JP2007322001A - Mixed fluid separating device - Google Patents

Mixed fluid separating device Download PDF

Info

Publication number
JP2007322001A
JP2007322001A JP2006149396A JP2006149396A JP2007322001A JP 2007322001 A JP2007322001 A JP 2007322001A JP 2006149396 A JP2006149396 A JP 2006149396A JP 2006149396 A JP2006149396 A JP 2006149396A JP 2007322001 A JP2007322001 A JP 2007322001A
Authority
JP
Japan
Prior art keywords
pipe
mixed fluid
tube
inner tube
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006149396A
Other languages
Japanese (ja)
Other versions
JP4899641B2 (en
Inventor
Atsushi Nakamura
淳 中村
Kimimichi Kuboyama
久保山  公道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2006149396A priority Critical patent/JP4899641B2/en
Publication of JP2007322001A publication Critical patent/JP2007322001A/en
Application granted granted Critical
Publication of JP4899641B2 publication Critical patent/JP4899641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently separate a mixed fluid without becoming large in size. <P>SOLUTION: This mixed fluid separating device comprises a gas-liquid separating portion 541 having an inner tube 5411 for allowing the mixed fluid obtained by mixing plural kinds of fluids different in specific gravities to flow, and an outer tube 5412 surrounding an outer periphery of the inner tube 5411, and constituted by spirally forming the inner tube 5411 and the outer tube 5412 around a vertical prescribed axis while forming a plural through holes 5411b directing to the radial outer direction, on a peripheral wall of the inner tube 5411, and a liquid-oil separating portion 542 having an outer tube 5422 communicated with the downstream of the outer tube 5412, closed at its lower end disposed along the vertical direction, and provided with branch piping 5423 at a side portion of a prescribed height position from the lower end, and an inner tube 5421 communicated with the downstream of the inner tube 5411, inserted along the outer tube 5422, and having a through hole 5421b on a peripheral wall at a position lower than the branch piping 5423, and constituted by spirally forming the inner tube 5421 and the outer tube 5422 at a position upper than the branch piping 5423. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、互いに比重の異なる複数の流体が混合した混合流体を分離するための混合流体分離装置に関するものである。   The present invention relates to a mixed fluid separation device for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed.

冷凍サイクルに使用される混合流体分離装置は、互いに比重の異なる気相冷媒および液相冷媒が混合した混合冷媒を一旦貯留するタンク形状の貯留部を備えている。この混合流体分離装置では、比較的比重の小さい気相冷媒が貯留部の上部に滞留する一方、比較的比重の大きい液相冷媒が貯留部の下部に滞留することになる。さらに貯留部の下部に滞留した液相冷媒は、両者の比重の差により分離し、上層に貯留する液冷媒と下層に貯留する機械油となる(例えば、特許文献1参照)。   The mixed fluid separation device used in the refrigeration cycle includes a tank-shaped storage unit that temporarily stores a mixed refrigerant in which a gas phase refrigerant and a liquid phase refrigerant having different specific gravities are mixed. In this mixed fluid separation device, the gas phase refrigerant having a relatively low specific gravity stays in the upper part of the storage part, while the liquid phase refrigerant having a relatively high specific gravity stays in the lower part of the storage part. Further, the liquid phase refrigerant staying in the lower part of the storage part is separated due to the difference in specific gravity between the two, and becomes liquid refrigerant stored in the upper layer and machine oil stored in the lower layer (see, for example, Patent Document 1).

特開2000−111210号公報JP 2000-1111210 A

しかしながら、特許文献1に記載の混合流体分離装置では、混合冷媒を貯留させた状態で互いに比重の異なる流体を分離するものであるため、分離効率を高めるためには大型のタンクが必要となる。この結果、大型のタンクを設置するための大きなスペースが必要となり、設置個所が制限される等の問題を招来することになる。   However, in the mixed fluid separation device described in Patent Document 1, fluids having different specific gravities are separated in a state where the mixed refrigerant is stored, so that a large tank is required to increase the separation efficiency. As a result, a large space for installing a large tank is required, which leads to problems such as a limited installation location.

本発明は、上記実情に鑑みてなされたものであり、大型化を招来することなく混合流体を効率良く分離することのできる混合流体分離装置を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the mixed fluid separation apparatus which can isolate | separate a mixed fluid efficiently, without causing enlargement.

上記の目的を達成するために、本発明の請求項1に係る混合流体分離装置は、互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、内部に混合流体を送流させる内管と、内管の外周を囲繞する外管とを有し、前記内管の周壁に径外方向に向く複数の貫通孔を設けつつ、内管および外管を共に螺旋状に形成したことを特徴とする。   In order to achieve the above object, a mixed fluid separation device according to claim 1 of the present invention is a device for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed with each other. The inner tube and the outer tube are spirally provided with an inner tube to be sent and an outer tube surrounding the outer periphery of the inner tube, and provided with a plurality of through-holes facing radially outward in the peripheral wall of the inner tube. It is formed.

本発明の請求項2に係る混合流体分離装置は、互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けて内部に混合流体を送流させる外管と、前記外管に沿って内挿して前記分岐配管よりも下方の位置の周壁に貫通孔を設けて内部に他の流体を送流させる内管とを有し、分岐配管よりも上方の位置で内管および外管を共に螺旋状に形成したことを特徴とする。   A mixed fluid separation device according to a second aspect of the present invention is a device for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed with each other, closing the lower end disposed along the vertical direction and closing the lower end. A branch pipe is provided on the side of the position at a predetermined height from the outer pipe to send the mixed fluid to the inside, and a through hole is inserted in the peripheral wall at a position below the branch pipe inserted along the outer pipe. And an inner pipe for sending other fluid to the inside, and both the inner pipe and the outer pipe are formed in a spiral shape at a position above the branch pipe.

本発明の請求項3に係る混合流体分離装置は、互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、内部に混合流体を送流させる第一内管、および第一内管の外周を囲繞する第一外管を有し、前記第一内管の周壁に径外方向に向く複数の貫通孔を設けつつ、上下に向けた所定軸線の周りに第一内管および第一外管を共に螺旋状に形成した第一分離手段と、前記第一外管の下流に連通してあり上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けた第二外管、および前記第一内管の下流に連通してあり前記第二外管に沿って内挿して前記分岐配管よりも下方の位置の周壁に貫通孔を設けた第二内管を有し、分岐配管よりも上方の位置で第二内管および第二外管を共に螺旋状に形成した第二分離手段とを備え、前記第一分離手段の螺旋を所定傾斜とし、前記第二分離手段の螺旋を前記所定傾斜よりも緩く形成したことを特徴とする。   A mixed fluid separation device according to a third aspect of the present invention is a device for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed with each other, and a first inner pipe for feeding the mixed fluid therein, and A first outer tube surrounding an outer periphery of the first inner tube, and a plurality of through holes facing radially outward are provided in a peripheral wall of the first inner tube, and the first inner tube is disposed around a predetermined axis line directed vertically. A first separation means in which both the pipe and the first outer pipe are formed in a spiral shape, and a lower end that is communicated downstream of the first outer pipe and is disposed along the vertical direction, and has a predetermined height from the lower end. A second outer pipe provided with a branch pipe on the side of the position, and communicated downstream of the first inner pipe and inserted along the second outer pipe to a peripheral wall at a position below the branch pipe Has a second inner pipe with a through hole, and spirals both the second inner pipe and the second outer pipe at a position above the branch pipe And a second separating means formed on the spiral of the first separation means to a predetermined inclination, characterized in that the helix of the second separation means to form loosely than the predetermined inclination.

本発明に係る混合流体分離装置によれば、内部に混合流体を送流させる内管と、内管の外周を囲繞する外管とを有し、内管の周壁に径外方向に向く複数の貫通孔を設けつつ、内管および外管を共に螺旋状に形成した。このため、比重の大きな流体が貫通孔から外管に移動する分離流力を作用させ、比重の小さい流体を内管に残すため、混合流体を貯留させることなく効率的に分離することが可能となる。この結果、大型化を招来することなく混合流体を効率良く分離することができる。   The mixed fluid separation device according to the present invention has an inner tube that feeds the mixed fluid therein and an outer tube that surrounds the outer periphery of the inner tube, and a plurality of walls that are directed radially outward on the peripheral wall of the inner tube. Both the inner tube and the outer tube were formed in a spiral shape while providing a through hole. For this reason, a separation fluid force that moves a fluid with a large specific gravity from the through hole to the outer tube is applied, and a fluid with a small specific gravity is left in the inner tube, so that it is possible to efficiently separate the mixed fluid without storing it. Become. As a result, the mixed fluid can be efficiently separated without causing an increase in size.

特に、内管の周壁に径外方向に向く複数の貫通孔を設けてある。このため、内管に送流された混合流体が高流量の場合に螺旋による遠心力からなる分離流力を主に利用して螺旋の径外方向の貫通孔から外管に流体を移動させる。一方、内管に送流された混合流体が低流量の場合には、重力からなる分離流力を主に利用して鉛直方向の貫通孔から外管に流体を移動させる。この結果、流量に影響されずに混合流体を効率良く分離することができる。   In particular, a plurality of through-holes facing in the radially outward direction are provided in the peripheral wall of the inner tube. For this reason, when the mixed fluid sent to the inner pipe has a high flow rate, the fluid is moved from the through-hole in the radially outward direction of the spiral to the outer pipe mainly using the separation flow force formed by the centrifugal force by the spiral. On the other hand, when the mixed fluid sent to the inner pipe has a low flow rate, the fluid is moved from the vertical through hole to the outer pipe mainly using the separated flow force consisting of gravity. As a result, the mixed fluid can be efficiently separated without being affected by the flow rate.

また、本発明に係る混合流体分離装置によれば、上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けて内部に混合流体を送流させる外管と、外管に沿って内挿して分岐配管よりも下方の位置の周壁に貫通孔を設けて内部に他の流体を送流させる内管とを有し、分岐配管よりも上方の位置で内管および外管を共に螺旋状に形成した。このため、分岐配管よりも下側の閉塞部位に比較的比重の大きい流体を貯留しつつ、分岐配管から比較的比重の小さい流体を送流する。さらに、貯留した流体を貫通孔を介して内管に送流させる。特に、混合流体を螺旋状部分に貯めつつ送流させる。この結果、大型化を招来することなく混合流体を効率良く分離することができる。   In addition, according to the mixed fluid separation device according to the present invention, the lower end disposed along the vertical direction is closed, and a branch pipe is provided on a side portion at a predetermined height from the lower end to send the mixed fluid to the inside. And an inner pipe that is inserted along the outer pipe and is provided with a through hole in the peripheral wall at a position lower than the branch pipe to allow other fluid to flow inside. In position, both the inner and outer tubes were helically formed. For this reason, a fluid having a relatively low specific gravity is sent from the branch pipe while a fluid having a relatively high specific gravity is stored in the closed portion below the branch pipe. Further, the stored fluid is sent to the inner pipe through the through hole. In particular, the mixed fluid is sent while being stored in the spiral portion. As a result, the mixed fluid can be efficiently separated without causing an increase in size.

また、本発明に係る混合流体分離装置によれば、内部に混合流体を送流させる第一内管、および第一内管の外周を囲繞する第一外管を有し、第一内管の周壁に径外方向に向く複数の貫通孔を設けつつ、上下に向けた所定軸線の周りに第一内管および第一外管を共に螺旋状に形成した第一分離手段と、第一外管の下流に連通してあり上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けた第二外管、および第一内管の下流に連通してあり第二外管に沿って内挿して分岐配管よりも下方の位置の周壁に貫通孔を設けた第二内管を有し、分岐配管よりも上方の位置で第二内管および第二外管を共に螺旋状に形成した第二分離手段とを備え、第一分離手段の螺旋を所定傾斜とし、第二分離手段の螺旋を所定傾斜よりも緩く形成した。このため、第一分離手段では、比重の大きな流体が貫通孔から外管に移動する分離流力を作用させ、比重の小さい流体を内管に残す。また、第二分離手段では、分岐配管よりも下側の閉塞部位に比較的比重の大きい流体を貯留しつつ、分岐配管から比較的比重の小さい流体を送流し、さらに貯留した流体を貫通孔を介して内管に送流させる。この結果、混合流体を貯留させることなく効率的に分離する。大型化を招来することなく混合流体を効率良く分離することができる。特に、第一分離手段の螺旋を所定傾斜とし、第二分離手段の螺旋を所定傾斜よりも緩く形成したことにより、第二分離手段の傾斜を緩く形成した分、混合流体を螺旋状部分に貯めつつ送流させ、かつ、装置全体の高さを低く抑えることで、装置の小型化を図ることができる。   Moreover, according to the mixed fluid separation device according to the present invention, the first inner tube that feeds the mixed fluid to the inside, and the first outer tube that surrounds the outer periphery of the first inner tube, A first separation means having a first inner pipe and a first outer pipe formed in a spiral shape around a predetermined axial line facing up and down while providing a plurality of through-holes facing radially outward in the peripheral wall; A second outer pipe that is closed downstream and is arranged along the vertical direction, and a branch pipe is provided on a side portion at a predetermined height from the lower end, and communicates downstream of the first inner pipe. The second inner pipe is inserted along the second outer pipe and has a through hole in the peripheral wall at a position lower than the branch pipe, and the second inner pipe and the second pipe are positioned above the branch pipe. A second separation means formed in a spiral shape with both outer tubes, the spiral of the first separation means having a predetermined inclination, and the spiral of the second separation means having a predetermined inclination Was loosely than the. For this reason, in the first separation means, a separation flow force in which a fluid having a large specific gravity moves from the through hole to the outer tube acts, and a fluid having a small specific gravity remains in the inner tube. Further, in the second separation means, a fluid having a relatively high specific gravity is stored in the closed portion below the branch pipe, while a fluid having a relatively low specific gravity is sent from the branch pipe, and the stored fluid is further passed through the through hole. To the inner pipe. As a result, the mixed fluid is efficiently separated without storing. The mixed fluid can be efficiently separated without causing an increase in size. In particular, the mixed fluid is stored in the spiral portion by the amount that the second separating means is slackened by setting the spiral of the first separating means to a predetermined slope and the spiral of the second separating means to be looser than the predetermined slope. However, the apparatus can be reduced in size by feeding the air while keeping the height of the entire apparatus low.

以下に添付図面を参照して、本発明に係る混合流体分離装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a mixed fluid separator according to the present invention will be described below in detail with reference to the accompanying drawings.

まず、本発明に係る混合流体分離装置を適用する冷媒回路について説明する。図1は本発明に係る混合流体分離装置を適用した冷媒回路を例示する概略図である。図1に示すように冷媒回路は、主に、圧縮機51、ガスクーラ(放熱器)52、エジェクタ53、混合流体分離装置54、蒸発器55および内部熱交換器56を接続して、冷媒を循環可能な冷媒循環経路を形成したものである。循環させる冷媒としては、例えばHFC冷媒(ハイドロフルオロカーボン)または二酸化炭素を使用している。特に、二酸化炭素は、不燃性、不腐食性を有し、さらにオゾン層への影響が少ない冷媒であり、冷媒回路に使用するのに適している。   First, a refrigerant circuit to which the mixed fluid separator according to the present invention is applied will be described. FIG. 1 is a schematic view illustrating a refrigerant circuit to which a mixed fluid separator according to the present invention is applied. As shown in FIG. 1, the refrigerant circuit mainly circulates the refrigerant by connecting a compressor 51, a gas cooler (heat radiator) 52, an ejector 53, a mixed fluid separator 54, an evaporator 55, and an internal heat exchanger 56. It forms a possible refrigerant circulation path. As the circulating refrigerant, for example, HFC refrigerant (hydrofluorocarbon) or carbon dioxide is used. In particular, carbon dioxide is a refrigerant that has non-flammability and non-corrosion properties and has little influence on the ozone layer, and is suitable for use in a refrigerant circuit.

圧縮機51は、気相冷媒を圧縮して高温高圧の状態としてガスクーラ52に供給するものである。圧縮機51としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機などがある。また、これらの圧縮能力を調整可能なインバータ圧縮機などがある。そして、冷媒回路を配設する対象、環境、あるいは、冷媒回路のコストなどに見合う圧縮機を適宜適用すればよい。   The compressor 51 compresses the gas-phase refrigerant and supplies it to the gas cooler 52 in a high-temperature and high-pressure state. Examples of the compressor 51 include a reciprocating compressor, a rotary compressor, and a scroll compressor. In addition, there is an inverter compressor capable of adjusting these compression capacities. And what is necessary is just to apply suitably the compressor corresponding to the object which arrange | positions a refrigerant circuit, an environment, or the cost of a refrigerant circuit.

ガスクーラ52は、圧縮機51から供給される高温高圧の気相冷媒を放熱させるためのものである。ガスクーラ52は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。図1には明示しないが、ガスクーラ52には、ガスクーラファンが設けてある。ガスクーラファンは、ガスクーラ52を送風によって冷却するためのものであり、ファンモータによって駆動される。   The gas cooler 52 is for radiating heat from the high-temperature and high-pressure gas-phase refrigerant supplied from the compressor 51. As the gas cooler 52, for example, a fin tube type composed of a copper tube and an aluminum fin is used. Although not clearly shown in FIG. 1, the gas cooler 52 is provided with a gas cooler fan. The gas cooler fan is for cooling the gas cooler 52 by blowing air, and is driven by a fan motor.

エジェクタ53は、ガスクーラ52から供給される液相冷媒を利用した吸引作用によって蒸発器55側からの冷媒を吸引するとともに、昇圧作用によって圧縮機51に至る吸入圧を上昇させるものである。図1に示すように、エジェクタ53は、二相流噴射型エジェクタを使用してあり、ノズル部531、混合部532およびディフューザ部533からなる。ノズル部531は、ガスクーラ52を介した高圧の冷媒を減圧して加速することで蒸発器55を介した低圧の冷媒を吸引する。このノズル部531は、高圧の冷媒を減圧するためのノズル径を調節するノズル弁531aを有している。混合部532は、高圧冷媒に対して低圧冷媒を混合する。ディフューザ部533は、混合した混合冷媒を昇圧して吐出する。   The ejector 53 sucks the refrigerant from the evaporator 55 side by a suction action using the liquid phase refrigerant supplied from the gas cooler 52, and increases the suction pressure reaching the compressor 51 by the pressure raising action. As shown in FIG. 1, the ejector 53 uses a two-phase flow ejection type ejector, and includes a nozzle portion 531, a mixing portion 532, and a diffuser portion 533. The nozzle unit 531 sucks the low-pressure refrigerant via the evaporator 55 by depressurizing and accelerating the high-pressure refrigerant via the gas cooler 52. The nozzle portion 531 has a nozzle valve 531a that adjusts the nozzle diameter for reducing the pressure of the high-pressure refrigerant. The mixing unit 532 mixes the low-pressure refrigerant with the high-pressure refrigerant. The diffuser unit 533 pressurizes and discharges the mixed refrigerant.

混合流体分離装置54は、エジェクタ53から供給される混合流体としての混合冷媒を液相冷媒と気相冷媒とに分離し、混合流体として油を含む液相冷媒をさらに液相冷媒と油とに分離するためのものである。そして、混合流体分離装置54は、分離した気相冷媒および油を一緒に圧縮機51に帰還させる一方で、液相冷媒を蒸発器55に供給する。   The mixed fluid separation device 54 separates the mixed refrigerant as the mixed fluid supplied from the ejector 53 into a liquid phase refrigerant and a gas phase refrigerant, and further converts the liquid phase refrigerant containing oil as the mixed fluid into a liquid phase refrigerant and oil. It is for separation. Then, the mixed fluid separation device 54 supplies the liquid phase refrigerant to the evaporator 55 while returning the separated gas phase refrigerant and oil together to the compressor 51.

蒸発器55は、混合流体分離装置54から供給される液相冷媒を蒸発させて、周囲の熱を吸収することによって周囲温度を冷却するためのものである。この蒸発器55は、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどにおける断熱構造の冷却庫の内部に配置される。特に、図1は自動販売機についてのサイクルを示しており、複数の商品収容庫(冷却庫)をそれぞれ独立して冷却するために、各商品収容庫に配置する蒸発器55(55a,55b,55c)が記載されている。蒸発器55a,55b,55cは、混合流体分離装置54から3方に分岐したそれぞれの経路に並列して接続してある。また、分岐した各経路において各蒸発器55a,55b,55cの入口側には、開閉弁としての電磁弁551a,551b,551cがそれぞれ設けてある。そして、各電磁弁551a,551b,551cを選択的に開放することで、各蒸発器55a,55b,55cに混合流体分離装置54からの液相冷媒が供給される。また、各蒸発器55a,55b,55cの出口側の経路は、互いに集合してエジェクタ53におけるノズル部531の吸入側に接続してある。   The evaporator 55 is for cooling the ambient temperature by evaporating the liquid-phase refrigerant supplied from the mixed fluid separator 54 and absorbing ambient heat. The evaporator 55 is disposed inside a refrigerator having a heat insulating structure in, for example, a vending machine, a refrigerator, a freezer / refrigerated showcase, or a beverage dispenser. In particular, FIG. 1 shows a cycle for a vending machine, and evaporators 55 (55a, 55b,. 55c). The evaporators 55a, 55b, and 55c are connected in parallel to the respective paths branched from the mixed fluid separator 54 in three directions. In addition, electromagnetic valves 551a, 551b, and 551c as on-off valves are provided on the inlet sides of the evaporators 55a, 55b, and 55c in the branched paths. Then, by selectively opening the electromagnetic valves 551a, 551b, and 551c, the liquid phase refrigerant from the mixed fluid separation device 54 is supplied to the evaporators 55a, 55b, and 55c. Further, the outlet-side paths of the evaporators 55a, 55b, and 55c are gathered together and connected to the suction side of the nozzle portion 531 in the ejector 53.

なお、内部熱交換器56は、エジェクタ53に供給される高圧の液相冷媒と低圧の気相冷媒との相互の熱交換を行うためのものである。内部熱交換器56は、ガスクーラ52とエジェクタ53との間、および蒸発器55とエジェクタ53との間に設けてある。   The internal heat exchanger 56 is for performing heat exchange between the high-pressure liquid-phase refrigerant supplied to the ejector 53 and the low-pressure gas-phase refrigerant. The internal heat exchanger 56 is provided between the gas cooler 52 and the ejector 53 and between the evaporator 55 and the ejector 53.

また、上述した冷媒回路において、図1に示すように、混合流体分離装置54と蒸発器55との間であって、混合流体分離装置54の出口側で各蒸発器55(55a,55b,55c)に分岐する以前の部位には、電子膨張弁57が設けてある。   In the refrigerant circuit described above, as shown in FIG. 1, each evaporator 55 (55a, 55b, 55c) is provided between the mixed fluid separator 54 and the evaporator 55 and on the outlet side of the mixed fluid separator 54. The electronic expansion valve 57 is provided at the site before branching to ().

次に、混合流体分離装置54について説明する。図2は本発明に係る混合流体分離装置を示す構成図、図3は図2で示す気液分離部の断面図である。   Next, the mixed fluid separator 54 will be described. FIG. 2 is a block diagram showing a mixed fluid separator according to the present invention, and FIG. 3 is a cross-sectional view of the gas-liquid separator shown in FIG.

図2に示すように混合流体分離装置54は、気液分離部(第一分離手段)541および液油分離部(第二分離手段)542を備えている。気液分離部541は、内管(第一内管)5411と外管(第一外管)5412とを有している。内管5411は、管部材からなり、その上流端5411aを冷媒回路におけるエジェクタ53の吐出側(ディフューザ部533)に接続してある。また、内管5411の管壁(周壁)には、貫通孔5411bが設けてある。この貫通孔5411bは、図3に示すように内管5411の径外方向(例えば図3における上下左右方向)に向く態様で複数設けてあり、かつ内管5411の延在方向に沿って複数設けてある。一方、外管5412は、管部材からなり、内管5411の貫通孔5411bを設けた部位を囲繞しつつ、内管5411の上流端5411a側に位置する上流端5412aを閉塞して内管5411と共に2重配管構造をなしている。この気液分離部541は、上下に向けた所定軸線Oの周りに内管5411および外管5412を螺旋状に形成してある。   As shown in FIG. 2, the mixed fluid separation device 54 includes a gas-liquid separation unit (first separation unit) 541 and a liquid oil separation unit (second separation unit) 542. The gas-liquid separation unit 541 has an inner tube (first inner tube) 5411 and an outer tube (first outer tube) 5412. The inner pipe 5411 is made of a pipe member, and its upstream end 5411a is connected to the discharge side (diffuser portion 533) of the ejector 53 in the refrigerant circuit. In addition, a through-hole 5411b is provided in the tube wall (peripheral wall) of the inner tube 5411. As shown in FIG. 3, a plurality of through holes 5411b are provided in a manner facing the radially outward direction of the inner tube 5411 (for example, the vertical and horizontal directions in FIG. 3), and a plurality of through holes 5411b are provided along the extending direction of the inner tube 5411. It is. On the other hand, the outer pipe 5412 is made of a pipe member, and closes the upstream end 5412a located on the upstream end 5411a side of the inner pipe 5411 and surrounds the portion where the through hole 5411b of the inner pipe 5411 is provided, together with the inner pipe 5411. It has a double piping structure. In the gas-liquid separation unit 541, an inner tube 5411 and an outer tube 5412 are spirally formed around a predetermined axis O directed upward and downward.

液油分離部542は、内管(第二内管)5421と外管(第二外管)5422とを有している。内管5421および外管5422は、管部材からなり外管5422に内管5421を内挿した2重管構造をなしている。外管5422には、その下流端5422a側において、上下方向(特に鉛直方向)に沿って配置した下端から所定高さ上方の位置の側部に連通した分岐配管(方向転換部)5423が設けてある。この分岐配管5423は、冷媒回路における電子膨張弁57に接続してある。また、外管5422には、その下流端5422a側において、上下方向(特に鉛直方向)に沿って配置した下端を閉塞してなる貯留部5422bが設けてある。すなわち、ここでの貯留部5422bは、外管5422の閉塞した下流端5422aから、分岐配管5423の下方に至り設けた閉塞域からなる。一方、外管5422に内挿されている内管5421の下流端5421a側は、貯留部5422bに至り、当該貯留部5422bを通過して外管5422の閉塞した下端より外管5422の外側に引き出して設けてある。また、分岐配管5423よりも下方の位置であって貯留部5422bを通過する内管5421の内壁には、貫通孔5421bが設けてある。また、外管5422の外側に引き出された内管5421の下流端5421aは、冷媒回路における圧縮機51の吸入側に接続してある。この液油分離部542は、分岐配管5423よりも上方の位置で、上記所定軸線Oの周りに内管5421および外管5422を螺旋状に形成してある。   The liquid oil separation unit 542 includes an inner pipe (second inner pipe) 5421 and an outer pipe (second outer pipe) 5422. The inner tube 5421 and the outer tube 5422 are made of tube members and have a double tube structure in which the inner tube 5421 is inserted into the outer tube 5422. The outer pipe 5422 is provided with a branch pipe (direction changing portion) 5423 that communicates with a side portion at a predetermined height above a lower end disposed along the vertical direction (particularly the vertical direction) on the downstream end 5422a side. is there. The branch pipe 5423 is connected to the electronic expansion valve 57 in the refrigerant circuit. Further, the outer tube 5422 is provided with a storage portion 5422b formed by closing the lower end disposed along the vertical direction (particularly the vertical direction) on the downstream end 5422a side. That is, the storage portion 5422b here is a closed area provided from the closed downstream end 5422a of the outer pipe 5422 to the lower side of the branch pipe 5423. On the other hand, the downstream end 5421a side of the inner tube 5421 inserted in the outer tube 5422 reaches the storage portion 5422b, and is drawn out of the outer tube 5422 from the closed lower end of the outer tube 5422 through the storage portion 5422b. It is provided. In addition, a through hole 5421b is provided in the inner wall of the inner pipe 5421 that is located below the branch pipe 5423 and passes through the storage portion 5422b. The downstream end 5421a of the inner tube 5421 drawn out of the outer tube 5422 is connected to the suction side of the compressor 51 in the refrigerant circuit. In the liquid oil separating portion 542, an inner tube 5421 and an outer tube 5422 are formed in a spiral shape around the predetermined axis O at a position above the branch pipe 5423.

なお、本実施の形態での液油分離部542は、気液分離部541の2重配管構造をなしたまま、当該気液分離部541の下流側に連続して形成してある。すなわち、内管(第一内管)5411と内管(第二内管)5421とを一連の管部材で構成してあり、かつ外管(第一外管)5412と外管(第二外管)5422とを一連の管部材で構成してある。そして、気液分離部541での螺旋を水平線Lに対して所定傾斜θ1とし、液油分離部542での螺旋を前記所定傾斜θ1よりも緩い傾斜θ2としてある。   In addition, the liquid oil separation part 542 in this Embodiment is continuously formed in the downstream of the said gas-liquid separation part 541, making the double piping structure of the gas-liquid separation part 541. FIG. That is, the inner pipe (first inner pipe) 5411 and the inner pipe (second inner pipe) 5421 are constituted by a series of pipe members, and the outer pipe (first outer pipe) 5412 and the outer pipe (second outer pipe). Tube) 5422 is formed of a series of tube members. The spiral at the gas-liquid separator 541 is set to a predetermined inclination θ1 with respect to the horizontal line L, and the spiral at the liquid oil separator 542 is set to an inclination θ2 that is looser than the predetermined inclination θ1.

以下、上記混合流体分離装置54の作用について説明する。冷媒回路のエジェクタ53は、一定の流速で混合冷媒を気液分離部541の内管5411に供給する。   Hereinafter, the operation of the mixed fluid separator 54 will be described. The ejector 53 of the refrigerant circuit supplies the mixed refrigerant to the inner pipe 5411 of the gas-liquid separator 541 at a constant flow rate.

気液分離部541の螺旋状の部位を通過する混合冷媒には、分離流力が作用する。分離流力としては、遠心力,慣性力,重力,圧力差などがある。この分離流力は、図3に示すように、気相冷媒に比べて比重の大きい液相冷媒を内管5411の曲率半径外側方向に偏らせる。そして、液相冷媒は、内管5411に設けた貫通孔5411bを介して外管5412に移送される。これに対して比重の小さい気相冷媒は、内管5411内に留まることになる。この結果、混合冷媒が分離し、気相冷媒が内管5411に送流される一方、液相冷媒が外管5412に送流される。なお、混合冷媒には、圧縮機51において機械的摩擦を緩和するための冷凍機油(油)が含まれている。この冷凍機油は、気相冷媒に比べて比重が大きいため、液相冷媒とともに外管5412に送流される。   Separation flow force acts on the mixed refrigerant passing through the spiral portion of the gas-liquid separation unit 541. The separation flow force includes centrifugal force, inertial force, gravity, pressure difference and the like. As shown in FIG. 3, the separated flow force biases the liquid-phase refrigerant having a larger specific gravity than the gas-phase refrigerant toward the outer radius of curvature of the inner tube 5411. Then, the liquid phase refrigerant is transferred to the outer tube 5412 through a through hole 5411 b provided in the inner tube 5411. On the other hand, the gas phase refrigerant having a small specific gravity stays in the inner pipe 5411. As a result, the mixed refrigerant is separated and the gas-phase refrigerant is sent to the inner pipe 5411, while the liquid-phase refrigerant is sent to the outer pipe 5412. The mixed refrigerant contains refrigerating machine oil (oil) for reducing mechanical friction in the compressor 51. Since this specific gravity of the refrigerating machine oil is larger than that of the gas-phase refrigerant, it is sent to the outer pipe 5412 together with the liquid-phase refrigerant.

液油分離部542では、上記気液分離部541の外管5412に連通する外管5422の螺旋状部分に液相冷媒および冷凍機油が送流される一方、気液分離部541の内管5411に連通する内管5421の螺旋状部分に気相冷媒が送流される。そして、外管5422において、比較的比重の大きい冷凍機油は慣性力および重力の作用によって貯留部5422bに貯留される。一方、比較的比重の小さい液相冷媒は分岐配管5423に送流される。また、外管5422の貯留部5422bには、貫通孔5421bを設けた内管5421が通過しており、この内管5421には上述のごとく気相冷媒が送流されている。このため、貯留部5422bに貯留した冷凍機油は、貫通孔5421bから内管5421の内部に移動して気相冷媒とともに内管5421の内部に送流される。   In the liquid oil separation unit 542, liquid phase refrigerant and refrigeration oil are sent to the spiral portion of the outer tube 5422 communicating with the outer tube 5412 of the gas-liquid separation unit 541, while the liquid-phase separation unit 541 is supplied to the inner tube 5411 of the gas-liquid separation unit 541. The gas phase refrigerant is sent to the spiral portion of the inner tube 5421 that communicates. In the outer tube 5422, the refrigerating machine oil having a relatively large specific gravity is stored in the storage unit 5422b by the action of inertia and gravity. On the other hand, the liquid phase refrigerant having a relatively small specific gravity is sent to the branch pipe 5423. Further, an inner tube 5421 provided with a through hole 5421b passes through the storage portion 5422b of the outer tube 5422, and the gas phase refrigerant is sent to the inner tube 5421 as described above. Therefore, the refrigerating machine oil stored in the storage unit 5422b moves from the through hole 5421b to the inside of the inner pipe 5421 and is sent to the inside of the inner pipe 5421 together with the gas phase refrigerant.

このように、上述した混合流体分離装置54では、気液分離部541において、内管5411を螺旋状に形成しているので、内管5411の内部を送流する混合冷媒に分離流力(遠心力など)を作用させることになる。この分離流力は、エジェクタ53から混合冷媒が高速で吐出されることで、この吐出速度を利用して適宜得られる。   As described above, in the mixed fluid separation device 54 described above, since the inner tube 5411 is formed in a spiral shape in the gas-liquid separation unit 541, the separation fluid force (centrifugation) is applied to the mixed refrigerant that flows inside the inner tube 5411. Force). This separated flow force is appropriately obtained by using the discharge speed by discharging the mixed refrigerant from the ejector 53 at a high speed.

そして、液相冷媒と気相冷媒とを分離させる構成として内管5411と外管5412とを2重管構造とし、この2重管を螺旋状に形成し、内管5411に貫通孔5411bを設けたことで、分離流力によって比較的比重の大きい液相冷媒が外管5412に移動して送流される一方、比較的比重の小さい気相冷媒が内管5411に残って送流される。この結果、液相冷媒と気相冷媒とを分離することができる。この場合、気相冷媒と液相冷媒とがそれぞれ内管5411と外管5412とに分離して送流されるので、気相冷媒と液相冷媒(および冷凍機油)とを液油分離部542に対して容易に移送することが可能である。   As a configuration for separating the liquid-phase refrigerant and the gas-phase refrigerant, the inner tube 5411 and the outer tube 5412 have a double tube structure, the double tube is formed in a spiral shape, and the through-hole 5411b is provided in the inner tube 5411. As a result, the liquid refrigerant having a relatively high specific gravity moves to the outer pipe 5412 and is sent by the separation flow force, while the gas phase refrigerant having a relatively low specific gravity remains in the inner pipe 5411 and is sent. As a result, the liquid phase refrigerant and the gas phase refrigerant can be separated. In this case, since the gas-phase refrigerant and the liquid-phase refrigerant are separately sent to the inner pipe 5411 and the outer pipe 5412, the gas-phase refrigerant and the liquid-phase refrigerant (and the refrigerating machine oil) are sent to the liquid-oil separator 542. On the other hand, it can be easily transferred.

特に、気液分離部541において、内管5411に設けた貫通孔5411bは、内管5411の径外方向に向く態様で複数設けてある。このため、混合冷媒が低流量である場合、遠心力および慣性力が小さくなって分離性能が低下するが、このような場合であっても図3に示すように下方に向く貫通孔5411bから比較的比重の大きい液相冷媒および冷凍機油を外管5412に移動させることになる。この結果、混合冷媒が低流量であっても気相冷媒と液相冷媒(および冷凍機油)との分離性能を維持することが可能になる。   In particular, in the gas-liquid separator 541, a plurality of through holes 5411b provided in the inner tube 5411 are provided in a manner facing the radially outward direction of the inner tube 5411. For this reason, when the mixed refrigerant has a low flow rate, the centrifugal force and the inertial force are reduced and the separation performance is lowered. Even in such a case, the comparison is made from the through-hole 5411b facing downward as shown in FIG. The liquid phase refrigerant and the refrigerating machine oil having a large specific gravity are moved to the outer pipe 5412. As a result, even if the mixed refrigerant has a low flow rate, the separation performance between the gas-phase refrigerant and the liquid-phase refrigerant (and the refrigerating machine oil) can be maintained.

また、上述した混合流体分離装置54では、液油分離部542において、外管5422の下流端5422aを閉塞した貯留部5422bを設け、この貯留部5422bの上方である外管5422の側部に分岐配管5423を設けた。このため、比較的比重の大きい冷凍機油が貯留部5422bに貯留し、比較的比重の小さい液相冷媒が分岐配管5423に送流される。この結果、液相冷媒と冷凍機油とを分離することができる。この場合、管部材に貯留部5422bを有するため、従来例のごとく液相冷媒を貯留するためのタンク型形状の貯留部を備える必要がなく、液油分離部542を設置するためのスペース効率を向上することが可能になる。   Further, in the above-described mixed fluid separation device 54, the liquid oil separation unit 542 is provided with a storage unit 5422 b that closes the downstream end 5422 a of the outer tube 5422, and branches to a side portion of the outer tube 5422 that is above the storage unit 5422 b. A pipe 5423 was provided. For this reason, the refrigerating machine oil having a relatively large specific gravity is stored in the storage unit 5422b, and the liquid phase refrigerant having a relatively small specific gravity is sent to the branch pipe 5423. As a result, the liquid phase refrigerant and the refrigeration oil can be separated. In this case, since the pipe member has the storage part 5422b, it is not necessary to provide a tank-shaped storage part for storing the liquid-phase refrigerant as in the conventional example, and the space efficiency for installing the liquid oil separation part 542 is improved. It becomes possible to improve.

特に、液油分離部542において、分岐配管5423よりも上方の位置で内管5421および外管5422を共に螺旋状に形成してある。このため、貯留部5422bに至る以前の螺旋部分に液相冷媒および冷凍機油を貯えることになるので、気液分離部541で分離された液相冷媒および冷凍機油を貯留する貯留容積をタンク型とすることなく得ることが可能になる。さらに、液油分離部542の螺旋の傾斜θ2を気液分離部541の螺旋の所定傾斜θ1よりも緩く形成したことで、液油分離部542を設置するためのスペース効率をさらに向上することが可能になる。ここで、気液分離部541では、外管5412に分離した液相冷媒および冷凍機油を重力によって下方に送流するために所定傾斜θ1(以上)の傾斜を必要とする。一方、液油分離部542では、分離した液相冷媒および冷凍機油を貯留するため、その螺旋の傾斜θ2に所定傾斜θ1程の傾斜を必要としない。   In particular, in the liquid oil separation part 542, both the inner pipe 5421 and the outer pipe 5422 are formed in a spiral shape at a position above the branch pipe 5423. For this reason, since the liquid phase refrigerant and the refrigeration oil are stored in the spiral portion before reaching the storage unit 5422b, the storage volume for storing the liquid phase refrigerant and the refrigeration oil separated by the gas-liquid separation unit 541 is defined as a tank type. You can get without. Furthermore, by forming the spiral inclination θ2 of the liquid-oil separator 542 to be looser than the predetermined inclination θ1 of the gas-liquid separator 541, the space efficiency for installing the liquid-oil separator 542 can be further improved. It becomes possible. Here, the gas-liquid separation unit 541 requires an inclination of a predetermined inclination θ1 (or more) in order to send the liquid refrigerant and the refrigeration oil separated into the outer pipe 5412 downward by gravity. On the other hand, the liquid oil separation unit 542 stores the separated liquid refrigerant and refrigerating machine oil, and therefore, the spiral inclination θ2 does not require an inclination of the predetermined inclination θ1.

そして、貯留部5422bを通過する内管5421の周壁に貫通孔5421bを設けてあるので、分離した冷凍機油を内管5421の内部に移動させて、内管5421の内部を送流する気相冷媒に合わせて冷凍機油を一緒に圧縮機51に送流させることができる。これにより、冷凍機油を圧縮機51に供給することができ、圧縮機51の磨耗等による損傷を防止することができる。   And since the through-hole 5421b is provided in the surrounding wall of the inner pipe 5421 which passes the storage part 5422b, the gaseous-phase refrigerant | coolant which moves the separated refrigerator oil to the inside of the inner pipe 5421, and sends the inside of the inner pipe 5421 The refrigeration oil can be sent to the compressor 51 together with the above. Thereby, refrigerating machine oil can be supplied to the compressor 51 and the damage by abrasion etc. of the compressor 51 can be prevented.

さらに、液相冷媒の逆流する分岐配管5423を蒸発器55側に接続しているので、冷凍サイクルを効率よく作動させることができる。また、内管5421の下流端5421aを圧縮機51に接続しているので、圧縮機51への液相冷媒の送流がないため、圧縮機51での液圧縮による故障を防止することができる。   Furthermore, since the branch pipe 5423 in which the liquid-phase refrigerant flows backward is connected to the evaporator 55 side, the refrigeration cycle can be operated efficiently. In addition, since the downstream end 5421a of the inner pipe 5421 is connected to the compressor 51, there is no flow of liquid-phase refrigerant to the compressor 51, so that failure due to liquid compression in the compressor 51 can be prevented. .

なお、上述した実施の形態で説明した混合流体分離装置は、混合流体として液相冷媒と気相冷媒との混合物、並びに液相冷媒と冷凍機油との混合物を例示しているが、その他の互いに比重の異なる混合流体を分離する場合にも適用することが可能である。   In addition, although the mixed fluid separation apparatus demonstrated by embodiment mentioned above has illustrated the mixture of a liquid phase refrigerant | coolant and a gaseous-phase refrigerant | coolant, and the mixture of a liquid phase refrigerant | coolant and refrigerating machine oil as mixed fluids, The present invention can also be applied to the case of separating mixed fluids having different specific gravity.

本発明に係る混合流体分離装置を適用した冷媒回路を例示する概略図である。It is the schematic which illustrates the refrigerant circuit to which the mixed fluid separation apparatus which concerns on this invention is applied. 本発明に係る混合流体分離装置を示す構成図である。It is a block diagram which shows the mixed fluid separation apparatus which concerns on this invention. 図2で示す気液分離部の断面図である。It is sectional drawing of the gas-liquid separation part shown in FIG. 図2に示す液油分離部の作用を示す断面図である。It is sectional drawing which shows the effect | action of the liquid oil separation part shown in FIG.

符号の説明Explanation of symbols

51 圧縮機
52 ガスクーラ(放熱器)
53 エジェクタ
531 ノズル部
531a ノズル弁
532 混合部
533 ディフューザ部
54 混合流体分離装置
541 気液分離部
5411 内管
5411a 上流端
5411b 貫通孔
5412 外管
5412a 上流端
542 液油分離部
5421 内管
5421a 下流端
5421b 貫通孔
5422 外管
5422a 下流端
5422b 貯留部
5423 分岐配管
55(55a,55b,55c) 蒸発器
551(551a,551b,551c) 電磁弁
56 内部熱交換器
57 電子膨張弁(膨張弁)
L 水平線
O 所定軸線
θ1 所定傾斜
θ2 傾斜
51 Compressor 52 Gas cooler
53 Ejector 531 Nozzle part 531a Nozzle valve 532 Mixing part 533 Diffuser part 54 Mixed fluid separation device 541 Gas-liquid separation part 5411 Inner pipe 5411a Upstream end 5411b Through hole 5412 Outer pipe 5412a Upstream end 542 Liquid oil separation part 5421 Inner pipe 5421a 5421b Through-hole 5422 Outer pipe 5422a Downstream end 5422b Reservoir 5423 Branch pipe 55 (55a, 55b, 55c) Evaporator 551 (551a, 551b, 551c) Electromagnetic valve 56 Internal heat exchanger 57 Electronic expansion valve (expansion valve)
L horizontal line O predetermined axis line θ1 predetermined inclination θ2 inclination

Claims (3)

互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、
内部に混合流体を送流させる内管と、
内管の外周を囲繞する外管と
を有し、前記内管の周壁に径外方向に向く複数の貫通孔を設けつつ、内管および外管を共に螺旋状に形成したことを特徴とする混合流体分離装置。
An apparatus for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed,
An inner pipe for sending a mixed fluid into the interior;
An outer tube surrounding an outer periphery of the inner tube, and the inner tube and the outer tube are both formed in a spiral shape while providing a plurality of through holes facing radially outward in the peripheral wall of the inner tube. Mixed fluid separator.
互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、
上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けて内部に混合流体を送流させる外管と、
前記外管に沿って内挿して前記分岐配管よりも下方の位置の周壁に貫通孔を設けて内部に他の流体を送流させる内管と
を有し、分岐配管よりも上方の位置で内管および外管を共に螺旋状に形成したことを特徴とする混合流体分離装置。
An apparatus for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed,
An outer pipe that closes the lower end arranged along the vertical direction and provides a branch pipe on the side portion at a predetermined height from the lower end to send the mixed fluid inside;
An inner pipe that is inserted along the outer pipe and has a through hole in a peripheral wall at a position lower than the branch pipe to allow other fluid to flow inside, and is provided at a position above the branch pipe. A mixed fluid separation device characterized in that both a tube and an outer tube are formed in a spiral shape.
互いに比重の異なる複数の流体が混合した混合流体を分離するための装置であって、
内部に混合流体を送流させる第一内管、および第一内管の外周を囲繞する第一外管を有し、前記第一内管の周壁に径外方向に向く複数の貫通孔を設けつつ、上下に向けた所定軸線の周りに第一内管および第一外管を共に螺旋状に形成した第一分離手段と、
前記第一外管の下流に連通してあり上下方向に沿って配置した下端を閉塞して当該下端から所定高さの位置の側部に分岐配管を設けた第二外管、および前記第一内管の下流に連通してあり前記第二外管に沿って内挿して前記分岐配管よりも下方の位置の周壁に貫通孔を設けた第二内管を有し、分岐配管よりも上方の位置で第二内管および第二外管を共に螺旋状に形成した第二分離手段と
を備え、前記第一分離手段の螺旋を所定傾斜とし、前記第二分離手段の螺旋を前記所定傾斜よりも緩く形成したことを特徴とする混合流体分離装置。
An apparatus for separating a mixed fluid in which a plurality of fluids having different specific gravities are mixed,
A first inner pipe for sending a fluid mixture therein, and a first outer pipe surrounding the outer circumference of the first inner pipe, and a plurality of through-holes facing radially outward are provided in the peripheral wall of the first inner pipe While, the first separation means in which the first inner pipe and the first outer pipe are both spirally formed around a predetermined axis directed upward and downward,
A second outer pipe that communicates downstream of the first outer pipe and that has a lower end disposed along the vertical direction and has a branch pipe on a side at a predetermined height from the lower end; and the first A second inner pipe that is in communication with the downstream of the inner pipe, is inserted along the second outer pipe, and has a through hole in a peripheral wall at a position below the branch pipe; A second separating means having a second inner tube and a second outer tube formed in a spiral shape at a position, the spiral of the first separating means is set to a predetermined inclination, and the spiral of the second separating means is A mixed fluid separator characterized by being formed loosely.
JP2006149396A 2006-05-30 2006-05-30 Mixed fluid separator Expired - Fee Related JP4899641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149396A JP4899641B2 (en) 2006-05-30 2006-05-30 Mixed fluid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149396A JP4899641B2 (en) 2006-05-30 2006-05-30 Mixed fluid separator

Publications (2)

Publication Number Publication Date
JP2007322001A true JP2007322001A (en) 2007-12-13
JP4899641B2 JP4899641B2 (en) 2012-03-21

Family

ID=38854985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149396A Expired - Fee Related JP4899641B2 (en) 2006-05-30 2006-05-30 Mixed fluid separator

Country Status (1)

Country Link
JP (1) JP4899641B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078248A (en) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device including the same
JP2012093048A (en) * 2010-10-28 2012-05-17 Sanden Corp Refrigeration cycle device
JP2017039077A (en) * 2015-08-19 2017-02-23 日野自動車株式会社 Gas-liquid separator
JP2017080657A (en) * 2015-10-26 2017-05-18 日野自動車株式会社 Gas-liquid separation device
WO2018186129A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigeration cycle device
WO2018186130A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigerant cycle device
JP2020508862A (en) * 2017-02-28 2020-03-26 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited Spiral separation device and its use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280473A (en) * 1985-10-02 1987-04-13 株式会社日立製作所 Cooler with oil separator
JPH10220927A (en) * 1997-02-10 1998-08-21 Takenaka Komuten Co Ltd Structure of liquid receiving part in refrigeration cycle
JP2000111210A (en) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd Accumulator
JP2002277109A (en) * 2001-03-15 2002-09-25 Mitsubishi Electric Corp Oil separator
JP2004116938A (en) * 2002-09-27 2004-04-15 Denso Corp Ejector cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280473A (en) * 1985-10-02 1987-04-13 株式会社日立製作所 Cooler with oil separator
JPH10220927A (en) * 1997-02-10 1998-08-21 Takenaka Komuten Co Ltd Structure of liquid receiving part in refrigeration cycle
JP2000111210A (en) * 1998-10-08 2000-04-18 Matsushita Refrig Co Ltd Accumulator
JP2002277109A (en) * 2001-03-15 2002-09-25 Mitsubishi Electric Corp Oil separator
JP2004116938A (en) * 2002-09-27 2004-04-15 Denso Corp Ejector cycle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078248A (en) * 2008-09-26 2010-04-08 Mitsubishi Electric Corp Gas-liquid separator and refrigerating cycle device including the same
JP2012093048A (en) * 2010-10-28 2012-05-17 Sanden Corp Refrigeration cycle device
JP2017039077A (en) * 2015-08-19 2017-02-23 日野自動車株式会社 Gas-liquid separator
JP2017080657A (en) * 2015-10-26 2017-05-18 日野自動車株式会社 Gas-liquid separation device
JP2020508862A (en) * 2017-02-28 2020-03-26 タタ コンサルタンシー サービシズ リミテッドTATA Consultancy Services Limited Spiral separation device and its use
JP7012735B2 (en) 2017-02-28 2022-01-28 タタ コンサルタンシー サービシズ リミテッド Spiral separator and its usage
WO2018186129A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigeration cycle device
WO2018186130A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Gas/liquid separator and refrigerant cycle device

Also Published As

Publication number Publication date
JP4899641B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899641B2 (en) Mixed fluid separator
JP5539996B2 (en) Liquid and vapor separation in a transcritical refrigerant cycle.
US9207004B2 (en) Refrigeration cycle apparatus
KR101617574B1 (en) Refrigeration device
WO2014103436A1 (en) Refrigeration cycle device
JP2018535378A (en) Liquefaction promoting device by fluid agitation installed on the piping path of heat pump system
JP2008256350A (en) Refrigerant cycle device
WO2016021141A1 (en) Evaporator
JP2006266636A (en) Freezing apparatus
JP2008304077A (en) Ejector type refrigerating cycle
JP2008275211A (en) Vapor compression-type refrigerating cycle
WO2014083900A1 (en) Compressor, refrigeration cycle device, and heat pump hot-water supply device
JP4720510B2 (en) Refrigerant cycle equipment
JP2008057941A (en) Refrigerant cycle device
JP5945377B1 (en) Fluid stirring device and heat pump system
JP7025868B2 (en) Refrigerant system with direct contact heat exchanger
JP2006258413A (en) Mixed fluid separation apparatus
JP2008151374A (en) Vapor compression type refrigerating cycle
JP4623031B2 (en) Freezer refrigerator
JP2007315638A (en) Refrigeration cycle device
JP6125391B2 (en) Direct contact heat exchanger and refrigerant system
JP2005226913A (en) Transient critical refrigerant cycle device
JP2016125767A (en) Accumulator and air conditioner
WO2020157806A1 (en) Refrigerator
WO2021117254A1 (en) Spot cooler device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees