JP2007322006A - Multi-room type air conditioner - Google Patents

Multi-room type air conditioner Download PDF

Info

Publication number
JP2007322006A
JP2007322006A JP2006149495A JP2006149495A JP2007322006A JP 2007322006 A JP2007322006 A JP 2007322006A JP 2006149495 A JP2006149495 A JP 2006149495A JP 2006149495 A JP2006149495 A JP 2006149495A JP 2007322006 A JP2007322006 A JP 2007322006A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
indoor
indoor expansion
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149495A
Other languages
Japanese (ja)
Inventor
Hironori Machida
浩紀 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2006149495A priority Critical patent/JP2007322006A/en
Publication of JP2007322006A publication Critical patent/JP2007322006A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To determine the direction of a refrigerant flowing into an indoor expansion valve in cooling, and to reduce refrigerant noise generated in passing through the indoor expansion valve regardless of an operating state of an indoor unit in heating. <P>SOLUTION: In the indoor unit of the multi-room type air conditioner, a front panel 3 provided with suction openings 3a, 3b its front face and top face, and a supply opening 3c at its lower part is mounted on a base 2. The base 2 is provided with heat exchangers 4, 4a vertically arranged in stages on its front face, and a cross flow fan 5 is rotatably journaled at its back face. The indoor expansion valve 6, and a first refrigerant pipe 7 and a second refrigerant pipe 8 disposed at the front and back of the indoor expansion valve are disposed in a back space formed by a constricted part 2a of the base 2, the first refrigerant pipe 7 is used as a trap in which the refrigerant of liquid phase easily accumulates, and is connected with the indoor expansion valve 6 in an opened state, disposed in the indoor unit of which an operation is stopped in heating, and the second refrigerant pipe 8 is positioned to determine the direction of the refrigerant flowing into the indoor expansion valve 6 laterally or downward in cooling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多室型空気調和機に係わり、詳しくは、室内膨張弁を通過する際に発生する冷媒音を低減可能にした多室型空気調和機に関する。   The present invention relates to a multi-room air conditioner, and more particularly to a multi-room air conditioner that can reduce refrigerant noise that occurs when passing through an indoor expansion valve.

多室型空気調和機においては、図示を省略した室外機と複数の室内機とを冷媒配管で接続して冷凍サイクルを構成している。多室型空気調和機の1つの室内機は例えば図8に示すように、その筐体1内部に室内熱交換器4とともに、冷凍サイクルの冷媒流量を任意に調節する室内膨張弁6を設けてなるものがある。室内膨張弁6(絞り機構)を通る冷媒が気相と液相とからなる気液二相状態であると、室内膨張弁6(絞り機構)を通過する際に冷媒音が発生し騒音となる。   In a multi-room air conditioner, an outdoor unit (not shown) and a plurality of indoor units are connected by a refrigerant pipe to constitute a refrigeration cycle. As shown in FIG. 8, for example, one indoor unit of a multi-room type air conditioner is provided with an indoor heat exchanger 4 and an indoor expansion valve 6 that arbitrarily adjusts the refrigerant flow rate of the refrigeration cycle. There is something to be. When the refrigerant passing through the indoor expansion valve 6 (throttle mechanism) is in a gas-liquid two-phase state composed of a gas phase and a liquid phase, refrigerant noise is generated and noise is generated when passing through the indoor expansion valve 6 (throttle mechanism). .

冷房時に室内膨張弁6が絞られるので、室内膨張弁6に流入する冷媒は通常、液相状態から気液二相状態に変化する。このとき、図8のように室内膨張弁6の入口が下向きの場合、上方に冷媒が流れ室内膨張弁6に気液二相状態の冷媒が流入し、ガス比率の高い気液二相冷媒が流入するとき特に大きな冷媒音が発生する。一方、多室型空気調和機、例えばビル用マルチエアコンでは、暖房時に室内膨張弁6が絞られないので、室内機の運転が停止していても冷凍サイクルが働いているため、室内膨張弁6には気液二相状態の冷媒が流入する。このとき、室内機の運転が停止した状態の中、冷媒音が発生する。   Since the indoor expansion valve 6 is throttled during cooling, the refrigerant flowing into the indoor expansion valve 6 usually changes from a liquid phase state to a gas-liquid two phase state. At this time, when the inlet of the indoor expansion valve 6 is downward as shown in FIG. 8, the refrigerant flows upward, the gas-liquid two-phase refrigerant flows into the indoor expansion valve 6, and the gas-liquid two-phase refrigerant having a high gas ratio is obtained. A particularly loud refrigerant noise is generated when inflowing. On the other hand, in a multi-room air conditioner, for example, a building multi-air conditioner, the indoor expansion valve 6 cannot be throttled during heating. Therefore, the refrigeration cycle works even when the operation of the indoor unit is stopped. Into the gas-liquid two-phase refrigerant flows. At this time, a refrigerant sound is generated while the operation of the indoor unit is stopped.

この騒音を低減させるため、例えば図9に示すように、室内熱交換器4、4aおよびクロスフローファン5等を内部に備えた筐体1の上部背面(ベース2)にくびれ部2aを設け、同くびれ部2aに騒音の発生源となっている絞り機構10を配設(例えば、特許文献1参照。)していた。   In order to reduce this noise, for example, as shown in FIG. 9, a constricted portion 2 a is provided on the upper back surface (base 2) of the housing 1 provided with the indoor heat exchangers 4, 4 a and the crossflow fan 5, etc. In the constricted portion 2a, a diaphragm mechanism 10 serving as a noise generation source is disposed (for example, see Patent Document 1).

図10は冷媒音を低減するもう一つの例で、これはキャピラリーチューブ14(絞り機構)と蒸発器15との間にティーズ16を設けるとともに、同ティーズ16の一端に閉塞部17を設けた構成(例えば、特許文献2参照。)になっている。このような構成であれば、キャピラリーチューブ14(絞り機構)からティーズ16内に噴出した冷媒が気液二相状態のままで蒸発器15に流入することはなく、閉塞部17に当たって攪拌され、気泡がより細分化され、気液混合の状態で蒸発器15に流入するようになるので、蒸発器15の入口および内部での冷媒音の発生を抑えることができる。   FIG. 10 shows another example of reducing refrigerant noise. This is a configuration in which a tee 16 is provided between the capillary tube 14 (throttle mechanism) and the evaporator 15 and a closing portion 17 is provided at one end of the tee 16. (For example, refer to Patent Document 2). With such a configuration, the refrigerant jetted from the capillary tube 14 (throttle mechanism) into the teeth 16 does not flow into the evaporator 15 in the gas-liquid two-phase state, but strikes the closed portion 17 and is agitated. Is subdivided and flows into the evaporator 15 in a gas-liquid mixed state, so that the generation of refrigerant noise at the inlet and inside of the evaporator 15 can be suppressed.

図11はさらにもう一つの例を示したもので、膨張弁105(絞り機構)の前後に多孔体18、18aを挿入して冷媒流動状態を変化させ、冷媒音と配管振動を低減させるようにしたもの(例えば、特許文献3参照。)である。このような構成であれば、気液二相状態の冷媒106が膨張弁105(絞り機構)の前後の多孔体18、18aを通過する際に、気液混合の状態に変化するため、冷媒音および配管振動を低減できる。   FIG. 11 shows yet another example, in which the porous bodies 18 and 18a are inserted before and after the expansion valve 105 (throttle mechanism) to change the refrigerant flow state so as to reduce refrigerant noise and pipe vibration. (For example, refer to Patent Document 3). With such a configuration, the refrigerant 106 in the gas-liquid two-phase state changes to a gas-liquid mixed state when passing through the porous bodies 18 and 18a before and after the expansion valve 105 (throttle mechanism). And piping vibration can be reduced.

しかしながら、図9の例では、絞り機構10から発生する冷媒音そのものは減少させることができなかった。また、図10および図11の例では、気液二相状態から気液混合の状態に変化させることはできるが、冷房時に絞り機構に流入する気液二相状態の冷媒方向を考慮したものではないため、その冷媒方向によっては絞り機構を通過する冷媒音の発生を十分に抑えることができなかった。   However, in the example of FIG. 9, the refrigerant sound itself generated from the throttle mechanism 10 could not be reduced. In the example of FIGS. 10 and 11, the gas-liquid two-phase state can be changed to the gas-liquid mixed state, but the refrigerant direction in the gas-liquid two-phase state flowing into the throttle mechanism during cooling is not considered. Therefore, depending on the direction of the refrigerant, the generation of refrigerant noise passing through the throttle mechanism could not be sufficiently suppressed.

更に、多室型空気調和機の暖房時の室内機の運転停止の状態を想定したものではないため、絞り機構の入口側でガス比率の高い気液二相状態の冷媒が絞り機構を通過する際に冷媒音の発生を十分に抑えることができなかった。したがって、冷房時の絞り機構に流入する冷媒方向や、暖房時の室内機の運転状態によっては、騒音対策として不十分であった。
特開平7−229636号公報(第2頁、図2) 実開平5−8357号公報(第1頁、図2) 特開平7−146032号公報(第1頁、図1)
Furthermore, since it is not assumed that the indoor unit is stopped during heating of the multi-room air conditioner, the gas-liquid two-phase refrigerant having a high gas ratio passes through the throttle mechanism on the inlet side of the throttle mechanism. In this case, the generation of refrigerant noise could not be sufficiently suppressed. Therefore, depending on the direction of the refrigerant flowing into the throttle mechanism during cooling and the operating state of the indoor unit during heating, it is insufficient as a noise countermeasure.
JP-A-7-229636 (2nd page, FIG. 2) Japanese Utility Model Publication No. 5-8357 (first page, FIG. 2) Japanese Patent Laid-Open No. 7-146032 (first page, FIG. 1)

本発明は、上記問題点に鑑み、冷房時の室内膨張弁に流入する冷媒方向を定め、かつ、暖房時の室内機の運転状態に関わりなく、冷媒が室内膨張弁を通過する際に発生する冷媒音をより低減した多室型空気調和機を提供することを目的としている。   In view of the above problems, the present invention determines the direction of the refrigerant flowing into the indoor expansion valve during cooling, and occurs when the refrigerant passes through the indoor expansion valve regardless of the operating state of the indoor unit during heating. An object of the present invention is to provide a multi-room air conditioner that further reduces refrigerant noise.

本発明は上記の課題を解決するためになされたものであり、圧縮機、四方弁、室外熱交換器を備える室外機と、室内熱交換器、室内膨張弁を備える複数の室内機とを冷媒配管で接続してなり、前記室内熱交換器と前記室内膨張弁間を接続する第一冷媒配管と、前記室内膨張弁と前記室外熱交換器間を接続する第二冷媒配管とを備えてなる多室型空気調和機において、前記第一冷媒配管はトラップとし、暖房時に運転停止の室内機に備えた開状態の前記室内膨張弁に接続し、かつ、前記第二冷媒配管は冷房時に前記室内膨張弁に流入する冷媒方向を横向き又は下向きとした構成とする。   The present invention has been made in order to solve the above-described problems. The refrigerant includes an outdoor unit including a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units including an indoor heat exchanger and an indoor expansion valve. A first refrigerant pipe connected between the indoor heat exchanger and the indoor expansion valve; and a second refrigerant pipe connecting the indoor expansion valve and the outdoor heat exchanger. In the multi-room air conditioner, the first refrigerant pipe is a trap, is connected to the indoor expansion valve in an open state provided in an indoor unit that is shut down during heating, and the second refrigerant pipe is The refrigerant flowing into the expansion valve has a lateral direction or a downward direction.

また、前記第一冷媒配管は途中に接続部を設け、同接続部と前記室内膨張弁との間に、前記室内熱交換器と前記接続部間を接続する配管よりも細い配管を接続してなる構成とする。   In addition, the first refrigerant pipe is provided with a connection part in the middle, and a pipe thinner than the pipe connecting the indoor heat exchanger and the connection part is connected between the connection part and the indoor expansion valve. It becomes the composition which becomes.

また、前記第一冷媒配管と前記室内膨張弁とからなる膨張弁ユニットを室内機の外部に設置してなる構成とする。   In addition, an expansion valve unit including the first refrigerant pipe and the indoor expansion valve is installed outside the indoor unit.

本発明による多室型空気調和機であれば、冷媒音発生の元となる、暖房時に室内膨張弁に流入する気液二相状態の冷媒を、トラップの第一冷媒配管に流通させることにより、トラップの第一冷媒配管に液相状態の冷媒が溜まりやすくしているので、液相状態の冷媒のままで室内膨張弁に流入し室内膨張弁内での冷媒音の発生が抑えられる。また、冷媒音発生の元となる、冷房時に室内膨張弁に流入する気液二相状態の冷媒を、第二冷媒配管に流通させ、第二冷媒配管から室内膨張弁に流入する冷媒方向を横向き又は下向きとしているので、室内膨張弁内での冷媒音の発生が抑えられる。   If the multi-chamber air conditioner according to the present invention, the refrigerant in the gas-liquid two-phase state flowing into the indoor expansion valve at the time of heating, which is the source of refrigerant sound, is circulated through the first refrigerant pipe of the trap. Since the liquid refrigerant is easily collected in the first refrigerant pipe of the trap, the refrigerant in the liquid phase flows into the indoor expansion valve as it is and the generation of refrigerant noise in the indoor expansion valve is suppressed. Also, the refrigerant in the gas-liquid two-phase state that flows into the indoor expansion valve during cooling, which is the source of refrigerant noise, is circulated through the second refrigerant pipe, and the refrigerant flowing from the second refrigerant pipe into the indoor expansion valve is directed sideways. Or since it is made downward, generation | occurrence | production of the refrigerant | coolant sound in an indoor expansion valve is suppressed.

また、第一冷媒配管が室内熱交換器と接続部間を接続する配管より細い配管を通して室内膨張弁に導入するようになっているので、液相状態の冷媒がより滞留しやすくしているので、室内膨張弁内での冷媒音の発生が抑えられる。更に、第一冷媒配管と室内膨張弁とからなる膨張弁ユニットを室内機の外部に設置するようにしているので、室内機の筐体等によって冷媒音が増幅されることがなく、より静かな運転環境を実現できる。   Moreover, since the first refrigerant pipe is introduced into the indoor expansion valve through a pipe that is narrower than the pipe connecting the indoor heat exchanger and the connecting portion, the liquid-phase refrigerant is more likely to stay. The occurrence of refrigerant noise in the indoor expansion valve is suppressed. Furthermore, since the expansion valve unit including the first refrigerant pipe and the indoor expansion valve is installed outside the indoor unit, the refrigerant sound is not amplified by the casing of the indoor unit, and the quieter A driving environment can be realized.

以下、本発明の実施の形態を、添付図面に基づいて説明する。なお、背景技術と同一構成部分については、同一符号を付して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same components as those in the background art will be described with the same reference numerals.

図1は本発明による多室型空気調和機の室内機の内部を横方向から見たもので、同室内機の筐体1は背面を形成するベース2と前面を形成する前面パネル3とにより構成される。ベース2は内部に上部が後方に傾斜した室内熱交換器4と同室内熱交換器4の下部にほぼ垂直に立設された室内熱交換器4aを上下二段に支持するとともに、同室内熱交換器4aの背面にはモータにて駆動される円筒形のクロスフローファン5を回動自在に支持し、同クロスフローファン5の下部には吹出口3cを形成している。   FIG. 1 is a side view of the interior of an indoor unit of a multi-room air conditioner according to the present invention. A casing 1 of the indoor unit is composed of a base 2 forming a back surface and a front panel 3 forming a front surface. Composed. The base 2 supports an indoor heat exchanger 4 whose upper part is inclined rearward and an indoor heat exchanger 4a erected substantially vertically at the lower part of the indoor heat exchanger 4 in two upper and lower stages. A cylindrical crossflow fan 5 driven by a motor is rotatably supported on the back surface of the exchanger 4a, and a blower outlet 3c is formed at the lower portion of the crossflow fan 5.

ベース2の背面上部には前方へくびれ部2aが形成されており、同室内機を壁面に設置の際は間隙が生ずるようになっている。前面パネル3にはその前面と上面に格子状の吸込口3a、3bが形成されている。ベース2の背面上部に形成されたくびれ部2aには本発明に基づく室内膨張弁6と、一端が室内熱交換器4aに接続され他端が室内膨張弁6に接続されたトラップの形状の第一冷媒配管7と、一端が室内膨張弁6に接続され他端が図示を省略した室外機(室外熱交換器)に接続された第二冷媒配管8とが配設されている。   A constricted portion 2a is formed at the upper back of the base 2 so that a gap is created when the indoor unit is installed on the wall surface. The front panel 3 is formed with lattice-like suction ports 3a and 3b on the front and upper surfaces thereof. The constricted portion 2a formed on the upper back surface of the base 2 has an indoor expansion valve 6 according to the present invention, and a trap-shaped first end connected to the indoor heat exchanger 4a and the other end connected to the indoor expansion valve 6. One refrigerant pipe 7 and a second refrigerant pipe 8 having one end connected to the indoor expansion valve 6 and the other end connected to an outdoor unit (outdoor heat exchanger) (not shown) are arranged.

図2は室内膨張弁6と同室内膨張弁6に接続した第一冷媒配管7、第二冷媒配管8の形態を拡大図示したもので、第一冷媒配管7は液相の冷媒が溜まりやすいトラップとなっている。具体的には室内熱交換器4aからの配管7a(例えば、6.35Φの配管)の一側をヘアピン状(逆U字状)に折り曲げてその先端部をT字管7b(接続部を構成)の一端に接続し、同T字管7bの他端に一端を閉塞した閉塞管7cを接続し、同T字管7bの中間接続端と室内膨張弁6との間に細径部7d(例えば、4.76Φの細い配管)を介した構成になっている。   FIG. 2 is an enlarged view of the form of the first refrigerant pipe 7 and the second refrigerant pipe 8 connected to the indoor expansion valve 6 and the indoor expansion valve 6. The first refrigerant pipe 7 is a trap in which liquid-phase refrigerant is likely to accumulate. It has become. Specifically, one side of piping 7a (for example, 6.35Φ piping) from the indoor heat exchanger 4a is bent into a hairpin shape (inverted U shape), and the tip portion is a T-shaped tube 7b (constitutes a connecting portion). Is connected to one end of the T-tube 7b, a closed tube 7c having one end closed is connected to the other end of the T-tube 7b, and a small-diameter portion 7d (for example, between the intermediate connection end of the T-tube 7b and the indoor expansion valve 6). , 4.76Φ thin piping).

このような配管構成であるならば、暖房時において室内機の運転停止中の場合に、室内熱交換器4aから室内膨張弁6への冷媒流がガス比率の高い気液二相の状態であっても、トラップになっている第一冷媒配管7の下部(配管7aの先端部からT字管7b、閉塞管7cおよび細径部7dにかけた部分)に、重力の影響によって液相の冷媒が溜まりやすくなるので、室内膨張弁6の入口側がガス比率の高い気液二相冷媒状態にならず、室内膨張弁内での冷媒音の発生を抑えることができる。   With such a piping configuration, when the operation of the indoor unit is stopped during heating, the refrigerant flow from the indoor heat exchanger 4a to the indoor expansion valve 6 is in a gas-liquid two-phase state with a high gas ratio. However, liquid phase refrigerant is applied to the lower part of the first refrigerant pipe 7 serving as a trap (the part extending from the tip of the pipe 7a to the T-shaped tube 7b, the closed tube 7c, and the small diameter portion 7d) due to the influence of gravity. Since it is easy to accumulate, the inlet side of the indoor expansion valve 6 is not in a gas-liquid two-phase refrigerant state with a high gas ratio, and generation of refrigerant noise in the indoor expansion valve can be suppressed.

一方、室内膨張弁6(暖房時の冷媒の出口)から室外機(室外熱交換器)に向かう第二冷媒配管8は室内膨張弁6の近傍でL字状に立ち上げた形態になっている。また、第二冷媒配管8は冷房時に室内膨張弁6に流入する冷媒方向が横向きとなり、細径部7dである細い配管(第一冷媒配管7)は、暖房時に室内膨張弁6に流入する冷媒方向が上向きとなるように接続されている。図3に示す室内膨張弁6の内部では、冷房時の冷媒は横方向から弁室6aに入って絞り部6bを経てb方向に流れ、暖房時の冷媒は下方から絞り部6bを経て弁室6aに入ってa方向に流れるようになっている。   On the other hand, the second refrigerant pipe 8 heading from the indoor expansion valve 6 (refrigerant outlet at the time of heating) to the outdoor unit (outdoor heat exchanger) is formed in an L-shape in the vicinity of the indoor expansion valve 6. . The second refrigerant pipe 8 has a transverse refrigerant direction flowing into the indoor expansion valve 6 during cooling, and the thin pipe (first refrigerant pipe 7), which is the narrow diameter portion 7d, is a refrigerant flowing into the indoor expansion valve 6 during heating. They are connected so that the direction is upward. In the indoor expansion valve 6 shown in FIG. 3, the refrigerant during cooling enters the valve chamber 6a from the lateral direction and flows in the direction b through the throttle 6b, and the refrigerant during heating passes through the throttle 6b from below. 6a enters and flows in the direction a.

このような配管構成であるならば、冷房時において、室外機からの冷媒流が気液二相状態であっても、L字状の立ち上げ部下部で、重力の影響によって液相の冷媒が溜まりやすく、また、室内膨張弁6に向かう冷媒流が横向きになっているので、室内膨張弁内での冷媒音の発生を抑えることができる。   With such a piping configuration, even when the refrigerant flow from the outdoor unit is in a gas-liquid two-phase state at the time of cooling, the liquid-phase refrigerant flows under the influence of gravity at the lower part of the L-shaped riser. Since the refrigerant flow toward the indoor expansion valve 6 is oriented sideways, the generation of refrigerant noise in the indoor expansion valve can be suppressed.

従来技術のように、暖房時の冷媒を図3とは逆方向に絞り部6bからb方向に流れるようにし、この室内膨張弁6に接続された第一冷媒配管7が直管であれば、絞り部6bで発生した音が下方に抜けて冷媒配管や室内熱交換器4に伝わり騒音になりやすい。しかし、本発明では先に説明したように第一冷媒配管7をトラップとした構成であり、冷媒はa方向に流れ、液相の冷媒が溜まりやすくなっているので、音が伝わり難く、騒音の発生が抑えられている。   If the first refrigerant pipe 7 connected to the indoor expansion valve 6 is a straight pipe so that the refrigerant during heating flows in the direction b from the throttle portion 6b in the direction opposite to that in FIG. Sound generated in the throttle portion 6b passes downward and is transmitted to the refrigerant pipe and the indoor heat exchanger 4 and is likely to be noise. However, in the present invention, as described above, the first refrigerant pipe 7 is used as a trap. The refrigerant flows in the direction a and the liquid-phase refrigerant is easily accumulated, so that it is difficult to transmit sound and noise. Occurrence is suppressed.

図4は先に説明した図2の室内膨張弁6を横方向にし、第一冷媒配管7を液相の冷媒が溜まりやすいトラップとし、第二冷媒配管8を室内膨張弁6からL字状に立ち上げた形態にしている例である。具体的には室内熱交換器4aからの配管7aの一側をヘアピン状(逆U字状)に折り曲げてその先端部をT字管7b(接続部を構成)の一端に接続し、同T字管7bの他端に一端を閉塞した閉塞管7cを接続し、T字管7bの中間接続端からL字状に立上げた細径部7dを室内膨張弁6に接続した構成になっている。   In FIG. 4, the indoor expansion valve 6 of FIG. 2 described above is set in the horizontal direction, the first refrigerant pipe 7 is used as a trap in which liquid-phase refrigerant tends to accumulate, and the second refrigerant pipe 8 is formed in an L shape from the indoor expansion valve 6. This is an example of starting up. Specifically, one side of the pipe 7a from the indoor heat exchanger 4a is bent into a hairpin shape (inverted U shape), and its tip is connected to one end of a T-shaped tube 7b (which constitutes a connecting portion). A closed tube 7c whose one end is closed is connected to the other end of the character tube 7b, and a small diameter portion 7d raised in an L shape from the intermediate connection end of the T tube 7b is connected to the indoor expansion valve 6. Yes.

このような構成では室内膨張弁6はT字管7bよりも下部に配置した配管構成になっているので、暖房時において室内機の運転停止中の場合に、室内熱交換器4aから室内膨張弁6への冷媒流が気液二相の状態であっても、図4に示すトラップになっている第一冷媒配管7のT字管7b及び細径部7dにかけた部分に、重力の影響によって液相の冷媒が溜まりやすくなるので、図2に示す例と同様に、室内膨張弁6の入口側がガス比率の高い気液二相冷媒状態にならず、室内膨張弁内での冷媒音の発生を抑えることができる。   In such a configuration, the indoor expansion valve 6 has a piping configuration disposed below the T-shaped tube 7b. Therefore, when the operation of the indoor unit is stopped during heating, the indoor expansion valve 6 is connected to the indoor expansion valve 6a. Even if the refrigerant flow to 6 is in a gas-liquid two-phase state, the portion of the first refrigerant pipe 7 that forms the trap shown in FIG. Since liquid-phase refrigerant is likely to accumulate, the inlet side of the indoor expansion valve 6 does not enter a gas-liquid two-phase refrigerant state with a high gas ratio, and refrigerant noise is generated in the indoor expansion valve, as in the example shown in FIG. Can be suppressed.

なお、図4では室内熱交換器4aからの配管7aの一側をヘアピン状(逆U字状)に折り曲げてその先端部をT字管7b(接続部を構成)の一端に接続した構成になっているが、配管7aの一側を折り曲げることなく、直接その先端部をT字管7bの一端に接続しても上述と同様な効果を得ることができる。   In FIG. 4, one side of the pipe 7 a from the indoor heat exchanger 4 a is bent into a hairpin shape (inverted U shape) and its tip is connected to one end of a T-shaped tube 7 b (connecting portion is configured). However, the same effect as described above can be obtained by directly connecting the tip of the pipe 7a to one end of the T-shaped pipe 7b without bending one side of the pipe 7a.

一方、室内膨張弁6から室外機(室外熱交換器)に向かう第二冷媒配管8は冷房時に室内膨張弁6に流入する冷媒方向が下向きとなり、細径部7dである細い配管は、暖房時に室内膨張弁6に流入する冷媒方向が横向きとなるように接続されている。   On the other hand, in the second refrigerant pipe 8 from the indoor expansion valve 6 to the outdoor unit (outdoor heat exchanger), the direction of the refrigerant flowing into the indoor expansion valve 6 during cooling is downward, and the thin pipe that is the small diameter portion 7d is used during heating. It connects so that the refrigerant | coolant direction which flows in into the indoor expansion valve 6 may turn sideways.

このような配管構成であるならば、図2に示す例と同様に、冷房時において、室外機からの冷媒流が気液二相状態であっても、L字状の立ち上げ部下部で、重力の影響によって液相の冷媒が溜まりやすく、また、室内膨張弁6に向かう冷媒流が下向きになっているので、室内膨張弁内での冷媒音の発生を抑えることができる。   If it is such a piping configuration, as in the example shown in FIG. 2, even when the refrigerant flow from the outdoor unit is in a gas-liquid two-phase state during cooling, at the lower part of the L-shaped rising portion, Liquid phase refrigerant tends to accumulate due to the influence of gravity, and the refrigerant flow toward the indoor expansion valve 6 is directed downward, so that generation of refrigerant noise in the indoor expansion valve can be suppressed.

図5は以上説明した多室型空気調和機の冷凍サイクルを示したもので、室外機Aと、複数の室内機B、C、Dとを循環する冷媒配管で接続した構成になっており、室外機Aに設ける圧縮機11、運転モードに対応させて冷媒流を切り替える四方弁12、室外熱交換器13、室外膨張弁19と、室内機Bに設ける室内膨張弁6、室内熱交換器4、4aとを順次配管接続し、室内機Bと同構成の室内機Cと室内機Dとを並列に接続している。また、各室内機B、C、Dにおける室内膨張弁6の前後には、先に説明した途中に細径部7dを備えたトラップになっている第一冷媒配管7と、第二冷媒配管8とが接続されている。   FIG. 5 shows the refrigeration cycle of the multi-room air conditioner described above, and has a configuration in which an outdoor unit A and a plurality of indoor units B, C, and D are connected by a circulating refrigerant pipe. The compressor 11 provided in the outdoor unit A, the four-way valve 12 for switching the refrigerant flow corresponding to the operation mode, the outdoor heat exchanger 13, the outdoor expansion valve 19, the indoor expansion valve 6 provided in the indoor unit B, and the indoor heat exchanger 4 4a are sequentially connected by piping, and an indoor unit C and an indoor unit D having the same configuration as the indoor unit B are connected in parallel. In addition, before and after the indoor expansion valve 6 in each indoor unit B, C, D, a first refrigerant pipe 7 and a second refrigerant pipe 8 which are traps provided with a narrow-diameter portion 7d in the middle described above. And are connected.

なお、図5では室内機Bに同構成の室内機Cと室内機Dとを並列に接続した場合を説明したが、室内機Bに同構成の室内機Cと室内機Dとを順次直列に接続しても上述と同様な効果を得ることができる。この場合には、図2または図4に示す例を室内機Bとしたとき、その第二冷媒配管8を、次の室内機Cの室内熱交換器4、4aの一端に接続し他端より第一冷媒配管7、室内膨張弁6、第二冷媒配管8と順次接続する。以降同様に、この第二冷媒配管8を、次の室内機Dの室内熱交換器4、4aの一端に接続し他端より第一冷媒配管7、室内膨張弁6、第二冷媒配管8、室外熱交換器13と順次接続することにより実現できる。   Note that FIG. 5 illustrates the case where the indoor unit C and the indoor unit D having the same configuration are connected in parallel to the indoor unit B, but the indoor unit C and the indoor unit D having the same configuration are sequentially connected in series to the indoor unit B. Even if connected, the same effect as described above can be obtained. In this case, when the example shown in FIG. 2 or FIG. 4 is an indoor unit B, the second refrigerant pipe 8 is connected to one end of the indoor heat exchangers 4 and 4a of the next indoor unit C and is connected to the other end. The first refrigerant pipe 7, the indoor expansion valve 6, and the second refrigerant pipe 8 are sequentially connected. Thereafter, similarly, the second refrigerant pipe 8 is connected to one end of the indoor heat exchangers 4 and 4a of the next indoor unit D, and the first refrigerant pipe 7, the indoor expansion valve 6, the second refrigerant pipe 8, and the like from the other end. This can be realized by sequentially connecting to the outdoor heat exchanger 13.

図6および図7は、先に説明したトラップになっている第一冷媒配管7と室内膨張弁6とからなる膨張弁ユニットUを室内機の外部に縦置きまたは横置きに設置した形態を示したものである。図6が図2の配管構成のユニット化に対応し、図7が図4の配管構成のユニット化に対応しており、このような形態であれば、騒音の低減効果をより一層高めることができる。   6 and 7 show a configuration in which the expansion valve unit U composed of the first refrigerant pipe 7 and the indoor expansion valve 6 serving as the trap described above is installed vertically or horizontally outside the indoor unit. It is a thing. 6 corresponds to unitization of the piping configuration of FIG. 2, and FIG. 7 corresponds to unitization of the piping configuration of FIG. 4. With such a configuration, the noise reduction effect can be further enhanced. it can.

本発明の実施の形態を示す多室型空気調和機の室内機の側断面図である。It is side sectional drawing of the indoor unit of the multi-room type air conditioner which shows embodiment of this invention. 本発明の要部を縦方向に配してなる拡大図である。It is an enlarged view which has arranged the principal part of this invention to the vertical direction. 本発明に係わる室内膨張弁の要部断面図である。It is principal part sectional drawing of the indoor expansion valve concerning this invention. 本発明の要部を横方向に配してなる拡大図である。It is an enlarged view which has arranged the principal part of this invention in the horizontal direction. 本発明に係わる多室型空気調和機の冷凍サイクル図である。It is a refrigerating cycle figure of the multi-room type air conditioner concerning the present invention. 本発明による膨張弁ユニットの設置形態を示す斜視図である。It is a perspective view which shows the installation form of the expansion valve unit by this invention. 本発明による膨張弁ユニットのもう一つの設置形態を示す斜視図である。It is a perspective view which shows another installation form of the expansion valve unit by this invention. 従来の多室型空気調和機の室内機の内部構成の概略を示す正面図である。It is a front view which shows the outline of the internal structure of the indoor unit of the conventional multi-room type air conditioner. 従来例を示す空気調和機の室内機の側断面図である。It is a sectional side view of the indoor unit of the air conditioner which shows a prior art example. 従来例を示す空気調和機の要部拡大断面図である。It is a principal part expanded sectional view of the air conditioner which shows a prior art example. 従来の膨張弁の構成断面図である。It is a structure sectional view of the conventional expansion valve.

符号の説明Explanation of symbols

A 室外機
B、C、D 室内機
U 膨張弁ユニット
1 筐体
2 ベース
3 前面パネル
4、4a 室内熱交換器
5 クロスフローファン
6 室内膨張弁
6a 弁室
6b 絞り部
7 第一冷媒配管
7a 配管
7b T字管
7c 閉塞管
7d 細径部
8 第二冷媒配管
A Outdoor unit B, C, D Indoor unit U Expansion valve unit 1 Housing 2 Base 3 Front panel 4, 4a Indoor heat exchanger 5 Cross flow fan 6 Indoor expansion valve 6a Valve chamber 6b Throttle part 7 First refrigerant piping 7a Piping 7b T-shaped tube 7c Blocking tube 7d Small diameter portion 8 Second refrigerant piping

Claims (3)

圧縮機、四方弁、室外熱交換器を備える室外機と、室内熱交換器、室内膨張弁を備える複数の室内機とを冷媒配管で接続してなり、前記室内熱交換器と前記室内膨張弁間を接続する第一冷媒配管と、前記室内膨張弁と前記室外熱交換器間を接続する第二冷媒配管とを備えてなる多室型空気調和機において、前記第一冷媒配管はトラップとし、暖房時に運転停止の室内機に備えた開状態の前記室内膨張弁に接続し、かつ、前記第二冷媒配管は冷房時に前記室内膨張弁に流入する冷媒方向を横向き又は下向きとしたことを特徴とする多室型空気調和機。   An outdoor unit including a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units including an indoor heat exchanger and an indoor expansion valve are connected by a refrigerant pipe, and the indoor heat exchanger and the indoor expansion valve In a multi-chamber air conditioner comprising a first refrigerant pipe connecting between and a second refrigerant pipe connecting between the indoor expansion valve and the outdoor heat exchanger, the first refrigerant pipe is a trap, Connected to the indoor expansion valve in an open state provided in an indoor unit whose operation is stopped during heating, and the second refrigerant pipe is configured such that the direction of the refrigerant flowing into the indoor expansion valve during cooling is horizontal or downward. Multi-room air conditioner. 前記第一冷媒配管は途中に接続部を設け、同接続部と前記室内膨張弁との間に、前記室内熱交換器と前記接続部間を接続する配管よりも細い配管を接続してなることを特徴とする請求項1記載の多室型空気調和機。   The first refrigerant pipe is provided with a connection part in the middle, and a pipe thinner than the pipe connecting the indoor heat exchanger and the connection part is connected between the connection part and the indoor expansion valve. The multi-room air conditioner according to claim 1. 前記第一冷媒配管と前記室内膨張弁とからなる膨張弁ユニットを室内機の外部に設置してなることを特徴とする請求項1または2記載の多室型空気調和機。   The multi-room air conditioner according to claim 1 or 2, wherein an expansion valve unit including the first refrigerant pipe and the indoor expansion valve is installed outside the indoor unit.
JP2006149495A 2006-05-30 2006-05-30 Multi-room type air conditioner Pending JP2007322006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149495A JP2007322006A (en) 2006-05-30 2006-05-30 Multi-room type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149495A JP2007322006A (en) 2006-05-30 2006-05-30 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
JP2007322006A true JP2007322006A (en) 2007-12-13

Family

ID=38854990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149495A Pending JP2007322006A (en) 2006-05-30 2006-05-30 Multi-room type air conditioner

Country Status (1)

Country Link
JP (1) JP2007322006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109046A (en) * 2019-04-10 2019-07-04 ダイキン工業株式会社 Piping unit or air conditioning system
CN115435389A (en) * 2021-06-01 2022-12-06 广东美的暖通设备有限公司 Wall-mounted air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JP2003262435A (en) * 2002-03-06 2003-09-19 Sharp Corp Air conditioner
JP2005147489A (en) * 2003-11-14 2005-06-09 Daiwa House Ind Co Ltd Built-in type air conditioner and air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JP2003262435A (en) * 2002-03-06 2003-09-19 Sharp Corp Air conditioner
JP2005147489A (en) * 2003-11-14 2005-06-09 Daiwa House Ind Co Ltd Built-in type air conditioner and air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109046A (en) * 2019-04-10 2019-07-04 ダイキン工業株式会社 Piping unit or air conditioning system
JP7001923B2 (en) 2019-04-10 2022-01-20 ダイキン工業株式会社 Piping unit or air conditioning system
CN115435389A (en) * 2021-06-01 2022-12-06 广东美的暖通设备有限公司 Wall-mounted air conditioner
WO2022252683A1 (en) * 2021-06-01 2022-12-08 广东美的暖通设备有限公司 Wall-mounted air conditioner

Similar Documents

Publication Publication Date Title
JP2005226987A (en) Piping structure for outdoor unit of air conditioner
JP2008241064A (en) Gas-liquid separator for air conditioner
JP2008232600A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP6332377B2 (en) Heat exchanger
JP2007322006A (en) Multi-room type air conditioner
JP2006266663A (en) Expansion valve and air conditioner
CN110621954A (en) Heat exchanger and heat exchange unit provided with same
JP2006153332A (en) Outdoor unit for air conditioner
JP2014081150A (en) Air conditioner
JP2013002773A (en) Heat exchanger and air conditioner with the same
JP2010078248A (en) Gas-liquid separator and refrigerating cycle device including the same
WO2022158574A1 (en) Heat exchanger
WO2018073894A1 (en) Refrigeration cycle device
JP2007051824A (en) Air-conditioner
JP2006234264A (en) Fin and tube-type heat exchanger
WO2018016012A1 (en) Heat source unit and refrigeration cycle device
JP2008175433A (en) Gas-liquid separator for air conditioner, and air conditioner
CN107366975B (en) Indoor unit of air duct machine and air duct machine
JP2018115809A (en) Air conditioner
KR20090069994A (en) Cassette type heat-pump air conditioner with stabilized refrigerant-cycle
JP4734915B2 (en) Indoor unit of heat exchanger and air conditioner equipped with the same
JP2017053511A (en) Indoor unit of air conditioner
CN110603421A (en) Heat exchanger
JPH07139837A (en) Air conditioner
US20170328616A1 (en) Air Conditioner Units with Improved Efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018