JPH10220927A - Structure of liquid receiving part in refrigeration cycle - Google Patents

Structure of liquid receiving part in refrigeration cycle

Info

Publication number
JPH10220927A
JPH10220927A JP2633297A JP2633297A JPH10220927A JP H10220927 A JPH10220927 A JP H10220927A JP 2633297 A JP2633297 A JP 2633297A JP 2633297 A JP2633297 A JP 2633297A JP H10220927 A JPH10220927 A JP H10220927A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
evaporator
condenser
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2633297A
Other languages
Japanese (ja)
Other versions
JP3814729B2 (en
Inventor
Yoshinori Inoue
良則 井上
Nozomi Kusumoto
望 楠本
Yuji Yoshitake
裕二 吉竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP02633297A priority Critical patent/JP3814729B2/en
Publication of JPH10220927A publication Critical patent/JPH10220927A/en
Application granted granted Critical
Publication of JP3814729B2 publication Critical patent/JP3814729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To exhibit the capacity of an evaporator sufficiently without sacrifice of durability and economy. SOLUTION: A condenser 1 for liquefying coolant gas is coupled through a gas piping 4 with an evaporator 3 for thermally evaporating a coolant liquid in an ice making machine 2. The condenser 1 is coupled through a first liquid piping 6 with a container 5 for receiving and storing the coolant liquid and the container 5 is coupled through a second liquid piping 7 with the evaporator 3. A differential head sufficient for naturally circulating the coolant is set between the liquid container 5 and the evaporator 3 thus constituting a refrigeration cycle for making ice through natural circulation of coolant. Vertical area of a space S for storing the coolant liquid in the liquid container 5 is set larger than the transverse area of the first and second liquid piping 6, 7 and decreases upward according to a quadratic curve of the variation in the differential head and the circulation fluid resistance of coolant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房や冷凍や製氷
などを行うために、冷媒ガスを冷却液化する凝縮器と、
冷媒液を加熱気化する蒸発器とを備え、凝縮器と蒸発器
とを液配管とガス配管とを介して接続するとともに、凝
縮器と蒸発器とにわたって気液相変化により冷媒を自然
循環流動するように構成した冷凍サイクルにおける受液
部の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for cooling and liquefying a refrigerant gas for cooling, freezing, ice making, and the like.
An evaporator for heating and evaporating the refrigerant liquid is provided.The condenser and the evaporator are connected via a liquid pipe and a gas pipe, and the refrigerant naturally circulates and flows through a gas-liquid phase change across the condenser and the evaporator. The present invention relates to a structure of a liquid receiving portion in a refrigeration cycle configured as described above.

【0002】[0002]

【従来の技術】この種の構造では、従来一般に、凝縮器
と、製氷機や空調機器などに組み込まれている蒸発器と
の間に、凝縮器で液化した冷媒液を受けとめる受液器を
設けるとともに、受液器内や、受液器と凝縮器との間の
箇所などにフロート弁を設け、蒸発器での負荷変動にか
かわらず蒸発器内での液面の変動を抑制するように構成
している。
2. Description of the Related Art In this type of structure, a receiver for receiving a refrigerant liquid liquefied by a condenser is generally provided between a condenser and an evaporator incorporated in an ice maker or an air conditioner. At the same time, a float valve is installed in the receiver or at a location between the receiver and the condenser to suppress fluctuations in the liquid level in the evaporator regardless of load fluctuations in the evaporator. doing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
の場合、配管接続時などに配管内に混入したゴミに起因
して、フロート弁が昇降しづらくなったり、また、全閉
時に弁体が弁座に密着できないために隙間ができて漏れ
たりするなど、フロート弁の動作不良を招く欠点があ
り、そのうえ、メンテナンスに手間を要して経済性が低
下するとともに弁体や弁座の摩損のために耐久性が低い
欠点があった。この欠点は、膨張弁を用いる場合も同様
である。
However, in the case of the prior art, however, it is difficult to move up and down the float valve due to dust mixed in the pipe when the pipe is connected, and when the valve element is fully closed, There is a drawback that the float valve malfunctions, such as leaks due to gaps due to the inability to adhere to the seat.Furthermore, maintenance is troublesome, economical efficiency is reduced, and the valve body and valve seat are worn out. Had the disadvantage of low durability. This disadvantage is the same when using an expansion valve.

【0004】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の冷凍サイクルに
おける受液部の構造は、耐久性および経済性の低下を招
かずに、蒸発器の能力を十分発揮できるようにすること
を目的とし、また、請求項2に係る発明の冷凍サイクル
における受液部の構造は、更に、凝縮器と兼用構成して
安価にできるようにすることを目的とする。
[0004] The present invention has been made in view of such circumstances, and the structure of the liquid receiving portion in the refrigeration cycle according to the first aspect of the present invention does not reduce the durability and economy. It is another object of the present invention to provide a refrigeration cycle in which the capacity of the evaporator can be sufficiently exhibited, and the structure of the liquid receiving portion in the refrigeration cycle according to the second aspect of the present invention can be configured to also be used as a condenser so as to be inexpensive. The purpose is to:

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
上述のような目的を達成するために、冷媒ガスを冷却液
化する凝縮器と、冷媒液を加熱気化する蒸発器とを備
え、凝縮器と蒸発器とを液配管とガス配管とを介して接
続するとともに、凝縮器と蒸発器とにわたって気液相変
化により冷媒を自然循環流動するように構成した冷凍サ
イクルにおける受液部の構造において、凝縮器と蒸発器
との間に、凝縮器で液化して流下する冷媒液を受け止め
て溜める液溜容器を設け、凝縮器と液溜容器とを第1の
液配管を介して接続するとともに液溜容器と蒸発器とを
第2の液配管を介して接続し、液溜容器と蒸発器との間
に、冷媒を自然循環流動させるに足るヘッド差を備え、
液溜容器の冷媒液を貯留する貯留空間の鉛直方向視での
面積を、第1および第2の液配管の横断面積よりも大き
く、かつ、ヘッド差の変化に対して冷媒の循環流動抵抗
に合わせた二次曲線で変化するように上方程小になるよ
うに構成する。
The invention according to claim 1 is
In order to achieve the above object, a condenser for cooling and liquefying a refrigerant gas and an evaporator for heating and evaporating the refrigerant liquid are provided, and the condenser and the evaporator are connected via a liquid pipe and a gas pipe. At the same time, in the structure of the liquid receiving part in the refrigeration cycle configured to allow the refrigerant to flow naturally through the gas-liquid phase change between the condenser and the evaporator, the refrigerant is liquefied by the condenser between the condenser and the evaporator. A liquid reservoir for receiving and storing the refrigerant liquid flowing down, connecting the condenser and the liquid reservoir via a first liquid pipe, and connecting the liquid reservoir and the evaporator via a second liquid pipe. Connected, between the liquid reservoir and the evaporator, equipped with a head difference sufficient to allow the refrigerant to naturally circulate,
The area in the vertical direction of the storage space for storing the refrigerant liquid in the liquid storage container is larger than the cross-sectional area of the first and second liquid pipes, and the resistance to the circulation flow resistance of the refrigerant with respect to the change in the head difference. It is configured such that it becomes smaller toward the upper side so as to change with the combined quadratic curve.

【0006】また、請求項2に係る発明は、上述のよう
な目的を達成するために、冷媒ガスを冷却液化する凝縮
器と、冷媒液を加熱気化する蒸発器とを備え、凝縮器と
蒸発器とを液配管とガス配管とを介して接続するととも
に、凝縮器と蒸発器とにわたって気液相変化により冷媒
を自然循環流動するように構成した冷凍サイクルにおけ
る受液部の構造において、凝縮器を、冷媒ガスを冷却す
る冷却用流体を流す一次側部材と、冷却用流体によって
冷却される冷媒を流すとともに凝縮液化した冷媒液を貯
留可能な二次側部材とから構成し、二次側部材と蒸発器
との間に、冷媒を自然循環流動させるに足るヘッド差を
備え、二次側部材の冷媒液を貯留する貯留空間の鉛直方
向視での面積を、ガス配管および液配管の横断面積より
も大きく、かつ、ヘッド差の変化に対して冷媒の循環流
動抵抗に合わせた二次曲線で変化するように上方程小に
なるように構成する。
According to a second aspect of the present invention, there is provided a condenser for cooling and liquefying a refrigerant gas, and an evaporator for heating and vaporizing the refrigerant liquid. And a liquid receiving part in a refrigeration cycle in which the refrigerant is connected through a liquid pipe and a gas pipe, and the refrigerant flows naturally through a gas-liquid phase change across the condenser and the evaporator. A primary member that flows a cooling fluid that cools the refrigerant gas, and a secondary member that can store the refrigerant liquid condensed and liquefied while flowing the refrigerant cooled by the cooling fluid, and the secondary member Between the head and the evaporator, a head difference sufficient to allow the refrigerant to circulate naturally is provided, and the area in the vertical direction of the storage space for storing the refrigerant liquid of the secondary member is defined as the cross-sectional area of the gas pipe and the liquid pipe. Greater than and Tsu is configured to be small enough upwardly to vary the secondary curve fit circulation flow resistance of the refrigerant to changes in de difference.

【0007】[0007]

【作用】請求項1に係る発明の冷凍サイクルにおける受
液部の構造の構成による作用は次の通りである。蒸発器
においては、そこでの負荷変動に対して、蒸発器での蒸
発抵抗やガス配管および液配管での流動抵抗などの冷媒
の循環流動抵抗による圧力損失が、エネルギー保存の法
則から、図1に示すように、二次曲線になるように変化
する。したがって、蒸発器での負荷が増大すると、蒸発
器で蒸発発生する冷媒ガスの量が多くなり、冷媒ガスの
上昇に対して大きな冷媒の循環流動抵抗がかかり、その
背圧を受けるために蒸発器内での冷媒液の液面は急激に
低くなるが、本発明では、液溜容器の冷媒液を貯留する
貯留空間の鉛直方向視での面積が冷媒の循環流動抵抗に
合わせた二次曲線で変化するように上方ほど小であるか
ら、液溜容器内における冷媒液の液面の上昇を大きくで
きて、液溜容器と蒸発器との間に大きなヘッド差を与え
ることができる。このため、蒸発器での負荷が増大して
冷媒液の蒸発量が増加しても背圧に抗して冷媒液を良好
に供給でき、蒸発器での負荷変動にかかわらず、蒸発器
での液面変化を抑えることができ、蒸発器での伝熱面積
を十分活用できるとともに冷媒液がガス配管内に不測に
混入する、いわゆる液バックを防止することができる。
The operation of the structure of the liquid receiving part in the refrigeration cycle according to the first aspect of the present invention is as follows. In the evaporator, the pressure loss due to the circulating flow resistance of the refrigerant, such as the evaporation resistance in the evaporator and the flow resistance in the gas pipe and the liquid pipe, is shown in FIG. As shown, it changes to form a quadratic curve. Therefore, when the load on the evaporator increases, the amount of refrigerant gas evaporating in the evaporator increases, and a large circulation flow resistance of the refrigerant is applied to the rise of the refrigerant gas. Although the liquid level of the refrigerant liquid in the inside rapidly decreases, in the present invention, the area of the storage space for storing the refrigerant liquid in the liquid storage container as viewed in the vertical direction is a quadratic curve adjusted to the circulation flow resistance of the refrigerant. Since it is smaller as it changes upward, the rise of the liquid level of the refrigerant liquid in the liquid storage container can be increased, and a large head difference can be provided between the liquid storage container and the evaporator. For this reason, even if the load on the evaporator increases and the evaporation amount of the refrigerant liquid increases, the refrigerant liquid can be satisfactorily supplied against the back pressure, and regardless of the load fluctuation on the evaporator, The liquid level change can be suppressed, the heat transfer area in the evaporator can be sufficiently utilized, and the so-called liquid back, in which the refrigerant liquid is unexpectedly mixed into the gas pipe, can be prevented.

【0008】また、請求項2に係る発明の冷凍サイクル
における受液部の構造の構成によれば、凝縮器を構成す
る二次側部材に冷媒液貯留空間を備えさせ、その冷媒液
貯留空間の鉛直方向視での面積が冷媒の循環流動抵抗に
合わせた二次曲線で変化するように上方ほど小になるか
ら、蒸発器での負荷が増大して、蒸発器内での冷媒液の
液面が急激に低くなろうとしても、二次側部材内におけ
る冷媒液の液面の上昇を大きくできて、二次側部材と蒸
発器との間に大きなヘッド差を与えることができる。こ
のため、蒸発器での負荷変動にかかわらず、蒸発器での
液面変化を抑えることができ、蒸発器での伝熱面積を十
分活用できるとともに冷媒液がガス配管内に不測に混入
する、いわゆる液バックを防止することができる。
Further, according to the structure of the liquid receiving portion in the refrigeration cycle of the invention according to the second aspect, the secondary side member constituting the condenser is provided with the refrigerant liquid storage space, and the refrigerant liquid storage space is provided. Since the area in the vertical direction becomes smaller in the upward direction so as to change according to a quadratic curve adapted to the circulation flow resistance of the refrigerant, the load on the evaporator increases, and the liquid level of the refrigerant liquid in the evaporator increases. Even if the temperature of the secondary liquid is rapidly lowered, the rise of the liquid level of the refrigerant liquid in the secondary member can be increased, and a large head difference can be provided between the secondary member and the evaporator. Therefore, regardless of the load fluctuation in the evaporator, the liquid level change in the evaporator can be suppressed, the heat transfer area in the evaporator can be sufficiently utilized, and the refrigerant liquid is unexpectedly mixed into the gas pipe. So-called liquid back can be prevented.

【0009】[0009]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0010】図2は、本発明に係る冷凍サイクルにおけ
る受液部の構造の第1実施例を示す全体構成図であり、
冷媒ガスを冷却液化する凝縮器1と、製氷機2において
冷媒液を加熱気化する蒸発器3とがガス配管4を介して
接続されている。
FIG. 2 is an overall configuration diagram showing a first embodiment of the structure of the liquid receiving section in the refrigeration cycle according to the present invention.
A condenser 1 for cooling and liquefying the refrigerant gas and an evaporator 3 for heating and vaporizing the refrigerant liquid in the ice making machine 2 are connected via a gas pipe 4.

【0011】凝縮器1に、その凝縮器1で液化して流下
する冷媒液を受け止めて溜める液溜容器5が第1の液配
管6を介して接続されるとともに、液溜容器5と蒸発器
3とが第2の液配管7を介して接続され、液溜容器5と
蒸発器3との間に、冷媒を自然循環流動させるに足るヘ
ッド差を備えられ、冷媒の自然循環により製氷を行うよ
うに冷凍サイクルが構成されている。
A liquid storage container 5 for receiving and storing the refrigerant liquid liquefied and flowing down in the condenser 1 is connected to the condenser 1 via a first liquid pipe 6, and the liquid storage container 5 is connected to the evaporator. 3 is connected via a second liquid pipe 7, and a head difference is provided between the liquid reservoir 5 and the evaporator 3 to allow the refrigerant to circulate and flow naturally, and ice is made by the natural circulation of the refrigerant. The refrigeration cycle is configured as described above.

【0012】液溜容器5の冷媒液を貯留する貯留空間S
の鉛直方向視での面積が、第1および第2の液配管6,
7それぞれの横断面積よりも大きく構成され、かつ、ヘ
ッド差の変化に対して冷媒の循環流動抵抗に合わせた二
次曲線で変化するように上方程小になるように構成され
ている。
A storage space S for storing the refrigerant liquid in the liquid storage container 5
Of the first and second liquid pipes 6, when viewed from the vertical direction.
7 is configured to be larger than each cross-sectional area, and to be smaller toward the upper side so as to change in accordance with a quadratic curve corresponding to the circulation flow resistance of the refrigerant with respect to a change in head difference.

【0013】図3の(a)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第2実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 3A is a longitudinal sectional view of a main part showing a second embodiment of the structure of the liquid receiving portion in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0014】すなわち、液溜容器5がフラスコ形状に構
成され、その液溜容器5の上部側に第1の液配管6が接
続され、一方、液溜容器5の底部側に第2の液配管7が
接続されている。
That is, the liquid reservoir 5 is formed in a flask shape, and a first liquid pipe 6 is connected to an upper side of the liquid reservoir 5, while a second liquid pipe 6 is connected to a bottom side of the liquid reservoir 5. 7 is connected.

【0015】液溜容器5内の冷媒液を貯留する貯留空間
Sの鉛直方向視での面積が、第1および第2の液配管
6,7それぞれの横断面積よりも大きく構成され、か
つ、ヘッド差の変化に対して冷媒の循環流動抵抗に合わ
せた二次曲線で変化するように上方程小になるように構
成されている。
The area of the storage space S for storing the refrigerant liquid in the liquid storage container 5 as viewed in the vertical direction is larger than the cross-sectional area of each of the first and second liquid pipes 6 and 7, and It is configured so that it becomes smaller toward the upper side so as to change with a quadratic curve matching the circulation flow resistance of the refrigerant with respect to the change in the difference.

【0016】図3の(b)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第3実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 3B is a longitudinal sectional view of a main part showing a third embodiment of the structure of the liquid receiving section in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0017】すなわち、液溜容器5が、截頭円錐形状の
外壁部材5aと略円筒形状の内壁部材5bとから構成さ
れ、外壁部材5aと内壁部材5bとによって形成される
冷媒液を貯留する貯留空間Sの上部側に第1の液配管6
が接続され、一方、貯留空間Sの底部側に第2の液配管
7が接続されている。
That is, the liquid reservoir 5 is composed of an outer wall member 5a having a truncated cone shape and an inner wall member 5b having a substantially cylindrical shape, and a storage for storing a refrigerant liquid formed by the outer wall member 5a and the inner wall member 5b. A first liquid pipe 6 is provided above the space S.
Is connected, while the second liquid pipe 7 is connected to the bottom side of the storage space S.

【0018】また、貯留空間Sの鉛直方向視での面積
が、第1および第2の液配管6,7それぞれの横断面積
よりも大きく構成され、かつ、ヘッド差の変化に対して
冷媒の循環流動抵抗に合わせた二次曲線で変化するよう
に上方程小になるように構成されている。
The area of the storage space S in the vertical direction is larger than the cross-sectional area of each of the first and second liquid pipes 6 and 7, and the circulation of the refrigerant in response to a change in the head difference. It is configured such that it becomes smaller toward the upper side so as to change with a quadratic curve corresponding to the flow resistance.

【0019】図3の(c)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第4実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 3C is a longitudinal sectional view of a main part showing a fourth embodiment of the structure of the liquid receiving portion in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0020】すなわち、液溜容器5が、円筒形状の外壁
部材5cと逆向き円錐形状の内壁部材5dとから構成さ
れ、外壁部材5cと内壁部材5dとによって形成される
冷媒液を貯留する貯留空間Sの上部側に第1の液配管6
が接続され、一方、貯留空間Sの底部側に第2の液配管
7が接続されている。
That is, the liquid storage container 5 comprises a cylindrical outer wall member 5c and an inverted conical inner wall member 5d, and a storage space for storing a refrigerant liquid formed by the outer wall member 5c and the inner wall member 5d. The first liquid pipe 6 on the upper side of S
Is connected, while the second liquid pipe 7 is connected to the bottom side of the storage space S.

【0021】また、貯留空間Sの鉛直方向視での面積
が、第1および第2の液配管6,7それぞれの横断面積
よりも大きく構成され、かつ、ヘッド差の変化に対して
冷媒の循環流動抵抗に合わせた二次曲線で変化するよう
に上方程小になるように構成されている。
The area of the storage space S as viewed in the vertical direction is larger than the cross-sectional area of each of the first and second liquid pipes 6 and 7, and the circulation of the refrigerant in response to a change in the head difference. It is configured such that it becomes smaller toward the upper side so as to change with a quadratic curve corresponding to the flow resistance.

【0022】図3の(d)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第5実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 3D is a longitudinal sectional view of a main part showing a fifth embodiment of the structure of the liquid receiving section in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0023】すなわち、液溜容器5が、円錐形状の外壁
部材5eと下端側のみがやや外拡がりの円筒形状の内壁
部材5fとから構成され、外壁部材5eと内壁部材5f
とによって形成される冷媒液を貯留する貯留空間Sの上
部側に第1の液配管6が接続され、一方、貯留空間Sの
底部側に第2の液配管7が接続されている。
That is, the liquid storage container 5 is composed of a conical outer wall member 5e and a cylindrical inner wall member 5f whose only lower end is slightly widened outside, and the outer wall member 5e and the inner wall member 5f are formed.
The first liquid pipe 6 is connected to the upper side of the storage space S for storing the refrigerant liquid formed by the above, and the second liquid pipe 7 is connected to the bottom side of the storage space S.

【0024】また、貯留空間Sの鉛直方向視での面積
が、第1および第2の液配管6,7それぞれの横断面積
よりも大きく構成され、かつ、ヘッド差の変化に対して
冷媒の循環流動抵抗に合わせた二次曲線で変化するよう
に上方程小になるように構成されている。
The area of the storage space S as viewed in the vertical direction is configured to be larger than the cross-sectional area of each of the first and second liquid pipes 6 and 7, and the refrigerant circulates in response to a change in head difference. It is configured such that it becomes smaller toward the upper side so as to change with a quadratic curve corresponding to the flow resistance.

【0025】図3の(e)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第6実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 3 (e) is a longitudinal sectional view of a main part showing a sixth embodiment of the structure of the liquid receiving section in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0026】すなわち、液溜容器5が、円筒体の横側箇
所を傾斜壁面とした形状に構成され、その液溜容器5の
上部側に第1の液配管6が接続され、一方、液溜容器5
の底部側に第2の液配管7が接続されている。
That is, the liquid storage container 5 is formed in a shape in which the lateral portion of the cylindrical body has an inclined wall surface, and a first liquid pipe 6 is connected to an upper side of the liquid storage container 5. Container 5
The second liquid pipe 7 is connected to the bottom side of.

【0027】液溜容器5内の冷媒液を貯留する貯留空間
Sの鉛直方向視での面積が、第1および第2の液配管
6,7それぞれの横断面積よりも大きく構成され、か
つ、ヘッド差の変化に対して冷媒の循環流動抵抗に合わ
せた二次曲線で変化するように上方程小になるように構
成されている。
The area of the storage space S for storing the refrigerant liquid in the liquid storage container 5 as viewed in the vertical direction is larger than the cross-sectional area of each of the first and second liquid pipes 6 and 7, and It is configured so that it becomes smaller toward the upper side so as to change with a quadratic curve matching the circulation flow resistance of the refrigerant with respect to the change in the difference.

【0028】図4の(a)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第7実施例を示す要部の縦断
面図であり、第1実施例と異なるところは、次の通りで
ある。
FIG. 4A is a longitudinal sectional view of a main part showing a seventh embodiment of the structure of the liquid receiving portion in the refrigeration cycle according to the present invention. The difference from the first embodiment is as follows. It is on the street.

【0029】すなわち、凝縮器1が、冷媒ガスを冷却す
る冷却用流体を流す一次側部材8と、冷却用流体によっ
て冷却される冷媒を流すとともに凝縮液化した冷媒液を
貯留可能な二次側部材9とから構成され、二次側部材9
の上端にガス配管4が接続され、一方、二次側部材9の
下端に液配管10が接続されている。
That is, the condenser 1 has a primary member 8 for flowing a cooling fluid for cooling the refrigerant gas, and a secondary member for flowing the refrigerant cooled by the cooling fluid and storing the condensed and liquefied refrigerant liquid. And the secondary side member 9
The gas pipe 4 is connected to the upper end of the second member 9, while the liquid pipe 10 is connected to the lower end of the secondary member 9.

【0030】二次側部材9が、等ピッチでありながら下
方側程外方に向かうように曲げ形成した螺旋状の配管で
構成され、その二次側部材9内に、それよりも小径の配
管で構成した一次側部材8が挿入されている。
The secondary member 9 is constituted by a spiral pipe which is formed at a constant pitch and bent outward toward the lower side while having a constant pitch, and is constituted by a smaller diameter pipe in the secondary member 9. The inserted primary side member 8 is inserted.

【0031】二次側部材9の内周面と一次側部材8の外
周面との間には、冷媒液を貯留可能な環状の冷媒液貯留
空間S1が形成され、その二次側部材9の冷媒液貯留空
間S1の鉛直方向視での面積が、ガス配管4および液配
管10の横断面積よりも大きく、かつ、ヘッド差の変化
に対して冷媒の循環流動抵抗に合わせた二次曲線で変化
するように上方程小になるように構成されている。図示
しないが、二次側部材9と蒸発器との間には、冷媒を自
然循環流動させるに足るヘッド差が備えられている。
Between the inner peripheral surface of the secondary member 9 and the outer peripheral surface of the primary member 8, an annular refrigerant liquid storage space S1 capable of storing the refrigerant liquid is formed. The area of the refrigerant liquid storage space S1 when viewed in the vertical direction is larger than the cross-sectional area of the gas pipe 4 and the liquid pipe 10, and changes with a quadratic curve adjusted to the circulation flow resistance of the refrigerant with respect to the change in head difference. It is configured so as to be smaller upward. Although not shown, a head difference is provided between the secondary member 9 and the evaporator, which is sufficient to allow the refrigerant to flow naturally.

【0032】図4の(b)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第8実施例を示す要部の縦断
面図であり、第7実施例と異なるところは、次の通りで
ある。
FIG. 4B is a longitudinal sectional view of a main part showing an eighth embodiment of the structure of the liquid receiving portion in the refrigeration cycle according to the present invention. The difference from the seventh embodiment is as follows. It is on the street.

【0033】すなわち、一次側部材8が、上方側程ピッ
チが小さくなるように曲げ形成した螺旋状の配管で構成
され、二次側部材9が、一次側部材8を覆う円筒体で構
成され、二次側部材9の内周面と一次側部材8の外周面
との間には、冷媒液を貯留可能な冷媒液貯留空間S1が
形成され、その冷媒液貯留空間S1の鉛直方向視での面
積が、ガス配管4および液配管10の横断面積よりも大
きく、かつ、ヘッド差の変化に対して冷媒の循環流動抵
抗に合わせた二次曲線で変化するように上方程小になる
ように構成されている。
That is, the primary member 8 is formed of a spiral pipe bent so that the pitch becomes smaller toward the upper side, and the secondary member 9 is formed of a cylindrical body that covers the primary member 8. Between the inner peripheral surface of the secondary member 9 and the outer peripheral surface of the primary member 8, a refrigerant liquid storage space S1 capable of storing the refrigerant liquid is formed, and the refrigerant liquid storage space S1 is viewed in the vertical direction. The area is larger than the cross-sectional area of the gas pipe 4 and the liquid pipe 10, and becomes smaller toward the upper side so as to change with a quadratic curve corresponding to the circulation flow resistance of the refrigerant with respect to the change in the head difference. Have been.

【0034】図4の(c)は、本発明に係る冷凍サイク
ルにおける受液部の構造の第9実施例を示す要部の縦断
面図であり、第7実施例と異なるところは、次の通りで
ある。
FIG. 4C is a longitudinal sectional view of a main part showing a ninth embodiment of the structure of the liquid receiving section in the refrigeration cycle according to the present invention. The difference from the seventh embodiment is as follows. It is on the street.

【0035】すなわち、二次側部材9が、下方側程ピッ
チが小さくなるように曲げ形成した螺旋状の配管で構成
され、一次側部材8が、二次側部材9を覆う円筒体で構
成され、一次側部材8の内周面と二次側部材9の外周面
との間には、冷媒液を貯留可能な冷媒液貯留空間S1が
形成され、その冷媒液貯留空間S1の鉛直方向視での面
積が、ガス配管4および液配管10の横断面積よりも大
きく、かつ、ヘッド差の変化に対して冷媒の循環流動抵
抗に合わせた二次曲線で変化するように上方程小になる
ように構成されている。
That is, the secondary member 9 is constituted by a spiral pipe formed by bending so that the pitch becomes smaller toward the lower side, and the primary member 8 is constituted by a cylindrical body covering the secondary member 9. Between the inner peripheral surface of the primary member 8 and the outer peripheral surface of the secondary member 9, a refrigerant liquid storage space S1 capable of storing the refrigerant liquid is formed, and the refrigerant liquid storage space S1 is viewed in the vertical direction. Is larger than the cross-sectional area of the gas pipe 4 and the liquid pipe 10, and becomes smaller toward the upper side so as to change with a quadratic curve corresponding to the circulation flow resistance of the refrigerant with respect to the change in the head difference. It is configured.

【0036】上記第7実施例、第8実施例および第9実
施例によれば、凝縮器1を構成する二次側部材9を利用
して受液部を構成しているために、構成を簡略化できる
利点を有している。
According to the seventh embodiment, the eighth embodiment and the ninth embodiment, since the liquid receiving section is constituted by using the secondary member 9 constituting the condenser 1, the constitution is not limited. It has the advantage that it can be simplified.

【0037】上記実施例では、製氷機2を構成する蒸発
器3を備えた冷凍サイクルで説明したが、本発明として
は、例えば、ビルなどの建物に設けられた空調機器の冷
房用コイル6を備えた冷凍サイクルとか、冷凍機を構成
する蒸発器を備えた冷凍サイクルなど、各種の冷凍サイ
クルに適用できる。
In the above embodiment, the refrigerating cycle including the evaporator 3 constituting the ice making machine 2 has been described. However, the present invention provides, for example, a cooling coil 6 of an air conditioner provided in a building such as a building. The present invention can be applied to various refrigeration cycles, such as a refrigeration cycle provided with a refrigeration cycle including an evaporator constituting a refrigerator.

【0038】上述二次曲線は、適用する冷凍サイクルに
よって冷媒の循環流動抵抗に違いがあるが、冷凍サイク
ルごとに予め定められるものであり、それに応じて貯留
空間Sおよび冷媒液貯留空間S1の鉛直方向視での面積
が上方程小になるように設計したものを用いるようにす
れば良い。
The above-mentioned quadratic curve has a difference in the circulating flow resistance of the refrigerant depending on the refrigeration cycle to be applied, but is predetermined for each refrigeration cycle, and accordingly, the vertical direction of the storage space S and the refrigerant liquid storage space S1 is correspondingly determined. What is necessary is just to use what was designed so that the area in the direction view may become small toward the upper part.

【0039】[0039]

【発明の効果】以上説明したように、請求項1に係る発
明の冷凍サイクルにおける受液部の構造によれば、液溜
容器の貯留空間の鉛直方向視での面積を、蒸発器での負
荷変動に対する圧力損失の変化と同様に冷媒の循環流動
抵抗に合わせた二次曲線で変化するように上方ほど小に
して、蒸発器での負荷変動にかかわらず、蒸発器での液
面変化を抑えることができ、蒸発器での伝熱面積を十分
活用できるとともに冷媒液がガス配管内に不測に混入す
る、いわゆる液バックを防止するから、フロート弁など
のような弁を使用しないために、耐久性および経済性の
低下を回避できる。しかも、蒸発器での伝熱面積を十分
活用するから、蒸発に伴う冷媒液の液面低下分を見込ん
で蒸発器を大型にするといったことをせずに、蒸発器の
能力を十分発揮させることができ、経済性を向上でき
る。
As described above, according to the structure of the liquid receiving portion in the refrigeration cycle according to the first aspect of the present invention, the area of the storage space of the liquid storage container as viewed in the vertical direction is reduced by the load on the evaporator. Similar to the change in pressure loss due to fluctuations, the upper part is reduced so that it changes with a quadratic curve that matches the circulation flow resistance of the refrigerant, and the liquid level change in the evaporator is suppressed regardless of the load fluctuation in the evaporator. It can make full use of the heat transfer area in the evaporator and prevents so-called liquid back, in which the refrigerant liquid enters the gas pipe unexpectedly. It is possible to avoid a decrease in efficiency and economy. Moreover, since the heat transfer area of the evaporator is fully utilized, the capacity of the evaporator should be fully exhibited without increasing the size of the evaporator in anticipation of a decrease in the level of the refrigerant liquid due to evaporation. And can improve economic efficiency.

【0040】また、請求項2に係る発明の冷凍サイクル
における受液部の構造によれば、凝縮器を構成する二次
側部材に冷媒液貯留空間を備えさせ、その冷媒液貯留空
間の鉛直方向視での面積を、蒸発器での負荷変動に対す
る圧力損失の変化と同様に冷媒の循環流動抵抗に合わせ
た二次曲線で変化するように上方ほど小にして、蒸発器
での負荷変動にかかわらず、蒸発器での液面変化を抑え
ることができ、蒸発器での伝熱面積を十分活用できると
ともに冷媒液がガス配管内に不測に混入する、いわゆる
液バックを防止するから、フロート弁などのような弁を
使用しないために、耐久性および経済性の低下を回避で
きる。しかも、蒸発器での伝熱面積を十分活用するか
ら、蒸発に伴う冷媒液の液面低下分を見込んで蒸発器を
大型にするといったことをせずに、蒸発器の能力を十分
発揮させることができ、経済性を向上できる。そのう
え、冷媒液を受け止めるのに、凝縮器と兼用構成するか
ら、請求項1に係る発明におけるような専用の液溜容器
を備えずに済み、構成が簡略化できて安価に構成でき、
経済性を一層向上できる。
According to the structure of the liquid receiving portion in the refrigeration cycle according to the second aspect of the present invention, the secondary member constituting the condenser is provided with a refrigerant liquid storage space, and the refrigerant liquid storage space is arranged in the vertical direction. Similar to the change in pressure loss with respect to the load fluctuation in the evaporator, the visual area is made smaller toward the upper side so as to change according to a quadratic curve adjusted to the circulation flow resistance of the refrigerant. The liquid level change in the evaporator can be suppressed, the heat transfer area in the evaporator can be fully utilized, and the refrigerant liquid can be prevented from accidentally entering the gas pipes, so-called a liquid back. By not using such a valve, it is possible to avoid deterioration in durability and economy. Moreover, since the heat transfer area of the evaporator is fully utilized, the capacity of the evaporator should be fully exhibited without increasing the size of the evaporator in anticipation of the decrease in the liquid level of the refrigerant liquid due to evaporation. And can improve economic efficiency. In addition, since it is configured to also serve as a condenser for receiving the refrigerant liquid, it is not necessary to provide a dedicated liquid storage container as in the invention according to claim 1, and the configuration can be simplified and inexpensive,
Economic efficiency can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸発器の負荷と圧力損失との関係を示すグラフ
である。
FIG. 1 is a graph showing a relationship between a load of an evaporator and a pressure loss.

【図2】本発明に係る冷凍サイクルにおける受液部の構
造の第1実施例を示す全体システム構成図である。
FIG. 2 is an overall system configuration diagram showing a first embodiment of a structure of a liquid receiving section in the refrigeration cycle according to the present invention.

【図3】(a)は第2実施例の要部の縦断面図、(b)
は第3実施例の要部の縦断面図、(c)は第4実施例の
要部の縦断面図、(d)は第5実施例の要部の縦断面
図、そして、(e)は第6実施例の要部の縦断面図であ
る。
FIG. 3A is a longitudinal sectional view of a main part of a second embodiment, and FIG.
Is a longitudinal sectional view of a main part of the third embodiment, (c) is a longitudinal sectional view of a main part of the fourth embodiment, (d) is a longitudinal sectional view of a main part of the fifth embodiment, and (e). FIG. 14 is a longitudinal sectional view of a main part of the sixth embodiment.

【図4】(a)は第7実施例の要部の縦断面図、(b)
は第8実施例の要部の縦断面図、そして、(c)は第9
実施例の要部の縦断面図である。
FIG. 4A is a longitudinal sectional view of a main part of a seventh embodiment, and FIG.
Is a longitudinal sectional view of a main part of the eighth embodiment, and FIG.
It is a longitudinal section of an important section of an example.

【符号の説明】[Explanation of symbols]

1…凝縮器 3…蒸発器 4…ガス配管 5…液配管 6…第1の液配管 7…第2の液配管 8…一次側部材 9…二次側部材 10…液配管 S…貯留空間 S1…冷媒液貯留空間 DESCRIPTION OF SYMBOLS 1 ... Condenser 3 ... Evaporator 4 ... Gas piping 5 ... Liquid piping 6 ... 1st liquid piping 7 ... 2nd liquid piping 8 ... Primary member 9 ... Secondary member 10 ... Liquid piping S ... Storage space S1 … Refrigerant liquid storage space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスを冷却液化する凝縮器と、 冷媒液を加熱気化する蒸発器とを備え、 前記凝縮器と前記蒸発器とを液配管とガス配管とを介し
て接続するとともに、前記凝縮器と前記蒸発器とにわた
って気液相変化により冷媒を自然循環流動するように構
成した冷凍サイクルにおける受液部の構造であって、 前記凝縮器と前記蒸発器との間に、前記凝縮器で液化し
て流下する冷媒液を受け止めて溜める液溜容器を設け、
前記凝縮器と前記液溜容器とを第1の液配管を介して接
続するとともに前記液溜容器と前記蒸発器とを第2の液
配管を介して接続し、前記液溜容器と前記蒸発器との間
に、冷媒を自然循環流動させるに足るヘッド差を備え、
前記液溜容器の冷媒液を貯留する貯留空間の鉛直方向視
での面積を、前記第1および第2の液配管の横断面積よ
りも大きく、かつ、前記ヘッド差の変化に対して冷媒の
循環流動抵抗に合わせた二次曲線で変化するように上方
程小になるように構成したことを特徴とする冷凍サイク
ルにおける受液部の構造。
A condenser for cooling and liquefying the refrigerant gas; and an evaporator for heating and vaporizing the refrigerant liquid, wherein the condenser and the evaporator are connected via a liquid pipe and a gas pipe, and A structure of a liquid receiving portion in a refrigeration cycle configured to allow a refrigerant to naturally circulate and flow by a gas-liquid phase change across a condenser and the evaporator, wherein the condenser is provided between the condenser and the evaporator. A liquid storage container is provided for receiving and storing the refrigerant liquid liquefied and flowing down,
The condenser and the liquid reservoir are connected via a first liquid pipe, and the liquid reservoir and the evaporator are connected via a second liquid pipe. With a head difference sufficient to allow the refrigerant to flow naturally,
The area in the vertical direction of the storage space for storing the refrigerant liquid in the liquid storage container is larger than the cross-sectional area of the first and second liquid pipes, and the refrigerant circulates with respect to the change in the head difference. A structure of a liquid receiving part in a refrigeration cycle, characterized in that the liquid receiving part is configured so as to become smaller in an upward direction so as to change according to a quadratic curve adapted to flow resistance.
【請求項2】 冷媒ガスを冷却液化する凝縮器と、 冷媒液を加熱気化する蒸発器とを備え、 前記凝縮器と前記蒸発器とを液配管とガス配管とを介し
て接続するとともに、前記凝縮器と前記蒸発器とにわた
って気液相変化により冷媒を自然循環流動するように構
成した冷凍サイクルにおける受液部の構造であって、 前記凝縮器を、冷媒ガスを冷却する冷却用流体を流す一
次側部材と、冷却用流体によって冷却される冷媒を流す
とともに凝縮液化した冷媒液を貯留可能な二次側部材と
から構成し、前記二次側部材と前記蒸発器との間に、冷
媒を自然循環流動させるに足るヘッド差を備え、前記二
次側部材の冷媒液を貯留する貯留空間の鉛直方向視での
面積を、前記ガス配管および前記液配管の横断面積より
も大きく、かつ、前記ヘッド差の変化に対して冷媒の循
環流動抵抗に合わせた二次曲線で変化するように上方程
小になるように構成したことを特徴とする冷凍サイクル
における受液部の構造。
2. A condenser for cooling and liquefying a refrigerant gas, and an evaporator for heating and evaporating the refrigerant liquid, wherein the condenser and the evaporator are connected via a liquid pipe and a gas pipe, and A structure of a liquid receiving portion in a refrigeration cycle configured to naturally circulate and flow a refrigerant by a gas-liquid phase change across a condenser and the evaporator, wherein a cooling fluid for cooling a refrigerant gas flows through the condenser. A primary-side member and a secondary-side member capable of storing a refrigerant liquid condensed and liquefied while flowing a refrigerant cooled by a cooling fluid, and a refrigerant between the secondary-side member and the evaporator. Provided with a head difference sufficient for natural circulation flow, the area of the storage space for storing the refrigerant liquid of the secondary side member as viewed in the vertical direction is larger than the cross-sectional area of the gas pipe and the liquid pipe, and For changes in head differences On the other hand, the structure of the liquid receiving portion in the refrigeration cycle is characterized in that the liquid receiving portion in the refrigeration cycle is configured so as to become smaller toward the upper side so as to change according to a quadratic curve corresponding to the circulation flow resistance of the refrigerant.
JP02633297A 1997-02-10 1997-02-10 Structure of liquid receiver in refrigeration cycle Expired - Fee Related JP3814729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02633297A JP3814729B2 (en) 1997-02-10 1997-02-10 Structure of liquid receiver in refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02633297A JP3814729B2 (en) 1997-02-10 1997-02-10 Structure of liquid receiver in refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH10220927A true JPH10220927A (en) 1998-08-21
JP3814729B2 JP3814729B2 (en) 2006-08-30

Family

ID=12190482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02633297A Expired - Fee Related JP3814729B2 (en) 1997-02-10 1997-02-10 Structure of liquid receiver in refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3814729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322001A (en) * 2006-05-30 2007-12-13 Fuji Electric Retail Systems Co Ltd Mixed fluid separating device
WO2013099309A1 (en) * 2011-12-26 2013-07-04 株式会社未来技術研究所 Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322001A (en) * 2006-05-30 2007-12-13 Fuji Electric Retail Systems Co Ltd Mixed fluid separating device
WO2013099309A1 (en) * 2011-12-26 2013-07-04 株式会社未来技術研究所 Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system
WO2013099972A1 (en) * 2011-12-26 2013-07-04 株式会社未来技術研究所 Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system
WO2013099574A1 (en) * 2011-12-26 2013-07-04 株式会社未来技術研究所 Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system
EP2806235A4 (en) * 2011-12-26 2015-10-14 Tadashi Iwatsuki Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system

Also Published As

Publication number Publication date
JP3814729B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
EP0480330B1 (en) Refrigeration apparatus with modulator
JPH11304293A (en) Refrigerant condenser
US20060150663A1 (en) Refrigerator
US3423954A (en) Refrigeration systems with accumulator means
US5660050A (en) Refrigeration condenser, receiver subcooler system
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
US6050102A (en) Heat pump type air conditioning apparatus
JP5777054B2 (en) Dry evaporator and COP improvement method for existing dry evaporator
JP2001174103A (en) Refrigerant condenser
JPH10220927A (en) Structure of liquid receiving part in refrigeration cycle
EP1264150B1 (en) Regulator with receiver for refrigerators and heatpumps
US2188893A (en) Refrigerating apparatus
US2056022A (en) Flow controlling device for refrigerating systems
JP4090240B2 (en) Cooling system
US20060225460A1 (en) Evaporator for a refrigeration appliance
JP4238434B2 (en) Refrigeration cycle equipment
JPH1019389A (en) Controlling equipment of degree of superheating of capillary tube
US2329141A (en) Refrigerating apparatus
JPH06143991A (en) Condenser of automobile air conditioner
US20230392839A1 (en) Accumulator heat exchanger
JP2000146311A (en) Refrigerating device and heat exchanger
JPS5829829Y2 (en) multi-chamber refrigerator
KR20010109617A (en) Condenser enhanced heat transfer performance
JP3790207B2 (en) Air conditioner
US1934166A (en) Refrigeration

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100616

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110616

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120616

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees