JPH1019389A - Controlling equipment of degree of superheating of capillary tube - Google Patents

Controlling equipment of degree of superheating of capillary tube

Info

Publication number
JPH1019389A
JPH1019389A JP8192746A JP19274696A JPH1019389A JP H1019389 A JPH1019389 A JP H1019389A JP 8192746 A JP8192746 A JP 8192746A JP 19274696 A JP19274696 A JP 19274696A JP H1019389 A JPH1019389 A JP H1019389A
Authority
JP
Japan
Prior art keywords
capillary tube
refrigerant
container
pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8192746A
Other languages
Japanese (ja)
Other versions
JP3475203B2 (en
Inventor
Morio Kaneko
守男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP19274696A priority Critical patent/JP3475203B2/en
Publication of JPH1019389A publication Critical patent/JPH1019389A/en
Application granted granted Critical
Publication of JP3475203B2 publication Critical patent/JP3475203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To meet an increase and decrease of the degree of superheating, by providing a heat pipe whereby a first vessel so provided that it can exchange heat with a capillary tube and a second vessel so provided that it can exchange heat with an evaporator outlet pipe are made to communicate with each other and by providing a third vessel so that a branch pipe branching from an outlet of the capillary tube can exchange heat with the evaporator outlet pipe. SOLUTION: A first vessel 5 is so provided as to enclose a capillary tube 3. A second vessel 7 is provided in a state of being in contact with an evaporator outlet pipe 6 so that it can exchange heat with this pipe. A first connecting pipe 8 making the first vessel 5 and the second vessel 1 communicate with each other in the upper parts thereof is provided. This pipe is put in a hermetically sealed state and a medium is sealed therein so that a heat pipe 10 be constructed. Besides, a branch part 12 for a refrigerant is provided at an outlet part 11 of the capillary part 3, i.e., an inlet part of an evaporator, and it is connected, by a second connecting pipe 14, with the lower part of a third vessel 13 so provided as to enclose the evaporator outlet pipe 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば家庭用冷凍
冷蔵庫や自動販売機等の小型冷凍、冷蔵システムにおい
て使用する、媒体の減圧、膨張用の固定絞りであるキャ
ピラリチューブを用いた過熱度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to superheat control using a capillary tube which is a fixed throttle for decompression and expansion of a medium used in a small freezing and refrigeration system such as a home refrigerator and vending machine. Related to the device.

【0002】[0002]

【従来の技術】従来、家庭用冷凍冷蔵庫や自動販売機等
に用いる小型冷凍、冷蔵システムにおいては、固定絞り
であるキャピラリチューブが、安価な冷媒の減圧、膨張
用機器として用いられている。このキャピラリチューブ
を用いた冷凍回路は、図5に示すように、圧縮機31か
ら凝縮器32を介して送られる冷媒をキャピラリチュー
ブ33に送り、減圧、膨張を行い、この冷媒を蒸発器3
4に送り冷凍、冷房作用をし、圧縮機31に戻してい
る。
2. Description of the Related Art Conventionally, in a small-sized freezing and refrigeration system used for a home refrigerator or a vending machine, a capillary tube as a fixed throttle is used as an inexpensive refrigerant decompression and expansion device. As shown in FIG. 5, the refrigeration circuit using the capillary tube sends the refrigerant sent from the compressor 31 through the condenser 32 to the capillary tube 33, decompresses and expands the refrigerant, and divides the refrigerant into the evaporator 3
4 to perform a freezing and cooling operation, and return to the compressor 31.

【0003】このようなキャピラリチューブを用いた冷
凍システムにおいて、蒸発器に送られる冷媒の流量は、
基本的に、キャピラリチューブの内径と、キャピラリチ
ューブの長さで決定され、また、自己制御性を有する流
量変動は、装置への冷媒封入量、凝縮圧力、及び、キャ
ピラリチューブ入口の過冷却度で決定され、このシステ
ムにおいては、蒸発圧力や本来的な蒸発器制御は行うこ
とはできない。
In a refrigeration system using such a capillary tube, the flow rate of the refrigerant sent to the evaporator is:
Basically, it is determined by the inner diameter of the capillary tube and the length of the capillary tube, and the self-controllable flow rate fluctuation is determined by the amount of refrigerant charged into the device, the condensation pressure, and the degree of subcooling at the capillary tube inlet. Once determined, this system does not allow for evaporative pressure or intrinsic evaporator control.

【0004】[0004]

【発明が解決しようとする課題】上記のような、キャピ
ラリチューブを用いた冷凍システムおいては、本来的な
蒸発器制御を行うことができず、負荷条件等で流量制御
はできないないので、キャピラリチューブを用いた冷凍
システムにおいても内外負荷条件により凝縮器の温度、
蒸発器の出口温度が変化するのに対応して流量制御を行
い、それにより、凝縮器が過冷却状態で、蒸発器の出口
温度が適度な過熱状態で圧縮機に戻るようにすることが
望まれる。
In a refrigeration system using a capillary tube as described above, the inherent control of the evaporator cannot be performed, and the flow rate cannot be controlled under load conditions or the like. In a refrigeration system using tubes, the temperature of the condenser,
It is desirable to control the flow rate in response to changes in the evaporator outlet temperature, so that the condenser is in a supercooled state and the evaporator outlet temperature returns to the compressor in a moderately overheated state. It is.

【0005】その対策として、図6に示すように、キャ
ピラリチューブ33の途中の分岐部35から分岐管36
を分岐し、蒸発器34と圧縮器とを連通する蒸発器出口
管、即ち吸入管37を囲むように設けた冷媒量調整容器
38の底部に前記分岐管36を連通する冷凍装置が提案
されている。この冷凍装置においては、負荷が小さくな
り蒸発器出口温度が低下すると、吸入管37の低温化に
より冷媒量調整容器38内で冷媒の凝縮が生じ、循環冷
媒量が減少し、キャピラリチューブ33入口の過冷却度
も減少するため、キャピラリチューブを通る冷媒流量が
減少し、負荷の低下に対応した冷媒流量の制御を行うよ
うにし、負荷の上昇時には上記と逆の作動により冷媒流
量の制御を行い、負荷に対応した冷媒流量の制御を行う
ようにしている。
[0006] As a countermeasure, as shown in FIG.
And a refrigerating device has been proposed in which the branch pipe 36 is communicated to the bottom of an evaporator outlet pipe that connects the evaporator 34 and the compressor, that is, the refrigerant amount adjusting container 38 provided so as to surround the suction pipe 37. I have. In this refrigeration apparatus, when the load is reduced and the evaporator outlet temperature is reduced, the refrigerant is condensed in the refrigerant amount adjusting container 38 due to the lowering of the suction pipe 37, the circulating refrigerant amount is reduced, and the refrigerant at the inlet of the capillary tube 33 is reduced. Because the degree of supercooling also decreases, the flow rate of the refrigerant passing through the capillary tube decreases, and the flow rate of the refrigerant corresponding to the decrease in the load is controlled.When the load increases, the flow rate of the refrigerant is controlled by the operation opposite to the above, The flow rate of the refrigerant corresponding to the load is controlled.

【0006】また、上記図6に示す装置においては、冷
媒量調整容器38内は通常液冷媒で占められることとな
り、通常の負荷変動に対してほとんど冷媒量の調節機能
を果たさず、特に低負荷時には圧縮器に液バックを生じ
るという欠点を解消するため、図7に示されるような特
公昭62ー40631号公報に記載されている冷凍装置
も提案されている。この冷凍装置においては、基本構成
は図6に示す装置と同様とし、さらに、冷媒量調整容器
38内に凝縮器32とキャピラリチューブ33とを結ぶ
管路39を貫通させ、冷媒量調整容器38内の冷媒を吸
入管37と上記管路39の両者の温度によって温度調整
するようにしている。
In the apparatus shown in FIG. 6, the inside of the refrigerant amount adjusting container 38 is usually occupied by the liquid refrigerant, so that it hardly performs the function of adjusting the refrigerant amount with respect to the normal load fluctuation, and particularly the low load state. In order to eliminate the disadvantage that a liquid bag sometimes occurs in the compressor, a refrigerating apparatus described in Japanese Patent Publication No. 62-40631 as shown in FIG. 7 has been proposed. In this refrigeration apparatus, the basic configuration is the same as that of the apparatus shown in FIG. 6, and a pipe 39 connecting the condenser 32 and the capillary tube 33 is penetrated into the refrigerant amount adjustment container 38, and the inside of the refrigerant amount adjustment container 38 Is controlled by the temperature of both the suction pipe 37 and the pipe 39.

【0007】この装置においては、上記構成により設計
負荷条件時に、冷媒量調節容器に蓄積できる冷媒量を任
意に選択でき、これによって、設計時に考えられる最高
負荷条件と最低負荷条件に対して、冷媒量調節機能が果
たせるように、冷媒量調節容器の大きさを決定し、特
に、低負荷時の冷媒量調節を行うことにより、圧縮機へ
の液戻りを防止する等の作用を可能としている。
In this device, the amount of refrigerant that can be stored in the refrigerant amount adjusting container can be arbitrarily selected at the time of the design load condition by the above configuration. The size of the refrigerant amount adjusting container is determined so that the amount adjusting function can be performed. In particular, by adjusting the amount of the refrigerant at a low load, it is possible to prevent the liquid from returning to the compressor.

【0008】しかしながら、上記装置においては、冷媒
量調整容器の取り出し部35がキャピラリチューブの中
間位置であるため、冷媒状態が不安定となる欠点がある
ばかりでなく、冷媒量調整容器の温度により装置の循環
冷媒量を操作しているため、蒸発器出口の過熱度を制御
することにはならない。また、この装置においては、キ
ャピラリチューブ入口の冷媒過冷却度を減少させる方向
の制御は行われるが、逆方向の制御は不十分である欠点
があった。
However, in the above-mentioned apparatus, since the take-out part 35 of the refrigerant amount adjusting container is located at the intermediate position of the capillary tube, not only the drawback that the state of the refrigerant becomes unstable, but also the device is controlled by the temperature of the refrigerant amount adjusting container. Since the amount of circulating refrigerant is controlled, the degree of superheat at the evaporator outlet is not controlled. Further, in this apparatus, control is performed in a direction to decrease the degree of subcooling of the refrigerant at the inlet of the capillary tube, but control in the reverse direction is insufficient.

【0009】また、他の対策として、キャピラリチュー
ブを用いた冷凍システムにおいては、キャピラリチュー
ブの入口過冷却度によって流量が変わることを利用し
て、キャピラリチューブ冷却用の熱交換器、制御弁、及
び過熱度感知用センサー等を用い、マイコンにより蒸発
器制御を行うことが提案されているが、このようなもの
においては、キャピラリチューブの限られた流量制御域
に対して対応することができるのみで、その効果に対し
て上記のような機器を用いることはコスト高となり、ま
た信頼性の面で欠点がある。
As another countermeasure, in a refrigeration system using a capillary tube, a heat exchanger for cooling the capillary tube, a control valve, and a control valve, utilizing the fact that the flow rate varies depending on the degree of subcooling at the inlet of the capillary tube. It has been proposed to control the evaporator by a microcomputer using a sensor for detecting the degree of superheat, but such a device can only cope with the limited flow rate control region of the capillary tube. However, the use of the above-described apparatus for the effect thereof increases the cost and has a drawback in reliability.

【0010】したがって、本発明は、キャピラリチュー
ブを用いた冷凍回路において、キャピラリチューブを用
いることによるその特性、及び信頼性を維持したまま、
特別な制御機器を用いることなく、冷媒回路の制御での
本来的制御対象である蒸発器の状態をフイードバックで
きるようにし、過熱度の増減に対応することができる、
キャピラリチューブの過熱度制御装置を提供することを
目的とする。
Therefore, the present invention provides a refrigeration circuit using a capillary tube while maintaining its characteristics and reliability by using the capillary tube.
Without using special control equipment, it is possible to feed back the state of the evaporator, which is the original control target in the control of the refrigerant circuit, and it is possible to respond to the increase and decrease of the degree of superheat,
It is an object of the present invention to provide a superheat control device for a capillary tube.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するため、圧縮機、凝縮器、キャピラリチューブ、蒸
発器を順に連結して冷媒回路を形成した冷凍装置のキャ
ピラリチューブの過熱度制御装置において、キャピラリ
チューブと熱交換可能に設けた第1容器と蒸発器出口管
と熱交換可能に設けた第2容器とを両容器の上部で連通
して内部に媒体を封入したヒートパイプを備え、キャピ
ラリチューブ出口から分岐する分岐管を蒸発器出口管に
熱交換可能に設けた第3容器を備えたキャピラリチュー
ブの過熱度制御装置としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to control the degree of superheat of a capillary tube of a refrigeration system in which a refrigerant circuit is formed by sequentially connecting a compressor, a condenser, a capillary tube, and an evaporator. The apparatus comprises a heat pipe in which a first container provided for heat exchange with a capillary tube, an evaporator outlet tube, and a second container provided for heat exchange are communicated at the upper portions of both containers, and a medium is sealed therein. A superheat control device for a capillary tube provided with a third container provided with a branch vessel branching from the capillary tube outlet so as to exchange heat with the evaporator outlet tube.

【0012】本発明は、上記のように構成したので、キ
ャピラリチューブの出口温度が蒸発器出口温度より低い
場合、すなわち過熱状態においては、ヒートパイプ内の
媒体は、蒸発器出口管との熱交換で第2容器内で蒸発
し、キャピラリチューブと熱交換可能に設けた第1容器
内に凝縮、滴下し、第1容器内に溜まるときキャピラリ
チューブを冷却し、この内部を通過する冷媒は冷却され
冷媒流量を増加する方向に作用する。このとき第3容器
内の温度は高く過熱状態にあるので、第3容器内に冷媒
が貯溜されているとその冷媒はキャピラリチューブ出口
部分から冷媒回路中に戻り、循環冷媒量は増加して相乗
的に冷却作用が増加する。第3容器内の液冷媒が全て蒸
発すると循環冷媒量は変化しなくなるが上記キャピラリ
チューブによる冷却作用は行われる。
Since the present invention is configured as described above, when the outlet temperature of the capillary tube is lower than the evaporator outlet temperature, that is, in the overheated state, the medium in the heat pipe exchanges heat with the evaporator outlet tube. Evaporates in the second container, condenses and drops into the first container provided with heat exchange with the capillary tube, cools the capillary tube when it accumulates in the first container, and the refrigerant passing through the inside is cooled. It acts in the direction of increasing the refrigerant flow rate. At this time, since the temperature in the third container is high and in an overheated state, if the refrigerant is stored in the third container, the refrigerant returns to the refrigerant circuit from the outlet portion of the capillary tube, and the amount of circulating refrigerant increases to increase synergistically. The cooling effect is increased. When all of the liquid refrigerant in the third container evaporates, the amount of circulating refrigerant no longer changes, but the cooling action by the capillary tube is performed.

【0013】一方、逆に蒸発器出口温度が低い液バック
状態の場合には、ヒートパイプ内の媒体は、キャピラリ
チューブとの熱交換で第1容器内で蒸発し蒸発器出口管
と熱交換可能に設けた第2容器内に凝縮、滴下し、第2
容器内に溜まるためキャピラリチューブは冷却されなく
なり、冷媒流量を減少させる方向に作用する。このとき
第3容器内の温度も低いので、第3容器内にキャピラリ
チューブの出口部分から冷媒回路中の冷媒が貯溜され、
循環冷媒量が減少して相乗的に冷却作用が減少する。第
1容器内の媒体が全て蒸発するとキャピラリチューブに
対する冷却作用はなくなるが、上記第3容器内への冷媒
の貯溜は行われる。
On the other hand, when the evaporator outlet temperature is low in the liquid back state, the medium in the heat pipe evaporates in the first container by heat exchange with the capillary tube and can exchange heat with the evaporator outlet tube. Condensed and dropped into the second container provided in
Since the capillary tube is stored in the container, the capillary tube is not cooled and acts in a direction to reduce the flow rate of the refrigerant. At this time, since the temperature in the third container is also low, the refrigerant in the refrigerant circuit is stored in the third container from the outlet of the capillary tube,
The amount of circulating refrigerant decreases, and the cooling action decreases synergistically. When the entire medium in the first container evaporates, the cooling action on the capillary tube is lost, but the refrigerant is stored in the third container.

【0014】[0014]

【発明の実施の形態】本発明の実施例を図面に沿って説
明する。冷凍回路の基本構成は、図5に示した従来のも
のと同様であり、圧縮機1からの冷媒は、凝縮器2、キ
ャピラリチューブ3、蒸発器4を通って圧縮機1に戻る
冷媒回路を有している。
Embodiments of the present invention will be described with reference to the drawings. The basic configuration of the refrigeration circuit is the same as that of the conventional one shown in FIG. 5, and the refrigerant from the compressor 1 passes through the condenser 2, the capillary tube 3, and the evaporator 4 and returns to the compressor 1 through the refrigerant circuit. Have.

【0015】一方、図1に示すように、キャピラリチュ
ーブ3を囲むように第1容器5を設け、また、蒸発器出
口管6と熱交換可能に接触状態で第2容器7を設け、こ
の第1容器5と第2容器7とを各々その上部で連通する
第1連結管8を設けて密封状態とし、内部に媒体を封入
してヒートパイプ10を構成している。このヒートパイ
プ10内部には、CF3 CHCl2 (冷媒番号Rー12
3)、CF3 CH2 F(冷媒番号Rー134a)等の、
作動冷媒より比容積が大で潜熱の大きな冷媒が密封され
ている。また、ヒートパイプを形成する媒体の量は、第
1容器5及び第2容器7の内容積より少ない量に設定さ
れている。なお、第1容器はキャピラリチューブ3全体
を囲む必要はなく、少なくともその一部と熱交換可能と
されていれば良い。
On the other hand, as shown in FIG. 1, a first container 5 is provided so as to surround the capillary tube 3, and a second container 7 is provided in contact with the evaporator outlet pipe 6 so as to be able to exchange heat. A first connection pipe 8 that connects the first container 5 and the second container 7 to each other at the upper portion thereof is provided to be in a sealed state, and a medium is sealed therein to constitute a heat pipe 10. CF 3 CHCl 2 (refrigerant number R-12)
3), such as CF 3 CH 2 F (refrigerant number R-134a),
A refrigerant having a larger specific volume and a larger latent heat than the working refrigerant is sealed. Further, the amount of the medium forming the heat pipe is set to be smaller than the inner volumes of the first container 5 and the second container 7. The first container does not need to surround the entire capillary tube 3, and it is sufficient that the first container can exchange heat with at least a part thereof.

【0016】また、キャピラリチューブ3の出口部分1
1、即ち蒸発器入口部分には冷媒の分岐部12を備え、
図中では蒸発器出口管6を囲むようにして設けた第3容
器13の下部と第2連結管14で連結している。この第
3容器13は必ずしも蒸発器出口管6を囲むように設け
る必要はなく、少なくとも熱交換状態にされていれば良
い。また、第3容器13の容積は、凝縮器に凝縮する冷
媒容積よりも大きくなるように設定している。この部分
については、前記図6に示した従来のものと同様の構成
をなすが、但し、分岐部12はキャピラリチューブ3の
出口部分に設けている点で相違している。
The outlet portion 1 of the capillary tube 3
1, that is, a refrigerant branch portion 12 is provided at the evaporator inlet portion,
In the figure, a lower portion of a third container 13 provided so as to surround the evaporator outlet pipe 6 is connected to a second connecting pipe 14. The third container 13 does not necessarily need to be provided so as to surround the evaporator outlet pipe 6, and it is sufficient that the third container 13 is at least in a heat exchange state. Further, the volume of the third container 13 is set to be larger than the volume of the refrigerant condensed in the condenser. This portion has the same configuration as the conventional one shown in FIG. 6, except that the branch portion 12 is provided at the outlet of the capillary tube 3.

【0017】このようなキャピラリチューブを用いた冷
凍回路においては、キャピラリチューブの長さと内径を
一定にして、外気温度が変化したときの状態を、外気温
度が低い順にPc1 、Pc2 、Pc3 と表示したとき、
図4に示すような流量特性を示し、キャピラリチューブ
入口の冷媒の過冷却度ΔTが大きいほどこれを流れる冷
媒の流量Gは増大する傾向を示し、凝縮器出口圧力であ
るキャピラリチューブ入口の圧力Pcが大きいほどこれ
を流れる流量は増大する傾向がある。
In such a refrigeration circuit using a capillary tube, the length and the inner diameter of the capillary tube are kept constant, and the state when the outside air temperature changes is changed to Pc 1 , Pc 2 , Pc 3 in ascending order of the outside air temperature. Is displayed,
The flow rate characteristic as shown in FIG. 4 is shown, and as the degree of supercooling ΔT of the refrigerant at the inlet of the capillary tube increases, the flow rate G of the refrigerant flowing therethrough tends to increase, and the pressure Pc at the capillary tube inlet, which is the condenser outlet pressure. Is larger, the flow rate flowing therethrough tends to increase.

【0018】上記構成からなる装置において、蒸発器出
口管6の冷媒が過熱状態の場合、即ち、キャピラリチュ
ーブ出口温度即ち蒸発器入口温度TE が蒸発器出口温度
TSより低い場合は、図2に示すように、ヒートパイプ
10内の媒体は、最も低温部であるキャピラリチューブ
3の出口温度TE で冷却され凝縮し、滴下して第1容器
5内に溜まる。このサイクルの繰り返しによりキャピラ
リチューブ3は冷却され、中を通る冷凍用冷媒の過冷却
度が増大し、前記のように、冷媒の過冷却度が大きいほ
どキャピラリチューブを流れる冷媒の流量を増す作用に
より、冷媒流量は増加して冷却作用が上昇する。
In the apparatus having the above-mentioned structure, when the refrigerant in the evaporator outlet pipe 6 is overheated, that is, when the capillary tube outlet temperature, ie, the evaporator inlet temperature TE is lower than the evaporator outlet temperature TS, FIG. As described above, the medium in the heat pipe 10 is cooled and condensed at the outlet temperature TE of the capillary tube 3 which is the lowest temperature part, and drops and accumulates in the first container 5. By repeating this cycle, the capillary tube 3 is cooled, the degree of supercooling of the refrigerant for refrigeration passing therethrough increases, and as described above, the larger the degree of supercooling of the refrigerant, the more the flow rate of the refrigerant flowing through the capillary tube increases. As a result, the flow rate of the refrigerant increases, and the cooling action increases.

【0019】上記過熱状態になる過程においては、第3
容器内に冷媒が貯溜されているとその冷媒はキャピラリ
チューブ出口部分から冷媒回路中に戻り、循環冷媒量は
増加して過冷却度が増大する方向に作用し、前記ヒート
パイプの作用と相まって相乗的に冷却作用が増加する。
完全な過熱状態となると第3容器内の液冷媒が全て蒸発
し循環冷媒量は変化しなくなるが上記ヒートパイプによ
る冷却作用は行われ、キャピラリチューブによる自己制
御作用が継続される。
In the process of the overheating, the third
When the refrigerant is stored in the container, the refrigerant returns from the capillary tube outlet to the refrigerant circuit, and acts in a direction in which the amount of circulating refrigerant increases to increase the degree of supercooling. The cooling effect is increased.
When a complete overheating state is reached, all the liquid refrigerant in the third container evaporates and the amount of circulating refrigerant does not change, but the cooling operation by the heat pipe is performed, and the self-control operation by the capillary tube is continued.

【0020】反対に、キャピラリチューブ出口温度即ち
蒸発器入口温度TE が蒸発器出口温度TS より高くなる
場合、即ち液バックになる状況下では、図3に示すよう
に、ヒートパイプ10内の媒体は最も低温部である蒸発
器出口配管6の部分に凝縮し、滴下して第2容器7内に
溜まる。このサイクルを繰り返し第2容器7内に媒体が
溜まり、第1容器5での熱回収が行われなくなり、キャ
ピラリチューブ3は冷却されなくなるため、前記キャピ
ラリチューブの特性及び凝縮器側の冷媒量の低下による
過冷却度の減少により、冷媒の循環流量を減少させる方
向に作用する。この作用は第1容器内に貯溜されていた
液媒体が全て蒸発すると行われなくなる。
Conversely, when the capillary tube outlet temperature, ie, the evaporator inlet temperature TE is higher than the evaporator outlet temperature TS, that is, in a situation where the liquid is backed up, as shown in FIG. It condenses at the evaporator outlet pipe 6 which is the lowest temperature part, drops and accumulates in the second container 7. By repeating this cycle, the medium accumulates in the second container 7, and the heat recovery in the first container 5 is not performed, and the capillary tube 3 is not cooled, so that the characteristics of the capillary tube and the amount of refrigerant on the condenser side decrease. The reduction in the degree of supercooling due to the above-mentioned effect acts in a direction to reduce the circulation flow rate of the refrigerant. This operation is stopped when all the liquid medium stored in the first container evaporates.

【0021】この状態では、第3容器13内の温度は分
岐部12の温度より低く、この温度差が生じているた
め、冷媒は第3容器13内で凝縮する。このため冷凍回
路の循環冷媒流量は減少して冷却特性は低下し、また、
キャピラリチューブ入口の過冷却度が低下し、前記キャ
ピラリチューブの流量特性に示すとおり、キャピラリチ
ューブを通過する冷媒流量が減少する方向に作用する。
この作用により、冷媒封入量と第3容器の内容積関係か
らキャピラリチューブの入口が2相流となる過冷却度が
マイナスになるまで流量を大幅に減少させることができ
る。特に、上記のようなヒートパイプ10の作用と相乗
し、その制御性は顕著なものとなる。
In this state, the temperature in the third container 13 is lower than the temperature of the branch portion 12, and this temperature difference occurs, so that the refrigerant is condensed in the third container 13. For this reason, the circulating refrigerant flow rate of the refrigeration circuit is reduced, the cooling characteristics are reduced, and
The degree of supercooling at the inlet of the capillary tube decreases, and as shown in the flow rate characteristics of the capillary tube, the flow rate of the refrigerant passing through the capillary tube decreases.
Due to this effect, the flow rate can be significantly reduced until the degree of supercooling at which the inlet of the capillary tube becomes a two-phase flow becomes negative from the relationship between the amount of refrigerant charged and the internal volume of the third container. Particularly, the controllability is remarkable in synergy with the action of the heat pipe 10 as described above.

【0022】また、ヒートパイプ10のみ用い上記第3
容器の構成を備えない場合には、キャピラリチューブの
過冷却度を増加させる方向の制御性は良いものの、逆に
減少させる場合の制御性には限界があるが、上記第3容
器をキャピラリチューブの出口の分岐部に連結したもの
を付加すると、その欠点を解消することができ、前記図
6に示す従来のものの欠点を解消するヒートパイプ10
を用いたものの効果と相まって、両者の欠点を相互に補
うことが可能となる。
Further, only the heat pipe 10 is used,
When the configuration of the container is not provided, the controllability in the direction of increasing the degree of supercooling of the capillary tube is good, but the controllability in the case of decreasing the degree of reduction is limited. By adding a pipe connected to the branch portion of the outlet, the drawback can be solved, and the heat pipe 10 which solves the drawback of the conventional one shown in FIG.
Combined with the effect of the method using, the disadvantages of both can be mutually compensated.

【0023】[0023]

【発明の効果】本発明は、上記のように、キャピラリチ
ューブを用いた冷凍回路において、キャピラリチューブ
を用いることによるその特性、及び信頼性を維持したま
ま、特別な制御機器を用いることなく、冷媒回路の制御
での本来的制御対象である蒸発器の状態をフイードバッ
クできるようにし、過熱度の増減に対応することができ
る。また、作動冷媒とヒートパイプ内の封止冷媒とを別
にしたので、充分な熱交換を行うことができ、この冷凍
回路の立ち上がり冷却が早く、省エネルギーとなる。更
に、冷凍回路の作動安定時に過冷却になることがなく、
また、蒸発器及び凝縮器を小さくすることができる。し
かも、ヒートパイプを用いても十分達成できない制御範
囲を、蒸発器出口管と熱交換状態とした第3容器をキャ
ピラリチューブの出口部分に分岐連結したものをを併用
することにより補うことができる。また、上記第3容器
はキャピラリチューブの出口部分と分岐連結したので、
第3容器に導入される冷媒の状態が安定し、その制御性
が向上する。
As described above, according to the present invention, in a refrigeration circuit using a capillary tube, while maintaining the characteristics and reliability of using a capillary tube, the refrigerant can be used without using a special control device. The state of the evaporator, which is the primary control target in the control of the circuit, can be fed back, and it is possible to cope with an increase or decrease in the degree of superheat. Further, since the working refrigerant and the sealed refrigerant in the heat pipe are separated, sufficient heat exchange can be performed, and the cooling and start-up of the refrigeration circuit is quick and energy is saved. Furthermore, there is no overcooling when the operation of the refrigeration circuit is stable,
Further, the evaporator and the condenser can be made smaller. In addition, the control range that cannot be sufficiently achieved by using a heat pipe can be compensated for by using a third vessel that is in a heat exchange state with the evaporator outlet pipe and that is branched and connected to the outlet part of the capillary tube. Also, since the third container is branched and connected to the outlet of the capillary tube,
The state of the refrigerant introduced into the third container is stabilized, and its controllability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す冷凍回路構成図である。FIG. 1 is a configuration diagram of a refrigeration circuit showing an embodiment of the present invention.

【図2】同第1の作動状態を示す要部断面図である。FIG. 2 is a cross-sectional view of a main part showing the first operation state.

【図3】同第2の作動状態を示す要部断面図である。FIG. 3 is a cross-sectional view of a main part showing a second operation state.

【図4】同冷凍回路の作動特性を示すグラフである。FIG. 4 is a graph showing operating characteristics of the refrigeration circuit.

【図5】キャピラリチューブを用いた基本冷凍回路構成
図である。
FIG. 5 is a configuration diagram of a basic refrigeration circuit using a capillary tube.

【図6】従来例を示す冷凍回路構成図である。FIG. 6 is a refrigeration circuit configuration diagram showing a conventional example.

【図7】他の従来例を示す冷凍回路構成図である。FIG. 7 is a configuration diagram of a refrigeration circuit showing another conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 キャピラリチューブ 4 蒸発器 5 第1容器 6 蒸発器出口管 7 第2容器 8 第1連結管 10 ヒートパイプ 11 出口部分 12 分岐部 13 第3容器 14 第2連結管 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Capillary tube 4 Evaporator 5 1st container 6 Evaporator outlet pipe 7 2nd container 8 1st connection pipe 10 Heat pipe 11 Exit part 12 Branch part 13 3rd container 14 2nd connection pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、キャピラリチューブ、
蒸発器を順に連結して冷媒回路を形成した冷凍装置のキ
ャピラリチューブの過熱度制御装置において、キャピラ
リチューブと熱交換可能に設けた第1容器と蒸発器出口
管と熱交換可能に設けた第2容器とを両容器の上部で連
通して内部に媒体を封入したヒートパイプを備え、キャ
ピラリチューブ出口から分岐する分岐管を蒸発器出口管
に熱交換可能に設けた第3容器を備えたことを特徴とす
るキャピラリチューブの過熱度制御装置。
1. A compressor, a condenser, a capillary tube,
In a superheat degree control device for a capillary tube of a refrigerating device in which an evaporator is connected in order to form a refrigerant circuit, a first container provided for heat exchange with the capillary tube and a second container provided for heat exchange with an evaporator outlet tube. A heat pipe in which a medium is enclosed by communicating the containers at the upper portions of the two containers, and a third container in which a branch pipe branched from the capillary tube outlet is provided in the evaporator outlet pipe so as to be heat-exchangeable is provided. Characteristic superheat control device for capillary tube.
【請求項2】 ヒートパイプ10内部には、Rー12
3、Rー134a等の、作動冷媒より比容積が大で潜熱
の大きな冷媒を密封した請求項1記載のキャピラリチュ
ーブの過熱度制御装置。
2. Inside the heat pipe 10, R-12 is provided.
3. The superheat degree control device for a capillary tube according to claim 1, wherein a refrigerant having a larger specific volume and a larger latent heat than the working refrigerant, such as R-134a, is sealed.
【請求項3】 ヒートパイプを形成する媒体の量は、第
1容器5及び第2容器7の内容積より少ない量に設定し
た請求項1記載のキャピラリチューブの過熱度制御装
置。
3. The superheat control device for a capillary tube according to claim 1, wherein the amount of the medium forming the heat pipe is set to be smaller than the internal volumes of the first container 5 and the second container 7.
【請求項4】 第3容器の容積は、凝縮器に凝縮する冷
媒容積よりも大きくなるように設定した請求項1記載の
キャピラリチューブの過熱度制御装置。
4. The superheat control apparatus for a capillary tube according to claim 1, wherein the volume of the third container is set to be larger than the volume of the refrigerant condensed in the condenser.
JP19274696A 1996-07-04 1996-07-04 Superheat control device for capillary tube Expired - Fee Related JP3475203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19274696A JP3475203B2 (en) 1996-07-04 1996-07-04 Superheat control device for capillary tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19274696A JP3475203B2 (en) 1996-07-04 1996-07-04 Superheat control device for capillary tube

Publications (2)

Publication Number Publication Date
JPH1019389A true JPH1019389A (en) 1998-01-23
JP3475203B2 JP3475203B2 (en) 2003-12-08

Family

ID=16296372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19274696A Expired - Fee Related JP3475203B2 (en) 1996-07-04 1996-07-04 Superheat control device for capillary tube

Country Status (1)

Country Link
JP (1) JP3475203B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541939A1 (en) * 2002-07-23 2005-06-15 Daikin Industries, Ltd. Refrigerating cycle
JP2007187337A (en) * 2006-01-11 2007-07-26 Fuji Electric Retail Systems Co Ltd Showcase cooling system
KR20130007182U (en) * 2012-06-07 2013-12-17 위니아만도 주식회사 Refrigerator
CN114198918A (en) * 2020-09-16 2022-03-18 青岛海尔电冰箱有限公司 Refrigerating system and refrigerator with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541939A1 (en) * 2002-07-23 2005-06-15 Daikin Industries, Ltd. Refrigerating cycle
EP1541939A4 (en) * 2002-07-23 2008-04-23 Daikin Ind Ltd Refrigerating cycle
JP2007187337A (en) * 2006-01-11 2007-07-26 Fuji Electric Retail Systems Co Ltd Showcase cooling system
JP4626520B2 (en) * 2006-01-11 2011-02-09 富士電機システムズ株式会社 Showcase cooling system
KR20130007182U (en) * 2012-06-07 2013-12-17 위니아만도 주식회사 Refrigerator
CN114198918A (en) * 2020-09-16 2022-03-18 青岛海尔电冰箱有限公司 Refrigerating system and refrigerator with same

Also Published As

Publication number Publication date
JP3475203B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
KR100360006B1 (en) Transcritical vapor compression cycle
US6351950B1 (en) Refrigeration system with variable sub-cooling
US5134859A (en) Excess refrigerant accumulator for multievaporator vapor compression refrigeration cycles
US20110023514A1 (en) Refrigerant vapor compression system with flash tank economizer
KR19980013707A (en) A refrigerating machine
JP3238973B2 (en) Refrigeration equipment
US5157943A (en) Refrigeration system including capillary tube/suction line heat transfer
JP2009236428A (en) Compression type refrigerating machine
CN101639297B (en) Refrigeration cycle device
EP1264150B1 (en) Regulator with receiver for refrigerators and heatpumps
JPH1019389A (en) Controlling equipment of degree of superheating of capillary tube
EP0624763A1 (en) Free-draining evaporator for refrigeration system
JP3791090B2 (en) Heat pump equipment
JP4356146B2 (en) Refrigeration equipment
JP4090240B2 (en) Cooling system
JP4153203B2 (en) Cooling system
JP3475202B2 (en) Superheat control device for capillary tube
US4393661A (en) Means and method for regulating flowrate in a vapor compression cycle device
JPH09210480A (en) Two-stage compression type refrigerating apparatus
US4712385A (en) Refrigerating unit for vending machine
EP3872421A1 (en) Refrigeration circuit and refrigeration unit with microchannel evaporator
JP2006138583A (en) Refrigerator
JP3354244B2 (en) Refrigeration equipment
JPS5969663A (en) Refrigeration cycle
JPH0914770A (en) Refrigerating unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

LAPS Cancellation because of no payment of annual fees