JP2001015114A - Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery - Google Patents

Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery

Info

Publication number
JP2001015114A
JP2001015114A JP11181053A JP18105399A JP2001015114A JP 2001015114 A JP2001015114 A JP 2001015114A JP 11181053 A JP11181053 A JP 11181053A JP 18105399 A JP18105399 A JP 18105399A JP 2001015114 A JP2001015114 A JP 2001015114A
Authority
JP
Japan
Prior art keywords
negative electrode
alginate
secondary battery
electrolyte secondary
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11181053A
Other languages
Japanese (ja)
Inventor
Katsutomo Ozeki
克知 大関
Minoru Shirohige
稔 白髭
Koichi Endo
弘一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP11181053A priority Critical patent/JP2001015114A/en
Publication of JP2001015114A publication Critical patent/JP2001015114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slurry for forming a negative electrode film for a nonaqueous electrolyte secondary battery and a negative electrode film for a nonaqueous electrolyte secondary battery having high safety in handling, excellent adhesion between a synthetic carbon material or a graphite material and a current collecting body, suppressed decrease of discharge capacity, excellent durability against a charging and discharging cycle. SOLUTION: This slurry for forming a negative electrode film for a nonaqueous electrolyte secondary battery has a basic structure consisting of a carbon material, a binding agent and a water medium. A portion or the entirety of the binding agent uses one or more alginate salt selected from sodium alginate, potassium alginate, or ammonium alginate and/or propylene glycol alginate ester. A negative electrode film is formed by using it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、非水系電解液二
次電池の負極塗膜形成用スラリーおよび同電池の負極塗
膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slurry for forming a negative electrode film of a nonaqueous electrolyte secondary battery and a negative electrode film of the battery.

【0002】[0002]

【従来の技術】非水系電解液二次電池、例えばリチウム
イオン二次電池はノートパソコンや携帯電話などの充電
可能な電源として普及しているが、さらにその適用範囲
を拡げるために電池の高容量化や高電圧化が望まれてい
る。非水系電解液二次電池は正極、負極、セパレーター
および非水系電解液などの部材から構成される。非水系
電解液二次電池の負極材としては、負極活物質としてメ
ソフェーズカーボンマイクロビーズ(MCMB)、難黒
鉛化炭素、天然黒鉛などの炭素材料を、結着剤を溶解し
た媒体中に分散させ塗料化して負極塗膜形成用スラリー
とし、このスラリーを集電体である圧延銅箔上に塗布・
乾燥して負極塗膜としたものが用いられる。この負極塗
膜形成用スラリーの媒体としては、従来、N−メチル−
2−ピロリドン(NMP)に代表される有機溶剤が使用
されている。また、このNMPに組み合わせる結着剤と
してはポリフッ化ビニリデン(PVDF)に代表される
フッ素系樹脂材料が用いられている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries, for example, lithium ion secondary batteries, have been widely used as rechargeable power sources for notebook computers, mobile phones, and the like. And higher voltage are desired. The non-aqueous electrolyte secondary battery is composed of members such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte. As a negative electrode material of a non-aqueous electrolyte secondary battery, a carbon material such as mesophase carbon microbeads (MCMB), non-graphitizable carbon, and natural graphite is dispersed in a medium in which a binder is dissolved, as a negative electrode active material. Into a slurry for forming a negative electrode coating film, and apply this slurry onto a rolled copper foil as a current collector.
What was dried and used as the negative electrode coating film is used. Conventionally, as a medium of the slurry for forming a negative electrode coating film, N-methyl-
An organic solvent represented by 2-pyrrolidone (NMP) is used. Further, as a binder to be combined with the NMP, a fluorine-based resin material represented by polyvinylidene fluoride (PVDF) is used.

【0003】前述の電池高容量化の要求を満たすために
は、負極材料を高容量化すること、すなわち負極に如何
に多量のリチウムイオンを吸蔵させて、このリチウムイ
オンを放出させ得るかがポイントとなる。しかしなが
ら、従来から負極活物質として使用されているMCMB
では黒鉛化が不十分なため、得られる放電容量は300
mAh/g程度に留まる。このため、電池(負極材料)
高容量化の要求を達成する方策として、負極活物質とし
て結晶性の高い天然黒鉛などの黒鉛粒子を用いる検討が
進められている。これらの黒鉛粒子は理論的な充放電容
量である372mAh/gに近い値を得ることができる
からである。また負極活物質を黒鉛粒子にすると、非水
系電解液二次電池の高電圧化にも適したものとなる。
[0003] In order to satisfy the above demand for higher battery capacity, it is important to increase the capacity of the negative electrode material, that is, how much lithium ions can be absorbed by the negative electrode and the lithium ions can be released. Becomes However, MCMB conventionally used as a negative electrode active material
Is insufficient in graphitization, the resulting discharge capacity is 300
It stays at about mAh / g. For this reason, batteries (negative electrode materials)
As a measure to achieve the demand for higher capacity, studies are underway to use graphite particles such as natural graphite having high crystallinity as a negative electrode active material. This is because these graphite particles can obtain a value close to the theoretical charge / discharge capacity of 372 mAh / g. When graphite particles are used as the negative electrode active material, it becomes suitable for increasing the voltage of a non-aqueous electrolyte secondary battery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、黒鉛材
料の結晶構造は層方向の結合力が高いため、粉砕によっ
てリン片状またはリン状の薄片状粒子粉末となる。この
ため、従来主として用いられているPVDFに代表され
るフッ素系樹脂からなる結着剤では成膜性が低く、黒鉛
粒子間および集電体である銅箔との十分な密着性が得ら
れなかった。その結果、負極活物質として結晶構造面で
有利な黒鉛粉末を適用しても、電気抵抗値が高いために
充放電容量が低下したり、大電流時の容量低下が大きく
なる。また、繰り返して充放電を行う充放電サイクルに
おける容量低下が大きいという欠点があった。さらに、
フッ素系樹脂は高温下で分解し、離脱したフッ素とリチ
ウムが激しく反応することが安全上の難点として指摘さ
れている。
However, since the crystal structure of the graphite material has a high bonding force in the layer direction, the graphite material becomes flake-like or flake-like flake-like particles by pulverization. For this reason, a binder made of a fluorine-based resin typified by PVDF, which is conventionally mainly used, has a low film-forming property, and does not provide sufficient adhesion between graphite particles and a copper foil as a current collector. Was. As a result, even if graphite powder which is advantageous in terms of crystal structure is applied as the negative electrode active material, the charge / discharge capacity is reduced due to the high electric resistance value, and the capacity decrease at the time of a large current is increased. Further, there is a disadvantage that the capacity is significantly reduced in a charge / discharge cycle in which charge / discharge is repeatedly performed. further,
It has been pointed out that fluorine-based resin decomposes at high temperature and violent reaction between released fluorine and lithium occurs as a safety problem.

【0005】また、結着剤としてPVDFに代表される
フッ素系樹脂を使用する場合には、スラリー化のための
溶媒としてNMPなどの有機溶剤を使用することが必要
であるが、近年重視されている環境への配慮や作業者の
安全性および価格などの観点から、スラリー化のための
溶媒を水性にすることが好ましい。このような水性スラ
リーとして、特開平6−310142号公報には、濃硫
酸と濃硝酸の混合溶液に黒鉛粉末を浸漬して硫酸を含む
黒鉛層間化合物を生成させて、高温まで急熱する際の体
積膨張が元の体積の5倍以下である人造黒鉛粉末に、ア
クリル系樹脂の結着剤とカルボキシメチルセルロース水
溶液を用いてリチウムイオン二次電池の負極形成用スラ
リー(ペースト)とすることが開示されている。
In the case of using a fluororesin represented by PVDF as a binder, it is necessary to use an organic solvent such as NMP as a solvent for slurrying. It is preferable that the solvent for slurrying is made aqueous from the viewpoints of the environment, the safety of the worker, and the price. As such an aqueous slurry, Japanese Patent Application Laid-Open No. 6-310142 discloses a method of producing a graphite intercalation compound containing sulfuric acid by immersing graphite powder in a mixed solution of concentrated sulfuric acid and concentrated nitric acid. It is disclosed that a slurry (paste) for forming a negative electrode of a lithium ion secondary battery is formed by using a binder of an acrylic resin and an aqueous solution of carboxymethyl cellulose on artificial graphite powder having a volume expansion of 5 times or less the original volume. ing.

【0006】この発明は、上記のような問題を解決する
ためになされたものであり、取扱い上の安全性に優れて
いると共に、難黒鉛化炭素やMCMBなどの合成炭素材
料はもとより、リン状またはリン片状の黒鉛材料と集電
体との密着性に優れ、放電容量の低下が少なく、充放電
サイクルに対する耐久性に優れた非水系電解液二次電池
の負極塗膜形成用スラリーおよび非水系電解液二次電池
の負極塗膜を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is excellent in handling safety. In addition to synthetic carbon materials such as non-graphitizable carbon and MCMB, phosphorus-like materials can be used. Alternatively, the slurry for forming a negative electrode coating film of a nonaqueous electrolyte secondary battery having excellent adhesion between a flaky graphite material and a current collector, a small decrease in discharge capacity, and excellent durability against charge / discharge cycles, and a non-aqueous electrolyte It is intended to provide a negative electrode coating film for an aqueous electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明の非水系電解液二次電池の負極塗膜形成
用スラリーは、炭素材料、結着剤および水媒体を基本構
成とする、非水系電解液二次電池の負極塗膜形成用スラ
リーにおいて、用いる結着剤の一部または全部が、アル
ギン酸ナトリウム、アルギン酸カリウム、アルギン酸ア
ンモニウムから1種以上選ばれるアルギン酸塩および/
またはアルギン酸プロピレングリコールエステルであ
り、その配合量は、スラリー中の炭素材料100重量部
に対して0.1重量部〜15重量部である非水系電解液
二次電池の負極塗膜形成用スラリーを提供するものであ
る。また、この発明に関する、他の発明は、炭素材料と
結着剤を基本構成とする、非水系電解液二次電池の負極
塗膜において、結着剤の一部または全部が、アルギン酸
塩および/またはアルギン酸プロピレングリコールエス
テルであり、その配合量は、負極被膜中の炭素材料10
0重量部に対して0.1重量部〜15重量部である非水
系電解液二次電池の負極塗膜を提供するものである。
In order to solve the above-mentioned problems, a slurry for forming a negative electrode coating film of a non-aqueous electrolyte secondary battery according to the present invention comprises a carbon material, a binder and an aqueous medium. In the slurry for forming a negative electrode coating film of a nonaqueous electrolyte secondary battery, a part or all of the binder used is an alginate selected from one or more of sodium alginate, potassium alginate and ammonium alginate, and / or
Or propylene glycol alginate, the amount of which is 0.1 to 15 parts by weight with respect to 100 parts by weight of the carbon material in the slurry. To provide. Another invention related to the present invention relates to a negative electrode coating film of a non-aqueous electrolyte secondary battery having a carbon material and a binder as basic components, wherein a part or all of the binder is alginate and / or Or propylene glycol alginate, the amount of which is determined by the carbon material 10 in the negative electrode coating.
It is intended to provide a negative electrode coating film of a non-aqueous electrolyte secondary battery in an amount of 0.1 to 15 parts by weight with respect to 0 parts by weight.

【0008】この負極塗膜は、負極活物質として用いる
炭素材料が、層方向の結合力が高いリン片状黒鉛粉末ま
たはリン状黒鉛粉末であっても、成膜性が高く、かつ黒
鉛粒子間および集電体である銅箔との密着状態も良好な
ものが得られる。また、一定の容積により多くの活物質
を充填した負極となり、より一層小型化した非水系電解
液二次電池の提供が可能となる。
[0008] Even if the carbon material used as the negative electrode active material is a flaky graphite powder or a phosphorous graphite powder having a high bonding force in the layer direction, the negative electrode coating film has a high film-forming property and a good inter-graphite graphite powder. Also, a good adhesion state to the copper foil as the current collector can be obtained. In addition, the negative electrode is filled with a larger volume of active material in a fixed volume, so that a more miniaturized non-aqueous electrolyte secondary battery can be provided.

【0009】[0009]

【発明の実施の態様】この発明の特徴は、非水系電解液
二次電池の負極塗膜形成用スラリーおよび非水系電解液
二次電池の負極塗膜において、結着剤の一部または全部
としてアルギン酸塩および/またはアルギン酸プロピレ
ングリコールエステルを用いた点である。すなわち、こ
の発明における結着剤は、アルギン酸ナトリウムの単
体、アルギン酸カリウムの単体、アルギン酸アンモニウ
ムの単体、アルギン酸プロピレングリコールエステルの
単体であっても、アルギン酸塩同士の混合物またはアル
ギン酸塩とアルギン酸プロピレングリコールエステルと
の混合物のいずれの形態であってもよい。また、アルギ
ン酸塩および/またはアルギン酸プロピレングリコール
エステルとアクリル系樹脂エマルジョンや、カルボキシ
メチルセルロースなどの他の水系結着剤とを併用して用
いても差し支えない。アルギン酸塩および/またはアル
ギン酸プロピレングリコールエステルを配合したスラリ
ーでは、スラリー中の炭素粒子を良好に分散させること
が可能となる。この理由は、分子中に点在する水酸基
(−OH)が水媒体との親和性を、その他の疎水基部分
が炭素材料との親和性を有するので、水媒体中における
炭素粒子の分散に寄与することにあると思われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is characterized in that a slurry for forming a negative electrode coating film of a non-aqueous electrolyte secondary battery and a negative electrode coating film of a non-aqueous electrolyte secondary battery include a part or all of a binder. The point is that alginate and / or propylene glycol alginate was used. That is, the binder in the present invention is a simple substance of sodium alginate, a simple substance of potassium alginate, a simple substance of ammonium alginate, a simple substance of propylene glycol alginate, or a mixture of alginate or alginate and propylene glycol alginate. May be in any form. In addition, alginates and / or propylene glycol alginate may be used in combination with other aqueous binders such as acrylic resin emulsions and carboxymethyl cellulose. In the case of a slurry containing alginate and / or propylene glycol alginate, carbon particles in the slurry can be dispersed well. This is because the hydroxyl groups (—OH) scattered in the molecule have an affinity for the aqueous medium and the other hydrophobic groups have an affinity for the carbon material, and thus contribute to the dispersion of the carbon particles in the aqueous medium. It seems to be in.

【0010】また、アルギン酸塩および/またはアルギ
ン酸プロピレングリコールエステルを含有する負極塗膜
は、炭素材料に対する配合量を同量にした他の水系結着
剤を配合した場合と比較して、得られる塗膜の特性、特
に非水系電解質二次電池の高容量化の点で優れている。
この理由は、他の水系結着剤、例えば、カルボキシメチ
ルセルロースやアクリル系樹脂に比べ、アルギン酸塩お
よび/またはアルギン酸プロピレングリコールエステル
はイオン伝導性に優れた材料であるため、炭素材料にア
ルギン酸塩および/またはアルギン酸プロピレングリコ
ールエステルが付着したこの発明による負極塗膜におい
ては、リチウムイオンの出入りが起こりやすく、このた
め非水系電解液二次電池の高容量化に寄与することによ
るものと考えられる。なお、アルギン酸塩および/また
はアルギン酸プロピレングリコールエステルは食品添加
物の合成糊料や増粘安定剤として使用される代表的な材
料である。このためスラリー媒体が水系であることに加
えて、環境への配慮および作業者に対する安全性の確保
をより一層確実にすることができる。
In addition, the negative electrode coating film containing alginate and / or propylene glycol alginate has a coating obtained in comparison with the case where another water-based binder is added in the same amount with respect to the carbon material. It is excellent in the characteristics of the membrane, particularly in terms of increasing the capacity of the non-aqueous electrolyte secondary battery.
The reason is that alginate and / or propylene glycol alginate is a material having excellent ion conductivity as compared with other aqueous binders, for example, carboxymethylcellulose and acrylic resin, so that alginate and / or Alternatively, in the negative electrode coating film according to the present invention to which propylene glycol alginate has adhered, lithium ions easily enter and exit, which is considered to contribute to an increase in the capacity of the nonaqueous electrolyte secondary battery. In addition, alginate and / or propylene glycol alginate are typical materials used as synthetic pastes and thickening stabilizers for food additives. For this reason, in addition to the fact that the slurry medium is water-based, consideration for the environment and safety for workers can be further ensured.

【0011】また、アルギン酸塩および/またはアルギ
ン酸プロピレングリコールエステルの配合量は非水系電
解液二次電池の負極塗膜形成用スラリー中の炭素材料1
00重量部に対して0.1重量部〜15重量部である。
炭素材料100重量部に対して0.1重量部未満では、
黒鉛粒子相互の密着および銅箔との密着性が低下するた
め好ましくない。一方、15重量部を超えると炭素材料
表面の被覆過剰となり導電性が劣化して容量が低下し、
塗膜中の活物質比率が低下するので好ましくない。な
お、アルギン酸塩および/またはアルギン酸プロピレン
グリコールエステルの各々の単体、またはこれらの混合
物のみを結着剤として使用する場合、好ましい配合量は
炭素材料100重量部に対して3重量部〜15重量部の
範囲であり、特に好ましい範囲は4重量部〜10重量部
である。一方、アクリル系エマルジョン、カルボキシメ
チルセルロースなど他の水系結着剤と、アルギン酸塩お
よび/またはアルギン酸プロピレングリコールエステル
の各々の単体、またはこれらの混合物とを併用して結着
剤として使用する場合、アルギン酸塩および/またはア
ルギン酸プロピレングリコールエステルの好ましい配合
量は炭素材料100重量部に対して0.1重量部〜12
重量部の範囲であるが、最適な配合量は併用する他の水
系結着剤の配合量によって決められる。
The compounding amount of the alginate and / or propylene glycol alginate is determined according to the amount of the carbon material 1 in the slurry for forming the negative electrode coating film of the nonaqueous electrolyte secondary battery.
0.1 to 15 parts by weight based on 00 parts by weight.
If it is less than 0.1 part by weight based on 100 parts by weight of the carbon material,
It is not preferable because the adhesion between the graphite particles and the adhesion with the copper foil are reduced. On the other hand, when the amount exceeds 15 parts by weight, the carbon material surface is excessively coated, the conductivity is deteriorated, and the capacity is reduced.
It is not preferable because the ratio of the active material in the coating film decreases. In addition, when each of alginate and / or propylene glycol alginate alone or a mixture thereof is used alone as a binder, a preferable blending amount is 3 to 15 parts by weight based on 100 parts by weight of the carbon material. And a particularly preferred range is 4 to 10 parts by weight. On the other hand, when other aqueous binders such as acrylic emulsion and carboxymethylcellulose are used as binders in combination with each of alginate and / or propylene glycol alginate alone or a mixture thereof, alginate is used. The preferred blending amount of propylene glycol alginate is 0.1 parts by weight to 12 parts by weight with respect to 100 parts by weight of the carbon material.
Although it is in the range of parts by weight, the optimum amount is determined by the amount of the other aqueous binder used in combination.

【0012】[0012]

【実施例】以下に、実施例および比較例により、本発明
を更に詳細に説明するが、本発明はこれら実施例により
限定されるものではない。 <実施例1> (スラリーの調製)平均粒子径20μmのリン片状黒鉛
(日立粉末冶金(株)製、商品名:GP−820)100
重量部に対して、種々のアルギン酸塩および/またはア
ルギン酸プロピレングリコールエステルの配合量を表1
に示すように変え、純水を溶媒としてプラネタリウムミ
キサーを用いて混練し、固形分33重量%のスラリーを
調製した。なお、用いたアルギン酸塩およびアルギン酸
プロピレングリコールエステルは次のとおりである。ア
ルギン酸ナトリウム・・・(株)紀文フードケミファ製、商
品名:ダックアルギンNSPM、アルギン酸カリウム・・
・君津化学工業(株)製、商品名:キミツアルギンK、ア
ルギン酸アンモニウム・・・(株)紀文フードケミファ製、
商品名:ダックアンモン、アルギン酸プロピレングリコ
ールエステル・・・君津化学工業(株)製、商品名:キミロ
イドHV。これらのスラリーを集電体となる圧延銅箔の
上にギャップ200μmのドクターブレードを用いて塗
布し、120℃で10分間乾燥し、ロールプレスを通し
て塗膜密度1.35g/ccの負極塗膜とした。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited to these Examples. <Example 1> (Preparation of slurry) Scaly graphite having an average particle diameter of 20 µm (manufactured by Hitachi Powdered Metals Co., Ltd., trade name: GP-820) 100
Table 1 shows the blending amounts of various alginate and / or propylene glycol alginate with respect to parts by weight.
And kneaded with a planetarium mixer using pure water as a solvent to prepare a slurry having a solid content of 33% by weight. The alginate and propylene glycol alginate used are as follows. Sodium alginate: manufactured by Kibun Food Chemifa Co., Ltd., trade name: Duck Algin NSPM, potassium alginate
-Kimitsu Chemical Industry Co., Ltd., trade name: Kimitsu Algin K, ammonium alginate-Kibun Food Chemifa Co., Ltd.
Trade name: Duck Ammon, propylene glycol alginate, manufactured by Kimitsu Chemical Industry Co., Ltd., trade name: Kimiloid HV. These slurries were applied on a rolled copper foil as a current collector using a doctor blade having a gap of 200 μm, dried at 120 ° C. for 10 minutes, and passed through a roll press to form a negative electrode coating having a coating density of 1.35 g / cc. did.

【0013】(塗工性)前述のように圧延銅箔上にスラ
リーを塗布した際の、塗膜のカスレ、塗膜表面の荒れ、
溶媒の滲み、流動性などを観察して塗工性について評価
した。また、スラリーを12時間放置した際の粒子の分
離沈降具合から、スラリー中の粒子の分散性も観察し
た。 (電極特性)負極塗膜を銅箔と共にポンチで打ち抜いて
負極電極を作製した。対極には金属リチウムを用い、ポ
リプロピレン多孔質膜(ヘキストジャパン(株)製、商品
名:セルガード#2400)のセパレーターを介して対
向させ、電解液にはLiPF6/EC+DMC(富山薬
品(株)製、商品名:LI−PASTE/PF1)を用い
たコイン型モデルセルを作製し、0.5mA/cm2の
電流密度で0.01V(vs. Li/Li+)まで定電流
でリチウムを負極内に吸蔵(充電)させ充電容量を求め
た。また、初回の放電容量は0.5mA/cm2の定電
流で1.1V(vs. Li/Li+)まで放電させて求め
た。検討したスラリー中の結着剤配合組成および得られ
た負極塗膜の評価結果を表1に示す。
(Coating property) As described above, when the slurry is applied on the rolled copper foil, the coating film is blurred, the coating film surface is roughened,
The coating property was evaluated by observing the bleeding of the solvent and the fluidity. Further, the dispersibility of the particles in the slurry was also observed from the degree of separation and sedimentation of the particles when the slurry was allowed to stand for 12 hours. (Electrode characteristics) The negative electrode coating was punched out together with a copper foil with a punch to produce a negative electrode. Lithium metal was used as the counter electrode, and opposed via a separator of a polypropylene porous membrane (trade name: Celgard # 2400, manufactured by Hoechst Japan KK). LiPF6 / EC + DMC (manufactured by Toyama Pharmaceutical Co., Ltd.) was used as the electrolyte. A coin-type model cell using a trade name: LI-PASTE / PF1) was prepared, and lithium was inserted into the negative electrode at a constant current of 0.01 V (vs. Li / Li +) at a current density of 0.5 mA / cm2 ( Charge) to determine the charge capacity. The initial discharge capacity was determined by discharging the battery to 1.1 V (vs. Li / Li +) at a constant current of 0.5 mA / cm2. Table 1 shows the binder composition in the studied slurry and the evaluation results of the obtained negative electrode coating film.

【0014】[0014]

【表1】 [Table 1]

【0015】試料番号11〜16のようにアルギン酸塩
および/またはアルギン酸プロピレングリコールエステ
ルの黒鉛に対する配合量が3〜15重量部の範囲では、
その配合量が多くなるに従って密着強度は高くなる。ま
た、粒子相互および銅箔間の密着性も良好であり、かつ
イオン透過性があるために放電容量も高く、放電レート
も良好な値を示している。一方、比較例1に記したよう
に、アルギン酸プロピレングリコールエステルの配合量
が2重量部(試料番号:比較1)の場合は、密着強度が
低く、塗膜は銅箔との界面から剥離した。このように密
着性が低いと粒子間や銅箔との接触状態が良好ではない
ために、放電容量および放電レートが低い。また、アル
ギン酸アンモニウムとアルギン酸ナトリウムを混合して
配合量が15重量部を越える(試料番号:比較2)と、
表面被覆の影響が大きくなり、放電容量および放電レー
トとも低下した。
As shown in Sample Nos. 11 to 16, when the content of alginate and / or propylene glycol alginate in graphite is in the range of 3 to 15 parts by weight,
The adhesion strength increases as the blending amount increases. Further, the adhesion between particles and between the copper foils is good, and the ion permeability allows the discharge capacity to be high and the discharge rate to show good values. On the other hand, as described in Comparative Example 1, when the blending amount of propylene glycol alginate was 2 parts by weight (sample number: Comparative 1), the adhesion strength was low and the coating film was peeled off from the interface with the copper foil. When the adhesion is low, the contact state between the particles and the copper foil is not good, so that the discharge capacity and the discharge rate are low. When ammonium alginate and sodium alginate were mixed and the blending amount exceeded 15 parts by weight (sample number: comparative 2),
The influence of the surface coating increased, and both the discharge capacity and the discharge rate decreased.

【0016】<実施例2>実施例1と同様に、負極活物
質には平均粒子径20μmのリン片状黒鉛(日立粉末冶
金(株)製、商品名:GP−820)を用い、結着剤には
アクリルスチレン共重合体エマルジョン(高圧ガス工業
(株)製、商品名:LI−401)とアルギン酸塩および
/またはアルギン酸プロピレングリコールエステルを混
合して用いた。純水を溶媒としてアルギン酸ナトリウム
を溶解し、黒鉛を加えて混合した後、その中にアクリル
スチレンエマルジョンを黒鉛に対して5重量部加え、プ
ラネタリウムミキサーを用いて混練し、固形分33重量
%のスラリーを調製した。塗工性、密着性、電極特性の
評価は実施例1と同様の方法で行った。評価結果を表2
に示す。
<Example 2> Similar to Example 1, flaky graphite having an average particle diameter of 20 μm (GP-820, manufactured by Hitachi Powdered Metals Co., Ltd.) was used as the negative electrode active material and bound. Acrylic styrene copolymer emulsion (high pressure gas industry)
A trade name: LI-401 manufactured by K.K.) was mixed with alginic acid and / or propylene glycol alginate. After dissolving sodium alginate using pure water as a solvent, adding graphite and mixing, 5 parts by weight of an acrylic styrene emulsion is added to the graphite and kneaded using a planetarium mixer to obtain a slurry having a solid content of 33% by weight. Was prepared. Evaluation of coating properties, adhesion, and electrode characteristics was performed in the same manner as in Example 1. Table 2 shows the evaluation results.
Shown in

【0017】[0017]

【表2】 [Table 2]

【0018】試料番号21〜26のようにアルギン酸塩
および/またはアルギン酸プロピレングリコールエステ
ルの黒鉛に対する配合量が0.1〜12重量部の範囲で
は、実施例1における結果と同様、その配合量を多くす
るに従って密着強度は高くなる。また、粒子相互および
銅箔間の密着性も良好であるし、イオン透過性があるた
めに放電容量も高く、放電レートも良好な値を示してい
る。一方、比較例2に記したように、アルギン酸塩およ
び/またはアルギン酸プロピレングリコールエステルを
含まない(試料番号:比較3)場合は、密着強度が低
く、塗膜は銅箔との界面から剥離した。また、スラリー
中の粒子の分散性も悪く、12時間放置後には粒子が沈
降した。加えて、塗工の際にはカスレを生じた。さら
に、密着性が低く粒子間や銅箔との接触状態が良好では
ないために、放電容量および放電レートが低い。アルギ
ン酸塩および/またはアルギン酸プロピレングリコール
エステルの配合量が12重量部を越える(試料番号:比
較4)と、やはり実施例1と同様、表面被覆の影響が大
きくなり、放電容量および放電レートが低下した。
When the amount of alginate and / or propylene glycol alginate in the graphite is 0.1 to 12 parts by weight as in Sample Nos. 21 to 26, the amount of the alginate is increased as in the case of Example 1. As the strength increases, the adhesion strength increases. In addition, adhesion between particles and between copper foils is good, and because of ion permeability, the discharge capacity is high and the discharge rate shows a good value. On the other hand, as described in Comparative Example 2, when no alginate and / or propylene glycol alginate was contained (Sample No .: Comparative 3), the adhesion strength was low and the coating film was peeled off from the interface with the copper foil. The dispersibility of the particles in the slurry was poor, and the particles settled after standing for 12 hours. In addition, blurring occurred during coating. Furthermore, the discharge capacity and discharge rate are low due to poor adhesion and poor contact between particles and the copper foil. When the blending amount of alginate and / or propylene glycol alginate exceeds 12 parts by weight (Sample No .: Comparative 4), the effect of the surface coating becomes large as in Example 1, and the discharge capacity and discharge rate decrease. .

【0019】[0019]

【発明の効果】この発明により、合成炭素材料および黒
鉛材料と集電体との密着性に優れ、放電容量の低下が少
なく、充放電サイクルにおける耐久性に優れた非水系電
解液二次電池の負極塗膜形成用スラリー、およびそれを
用いた同電池の負極塗膜を提供することができる。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery having excellent adhesion between a synthetic carbon material and a graphite material and a current collector, little decrease in discharge capacity, and excellent durability in a charge / discharge cycle. A slurry for forming a negative electrode coating film and a negative electrode coating film of the same battery using the same can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料、結着剤および水媒体を基本構
成とする、非水系電解液二次電池の負極塗膜形成用スラ
リーにおいて、 該結着剤の一部または全部として、アルギン酸ナトリウ
ム、アルギン酸カリウム、アルギン酸アンモニウムから
選ばれる1種以上のアルギン酸塩および/またはアルギ
ン酸プロピレングリコールエステルを用いたことを特徴
とする非水系電解液二次電池の負極塗膜形成用スラリ
ー。
1. A slurry for forming a negative electrode coating film of a non-aqueous electrolyte secondary battery comprising a carbon material, a binder and an aqueous medium as basic components, wherein sodium alginate is used as part or all of the binder. A slurry for forming a negative electrode coating film of a non-aqueous electrolyte secondary battery, wherein at least one alginate selected from potassium alginate and ammonium alginate and / or propylene glycol alginate is used.
【請求項2】 前記負極塗膜形成用スラリー中のアルギ
ン酸塩および/またはアルギン酸プロピレングリコール
エステルの配合量は、前記炭素材料100重量部に対し
0.1重量部から15重量部である請求項1に記載の非
水系電解液二次電池の負極塗膜形成用スラリー。
2. The amount of alginate and / or propylene glycol alginate in the slurry for forming a negative electrode coating film is 0.1 to 15 parts by weight based on 100 parts by weight of the carbon material. The slurry for forming a negative electrode coating film of the nonaqueous electrolytic solution secondary battery according to 1.
【請求項3】 炭素材料と結着剤を基本構成とする、非
水系電解液二次電池の負極塗膜において、 該結着剤の一部または全部が、アルギン酸ナトリウム、
アルギン酸カリウム、アルギン酸アンモニウムから選ば
れる1種以上のアルギン酸塩および/またはアルギン酸
プロピレングリコールエステルであり、 該アルギン酸塩および/またはアルギン酸プロピレング
リコールエステルの配合量は、該炭素材料100重量部
に対して0.1重量部から15重量部であることを特徴
とする非水系電解液二次電池の負極塗膜。
3. A negative electrode coating film for a non-aqueous electrolyte secondary battery comprising a carbon material and a binder as a basic composition, wherein a part or all of the binder is sodium alginate;
At least one alginate and / or propylene glycol alginate selected from potassium alginate and ammonium alginate; the amount of the alginate and / or propylene glycol alginate is 0.1% by weight based on 100 parts by weight of the carbon material; A negative electrode coating film for a nonaqueous electrolyte secondary battery, wherein the coating amount is 1 part by weight to 15 parts by weight.
JP11181053A 1999-06-28 1999-06-28 Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery Pending JP2001015114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11181053A JP2001015114A (en) 1999-06-28 1999-06-28 Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11181053A JP2001015114A (en) 1999-06-28 1999-06-28 Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001015114A true JP2001015114A (en) 2001-01-19

Family

ID=16093963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11181053A Pending JP2001015114A (en) 1999-06-28 1999-06-28 Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001015114A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181890A (en) * 2001-09-21 2008-08-07 Tdk Corp Lithium secondary battery
JP2008311067A (en) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material, electrode material, electrode, and battery
CN102237527A (en) * 2010-04-29 2011-11-09 上海比亚迪有限公司 Lithium ion battery and lithium ion battery electrode as well as electrode material and paste for lithium ion battery
CN102280642A (en) * 2011-07-07 2011-12-14 苏州大学 Application of alginate serving as adhesive in preparing electrode sheet
JP2012172055A (en) * 2011-02-21 2012-09-10 Chiba Univ Method for producing hydrogel matrix and formation method of cell cluster
JP2013197055A (en) * 2012-03-22 2013-09-30 Kansai Univ Lithium ion secondary battery and electrical equipment including the same
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
WO2014050012A1 (en) * 2012-09-27 2014-04-03 株式会社Gsユアサ Flooded lead-acid battery
JP2014123486A (en) * 2012-12-21 2014-07-03 Gs Yuasa Corp Lead storage battery
KR101499353B1 (en) * 2013-10-22 2015-03-05 한국과학기술원 Binder for anode in lithium ion battery, anode in lithium ion battery comprising the same, lithium ion battery comprising the same, and manufacturing method for the same
JP2016066522A (en) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2019008961A (en) * 2017-06-23 2019-01-17 Fdk株式会社 Electrode plate and battery
WO2021177134A1 (en) 2020-03-06 2021-09-10 学校法人東京理科大学 Binder for positive electrode of lithium-ion battery, slurry for forming positive-electrode mix layer of lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181890A (en) * 2001-09-21 2008-08-07 Tdk Corp Lithium secondary battery
JP2008311067A (en) * 2007-06-14 2008-12-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing electrode material, electrode material, electrode, and battery
US8580155B2 (en) 2008-09-03 2013-11-12 Sumitomo Osaka Cement Co., Ltd. Method for producing electrode material, electrode material, electrode and battery
CN102237527A (en) * 2010-04-29 2011-11-09 上海比亚迪有限公司 Lithium ion battery and lithium ion battery electrode as well as electrode material and paste for lithium ion battery
JP2012172055A (en) * 2011-02-21 2012-09-10 Chiba Univ Method for producing hydrogel matrix and formation method of cell cluster
CN102280642A (en) * 2011-07-07 2011-12-14 苏州大学 Application of alginate serving as adhesive in preparing electrode sheet
JP2013197055A (en) * 2012-03-22 2013-09-30 Kansai Univ Lithium ion secondary battery and electrical equipment including the same
WO2014050012A1 (en) * 2012-09-27 2014-04-03 株式会社Gsユアサ Flooded lead-acid battery
JPWO2014050012A1 (en) * 2012-09-27 2016-08-22 株式会社Gsユアサ Liquid lead-acid battery
JP2014123486A (en) * 2012-12-21 2014-07-03 Gs Yuasa Corp Lead storage battery
KR101499353B1 (en) * 2013-10-22 2015-03-05 한국과학기술원 Binder for anode in lithium ion battery, anode in lithium ion battery comprising the same, lithium ion battery comprising the same, and manufacturing method for the same
JP2016066522A (en) * 2014-09-25 2016-04-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US9692048B2 (en) 2014-09-25 2017-06-27 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte rechargeable battery
JP2019008961A (en) * 2017-06-23 2019-01-17 Fdk株式会社 Electrode plate and battery
WO2021177134A1 (en) 2020-03-06 2021-09-10 学校法人東京理科大学 Binder for positive electrode of lithium-ion battery, slurry for forming positive-electrode mix layer of lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery

Similar Documents

Publication Publication Date Title
JP5603018B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, method for producing negative electrode for lithium ion secondary battery, and slurry used for production
JP3316412B2 (en) Lithium secondary battery
JP3103357B1 (en) Method for producing negative electrode material for lithium secondary battery
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JP5098192B2 (en) COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2971451B1 (en) Lithium secondary battery
JP2000294230A (en) Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
JP2001015114A (en) Slurry for forming negative electrode film for nonaqueous electrolyte secondary battery and negative electrode film for nonaqueous electrolyte secondary battery
JP4852836B2 (en) Method for producing electrode plate for negative electrode of non-aqueous secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP3615472B2 (en) Non-aqueous electrolyte battery
JPH1092436A (en) Nonaqueous electrolyte secondary battery
JP2017135105A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
JP2003157849A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2003109596A (en) Electrode material and manufacturing method of the same, electrode and battery
JP6229563B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP2001052699A (en) Lithium secondary battery
JP2000294247A (en) Negative electrode paint film of lithium ion secondary battery and lithium ion secondary battery using it
JP5754383B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP5754382B2 (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery using the negative electrode active material, and method for producing negative electrode active material for lithium ion secondary battery
JP2004063123A (en) Nonaqueous electrolyte secondary battery
JP4050024B2 (en) Electrode material and manufacturing method thereof, electrode and battery
JPH10106542A (en) Lithium secondary battery
JP2002117832A (en) Lithium secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706