JP3475202B2 - Superheat control device for capillary tube - Google Patents

Superheat control device for capillary tube

Info

Publication number
JP3475202B2
JP3475202B2 JP16048296A JP16048296A JP3475202B2 JP 3475202 B2 JP3475202 B2 JP 3475202B2 JP 16048296 A JP16048296 A JP 16048296A JP 16048296 A JP16048296 A JP 16048296A JP 3475202 B2 JP3475202 B2 JP 3475202B2
Authority
JP
Japan
Prior art keywords
capillary tube
chamber
evaporator
refrigerant
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16048296A
Other languages
Japanese (ja)
Other versions
JPH09318163A (en
Inventor
守男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP16048296A priority Critical patent/JP3475202B2/en
Publication of JPH09318163A publication Critical patent/JPH09318163A/en
Application granted granted Critical
Publication of JP3475202B2 publication Critical patent/JP3475202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば家庭用冷凍
冷蔵庫や自動販売機等の小型冷凍、冷蔵システムにおい
て使用する、媒体の減圧、膨張用の固定絞りであるキャ
ピラリチューブを用いた過熱度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to superheat control using a capillary tube which is a fixed throttle for decompressing and expanding a medium, which is used in a small refrigeration and refrigeration system such as a home refrigerator / freezer and a vending machine. Regarding the device.

【0002】[0002]

【従来の技術】従来、家庭用冷凍冷蔵庫や自動販売機等
に用いる小型冷凍、冷蔵システムにおいては、固定絞り
であるキャピラリチューブが、安価な冷媒の減圧、膨張
用機器として用いられている。このキャピラリチューブ
を用いた冷凍回路は、図9に示すように、圧縮機21か
ら凝縮器22を介して送られる冷媒をキャピラリチュー
ブ23に送り、減圧、断熱膨張を行い、この冷媒を蒸発
器24に送り冷凍、冷房作用をし、圧縮機21に戻して
いる。
2. Description of the Related Art Conventionally, in a small refrigerating and refrigerating system used for household refrigerator-freezers and vending machines, a capillary tube which is a fixed throttle has been used as an apparatus for decompressing and expanding an inexpensive refrigerant. As shown in FIG. 9, the refrigerating circuit using this capillary tube sends the refrigerant sent from the compressor 21 via the condenser 22 to the capillary tube 23 to perform pressure reduction and adiabatic expansion, and to cool this refrigerant in the evaporator 24. To the compressor 21 for freezing and cooling.

【0003】このようなキャピラリチューブを用いた冷
凍システムにおいて、蒸発器に送られる冷媒の流量は、
基本的に、キャピラリチューブの内径と、キャピラリチ
ューブの長さで決定され、また、自己制御性を有する流
量変動は、装置への冷媒封入量、凝縮圧力、及び、キャ
ピラリチューブ入口の過冷却度で決定され、このシステ
ムにおいては、蒸発圧力や本来的な蒸発器制御は行うこ
とはできない。
In a refrigeration system using such a capillary tube, the flow rate of the refrigerant sent to the evaporator is
Basically, it is determined by the inner diameter of the capillary tube and the length of the capillary tube, and the flow rate fluctuation with self-controllability depends on the amount of refrigerant filled in the device, the condensation pressure, and the degree of supercooling at the capillary tube inlet. It has been decided that in this system, the evaporation pressure and the inherent evaporator control cannot be performed.

【0004】[0004]

【発明が解決しようとする課題】上記のような、キャピ
ラリチューブを用いた冷凍システムおいては、本来的な
蒸発器制御を行うことができず、負荷条件等で流量制御
はできないないので、キャピラリチューブを用いた冷凍
システムにおいても凝縮器の温度、蒸発器の出口温度が
変化するのに対応して流量制御を行い、それにより、凝
縮器が過冷却状態で、蒸発器の出口温度が過熱状態で圧
縮機に戻るようにすることが望まれる。
In the refrigeration system using the capillary tube as described above, the evaporator cannot be controlled originally, and the flow rate cannot be controlled under load conditions. Even in a tube-based refrigeration system, flow rate control is performed in response to changes in the condenser temperature and the evaporator outlet temperature, so that the condenser is undercooled and the evaporator outlet temperature is overheated. It is desirable to return to the compressor at.

【0005】その対策として、図10に示されるような
特公昭62ー40631号公報において提案されている
システムにおいては、図9に示すように、基本構成は従
来のキャピラリチューブを用いた冷凍回路と同様とな
し、圧縮機31から凝縮器32を介して送られる冷媒を
キャピラリチューブ33に送り、減圧、膨張を行い、こ
の冷媒を蒸発器34に送り冷凍、冷房作用をし、圧縮機
31に戻している冷凍回路において、冷媒量調節容器3
5を設け、この中にキャピラリチューブ33の途中の接
続位置33aの冷媒を導入し、且つ、冷媒量調節容器3
5には、蒸発器34の出口と圧縮機31の吸入孔とを連
結する吸入管36と、凝縮器32とキャピラリチューブ
を結ぶ管路37における分岐点37bから分岐され合流
点37cに至る分岐管37aとを貫通させ熱交換状態と
している。
As a countermeasure, in the system proposed in Japanese Patent Publication No. 62-40631 as shown in FIG. 10, as shown in FIG. 9, the basic structure is a refrigeration circuit using a conventional capillary tube. Similarly, the refrigerant sent from the compressor 31 via the condenser 32 is sent to the capillary tube 33 to be depressurized and expanded, and this refrigerant is sent to the evaporator 34 for freezing and cooling operations, and then returned to the compressor 31. In the refrigerating circuit, the refrigerant amount control container 3
5, the refrigerant at the connection position 33a in the middle of the capillary tube 33 is introduced therein, and the refrigerant amount adjusting container 3
5, a suction pipe 36 that connects the outlet of the evaporator 34 and a suction hole of the compressor 31, and a branch pipe that branches from a branch point 37b in a pipe line 37 that connects the condenser 32 and the capillary tube to a confluence point 37c. 37a is penetrated and it is in the heat exchange state.

【0006】この装置においては、上記構成により、接
続管の管径または、分岐管の関係を適当に選択すること
により、設計負荷条件時に、冷媒量調節容器に蓄積でき
る冷媒量を任意に選択でき、これによって、設計時に考
えられる最高負荷条件と最低負荷条件に対して、冷媒量
調節機能が果たせるように、冷媒量調節容器の大きさを
決定し、特に、低負荷時の冷媒量調節を行うことによ
り、圧縮機への液戻りを防止する等の作用をなしてい
る。しかしながら、上記装置においては、分岐管37a
の管径により湿り度は一定であり、作動効率が悪い。ま
た、作動冷媒を利用しているため、熱交換が十分行われ
ない等の欠点がある。
In this apparatus, the pipe diameter of the connecting pipe or the relation of the branch pipes is appropriately selected by the above-mentioned configuration, so that the refrigerant amount that can be stored in the refrigerant amount control container can be arbitrarily selected under the design load condition. , By this, the size of the refrigerant amount adjusting container is determined so that the refrigerant amount adjusting function can be fulfilled with respect to the maximum load condition and the minimum load condition that can be considered at the time of design, and in particular, the refrigerant amount is adjusted at the time of low load. As a result, the liquid returns to the compressor. However, in the above device, the branch pipe 37a
The wetness is constant depending on the pipe diameter, and the operating efficiency is poor. Further, since the working refrigerant is used, there is a defect that heat exchange is not sufficiently performed.

【0007】また、他の対策として、キャピラリチュー
ブを用いた冷凍システムにおいては、キャピラリチュー
ブの入口過冷却度によって流量が変わることを利用し
て、キャピラリチューブ冷却用の熱交換器、制御弁、及
び過熱度感知用センサー等を用い、マイコンにより蒸発
器制御を行うことが提案されているが、このようなもの
においては、キャピラリチューブの限られた流量制御域
に対して対応することができるのみで、その効果に対し
て上記のような機器を用いることはコスト高となり、ま
た信頼性の面で欠点がある。
As another measure, in a refrigeration system using a capillary tube, a heat exchanger for cooling the capillary tube, a control valve, and a control valve are used by utilizing the fact that the flow rate changes depending on the degree of supercooling at the inlet of the capillary tube. It has been proposed to control the evaporator by a microcomputer using a superheat detection sensor, etc., but in such a case, it is only possible to cope with the limited flow rate control area of the capillary tube. However, the use of the above-mentioned equipment for the effect is costly and has a drawback in terms of reliability.

【0008】したがって、本発明は、キャピラリチュー
ブを用いた冷凍回路において、キャピラリチューブを用
いることによるその特性、及び信頼性を維持したまま、
特別な制御機器を用いることなく、冷媒回路の制御での
本来的制御対象である蒸発器の状態をフイードバックで
きるようにした、安価なキャピラリチューブの過熱度制
御装置を提供することを目的とする。
Therefore, the present invention provides a refrigeration circuit using a capillary tube while maintaining its characteristics and reliability by using the capillary tube.
It is an object of the present invention to provide an inexpensive capillary tube superheat degree control device capable of feeding back the state of the evaporator which is the original control target in the control of the refrigerant circuit without using a special control device.

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するために、圧縮器、凝縮器、キャピラリチューブ、
蒸発器を順に連結して冷媒回路を形成した冷凍装置のキ
ャピラリチューブの過熱度制御装置において、媒体を封
入したヒートパイプ容器を備え、該ヒートパイプ容器内
を左右に2室に分割し且つ両室を上部で連通し、一方の
室にはヒートパイプ容器を貫通するキャピラリチューブ
を収納し、他方の室は蒸発器出口管と熱交換状態とする
ことによりキャピラリチューブの過熱度制御装置を構成
したものである。
In order to solve the above problems, the present invention provides a compressor, a condenser, a capillary tube,
In a superheat degree control device for a capillary tube of a refrigeration system in which an evaporator is sequentially connected to form a refrigerant circuit, a heat pipe container containing a medium is provided, and the inside of the heat pipe container is divided into two chambers on the left and right sides and both chambers are provided. A capillary tube penetrating the heat pipe container is housed in one chamber, and the other chamber is in a heat exchange state with the evaporator outlet pipe, thereby forming a superheat control device for the capillary tube. Is.

【0010】本発明は、上記のように構成したので、キ
ャピラリチューブ出口温度(蒸発器入口温度)が蒸発器
出口温度より低い場合、すなわち過熱状態においては、
ヒートパイプ容器内の媒体は、キャピラリチューブの収
納された室内に凝縮、滴下し、この室内に溜まる。この
繰り返しにより、キャピラリチューブは冷却され、中を
通る冷媒の過冷却度が増大し、流量を増やす方向に作用
する。また、蒸発器出口温度が低い場合、すなわち、液
バックの状態においては、ヒートパイプ容器内の媒体
は、キャピラリチューブの収納されていない室内に凝
縮、滴下し、この室内に溜まり、キャピラリチューブは
冷却されなくなり、流量を減少させる方向に作用する。
このような繰り返しにより、蒸発器の状態に応じた制御
が行われる。
Since the present invention is configured as described above, when the capillary tube outlet temperature (evaporator inlet temperature) is lower than the evaporator outlet temperature, that is, in the overheated state,
The medium in the heat pipe container is condensed and dripped in the chamber in which the capillary tube is stored, and is collected in this chamber. By repeating this, the capillary tube is cooled, the degree of supercooling of the refrigerant passing through the capillary tube is increased, and the capillary tube acts to increase the flow rate. Further, when the evaporator outlet temperature is low, that is, in the liquid back state, the medium in the heat pipe container is condensed and dropped in the room where the capillary tube is not housed, and is collected in this room, and the capillary tube is cooled. It is not done and acts in the direction of decreasing the flow rate.
By repeating this, control is performed according to the state of the evaporator.

【0011】[0011]

【発明の実施の形態】本発明の実施の態様を実施例に基
づいて図面に沿って説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on embodiments with reference to the drawings.

【0012】[0012]

【実施例】【Example】

(実施例1)冷凍回路の基本構成は、図9に示した従来
のものと同様であり、図1に示すように、圧縮機1から
の冷媒は、凝縮器2、キャピラリチューブ3、蒸発器4
を通って圧縮機1に戻る冷媒回路を有している。この冷
媒回路には、ヒートパイプの作用を行うヒートパイプ容
器5を有し、内部にCF3 CHCl2 (冷媒番号Rー1
23)、CF3 CH2 F(冷媒番号Rー134a)等
の、作動冷媒より比容積が大で潜熱の大きな冷媒が密封
され、ヒートパイプ容器5内は隔壁6により左右の第1
室7と第2室8に分離されている。第1室7内には、ヒ
ートパイプ容器5を貫通するキャピラリチューブ3が収
納され、第2室8内にはヒートパイプ容器5を貫通する
蒸発器出口配管10が収納されている。
(Embodiment 1) The basic configuration of the refrigeration circuit is the same as that of the conventional one shown in FIG. 9, and as shown in FIG. 1, the refrigerant from the compressor 1 is a condenser 2, a capillary tube 3, and an evaporator. Four
It has a refrigerant circuit through which it returns to the compressor 1. This refrigerant circuit has a heat pipe container 5 that functions as a heat pipe, and has CF 3 CHCl 2 (refrigerant number R-1 inside).
23), CF 3 CH 2 F (refrigerant number R-134a), and the like, which have a larger specific volume and a larger latent heat than the working refrigerant and are sealed.
It is divided into a chamber 7 and a second chamber 8. A capillary tube 3 penetrating the heat pipe container 5 is accommodated in the first chamber 7, and an evaporator outlet pipe 10 penetrating the heat pipe container 5 is accommodated in the second chamber 8.

【0013】このようなキャピラリチューブを用いた冷
凍回路においては、キャピラリチューブの全長と内径を
同一にして、外気温度が変化したときの状態を、外気温
度が低い順にPc1,Pc2,Pc3と表示したとき、図4に
示すような流量特性を示し、キャピラリチューブ入口の
冷媒の過冷却度ΔTが大きいほどこれを流れる冷媒の流
量Gは増大する傾向を示し、凝縮器出口圧力であるキャ
ピラリチューブ入口の圧力PCが大きいほどこれを流れ
る流量は増大する傾向がある。
In a refrigeration circuit using such a capillary tube, the capillaries have the same overall length and inner diameter, and when the outside air temperature changes, the states when the outside air temperature changes are Pc 1 , Pc 2 , Pc 3 4, the flow rate characteristic as shown in FIG. 4 is exhibited, and the larger the supercooling degree ΔT of the refrigerant at the inlet of the capillary tube is, the larger the flow rate G of the refrigerant flowing therethrough is. The larger the pressure PC at the tube inlet, the greater the flow rate flowing through it.

【0014】上記構成からなる装置において、蒸発器出
口配管10の冷媒が過熱状態の場合、キャピラリチュー
ブ出口温度即ち蒸発器入口温度TE が蒸発器出口温度T
S より低い場合、図2に示すように、ヒートパイプ容器
内の媒体は、最も低温部であるキャピラリチューブ3の
出口(蒸発器入口)で凝縮し、滴下して第1室7内に溜
まる。このサイクルの繰り返しにより、第1室7内に溜
まった媒体が低温化する。この作用によりキャピラリチ
ューブ3は冷却され、中を通る冷凍用冷媒の過冷却度が
増大し、前記のように、冷媒の冷却度が大きいほどキャ
ピラリチューブ3を流れる冷媒の流量を増す方向に作用
する。
In the apparatus having the above structure, when the refrigerant in the evaporator outlet pipe 10 is in an overheated state, the capillary tube outlet temperature, that is, the evaporator inlet temperature TE is equal to the evaporator outlet temperature T.
When it is lower than S, as shown in FIG. 2, the medium in the heat pipe container is condensed at the outlet (evaporator inlet) of the capillary tube 3 which is the coldest portion, drops, and collects in the first chamber 7. By repeating this cycle, the temperature of the medium accumulated in the first chamber 7 is lowered. By this action, the capillary tube 3 is cooled, and the supercooling degree of the refrigerating refrigerant passing through the capillary tube 3 increases. As described above, the larger the cooling degree of the refrigerant, the more the flow rate of the refrigerant flowing through the capillary tube 3 acts. .

【0015】反対に、蒸発器出口温度TS がキャピラリ
チューブ出口温度(蒸発器入口温度)TE より低い場
合、即ち液バックの状態では、図3に示すように、ヒー
トパイプ容器5内の媒体は最も低温部である蒸発器出口
配管10の部分に凝縮し、滴下して第2室8内に溜ま
る。このサイクルを繰り返し第2室8内に媒体が溜ま
り、第1室7での熱回収が行われなくなり、キャピラリ
チューブ3は冷却されなくなり、前記キャピラリチュー
ブの特性及び凝縮器側の冷媒量の低下による過冷却度の
減少により、キャピラリチューブは冷却されなくなり、
流量を減少させる方向に作用する。
On the contrary, when the evaporator outlet temperature TS is lower than the capillary tube outlet temperature (evaporator inlet temperature) TE, that is, in the liquid back state, as shown in FIG. It is condensed in a portion of the evaporator outlet pipe 10 which is a low temperature portion, drops, and accumulates in the second chamber 8. By repeating this cycle, the medium is accumulated in the second chamber 8, the heat recovery in the first chamber 7 is not performed, the capillary tube 3 is not cooled, and the characteristics of the capillary tube and the amount of refrigerant on the condenser side are reduced. Due to the decrease in supercooling, the capillary tube is no longer cooled,
It acts to reduce the flow rate.

【0016】(実施例2)第1実施例においては、蒸発
器出口配管をヒートパイプ容器の第2室内に配置した例
を示したが、図5に示すように、第2室8と接触するヒ
ートパイプ容器5の外側壁11に接触させて配置する。
この実施例においても、キャピラリチューブ出口温度
(蒸発器入口温度)TE が蒸発器出口温度TS より低い
場合、すなわち過熱状態においては、ヒートパイプ容器
5内の媒体は、キャピラリチューブ3の収納された第1
室8内に凝縮、滴下し、この室内に溜まる。この繰り返
しにより、キャピラリチューブ3は冷却され、中を通る
冷媒の過冷却度が増大し、流量を増やす方向に作用す
る。また、蒸発器出口温度TS がキャピラリチューブ出
口温度(蒸発器入口温度)TE より低い場合、すなわ
ち、液バックの状態においては、ヒートパイプ容器内の
媒体は、キャピラリチューブ3の収納されていない第2
室8内に凝縮、滴下し、この室内に溜まり、キャピラリ
チューブ3は冷却されなくなり、流量を減少させる方向
に作用する。このような繰り返しにより、蒸発器の状態
に応じた制御が行われる。
(Embodiment 2) In the first embodiment, an example is shown in which the evaporator outlet pipe is arranged in the second chamber of the heat pipe container, but as shown in FIG. 5, it contacts the second chamber 8. It is placed in contact with the outer wall 11 of the heat pipe container 5.
Also in this embodiment, when the capillary tube outlet temperature TE (evaporator inlet temperature) TE is lower than the evaporator outlet temperature TS, that is, in the overheated state, the medium in the heat pipe container 5 is stored in the capillary tube 3 first. 1
It is condensed and dripped in the chamber 8 and accumulated in this chamber. By repeating this, the capillary tube 3 is cooled, the degree of supercooling of the refrigerant passing through the capillary tube 3 increases, and the capillary tube 3 acts to increase the flow rate. When the evaporator outlet temperature TS is lower than the capillary tube outlet temperature (evaporator inlet temperature) TE, that is, in the liquid back state, the medium in the heat pipe container is the second tube in which the capillary tube 3 is not stored.
It condenses and drops in the chamber 8 and collects in this chamber, and the capillary tube 3 is no longer cooled and acts in the direction of decreasing the flow rate. By repeating this, control is performed according to the state of the evaporator.

【0017】(実施例3)更に、図6に示すように、ヒ
ートパイプ容器は左右2室7,8に分割し且つ両室7,
8を連結管13により上部で連通し、第1室7にはヒー
トパイプ容器を貫通するキャピラリチューブ3を収納
し、第2室10の外壁に、蒸発器出口管10を接触させ
てたものを構成する。
(Embodiment 3) Further, as shown in FIG. 6, the heat pipe container is divided into two left and right chambers 7, 8.
8 is connected at the upper part by a connecting pipe 13, a capillary tube 3 penetrating the heat pipe container is housed in the first chamber 7, and the evaporator outlet pipe 10 is brought into contact with the outer wall of the second chamber 10. Constitute.

【0018】上記構成からなる装置において、蒸発器出
口配管10の冷媒が過熱状態の場合、キャピラリチュー
ブ出口温度即ち蒸発器入口温度TE が蒸発器出口温度T
S より低い場合、図7に示すように、ヒートパイプ容器
内の媒体は、最も低温部であるキャピラリチューブ3の
出口(蒸発器入口)で凝縮し、滴下して第1室7内に溜
まる。このサイクルの繰り返しにより、第1室7内に溜
まった媒体が低温化する。この作用によりキャピラリチ
ューブ3は冷却され、中を通る冷凍用冷媒の過冷却度が
増大し、前記のように、冷媒の冷却度が大きいほどキャ
ピラリチューブ3を流れる冷媒の流量を増す方向に作用
する。
In the apparatus having the above structure, when the refrigerant in the evaporator outlet pipe 10 is in an overheated state, the capillary tube outlet temperature, that is, the evaporator inlet temperature TE is the evaporator outlet temperature T.
When it is lower than S, as shown in FIG. 7, the medium in the heat pipe container is condensed at the outlet (evaporator inlet) of the capillary tube 3 which is the coldest portion, drops, and collects in the first chamber 7. By repeating this cycle, the temperature of the medium accumulated in the first chamber 7 is lowered. By this action, the capillary tube 3 is cooled, and the supercooling degree of the refrigerating refrigerant passing through the capillary tube 3 increases. As described above, the larger the cooling degree of the refrigerant, the more the flow rate of the refrigerant flowing through the capillary tube 3 increases. .

【0019】反対に、蒸発器出口温度TS が蒸発器入口
温度TE より低い場合、即ち液バックの状態では、図8
に示すように、ヒートパイプ容器5内の媒体は連結管1
3を経て最も低温部である蒸発器出口配管10に接触し
ている第2室8に凝縮し、滴下して第2室8内に溜ま
る。このサイクルを繰り返し第2室8内に媒体が溜ま
り、第1室7での熱回収が行われなくなり、キャピラリ
チューブ3は冷却されなくなり、キャピラリチューブ3
の特性及び凝縮器側の冷媒量の低下による過冷却度の減
少により、キャピラリチューブ3は冷却されなくなり、
流量を減少させる方向に作用する。
On the contrary, in the case where the evaporator outlet temperature TS is lower than the evaporator inlet temperature TE, that is, in the liquid back state, as shown in FIG.
As shown in FIG. 3, the medium in the heat pipe container 5 is the connecting pipe 1.
After passing through 3, the gas is condensed in the second chamber 8 which is in contact with the evaporator outlet pipe 10 which is the lowest temperature part, and is dripped and accumulated in the second chamber 8. By repeating this cycle, the medium is accumulated in the second chamber 8, heat is not recovered in the first chamber 7, the capillary tube 3 is not cooled, and the capillary tube 3 is not cooled.
And the degree of supercooling due to the decrease in the amount of refrigerant on the condenser side, the capillary tube 3 is no longer cooled,
It acts to reduce the flow rate.

【0020】[0020]

【発明の効果】本発明は、上記のように、作動冷媒とヒ
ートパイプ内の封止冷媒とを別にしたので、充分な熱交
換を行うことができ、この冷凍回路の立ち上がり冷却が
早く、省エネルギーとなる。また、冷凍回路の作動安定
時にキャピラリチューブと同様に過冷却になることがな
い。更に蒸発器及び凝縮器を小さくすることができる。
また、キャピラリチューブを用いることによるその特
性、及び信頼性を維持したまま、特別な制御機器を用い
ることなく、冷媒回路の制御での本来的制御対象である
蒸発器の状態をフイードバックできるようにした、安価
なキャピラリチューブの過熱度制御装置とすることがで
きる。
As described above, according to the present invention, since the working refrigerant and the sealed refrigerant in the heat pipe are separately provided, sufficient heat exchange can be performed, the cooling of the refrigerating circuit can be quickly started, and the energy can be saved. Becomes Moreover, when the operation of the refrigeration circuit is stable, it does not become overcooled like the capillary tube. Further, the evaporator and the condenser can be downsized.
Also, while maintaining the characteristics and reliability of using the capillary tube, it is possible to feed back the state of the evaporator, which is the original control target in the control of the refrigerant circuit, without using special control equipment. It is possible to provide an inexpensive capillary tube superheat degree control device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す冷凍回路構成図であ
る。
FIG. 1 is a refrigeration circuit configuration diagram showing a first embodiment of the present invention.

【図2】同第1の作動状態を示す要部断面図である。FIG. 2 is a cross-sectional view of an essential part showing the first operating state.

【図3】同第2の作動状態を示す要部断面図である。FIG. 3 is a cross-sectional view of main parts showing a second operating state of the same.

【図4】同冷凍回路の作動特性を示すグラフである。FIG. 4 is a graph showing operating characteristics of the refrigeration circuit.

【図5】本発明の第2実施例の要部断面図である。FIG. 5 is a cross-sectional view of essential parts of a second embodiment of the present invention.

【図6】本発明の第3実施例を示す冷凍回路構成図であ
る。
FIG. 6 is a configuration diagram of a refrigeration circuit showing a third embodiment of the present invention.

【図7】同第1の作動状態を示す要部断面図である。FIG. 7 is a main-portion cross-sectional view showing the first operating state.

【図8】同第2の作動状態を示す要部断面図である。FIG. 8 is a main-portion cross-sectional view showing the second operating state.

【図9】従来例を示す冷凍回路構成図である。FIG. 9 is a configuration diagram of a refrigeration circuit showing a conventional example.

【図10】他の従来例を示す冷凍回路構成図である。FIG. 10 is a refrigeration circuit configuration diagram showing another conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 キャピラリチューブ 4 蒸発器 5 ヒートパイプ容器 6 隔壁 7 第1室 8 第2室 10 蒸発器出口配管 13 連結管 1 compressor 2 condenser 3 capillary tubes 4 evaporator 5 heat pipe containers 6 partitions 7 First room 8 second room 10 Evaporator outlet piping 13 Connection pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 304 F25B 41/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 1/00 304 F25B 41/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮器、凝縮器、キャピラリチューブ、
蒸発器を順に連結して冷媒回路を形成した冷凍装置のキ
ャピラリチューブの過熱度制御装置において、媒体を封
入したヒートパイプ容器を備え、該ヒートパイプ容器内
を左右2室に分割し且つ両室を上部で連通し、一方の室
にはヒートパイプ容器を貫通するキャピラリチューブを
収納し、他方の室は蒸発器出口管と熱交換状態としたこ
とを特徴とするキャピラリチューブの過熱度制御装置。
1. A compressor, a condenser, a capillary tube,
In a superheat degree control device for a capillary tube of a refrigeration system in which an evaporator is connected in sequence to form a refrigerant circuit, a heat pipe container containing a medium is provided, and the inside of the heat pipe container is divided into two chambers on the left and right and both chambers are separated. A superheat degree control device for a capillary tube, characterized in that a capillary tube penetrating a heat pipe container is housed in one chamber and communicated with the other in the upper chamber, and the other chamber is in a heat exchange state with an evaporator outlet tube.
【請求項2】 該他方の室には、ヒートパイプ容器を貫
通する蒸発器出口管を収納してなる請求項1記載のキャ
ピラリチューブの過熱度制御装置。
2. The superheat degree control device for a capillary tube according to claim 1, wherein an evaporator outlet pipe penetrating the heat pipe container is housed in the other chamber.
【請求項3】 該他方の室の外壁に、蒸発器出口管を接
触させてなる請求項1記載のキャピラリチューブの過熱
度制御装置。
3. The superheat degree control device for a capillary tube according to claim 1, wherein an evaporator outlet pipe is in contact with the outer wall of the other chamber.
【請求項4】 該ヒートパイプ容器は左右2室に分割し
且つ両室を連結管により上部で連通し、一方の室にはヒ
ートパイプ容器を貫通するキャピラリチューブを収納
し、該他方の室の外壁に、蒸発器出口管を接触させてな
る請求項1記載のキャピラリチューブの過熱度制御装
置。
4. The heat pipe container is divided into two left and right chambers, and both chambers are communicated with each other at the upper part by a connecting pipe. One chamber accommodates a capillary tube penetrating the heat pipe container, and the other chamber The superheat degree control device for a capillary tube according to claim 1, wherein the evaporator outlet pipe is brought into contact with the outer wall.
JP16048296A 1996-06-03 1996-06-03 Superheat control device for capillary tube Expired - Fee Related JP3475202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16048296A JP3475202B2 (en) 1996-06-03 1996-06-03 Superheat control device for capillary tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16048296A JP3475202B2 (en) 1996-06-03 1996-06-03 Superheat control device for capillary tube

Publications (2)

Publication Number Publication Date
JPH09318163A JPH09318163A (en) 1997-12-12
JP3475202B2 true JP3475202B2 (en) 2003-12-08

Family

ID=15715908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16048296A Expired - Fee Related JP3475202B2 (en) 1996-06-03 1996-06-03 Superheat control device for capillary tube

Country Status (1)

Country Link
JP (1) JP3475202B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435059A (en) * 2019-01-11 2020-07-21 青岛海尔空调器有限总公司 Chip heat exchanger and variable frequency air conditioner
CN111435058A (en) * 2019-01-11 2020-07-21 青岛海尔空调器有限总公司 Chip heat exchanger and variable frequency air conditioner
CN114198918A (en) * 2020-09-16 2022-03-18 青岛海尔电冰箱有限公司 Refrigerating system and refrigerator with same

Also Published As

Publication number Publication date
JPH09318163A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
JP3343142B2 (en) refrigerator
KR100360006B1 (en) Transcritical vapor compression cycle
EP0485146B1 (en) Refrigerator with refrigerant flow control means
CN101568780B (en) Refrigerator and control method for the same
JP3743861B2 (en) Refrigeration air conditioner
Rubas et al. Factors contributing to refrigerator cycling losses
KR100248683B1 (en) Cooling apparatus
US5157943A (en) Refrigeration system including capillary tube/suction line heat transfer
CN100371662C (en) Refrigerator
US5301520A (en) Water removing device in refrigerating system
JP5971548B2 (en) Refrigeration equipment
JP2009236428A (en) Compression type refrigerating machine
JPH07120076A (en) Air conditioner
JP3475202B2 (en) Superheat control device for capillary tube
JP2002147904A (en) Method for detecting frost formation on heat exchanger
JP2000179957A (en) Air conditioner
EP0624763A1 (en) Free-draining evaporator for refrigeration system
EP0485147B1 (en) Refrigeration system
JP4356146B2 (en) Refrigeration equipment
JP3475203B2 (en) Superheat control device for capillary tube
KR20200059578A (en) Supercooling heat exchanger and air conditioning system including the same
WO2005040701A1 (en) Cooling device and refrigerator using the same
KR100393593B1 (en) A refrigerating cycle of the refrigerator
JP3134435B2 (en) Refrigerator water removal equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

LAPS Cancellation because of no payment of annual fees