrode for an alkaline storage battery according to the eighth invention are opposed to each other through a separator is inserted into a case, an alkaline electrolyte is injected, and then sealed using a sealing plate.

ここで負極として、Ni/MHの場合は水素吸蔵合金を活物質として用い、これにカーボンブラックなどの導電剤と、必要に応じてCMCなどの増粘剤やスチレン−ブタジエン共重合体(以下、SBRと略記)などの結着剤を適量加えてペーストにし、これをパンチングメタルなどの二次元多孔体からなる芯材に塗布したものを用いることができる。またニカド電池の場合はカドミウム化合物を活物質として用い、これを主成分とするペーストをパンチングメタルなどの二次元多孔体からなる芯材に塗布したものを用いることができる。   As the negative electrode, in the case of Ni / MH, a hydrogen storage alloy is used as an active material. To this, a conductive agent such as carbon black, and a thickener such as CMC or a styrene-butadiene copolymer (hereinafter referred to as “CMC”). An appropriate amount of a binder such as SBR) can be added to form a paste, which can be applied to a core made of a two-dimensional porous material such as a punching metal. In the case of a nickel-cadmium battery, a cadmium compound may be used as an active material, and a paste having this as a main component applied to a core material made of a two-dimensional porous material such as a punching metal may be used.

またセパレータとして、ポリプロピレンなどのポリオレフィンからなる不織布を用いることができる。なおこの不織布は、アルカリ電解液との親和性を高めるためにスルホン化処理などの親水化処理がなされているのが好ましい。   Moreover, the nonwoven fabric which consists of polyolefins, such as a polypropylene, can be used as a separator. The nonwoven fabric is preferably subjected to a hydrophilic treatment such as a sulfonation treatment in order to increase the affinity with the alkaline electrolyte.

上述したアルカリ蓄電池用正極、負極およびセパレータを帯状に構成して捲回した場合、渦巻状の電極群が構成される。また複数のアルカリ蓄電池用正極、負極およびセパレータを積層した場合、略矩形の積層型電極群が構成される。
アルカリ電解液は、KOHとNaOHとLiOHとを適宜混合して溶解させた水溶液を用いることができる。また異常時に多量に発生した内部ガスを放出させる安全弁と、正極あるいは負極のいずれかの端子部を、封口板に備えさせることができる。
When the above-described positive electrode, negative electrode, and separator for alkaline storage battery are configured in a belt shape and wound, a spiral electrode group is configured. When a plurality of alkaline storage battery positive electrodes, negative electrodes, and separators are stacked, a substantially rectangular stacked electrode group is formed.
As the alkaline electrolyte, an aqueous solution in which KOH, NaOH, and LiOH are appropriately mixed and dissolved can be used. Further, the sealing plate can be provided with a safety valve for releasing a large amount of internal gas generated in an abnormal state and either a positive electrode or a negative electrode terminal.

以下に実施例をあげて、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1−1)
図1に沿って、第1の工程として水酸化ニッケル粉末、添加物である水酸化コバルト粉末および酸化イットリウム粉末、糖質Aであるキサンタンガム粉末を適量の純水とともにプラネタリーミキサーを用いて混練し(混練時間20分、回転速度50rpm)、第1の混練物を作製した。この第1の混練物に、第2の工程としてセルロース誘導体であるCMC(第一工業製薬製EP:品番)の3重量%水溶液を加え、回転速度2500rpmで4分間練合撹拌し、第2の混練物を作製した。さらにこの第2の混練物に、PTFEの35%水分散液(第一工業製薬製D−1:商品名)を加えて攪拌することにより、正極合剤ペーストを作製した。具体的な固形分比は、水酸化ニッケル粉末100重量部に対して水酸化コバルト粉末が11重量部、酸化イットリウム粉末が0.5重量部、CMCが0.1重量部、キサンタンガムが0.2重量部、PTFEが0.1重量部であった。なおCMCとキサンタンガムとの重量比は1:2、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計は0.3重量部であった。また正極合剤ペーストの含水率は30%であった。これを実施例1−1とする。
(Example 1-1)
In accordance with FIG. 1, as a first step, nickel hydroxide powder, cobalt hydroxide powder and yttrium oxide powder as additives, and xanthan gum powder as carbohydrate A are kneaded together with an appropriate amount of pure water using a planetary mixer. (Kneading time 20 minutes, rotation speed 50 rpm), a first kneaded product was produced. To this first kneaded product, a 3 wt% aqueous solution of CMC (Daiichi Kogyo Seiyaku EP: product number) as a cellulose derivative is added as a second step, and kneaded and stirred for 4 minutes at a rotational speed of 2500 rpm. A kneaded material was prepared. Further, a 35% aqueous dispersion of PTFE (D-1 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to this second kneaded product and stirred to prepare a positive electrode mixture paste. The specific solid content ratio is 11 parts by weight of cobalt hydroxide powder, 0.5 part by weight of yttrium oxide powder, 0.1 part by weight of CMC, and 0.2 part of xanthan gum with respect to 100 parts by weight of nickel hydroxide powder. Part by weight and PTFE were 0.1 part by weight. The weight ratio of CMC to xanthan gum was 1: 2, and the total of CMC and xanthan gum relative to 100 parts by weight of nickel hydroxide powder was 0.3 parts by weight. The water content of the positive electrode mixture paste was 30%. This is Example 1-1.

(実施例1−2)
図2に沿って、第1の工程として水酸化ニッケル粉末、添加物である水酸化コバルト粉末および酸化イットリウム粉末を適量の純水とともにプラネタリーミキサーを用いて混練し(混練時間20分、回転速度50rpm)、第1の混練物を作製した。この第1の混練
物に、第2の工程として実施例1−1と同様のCMC水溶液およびキサンタンガムを加え、回転速度2500rpmで4分間練合撹拌し、第2の混練物を作製した。さらにこの第2の混練物に、実施例1−1と同様のPTFEの水分散液を加えて攪拌することにより、正極合剤ペーストを作製した。具体的な固形分比は、水酸化ニッケル粉末100重量部に対して水酸化コバルト粉末が11重量部、酸化イットリウム粉末が0.5重量部、CMCが0.1重量部、キサンタンガムが0.1重量部、PTFEが0.1重量部であった。なおCMCとキサンタンガムとの重量比は1:1、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計は0.2重量部であった。また正極合剤ペーストの含水率は30%であった。これを実施例1−2とする。
(Example 1-2)
According to FIG. 2, as a first step, nickel hydroxide powder, additive cobalt hydroxide powder and yttrium oxide powder are kneaded with a suitable amount of pure water using a planetary mixer (kneading time 20 minutes, rotation speed). 50 rpm), a first kneaded material was prepared. To this first kneaded product, the same CMC aqueous solution and xanthan gum as in Example 1-1 were added as the second step, and kneaded and stirred for 4 minutes at a rotational speed of 2500 rpm to prepare a second kneaded product. Furthermore, the same PTFE aqueous dispersion as in Example 1-1 was added to the second kneaded product and stirred to prepare a positive electrode mixture paste. The specific solid content ratio is 11 parts by weight of cobalt hydroxide powder, 0.5 part by weight of yttrium oxide powder, 0.1 part by weight of CMC and 0.1 part by weight of xanthan gum with respect to 100 parts by weight of nickel hydroxide powder. Part by weight and PTFE were 0.1 part by weight. The weight ratio of CMC to xanthan gum was 1: 1, and the total of CMC and xanthan gum relative to 100 parts by weight of nickel hydroxide powder was 0.2 parts by weight. The water content of the positive electrode mixture paste was 30%. This is Example 1-2.

(実施例1−3〜1−6)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するキサンタンガムの固形分比を0.1重量部(実施例1−3)、0.22重量部(実施例1−4)、0.05重量部(実施例1−5)、0.03重量部(実施例1−6)とし、CMCとキサンタンガムとの重量比を1:1(実施例1−3)、1:2.2(実施例1−4)、2:1(実施例1−5)、3.3:1(実施例1−6)とし、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.2重量部(実施例1−3)、0.32重量部(実施例1−4)、0.15重量部(実施例1−5)、0.13重量部(実施例1−6)とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例1−3〜1−6とする。
(Examples 1-3 to 1-6)
With respect to Example 1-1, the solid content ratio of xanthan gum to 100 parts by weight of nickel hydroxide powder was 0.1 parts by weight (Example 1-3), 0.22 parts by weight (Example 1-4), 0.0. 05 parts by weight (Example 1-5) and 0.03 parts by weight (Example 1-6), and the weight ratio of CMC to xanthan gum was 1: 1 (Example 1-3), 1: 2.2 ( Example 1-4), 2: 1 (Example 1-5), 3.3: 1 (Example 1-6), and the total of CMC and xanthan gum with respect to 100 parts by weight of nickel hydroxide powder was 0.2. Parts by weight (Example 1-3), 0.32 parts by weight (Example 1-4), 0.15 parts by weight (Example 1-5), and 0.13 parts by weight (Example 1-6). Except for the above, a positive electrode mixture paste produced in the same manner as in Example 1-1 is referred to as Examples 1-3 to 1-6.

(実施例1−7〜1−8)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するCMCの固形分比を0.025重量部とした上で、キサンタンガムの固形分比を0.025重量部(実施例1−7)および0.02重量部(実施例1−8)とし、CMCとキサンタンガムとの重量比を1:1(実施例1―7)および1.25:1(実施例1−8)とし、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.05重量部(実施例1−7)および0.045重量部(実施例1−8)とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例1−7〜1−8とする。
(Examples 1-7 to 1-8)
With respect to Example 1-1, the solid content ratio of CMC to 100 parts by weight of nickel hydroxide powder was set to 0.025 parts by weight, and the solid content ratio of xanthan gum was 0.025 parts by weight (Example 1-7). And 0.02 parts by weight (Example 1-8), and the weight ratio of CMC to xanthan gum is 1: 1 (Example 1-7) and 1.25: 1 (Example 1-8). The same as Example 1-1 except that the total amount of CMC and xanthan gum relative to 100 parts by weight of nickel powder was 0.05 parts by weight (Example 1-7) and 0.045 parts by weight (Example 1-8). The positive electrode mixture paste produced in this manner is referred to as Examples 1-7 to 1-8.

(実施例1−9)
実施例1−7に対し、水酸化ニッケル粉末100重量部に対するCMCの固形分比を0.02重量部とし、CMCとキサンタンガムとの重量比を1:1.25とし、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.045重量部とした以外は、実施例1−7と同様にして作製した正極合剤ペーストを実施例1−9とする。
(Example 1-9)
For Example 1-7, the solid content ratio of CMC to 100 parts by weight of nickel hydroxide powder was 0.02 parts by weight, the weight ratio of CMC to xanthan gum was 1: 1.25, and nickel hydroxide powder 100 weights Example 1-9 is a positive electrode mixture paste produced in the same manner as in Example 1-7, except that the total amount of CMC and xanthan gum is 0.045 parts by weight.

(比較例1−1)
図3に沿って、第1の工程として水酸化ニッケル粉末、添加物である水酸化コバルト粉末および酸化イットリウム粉末、CMC粉末を適量の純水とともにプラネタリーミキサーを用いて混練し(混練時間20分、回転速度50rpm)、第1の混錬物を作製した。この第1の混錬物に、第2の工程としてキサンタンガムおよび適量の水を加え、回転速度2500rpmで4分間練合撹拌し、第2の混練物を作製した。さらにこの第2の混練物に、実施例1−1と同様のPTFEの水分散液を加えて攪拌することにより、正極合剤ペーストを作製した。なお正極合剤ペーストの組成は実施例1−1と同様であった。これを比較例1−1とする。
(Comparative Example 1-1)
According to FIG. 3, as a first step, nickel hydroxide powder, additive cobalt hydroxide powder, yttrium oxide powder, and CMC powder were kneaded together with an appropriate amount of pure water using a planetary mixer (kneading time 20 minutes). , Rotation speed 50 rpm), a first kneaded product was produced. To the first kneaded product, xanthan gum and an appropriate amount of water were added as a second step, and kneaded and stirred at a rotational speed of 2500 rpm for 4 minutes to prepare a second kneaded product. Furthermore, the same PTFE aqueous dispersion as in Example 1-1 was added to the second kneaded product and stirred to prepare a positive electrode mixture paste. The composition of the positive electrode mixture paste was the same as that of Example 1-1. This is designated as Comparative Example 1-1.

(比較例1−2)
図4に沿って、キサンタンガムを添加せずに第1の工程によって第1の混練物を作製し(混練時間20分、回転速度50rpm)、この第1の混練物を経た正極合剤ペーストを活用して実施例1−1と同様の正極合剤ペーストを作製した。これを比較例1−2とする
(Comparative Example 1-2)
According to FIG. 4, a first kneaded material was prepared by the first step without adding xanthan gum (kneading time 20 minutes, rotation speed 50 rpm), and the positive electrode mixture paste that passed through the first kneaded material was utilized. Then, the same positive electrode mixture paste as that of Example 1-1 was produced. This is designated as Comparative Example 1-2.

(比較例1−3)
図5に沿って、第2の工程を経ずに作製した正極合剤ペーストを活用して実施例1−1と同様の正極合剤ペーストを作製した。これを比較例1−3とする。
(Comparative Example 1-3)
A positive electrode mixture paste similar to that of Example 1-1 was manufactured along with FIG. 5 using the positive electrode mixture paste prepared without passing through the second step. This is designated as Comparative Example 1-3.

以上の各例に対し、以下のペースト物性評価を行った。結果を(表1)に示す。   The following paste physical property evaluation was performed on each of the above examples. The results are shown in (Table 1).

(ペースト粘度測定)
粘度測定にはB型粘度計を用いた。正極合剤ペーストに粘度計のローターを浸し、ローターの回転速度2rpmおよび20rpmでの粘度(mPa/s)を測定した。また正極合剤ペーストの流動性の指標として、20rpmでの粘度に対する2rpmでの粘度の比(以下、粘度比と称する)を求めた。
(Paste viscosity measurement)
A B-type viscometer was used for the viscosity measurement. The rotor of the viscometer was immersed in the positive electrode mixture paste, and the viscosity (mPa / s) at the rotation speeds of 2 rpm and 20 rpm of the rotor was measured. Moreover, the ratio of the viscosity at 2 rpm to the viscosity at 20 rpm (hereinafter referred to as viscosity ratio) was obtained as an index of fluidity of the positive electrode mixture paste.

(ペースト放置試験)
100mlの正極合剤ペーストを底面の直径が5cm、高さが10cmの円筒容器に150cc入れ、常温で24時間放置した後に上澄み液の量をスポイトで抜き取り、重量を測定した。この時の上澄み液の量を水分離量として、正極合剤ペーストの耐沈降性の指標にした。
(Paste neglect test)
150 ml of 100 ml of the positive electrode mixture paste was placed in a cylindrical container having a bottom diameter of 5 cm and a height of 10 cm, and left at room temperature for 24 hours, and then the amount of the supernatant was taken out with a dropper and the weight was measured. The amount of the supernatant liquid at this time was used as an amount of water separation, and was used as an index for the sedimentation resistance of the positive electrode mixture paste.

Figure 2007324075
図3のようにCMCを先に投入して混練した比較例1−1の正極合剤ペーストは、CMCの鎖状構造が分断された後でキサンタンガムに取り込まれるので十分な効果を発揮できず、流動性が低下する正極合剤ペーストが得られる結果となった。また図4のようにCMCのみでキサンタンガムを投入しない比較例1−2は粘度比が3以上であっても、水分離量の著しく大きい耐沈降性の悪いペーストが得られる結果となった。さらに図5のようにキサンタンのみでCMCを投入しない比較例1−3は、粘度比が顕著に高く流動性の悪い正極合剤ペーストが得られる結果となった。
Figure 2007324075
The positive electrode mixture paste of Comparative Example 1-1, in which CMC was first introduced and kneaded as shown in FIG. 3, could not exhibit a sufficient effect because it was taken into xanthan gum after the chain structure of CMC was broken. As a result, a positive electrode mixture paste with reduced fluidity was obtained. Further, as shown in FIG. 4, Comparative Example 1-2 in which xanthan gum was not added with only CMC as shown in FIG. 4 resulted in a paste having a significantly large water separation amount and poor sedimentation resistance even when the viscosity ratio was 3 or more. Further, as shown in FIG. 5, Comparative Example 1-3 in which CMC was not added only with xanthan resulted in a positive electrode mixture paste having a remarkably high viscosity ratio and poor fluidity.

一方、本発明の製造方法(図1および2)に沿って作製した実施例1−1〜1−9の正極合剤ペーストはいずれも粘度比が5以下という優れた流動性を示す上に、耐沈降性も比較的良好な結果となった。このように良好な性状を有する正極合剤ペーストは、芯材に塗布あるいは充填する際の均一性が向上する。   On the other hand, all of the positive electrode mixture pastes of Examples 1-1 to 1-9 prepared according to the production method of the present invention (FIGS. 1 and 2) exhibit excellent fluidity with a viscosity ratio of 5 or less. The settling resistance was also relatively good. Thus, the positive mix paste which has a favorable property improves the uniformity at the time of apply | coating or filling to a core material.

しかしながら糖質Aであるキサンタンガムの量を0.03重量部に減らした実施例1−
6は、糖質Aの効果である増粘作用による耐沈降性が低下するため、ペーストの水分離量が比較的顕著に増加した。一方、キサンタンガムの量を0.22重量部に増やした実施例1−4は、ペースト粘度比が大きくなり、ペースト流動性が若干低下した。よってCMCに代表されるセルロース誘導体と、キサンタンガムに代表される糖質Aとの重量比は、1:2〜2:1であることが好ましい。
However, Example 1 in which the amount of xanthan gum as carbohydrate A was reduced to 0.03 parts by weight
In No. 6, since the sedimentation resistance due to the thickening action, which is the effect of the carbohydrate A, is reduced, the water separation amount of the paste is relatively remarkably increased. On the other hand, in Example 1-4 in which the amount of xanthan gum was increased to 0.22 parts by weight, the paste viscosity ratio was increased and the paste fluidity was slightly lowered. Therefore, the weight ratio of the cellulose derivative typified by CMC and the saccharide A typified by xanthan gum is preferably 1: 2 to 2: 1.

また、CMCとキサンタンガムの合計量が0.045重量部である実施例1−8および1−9では増粘剤の効果が発揮されにくく、ペースト水分離量がやや増加し、耐沈降性が比較的低下する結果となった。よってCMCに代表されるセルロース誘導体と、キサンタンガムに代表される糖質Aとの合計量は水酸化ニッケル100重量部に対して、0.05重量部以上であることが好ましい。   Further, in Examples 1-8 and 1-9 in which the total amount of CMC and xanthan gum is 0.045 parts by weight, the effect of the thickener is hardly exhibited, the amount of paste water separation is slightly increased, and the settling resistance is compared. As a result, the results decreased. Therefore, the total amount of the cellulose derivative typified by CMC and the saccharide A typified by xanthan gum is preferably 0.05 parts by weight or more with respect to 100 parts by weight of nickel hydroxide.

(実施例2−1)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するCMCの添加量を0.2重量部、キサンタンガムの固形分比を0.3重量部とし、CMCとキサンタンガムとの重量比を1:1.5、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.5重量部とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例2−1とする。
(Example 2-1)
With respect to Example 1-1, the amount of CMC added to 100 parts by weight of nickel hydroxide powder is 0.2 parts by weight, the solid content ratio of xanthan gum is 0.3 parts by weight, and the weight ratio of CMC to xanthan gum is 1: A positive electrode mixture paste produced in the same manner as in Example 1-1, except that the total amount of CMC and xanthan gum was 0.5 parts by weight based on 1.5 parts by weight of nickel hydroxide powder. Example 2-1 And

(実施例2−2)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するCMCの添加量を0.2重量部、キサンタンガムの固形分比を0.4重量部とし、CMCとキサンタンガムとの重量比を1:2、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.6重量部とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例2−2とする。
(Example 2-2)
With respect to Example 1-1, the amount of CMC added to 100 parts by weight of nickel hydroxide powder is 0.2 parts by weight, the solid content ratio of xanthan gum is 0.4 parts by weight, and the weight ratio of CMC to xanthan gum is 1: 2. A positive electrode mixture paste produced in the same manner as in Example 1-1, except that the total amount of CMC and xanthan gum relative to 100 parts by weight of nickel hydroxide powder was 0.6 part by weight. .

(実施例2−3)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するCMCの添加量を0.3重量部、キサンタンガムの固形分比を0.2重量部とし、CMCとキサンタンガムとの重量比を1.5:1、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.5重量部とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例2−3とする。
(Example 2-3)
For Example 1-1, the amount of CMC added to 100 parts by weight of nickel hydroxide powder is 0.3 parts by weight, the solid content ratio of xanthan gum is 0.2 parts by weight, and the weight ratio of CMC to xanthan gum is 1. A positive electrode mixture paste produced in the same manner as in Example 1-1, except that the total amount of CMC and xanthan gum was 0.5 parts by weight with respect to 5 parts by weight of nickel hydroxide powder, Example 2-3. And

(実施例2−4)
実施例1−1に対し、水酸化ニッケル粉末100重量部に対するCMCの添加量を0.4重量部、キサンタンガムの固形分比を0.2重量部とし、CMCとキサンタンガムとの重量比を2:1、水酸化ニッケル粉末100重量部に対するCMCとキサンタンガムとの合計を0.6重量部とした以外は、実施例1−1と同様にして作製した正極合剤ペーストを実施例2−4とする。
(Example 2-4)
For Example 1-1, the amount of CMC added to 100 parts by weight of nickel hydroxide powder is 0.4 parts by weight, the solid content ratio of xanthan gum is 0.2 parts by weight, and the weight ratio of CMC to xanthan gum is 2: 1. A positive electrode mixture paste produced in the same manner as in Example 1-1 except that the total amount of CMC and xanthan gum with respect to 100 parts by weight of nickel hydroxide powder was 0.6 parts by weight is referred to as Example 2-4. .

以上の各例に対し、実施例1と同様のペースト物性評価を行った。またこれら実施例2−1〜2−4と、実施例1−1および1−3の正極合剤ペーストについては、芯材である発泡状ニッケル多孔体へ充填し、乾燥および加圧後に幅35mm、長さ220mm、厚み0.6mmに切断して、2800mAhの理論容量を持つアルカリ蓄電池用正極を作製した。さらにこの正極と水素吸蔵合金を使用した理論容量4200mAhの負極との間に介入させたスルホン化ポリプロピレンセパレータを渦巻状に捲回して電極群を作製し、この電極群を、負極端子を兼ねるケースに挿入した後、比重が1.26である水酸化カリウム、水酸化ナトリウムおよび水酸化リチウムからなるアルカリ電解液を正極容量に対して1.8ml/Ahの割合で注入し、Ni/MHを作製し、以下の電池放電特性評価を行った
。結果を(表2)に示す。
For each of the above examples, the same paste physical property evaluation as in Example 1 was performed. Moreover, about these Example 2-1 to 2-4 and the positive mix paste of Examples 1-1 and 1-3, it fills with the foamed nickel porous body which is a core material, 35 mm in width after drying and pressurization. A positive electrode for an alkaline storage battery having a theoretical capacity of 2800 mAh was produced by cutting the sheet into a length of 220 mm and a thickness of 0.6 mm. Further, a sulfonated polypropylene separator intervened between the positive electrode and a negative electrode having a theoretical capacity of 4200 mAh using a hydrogen storage alloy is spirally wound to produce an electrode group. After the insertion, an alkaline electrolyte composed of potassium hydroxide, sodium hydroxide and lithium hydroxide having a specific gravity of 1.26 was injected at a rate of 1.8 ml / Ah with respect to the positive electrode capacity to produce Ni / MH. The following battery discharge characteristics were evaluated. The results are shown in (Table 2).

(電池放電特性)
各例のNi/MHを24時間放置した後、25℃雰囲気下で以下に示す初充放電および10サイクルの活性化充放電を行い、その後に内部抵抗試験を行った。
初充放電条件:
充電−280mAにて15時間(充電後に1時間放置)
放電−900mAにて1.0Vに達するまで
活性化充放電条件:
充電−1400mAにて2時間30分
放電−2800mAにて1.0Vに達するまで
内部抵抗試験:
充電ー1400mAにて1時間
放電−2800mAにて20秒、休止5分、充電ー2800mAにて20秒、休止5分
放電−8400mAにて20秒、休止5分、充電ー8400mAにて20秒、休止5分
放電−14000mAにて20秒、休止5分、充電ー14000mAにて20秒、休止5分
放電−19600mAにて20秒、休止5分、充電ー19600mAにて20秒、休止5分
内部抵抗試験における4種の電流値と放電10秒後の電圧の関係から、オームの法則に基づいて直流の内部抵抗(DCIR)を算出した。
(Battery discharge characteristics)
After Ni / MH of each example was allowed to stand for 24 hours, the following initial charge / discharge and activation charge / discharge of 10 cycles were performed in an atmosphere at 25 ° C., and then an internal resistance test was performed.
Initial charge / discharge conditions:
Charge-15 hours at 280 mA (1 hour after charge)
Charging / discharging conditions until discharge reaches −1.0 mA at 900 mA:
Charge-2 hours 30 minutes at 1400 mA-Internal resistance test until 1.0 V is reached at -2800 mA:
Charge-1 hour discharge at 1400 mA-20 seconds at -2800 mA, pause 5 minutes, charge-20 seconds at 2800 mA, discharge 5 minutes-discharge at 8400 mA, 20 seconds, pause-5 minutes, charge-20 seconds at 8400 mA, Pause 5 minutes Discharge-20 seconds at 14000 mA, Pause 5 minutes, Charge-14000 mA for 20 seconds, Pause 5 minutes Discharge-19600 mA for 20 seconds, Pause 5 minutes, Charge-19600 mA for 20 seconds, Pause 5 minutes The direct current internal resistance (DCIR) was calculated based on Ohm's law from the relationship between the four kinds of current values in the resistance test and the voltage after 10 seconds of discharge.

Figure 2007324075
実施例1−1より増粘剤を減量した実施例1−3では、DCIRが実施例1−1より低くなった。また、実施例1−1より増粘剤を増量した実施例2−1〜2−4は、いずれもDCIRが実施例1−1より高くなったが、特にCMCとキサンタンガムの合計量が0.5重量部以上になるとDCIRが顕著に増加する結果となった。よって増粘剤の合計量は、水酸化ニッケル100重量部に対して0.5重量部以下であることが好ましく、先に述べた耐沈降性の観点も含めて、増粘剤の合計量の範囲は0.05〜0.5重量部であることが好ましい。
Figure 2007324075
In Example 1-3 in which the thickener was reduced from Example 1-1, the DCIR was lower than in Example 1-1. In Examples 2-1 to 2-4 in which the thickener was increased from Example 1-1, the DCIR was higher than that in Example 1-1, but in particular, the total amount of CMC and xanthan gum was 0.00. When the amount was 5 parts by weight or more, DCIR was remarkably increased. Therefore, the total amount of the thickener is preferably 0.5 parts by weight or less with respect to 100 parts by weight of nickel hydroxide, including the above-described viewpoint of sedimentation resistance. The range is preferably 0.05 to 0.5 parts by weight.

以上、糖質Aとセルロース誘導体とを含むアルカリ蓄電池用正極合剤ペーストを作製する場合、水酸化ニッケル粉末と添加剤粉末と糖質Aと水とを混練する第1の工程と、第1の工程の混練物と前記セルロース誘導体水溶液とを混練する第2の工程を設けることにより、良質な正極合剤ペーストが得られるのみでなく、その量を適正化することにより、放電特性の優れたアルカリ蓄電池用正極を得られることがわかる。   As mentioned above, when producing the positive mix paste for alkaline storage batteries containing the saccharide A and the cellulose derivative, the first step of kneading the nickel hydroxide powder, the additive powder, the saccharide A and water, By providing the second step of kneading the kneaded product of the step and the cellulose derivative aqueous solution, not only a high-quality positive electrode mixture paste can be obtained, but also by optimizing the amount, an alkali having excellent discharge characteristics can be obtained. It turns out that the positive electrode for storage batteries can be obtained.

本実施例では糖質Aとしてキサンタンガムを、セルロース誘導体としてCMCについて効果的に作用していることを示したが、その他の糖質Aやセルロース誘導体を用いた場合でも、本発明と同様の効果が得られている。   In this example, it was shown that xanthan gum acts as a carbohydrate A and CMC as a cellulose derivative, but even when other carbohydrate A or a cellulose derivative is used, the same effect as the present invention is obtained. Has been obtained.

本発明にかかる製造方法によれば、アルカリ蓄電池用正極合剤ペーストの安定化によってアルカリ蓄電池用正極の生産性を向上する上に、増粘剤の量を適度に減らして電池の放電特性が向上できる。よってあらゆる機器の電源として利用可能性は高く、その効果は大きい。   According to the production method of the present invention, the productivity of the positive electrode for alkaline storage battery is improved by stabilizing the positive electrode mixture paste for alkaline storage battery, and the discharge characteristic of the battery is improved by appropriately reducing the amount of thickener. it can. Therefore, it can be used as a power source for all devices, and its effect is great.

本発明のアルカリ蓄電池用正極合剤ペーストの製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the positive mix paste for alkaline storage batteries of this invention. 本発明のアルカリ蓄電池用正極合剤ペーストの製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the positive mix paste for alkaline storage batteries of this invention. 従来のアルカリ蓄電池用正極合剤ペーストの製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the conventional positive mix paste for alkaline storage batteries 従来のアルカリ蓄電池用正極合剤ペーストの製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the conventional positive mix paste for alkaline storage batteries 従来のアルカリ蓄電池用正極合剤ペーストの製造方法の一例を示すフローチャートThe flowchart which shows an example of the manufacturing method of the conventional positive mix paste for alkaline storage batteries

Claims (9)

水酸化ニッケル粉末を活物質とし、水を溶媒とし、単糖類を含む直鎖と飽和6員環構造を含む側鎖とからなる糖質とセルロース誘導体とを増粘剤として用いるアルカリ蓄電池用正極合剤ペーストの製造方法であって、
前記水酸化ニッケル粉末を混練する第1の工程と、
前記第1の工程の混練物とセルロース誘導体とを混練する第2の工程とからなることを特徴とするアルカリ蓄電池用正極合剤ペーストの製造方法。
Positive electrode composite for alkaline storage battery using nickel hydroxide powder as active material, water as solvent, saccharide consisting of straight chain containing monosaccharide and side chain containing saturated 6-membered ring structure and cellulose derivative as thickener A method for producing an agent paste,
A first step of kneading the nickel hydroxide powder;
The manufacturing method of the positive mix paste for alkaline storage batteries characterized by including the 2nd process of kneading | mixing the kneaded material and cellulose derivative of a said 1st process.
前記第1の工程において前記糖質を添加することを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 The method for producing a positive electrode mixture paste for an alkaline storage battery according to claim 1, wherein the carbohydrate is added in the first step. 前記第2の工程において前記糖質を添加することを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 The method for producing a positive electrode mixture paste for an alkaline storage battery according to claim 1, wherein the carbohydrate is added in the second step. 前記セルロース誘導体と前記糖質との重量比を2:1〜1:2としたことを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 2. The method for producing a positive electrode mixture paste for an alkaline storage battery according to claim 1, wherein the weight ratio of the cellulose derivative to the saccharide is 2: 1 to 1: 2. 前記水酸化ニッケル粉末100重量部に対し、前記セルロース誘導体と前記糖質との合計を0.05〜0.5重量部としたことを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 2. The positive electrode mixture for an alkaline storage battery according to claim 1, wherein the total of the cellulose derivative and the sugar is 0.05 to 0.5 parts by weight with respect to 100 parts by weight of the nickel hydroxide powder. Manufacturing method of paste. 前記セルロース誘導体をカルボキシメチルセルロースおよびその変性体としたことを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 The method for producing a positive electrode mixture paste for an alkaline storage battery according to claim 1, wherein the cellulose derivative is carboxymethylcellulose and a modified product thereof. 前記糖質をキサンタンガムとしたことを特徴とする、請求項1記載のアルカリ蓄電池用正極合剤ペーストの製造方法。 The method for producing a positive electrode mixture paste for an alkaline storage battery according to claim 1, wherein the sugar is xanthan gum. 請求項1〜7のいずれかに記載のアルカリ蓄電池用正極合剤ペーストの製造方法によって得られたアルカリ蓄電池用正極合剤ペーストを用いたことを特徴とするアルカリ蓄電池用正極。 A positive electrode for an alkaline storage battery, wherein the positive electrode mixture paste for an alkaline storage battery obtained by the method for producing a positive electrode mixture paste for an alkaline storage battery according to any one of claims 1 to 7 is used. 請求項8に記載のアルカリ蓄電池用正極を用いたことを特徴とするアルカリ蓄電池。
An alkaline storage battery using the positive electrode for an alkaline storage battery according to claim 8.
JP2006155747A 2006-06-05 2006-06-05 Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof Active JP5194387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155747A JP5194387B2 (en) 2006-06-05 2006-06-05 Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155747A JP5194387B2 (en) 2006-06-05 2006-06-05 Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof

Publications (2)

Publication Number Publication Date
JP2007324075A true JP2007324075A (en) 2007-12-13
JP5194387B2 JP5194387B2 (en) 2013-05-08

Family

ID=38856680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155747A Active JP5194387B2 (en) 2006-06-05 2006-06-05 Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof

Country Status (1)

Country Link
JP (1) JP5194387B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093240A (en) * 2011-10-26 2013-05-16 Toyota Motor Corp Method for manufacturing secondary battery electrode
JP2017022052A (en) * 2015-07-14 2017-01-26 株式会社豊田自動織機 Active material mixture kneading method and active material mixture kneading machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135347A (en) * 1999-11-05 2001-05-18 Shin Etsu Chem Co Ltd Nickel hydrogen secondary battery
JP2003109588A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Manufacturing method of alkali secondary battery positive electrode active material paste
JP2003308840A (en) * 2001-12-21 2003-10-31 Hitachi Maxell Ltd Electrode and battery using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135347A (en) * 1999-11-05 2001-05-18 Shin Etsu Chem Co Ltd Nickel hydrogen secondary battery
JP2003109588A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Manufacturing method of alkali secondary battery positive electrode active material paste
JP2003308840A (en) * 2001-12-21 2003-10-31 Hitachi Maxell Ltd Electrode and battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093240A (en) * 2011-10-26 2013-05-16 Toyota Motor Corp Method for manufacturing secondary battery electrode
JP2017022052A (en) * 2015-07-14 2017-01-26 株式会社豊田自動織機 Active material mixture kneading method and active material mixture kneading machine

Also Published As

Publication number Publication date
JP5194387B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR101620066B1 (en) Electrode for electrochemical device with low resistance, method of making the same and electrochemical device comprising the same
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JPH10106556A (en) Nickel positive electrode and nickel-hydrogen storage battery using it
JP2008071759A (en) Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JPWO2018163485A1 (en) Alkaline battery
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP5194387B2 (en) Alkaline storage battery, positive electrode for alkaline storage battery, and method for producing a mixture paste thereof
JP2001015114A (en) Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery
JPH10270042A (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using it
JP2001319651A (en) Graphite material for negative electrode of non-aqueous secondary battery
JP3573964B2 (en) Method of manufacturing hydrogen storage alloy electrode for alkaline battery and hydrogen storage alloy electrode for alkaline storage battery
JP2006092760A (en) Method of manufacturing negative electrode plate for nonaqueous secondary battery
JP4569068B2 (en) Thickener for nickel electrode, nickel electrode and method for producing the same, and alkaline storage battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
CN1179436C (en) Nickel positive active material and nickel-hydrogen accumulator
JP4930674B2 (en) Sealed alkaline storage battery and its assembled battery
JP4967263B2 (en) Method for producing electrode mixture paste for alkaline storage battery
JP4752401B2 (en) Manufacturing method of cylindrical alkaline storage battery
KR101811131B1 (en) New cynoethyl guar gum, negative electrode and secondary battery using the same, and the prepareation method of the same
CN102376987A (en) Electrolyte of nickel hydrogen battery and nickel hydrogen battery
JP2011018493A (en) Nickel hydrogen secondary battery
JP3550838B2 (en) Alkaline storage battery
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer
JP3088649B2 (en) Manufacturing method of hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3