JP4623031B2 - Freezer refrigerator - Google Patents

Freezer refrigerator Download PDF

Info

Publication number
JP4623031B2
JP4623031B2 JP2007081598A JP2007081598A JP4623031B2 JP 4623031 B2 JP4623031 B2 JP 4623031B2 JP 2007081598 A JP2007081598 A JP 2007081598A JP 2007081598 A JP2007081598 A JP 2007081598A JP 4623031 B2 JP4623031 B2 JP 4623031B2
Authority
JP
Japan
Prior art keywords
evaporator
ejector
refrigerant
connection pipe
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007081598A
Other languages
Japanese (ja)
Other versions
JP2008241112A (en
Inventor
悟 平國
恵美 多ヶ谷
允煥 李
厚志 望月
正雄 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007081598A priority Critical patent/JP4623031B2/en
Publication of JP2008241112A publication Critical patent/JP2008241112A/en
Application granted granted Critical
Publication of JP4623031B2 publication Critical patent/JP4623031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、冷凍冷蔵庫に関するものである。   The present invention relates to a refrigerator-freezer.

従来の冷凍冷蔵庫では、冷凍サイクルの膨張過程に毛細管を用いていた。毛細管の膨張過程は等エンタルピ変化であり、熱損失が生じていた。これを解消するために、圧縮機の吸入配管と毛細管とで熱交換を行ったりしていた。   In a conventional refrigerator-freezer, a capillary tube is used for the expansion process of the refrigeration cycle. The capillary expansion process was an isenthalpy change, resulting in heat loss. In order to solve this problem, heat exchange is performed between the suction pipe and the capillary tube of the compressor.

これに対し、冷凍サイクルの膨張過程にエジェクタを用い、流体を減圧する減圧手段であると共に高速で噴出させた作動気体による巻き込み作用によって流体輸送を行うことでサイクル効率を向上させるものが報告されている(特許文献1参照。)。これは、エジェクタの出口に第1蒸発器を接続した後、気液分離器に接続する。そして気液分離器の気相側出口を圧縮機の吸入側に接続する。さらに、気液分離器の液相側出口に絞り弁を介して第2蒸発器を接続した後、エジェクタの吸引部に接続する。これは、理想的には等エントロピ変化するエジェクタサイクルによって、第1、第2蒸発器で生じた冷熱を冷凍または冷蔵に利用する構成であった。   On the other hand, an ejector is used for the expansion process of the refrigeration cycle, and it is a decompression means for decompressing the fluid, and it has been reported to improve the cycle efficiency by transporting the fluid by the entrainment action by the working gas ejected at high speed. (See Patent Document 1). This is connected to the gas-liquid separator after the first evaporator is connected to the outlet of the ejector. Then, the gas phase side outlet of the gas-liquid separator is connected to the suction side of the compressor. Furthermore, after connecting a 2nd evaporator to the liquid phase side exit of a gas-liquid separator via a throttle valve, it connects to the suction part of an ejector. This is a configuration in which cold heat generated in the first and second evaporators is utilized for freezing or refrigeration by an ejector cycle that changes isentropically.

特開2005−37056号公報JP 2005-37056 A

特許文献1に記載されているエジェクタサイクルは冷凍サイクル全体のCOPの向上を図ることができ、有効な冷凍サイクルである。ところが、実際にエジェクタを冷凍サイクルに組み込んで、冷凍冷蔵庫に搭載した配置構成がはっきりと示されたものはなかった。冷凍冷蔵庫の構成は、冷却室の容積を極力大きくしたいという要求がありつつ、冷凍サイクルの構成機器を全て搭載することが必要であり、空間的に厳しいものである。さらに、内部で冷媒が高温になる配管や機器がある一方で、各冷却室を−20℃〜5℃程度の低温に保つ必要があり、低温部分と高温部分で熱的に隔離するなど、各機器及び配管の配置構成は容易ではなかった。
従来のキャピラリなどの減圧手段に変えてエジェクタを搭載する場合、吸引部に接続する配管があり、冷媒回路に変更が必要となり、従来の組立工程を変更する必要がある。エジェクタの配置場所によっては、冷凍冷蔵庫の冷却室の容積を狭める可能性もある。また、エジェクタの配置場所によっては、熱損失が生じてしまい、期待したほど効率の向上が得られないという問題もあった。
The ejector cycle described in Patent Document 1 can improve the COP of the entire refrigeration cycle and is an effective refrigeration cycle. However, none of the arrangements in which the ejector was actually incorporated into the refrigeration cycle and mounted in the refrigerator was clearly shown. The structure of the refrigerator-freezer is required to increase the volume of the cooling chamber as much as possible, but it is necessary to mount all the components of the refrigeration cycle, which is spatially strict. Furthermore, while there are pipes and equipment in which the refrigerant becomes hot inside, it is necessary to keep each cooling chamber at a low temperature of about −20 ° C. to 5 ° C. The arrangement of equipment and piping was not easy.
When an ejector is mounted instead of a conventional pressure reducing means such as a capillary, there is a pipe connected to the suction part, and the refrigerant circuit needs to be changed, and the conventional assembly process needs to be changed. Depending on the location of the ejector, the volume of the cooling chamber of the refrigerator-freezer may be reduced. In addition, depending on the location of the ejector, heat loss may occur, and the efficiency may not be improved as expected.

本発明は上記のような課題を解消するためになされたもので、冷凍冷蔵庫の冷却室の容積を低減することなくエジェクタを搭載して、冷凍サイクルの効率を向上できる冷凍冷蔵庫を得ることを目的とするものである。
また、エジェクタにおける熱損失を極力小さくして冷凍サイクル効率の向上を図ることができ、組立工程の大幅な変更の必要のない冷凍冷蔵庫を得ることを目的としている。
The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigerator that can improve the efficiency of a refrigeration cycle by mounting an ejector without reducing the volume of the cooling chamber of the refrigerator. It is what.
Another object of the present invention is to obtain a refrigerator that can reduce the heat loss in the ejector as much as possible to improve the efficiency of the refrigeration cycle, and does not require a significant change in the assembly process.

本発明に係る冷凍冷蔵庫は、高圧状態の冷媒を吐出する圧縮機と、圧縮機から吐出された冷媒を凝縮する凝縮器と、この凝縮器で凝縮した冷媒を減圧する絞り装置と、この絞り装置の出口部に一方が接続する絞り装置出口接続配管と、この絞り装置出口接続配管の他方が入口部に接続され、絞り装置で減圧された冷媒を蒸発させる第1蒸発器と、凝縮器と絞り装置の間から分岐する駆動流接続配管と、第1蒸発器の出口部に一方が接続する吸引流接続配管と、駆動流接続配管が接続される駆動流入口部、吸引流接続配管の他方が接続される吸引流入口部、駆動流接続配管を通って駆動流入口部から流入する凝縮器で凝縮した冷媒を減圧して高速度で噴出するノズル部、吸引流接続配管を通して第1蒸発器で蒸発した冷媒を吸引流入口部から吸引し、ノズル部から噴出した冷媒と混合する混合部、この混合部で混合された冷媒の圧力を上昇させるディフューザ部、から成り、このディフューザ部で圧力上昇した冷媒を出口部から流出するエジェクタと、このエジェクタの出口部に一方が接続するエジェクタ出口接続配管と、このエジェクタ出口接続配管の他方が入口部に接続され、エジェクタからの冷媒を、第1蒸発器の蒸発温度よりも高い蒸発温度で蒸発させる第2蒸発器と、この第2蒸発器の出口部から第2蒸発器で蒸発した冷媒を圧縮機へと導く蒸発器出口接続配管と、を有する冷媒回路を具備すると共に、第1蒸発器および第2蒸発器を通過して冷却された庫内空気が供給される冷却室と、この冷却室を冷却した後の庫内空気を冷却室から第1蒸発器および第2蒸発器へと戻す戻り風路と、を備え、戻り風路を通って再び第1蒸発器および第2蒸発器を通過する庫内空気の流れに対して、第2蒸発器が上流側に、第1蒸発器が下流側となるように、第1蒸発器が第2蒸発器の上方に並んで配置され、通過する庫内空気が、先に蒸発温度の高い第2蒸発器の冷媒と熱交換し、空気温度が低下した状態で蒸発温度の低い第1蒸発器の冷媒と熱交換すると共に、通過する庫内空気が、第1蒸発器および第2蒸発器のそれぞれにおいて、入口部から出口部に向かう冷媒の流れに対して並行流となるように、第1蒸発器の入口部に接続する絞り装置出口接続配管が第1蒸発器の下部に、第1蒸発器の出口部に接続する吸引流接続配管が第1蒸発器の上部に位置して、冷媒が第1蒸発器を上昇流で流れ、かつ、第2蒸発器の入口部に接続するエジェクタ出口接続配管が第2蒸発器の下部に、第2蒸発器の出口部に接続する蒸発器出口接続配管が第2蒸発器の上部に位置して、冷媒が第2蒸発器を上昇流で流れるものである。   A refrigerator-freezer according to the present invention includes a compressor that discharges high-pressure refrigerant, a condenser that condenses the refrigerant discharged from the compressor, a throttle device that decompresses the refrigerant condensed by the condenser, and the throttle device A throttle device outlet connection pipe, one of which is connected to the outlet portion of the throttle device, a first evaporator for connecting the other of the throttle device outlet connection pipes to the inlet portion and evaporating the refrigerant decompressed by the throttle device, a condenser and a throttle A drive flow connection pipe branched from between the devices, a suction flow connection pipe connected to one of the outlets of the first evaporator, a drive flow inlet connected to the drive flow connection pipe, and the other of the suction flow connection pipe In the first evaporator through the suction port connecting pipe, the nozzle that decompresses the refrigerant condensed by the condenser flowing in from the driving inlet port through the driving flow connecting pipe, and ejecting the refrigerant at high speed, through the suction flow connecting pipe The evaporated refrigerant is sucked from the suction inlet. And an ejector configured to mix the refrigerant jetted from the nozzle unit, a diffuser unit that increases the pressure of the refrigerant mixed in the mixing unit, and to discharge the refrigerant whose pressure has increased in the diffuser unit from the outlet unit, The ejector outlet connecting pipe, one of which is connected to the outlet of the ejector, and the other of the ejector outlet connecting pipe are connected to the inlet, and the refrigerant from the ejector is evaporated at an evaporation temperature higher than the evaporation temperature of the first evaporator. A first evaporator, and a refrigerant circuit having an evaporator outlet connection pipe for guiding the refrigerant evaporated by the second evaporator from the outlet of the second evaporator to the compressor, and the first evaporator And a cooling chamber to which the cooler air cooled through the second evaporator is supplied, and the cooler air after cooling the cooler chamber is returned from the cooler chamber to the first evaporator and the second evaporator. A return air passage, and the second evaporator is located upstream of the flow of the internal air passing through the first evaporator and the second evaporator again through the return air passage, and the first evaporator is provided The first evaporator is arranged side by side above the second evaporator so as to be on the downstream side, and the internal air passing therethrough exchanges heat with the refrigerant of the second evaporator having a high evaporation temperature first, and the air temperature Heat exchange with the refrigerant of the first evaporator having a low evaporation temperature in a state where the temperature of the refrigerant has decreased, and the passing air in the warehouse passes through the refrigerant from the inlet portion to the outlet portion in each of the first evaporator and the second evaporator. The throttle device outlet connection pipe connected to the inlet of the first evaporator is connected to the lower part of the first evaporator and the suction flow connection pipe connected to the outlet of the first evaporator so as to be parallel to the flow. Located above the first evaporator, the refrigerant flows in an upward flow through the first evaporator, and the inlet of the second evaporator The ejector outlet connecting pipe connected to the second evaporator is located at the lower part of the second evaporator, the evaporator outlet connecting pipe connected to the outlet part of the second evaporator is located at the upper part of the second evaporator, and the refrigerant is connected to the second evaporator. It flows in an upward flow.

本発明によれば、庫内空気が第1蒸発器および第2蒸発器を通過する際に、通過する庫内空気と冷媒との温度差をある程度以上に保つことができるので、効率よい熱交換が可能となり、エジェクタを搭載することによる圧縮機消費電力量の低減効果と合わせて、冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。 According to the present invention, when the in-compartment air passes through the first evaporator and the second evaporator, the temperature difference between the in-compartment air and the refrigerant can be kept at a certain level or more, so that efficient heat exchange is achieved. Therefore, it is possible to obtain a refrigerator-freezer capable of improving the efficiency of the refrigeration cycle in combination with the effect of reducing the compressor power consumption by mounting the ejector.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍冷蔵庫1を示す正面図である。この冷凍冷蔵庫1は、例えば5室の冷却室1a〜1eを有するもので、室内温度が5℃程度に保たれる冷蔵室1a、0℃〜−18℃で切り替え可能な切替室1b、−20℃程度に保たれる製氷室1c、2℃程度に保たれる野菜室1d、−18℃程度に保たれる冷凍室1eで構成される。図1は正面図であり、各冷却室1a〜1eの冷蔵庫扉9が見えている状態である。
Embodiment 1 FIG.
1 is a front view showing a refrigerator-freezer 1 according to Embodiment 1 of the present invention. This refrigerator-freezer 1 has, for example, five cooling chambers 1a to 1e, a refrigerating chamber 1a in which the room temperature is maintained at about 5 ° C., and a switching chamber 1b that can be switched between 0 ° C. and −18 ° C., −20 The ice making room 1c is maintained at about 2 ° C., the vegetable room 1d is maintained at about 2 ° C., and the freezing room 1e is maintained at about −18 ° C. FIG. 1 is a front view showing a state in which the refrigerator doors 9 of the cooling chambers 1a to 1e are visible.

図2は図1のII−II線における断面構成図であり、図3は本実施の形態に係る筐体2の一部を拡大して示す断面構成図である。なお、図2、図3における断面表示は省略し、斜線は断熱材4を示している。冷凍冷蔵庫1の容器を構成する冷凍冷蔵庫の筐体2は、図3に示すように外壁5と内壁6の間に、例えばウレタンなどの断面材4を有する構成である。外壁5は例えば1mm程度の鋼板、内壁6は例えば2mm程度のABSなどのプラスチックで構成されている。実際には、外壁5と内壁6の間は例えば35〜45mm程度の幅があり、一部には凝縮器を構成する熱交換器の冷媒配管が縦方向または横方向に1回又は複数回往復するように配置され、凝縮器の周囲を取り囲むように断熱材4を設けている。外壁5と内壁6の間の断熱材4によって、内部を約30℃程度の冷媒が流れる凝縮器からの放熱が外壁5や内壁6に直接伝わらないように構成する。各冷却室1a〜1eの冷蔵庫扉9も図3に示す筐体2と同様、外壁5、断熱材4、及び内壁6で構成する。冷蔵庫扉9に設けた断熱材4によって、冷却室1a〜1eと外部とを熱的に遮蔽する。   2 is a cross-sectional configuration diagram taken along line II-II in FIG. 1, and FIG. 3 is an enlarged cross-sectional configuration diagram illustrating a part of the housing 2 according to the present embodiment. 2 and FIG. 3 are omitted, and the hatched lines indicate the heat insulating material 4. As shown in FIG. 3, the housing 2 of the refrigerator-freezer constituting the container of the refrigerator-freezer 1 is configured to have a cross-sectional material 4 such as urethane between the outer wall 5 and the inner wall 6. The outer wall 5 is made of a steel plate of about 1 mm, for example, and the inner wall 6 is made of a plastic such as ABS of about 2 mm. Actually, the width between the outer wall 5 and the inner wall 6 is, for example, about 35 to 45 mm, and a part of the refrigerant piping of the heat exchanger constituting the condenser is reciprocated once or a plurality of times in the vertical direction or the horizontal direction. The heat insulating material 4 is provided so as to surround the condenser. The heat insulating material 4 between the outer wall 5 and the inner wall 6 is configured so that the heat radiation from the condenser through which the refrigerant of about 30 ° C. flows is not directly transmitted to the outer wall 5 and the inner wall 6. Similarly to the housing 2 shown in FIG. 3, the refrigerator door 9 of each of the cooling chambers 1 a to 1 e is composed of the outer wall 5, the heat insulating material 4, and the inner wall 6. By the heat insulating material 4 provided in the refrigerator door 9, the cooling chambers 1a to 1e and the outside are thermally shielded.

さらに、図2に示すように、冷凍冷蔵庫1の背面下方に圧縮機15を格納する機械室3があり、例えば、機械室送風機16や流路切換弁14も機械室3に格納されている。機械室3の背面側は、通常取り外し可能な機械室カバーで覆われており、外部からは見えないように構成されている。機械室3に格納された各機器は、経年変化や故障時など、必要に応じて機械室カバーをはずすことで、メンテナンスが容易である。機械室3には圧縮機15を格納しているので、機械室3の室内は、冷凍冷蔵庫1の運転中には30℃程度以上の高温になり、機械室送風機16によって冷却している。   Furthermore, as shown in FIG. 2, there is a machine room 3 for storing the compressor 15 below the back of the refrigerator 1. For example, a machine room blower 16 and a flow path switching valve 14 are also stored in the machine room 3. The back side of the machine room 3 is usually covered with a removable machine room cover so that it cannot be seen from the outside. Each device stored in the machine room 3 can be easily maintained by removing the machine room cover as needed, such as when there is aging or failure. Since the compressor 15 is stored in the machine room 3, the room of the machine room 3 becomes a high temperature of about 30 ° C. or more during the operation of the refrigerator 1 and is cooled by the machine room blower 16.

図4は、図2に対応して、冷凍冷蔵庫1の基本構成を示す説明図であり、斜線で示す筐体2、斜め格子線で示す機械室3、横線で示す庫内8、白塗りで示す冷蔵庫扉9で構成されている。また、図5は冷蔵庫扉9を取り除いて冷凍冷蔵庫1の正面から見た筐体2を示す説明図であり、斜線で示す筐体2によって冷却室1a〜1eの背面2a、上面2b、下面2c、両側面2dが包囲されている様子を示す。庫内8のエジェクタ11、蒸発器12、低圧エキュムレーター13、庫内送風機19の設置位置も共に点線で示す。
ここで、筐体2と冷蔵庫扉9によって、低温に保持される部分である庫内8の全体を取り囲むように構成する。ただし筐体2のすべてが図3に示すような構成ではなく、断熱材4が設けられていない部分があってもよい。例えば、筐体の下面2cには、例えば凝縮器の一部が設けられているが断熱材4は設けず、この部分の凝縮器で、下面に設けた蒸発板にたまった水分を蒸発させる構成にしてもよい。
FIG. 4 is an explanatory view showing the basic configuration of the refrigerator 1 corresponding to FIG. 2, and includes a housing 2 indicated by diagonal lines, a machine room 3 indicated by diagonal grid lines, an interior 8 indicated by horizontal lines, and white coating. The refrigerator door 9 is shown. FIG. 5 is an explanatory diagram showing the housing 2 as seen from the front of the refrigerator refrigerator 1 with the refrigerator door 9 removed, and the rear surface 2a, the upper surface 2b, and the lower surface 2c of the cooling chambers 1a to 1e by the housing 2 shown by oblique lines. FIG. 2 shows a state in which both side surfaces 2d are surrounded. The installation positions of the ejector 11, the evaporator 12, the low-pressure accumulator 13, and the internal blower 19 in the interior 8 are also indicated by dotted lines.
Here, the housing 2 and the refrigerator door 9 are configured to surround the entire interior 8 which is a portion kept at a low temperature. However, the entire housing 2 is not configured as shown in FIG. 3, and there may be a portion where the heat insulating material 4 is not provided. For example, a part of the condenser is provided on the lower surface 2c of the housing, for example, but the heat insulating material 4 is not provided, and the condenser in this part evaporates water accumulated on the evaporation plate provided on the lower surface. It may be.

庫内8には冷却室1a〜1eと、冷熱を発生する部分である蒸発器12、蒸発器12で得られる冷熱を冷却室1a〜1eのそれぞれに輸送する輸送手段として、例えば送風機、ここでは庫内送風機19、及び風路31、32、33、34a、34bが配置される。さらに、冷却室1a〜1eで各室内の空気と熱交換した後の温度の上昇した空気を冷熱発生部分に戻す戻り風路35、36も、庫内8の背面側に配置されている。蒸発器12で得られた冷熱を送風する庫内送風機19の吹出口19aに直接接続する風路31と、他の風路32、33、34a、34bの間にはダンパ21、22、23が設けられており、ダンパ21、22、23を開閉することで、風路32、33、34a、34bが開閉される。   As a transport means for transporting the cooling chambers 1a to 1e to the cooling chambers 1a to 1e, the evaporator 12 that is a part that generates cold heat, and the cold heat obtained by the evaporator 12 to each of the cooling chambers 1a to 1e, for example, a blower, The internal fan 19 and the air paths 31, 32, 33, 34a, and 34b are arranged. Further, return air passages 35 and 36 for returning the air whose temperature has risen after the heat exchange with the air in each room in the cooling chambers 1 a to 1 e to the cold heat generation part are also arranged on the back side of the interior 8. Dampers 21, 22, and 23 are disposed between the air passage 31 directly connected to the air outlet 19 a of the internal fan 19 that blows the cold heat obtained by the evaporator 12 and the other air passages 32, 33, 34 a, and 34 b. The air paths 32, 33, 34a, and 34b are opened and closed by opening and closing the dampers 21, 22, and 23.

庫内8の冷却室1a〜1e以外の領域は、各冷却室1a〜1eの容積を大きくするために、極力狭い空間に設置されている。蒸発器12は、例えば、野菜室1dと冷凍室1eの背面側に設置され、庫内送風機19は、蒸発器12の近傍、例えば蒸発器12の上部に設置される。エジェクタ11は蒸発器12の近傍、例えば蒸発器12の上方で、庫内送風機19の吹出口19aに対向する部分を避けるように配置する。また、低圧アキュムレーター13は蒸発器12の近傍、例えば蒸発器12の上方に設置される。ここで、低圧アキュムレーター13とエジェクタ11は庫内送風機19の吹出口19aに対して左右対称の位置に配置している。低圧アキュムレーター13は、冷凍サイクルを循環する冷媒量が例えば環境条件や運転状況によって増減した場合、低圧アキュムレーター13に貯留される冷媒量を増減することで、調整している。   Regions other than the cooling chambers 1a to 1e in the cabinet 8 are installed in a narrow space as much as possible in order to increase the volume of each of the cooling chambers 1a to 1e. The evaporator 12 is installed on the back side of the vegetable compartment 1d and the freezer compartment 1e, for example, and the internal fan 19 is installed in the vicinity of the evaporator 12, for example, on the top of the evaporator 12. The ejector 11 is disposed in the vicinity of the evaporator 12, for example, above the evaporator 12, so as to avoid a portion facing the air outlet 19 a of the internal fan 19. The low-pressure accumulator 13 is installed in the vicinity of the evaporator 12, for example, above the evaporator 12. Here, the low-pressure accumulator 13 and the ejector 11 are arranged in a symmetrical position with respect to the outlet 19 a of the internal fan 19. The low-pressure accumulator 13 adjusts by increasing or decreasing the amount of refrigerant stored in the low-pressure accumulator 13 when the amount of refrigerant circulating in the refrigeration cycle increases or decreases depending on, for example, environmental conditions or operating conditions.

以下、冷凍冷蔵庫1の庫内8の冷熱の流れについて説明する。
図2において、実線白抜き矢印は蒸発器12からの冷風の流れ方向を示し、点線白抜き矢印は蒸発器12への戻り空気の流れを示す。冷蔵室送風ダンパ21、切替室送風ダンパ22、冷凍室送風ダンパ23の開閉によって、冷蔵室用風路32、切替室用風路33、冷凍室用風路34a、34bが開閉される。蒸発器12で、蒸発器12内を流れる冷媒と周囲空気とが熱交換され、庫内送風機19によって冷風が吹出口19aから庫内分配風路31に送風される。そして、庫内分配風路31に接続する各風路31、32、33、34a、34bを通って各冷却室1a〜1eの全てまたはいずれかを冷却し、冷風は温度が上昇し、冷蔵室1、切替室2及び製氷室3の共用の戻り風路35または冷凍室戻り風路36を通って、蒸発器12の周囲に戻ってくる。さらに戻った空気は蒸発器12で再び冷媒と熱交換して低温となり、庫内送風機19で冷却室1a〜1eに送風される。なお、本実施の形態では、比較的温度を高く保つ野菜室1dは、冷蔵室1、切替室2及び製氷室3の共用の戻り風路35を通る空気によって冷やす構成である。
Hereinafter, the flow of cold heat in the refrigerator 8 of the refrigerator 1 will be described.
In FIG. 2, a solid white arrow indicates the flow direction of the cold air from the evaporator 12, and a dotted white arrow indicates the flow of return air to the evaporator 12. By opening / closing the refrigerating room blower damper 21, the switching room blower damper 22, and the freezer compartment blower damper 23, the refrigerating room air passage 32, the switching room air passage 33, and the freezer compartment air passages 34a and 34b are opened and closed. The evaporator 12 exchanges heat between the refrigerant flowing in the evaporator 12 and the ambient air, and cool air is blown from the blower outlet 19 a to the distribution air passage 31 by the internal blower 19. And all or any of each cooling room 1a-1e is cooled through each air path 31, 32, 33, 34a, 34b connected to the distribution air path 31 in a store | warehouse | chamber, and the temperature of cold air rises, and a refrigerator compartment 1. It returns to the periphery of the evaporator 12 through the return air passage 35 or the freezer compartment return air passage 36 shared by the switching chamber 2 and the ice making chamber 3. Further, the returned air exchanges heat with the refrigerant again in the evaporator 12 to become a low temperature, and is blown into the cooling chambers 1 a to 1 e by the internal fan 19. In the present embodiment, the vegetable room 1 d that keeps the temperature relatively high is configured to be cooled by the air passing through the common return air passage 35 of the refrigerating room 1, the switching room 2, and the ice making room 3.

本実施の形態では、冷凍サイクルの膨張過程にエジェクタ11を備えることを特徴としている。図6はエジェクタ11の構成及び動作を示す説明図であり、ここでは例えば長さL=20cm程度、幅W=4cm程度以下の筒形のエジェクタ11を用いる。図6(a)はエジェクタ11の軸に沿った断面構成を示す説明図、図6(b)は図6(a)のX1〜X6の各位置に対応する圧力分布を示すグラフであり、横軸にエジェクタ位置、縦軸に圧力Pを示す。   The present embodiment is characterized in that an ejector 11 is provided in the expansion process of the refrigeration cycle. FIG. 6 is an explanatory diagram showing the configuration and operation of the ejector 11. Here, for example, a cylindrical ejector 11 having a length L of about 20 cm and a width W of about 4 cm or less is used. 6A is an explanatory diagram showing a cross-sectional configuration along the axis of the ejector 11, and FIG. 6B is a graph showing pressure distributions corresponding to positions X1 to X6 in FIG. 6A. The axis shows the ejector position, and the vertical axis shows the pressure P.

冷凍サイクルの冷媒回路を構成する配管で、エジェクタ11に接続される配管は、駆動流入口部40に接続する駆動流接続配管51、吸引流入口部41に接続する吸引流接続配管52、エジェクタ出口部に接続するエジェクタ出口部接続配管53の3本である。エジェクタ11の内部は、吸引部42、ノズル部43、混合部44、ディフューザ部45から構成され、ノズル部43はさらに減圧部43aと末広部43bから構成される。減圧部43aで流路断面積が小さくなり、一番開口面積の小さい部分を喉部43cと称し、喉部43cから下流側に末広部43bが形成され、ノズル出口部43dに続く。   The pipes constituting the refrigerant circuit of the refrigeration cycle and connected to the ejector 11 are a drive flow connection pipe 51 connected to the drive inlet section 40, a suction flow connection pipe 52 connected to the suction inlet section 41, and an ejector outlet. There are three ejector outlet connecting pipes 53 connected to the parts. The inside of the ejector 11 includes a suction part 42, a nozzle part 43, a mixing part 44, and a diffuser part 45. The nozzle part 43 further includes a pressure reducing part 43a and a divergent part 43b. The flow passage cross-sectional area is reduced by the pressure reducing portion 43a, and the portion having the smallest opening area is referred to as a throat portion 43c. A divergent portion 43b is formed downstream from the throat portion 43c and continues to the nozzle outlet portion 43d.

このエジェクタ11は例えば内部ノズルの喉部43cとノズル出口部43dの面積比(以下、膨張比という)が一定の固定絞り構成であり、矢印Y1方向から流入する圧力P1の冷媒を駆動流体とし(位置X1)、減圧部43aで減圧膨張させて喉部43cで圧力P2の音速とする(位置X2)。更に末広部43bで超音速として圧力P3まで減圧する(位置X3)。このとき、矢印Y2方向から流入する気液二相状態またはガス冷媒の冷媒を吸引し(位置X4)、混合された気液二相冷媒は、混合部44で圧力回復して圧力P4の状態の冷媒となり(位置X5)、更にディフューザ部45で圧力P5まで圧力上昇して流出する(位置X6)。   The ejector 11 has, for example, a fixed throttle configuration in which the area ratio (hereinafter referred to as expansion ratio) of the throat portion 43c and the nozzle outlet portion 43d of the internal nozzle is constant, and a refrigerant having a pressure P1 flowing in from the direction of the arrow Y1 is used as a driving fluid ( The position X1) is decompressed and expanded by the decompression section 43a, and the sound velocity of the pressure P2 is obtained by the throat section 43c (position X2). Further, the pressure is reduced to the pressure P3 as supersonic speed at the divergent portion 43b (position X3). At this time, the gas-liquid two-phase state flowing from the direction of the arrow Y2 or the refrigerant of the gas refrigerant is sucked (position X4), and the mixed gas-liquid two-phase refrigerant recovers the pressure in the mixing unit 44 and is in the state of the pressure P4. It becomes a refrigerant (position X5), and further rises to the pressure P5 by the diffuser portion 45 and flows out (position X6).

エジェクタ11のノズル部43では減圧膨張する際に等エントロピーに近い変化となる。即ち、従来のキャピラリなどの減圧手段で発生していたエネルギー損失がほとんどなく、効率のよい冷凍サイクルを構成できる。また、吸引作用によって蒸発器の冷媒の吸引及び昇圧作用による圧縮機吸入圧の上昇を行うことで、冷媒の体積効率が上昇し冷媒の循環量を増加することができるという有効な点もある。   When the nozzle portion 43 of the ejector 11 expands under reduced pressure, the change is close to isentropic. That is, there is almost no energy loss generated by a decompression means such as a conventional capillary, and an efficient refrigeration cycle can be configured. In addition, there is an effective point that the volumetric efficiency of the refrigerant is increased and the circulation amount of the refrigerant can be increased by sucking the refrigerant in the evaporator by the suction action and increasing the compressor suction pressure by the pressure raising action.

図7は本実施の形態に係る冷凍サイクル構成の一例を示す回路構成図、図8は本実施の形態に係る冷凍サイクルのP−h線図であり、横軸にエンタルピ−h、縦軸に圧力Pを示す。また、本実施の形態では冷媒として例えばR600aを冷凍サイクルに封入する。図7におけるアルファベット記号(A〜H)はその場所での冷媒の状態を図8の対応する部分に同一アルファベット(A〜H)で示す。
本実施の形態では、蒸発器12として例えば2台の蒸発器(第1蒸発器12a、第2蒸発器12b)を有し、第1蒸発器12aと第2蒸発器12bとで異なる冷媒の蒸発温度が得られる回路構成である。
FIG. 7 is a circuit configuration diagram showing an example of the configuration of the refrigeration cycle according to the present embodiment. FIG. 8 is a Ph diagram of the refrigeration cycle according to the present embodiment. The horizontal axis indicates enthalpy h and the vertical axis indicates. The pressure P is shown. In the present embodiment, for example, R600a is enclosed in the refrigeration cycle as a refrigerant. Alphabet symbols (A to H) in FIG. 7 indicate the state of the refrigerant at that location with the same alphabets (A to H) in the corresponding parts of FIG.
In the present embodiment, the evaporator 12 has, for example, two evaporators (first evaporator 12a and second evaporator 12b), and the first evaporator 12a and the second evaporator 12b evaporate different refrigerants. This is a circuit configuration capable of obtaining temperature.

図7において、17は凝縮器、18は絞り装置である。圧縮機15、凝縮器17、流路切換弁14は接続配管で順次接続される。流路切換弁14からはエジェクタ11と駆動流接続配管51で接続され、これと並行して絞り装置18へ接続される。絞り装置18は分割された第1蒸発器12aと接続され、第1蒸発器12aの出口部とエジェクタ11の吸引部が吸引流接続配管52によって接続される。エジェクタ11の出口部は、エジェクタ出口部接続配管53によって、分割されたもう一方の第2蒸発器12bの入口部と接続される。さらに、第2蒸発器12bの出口部から低圧アキュムレーター13を介して、圧縮機15に配管を接続し、冷凍サイクルを構成する。第1蒸発器12aでは、冷媒が絞り装置出口接続配管50から流入し、エジェクタ吸引流接続配管52へ流出する。また、第2蒸発器12bでは、冷媒がエジェクタ出口接続配管53から流入し、蒸発器出口接続配管54へ流出する。   In FIG. 7, 17 is a condenser and 18 is a throttle device. The compressor 15, the condenser 17, and the flow path switching valve 14 are sequentially connected by a connection pipe. The flow path switching valve 14 is connected to the ejector 11 by a drive flow connection pipe 51 and is connected to the expansion device 18 in parallel with this. The expansion device 18 is connected to the divided first evaporator 12 a, and the outlet portion of the first evaporator 12 a and the suction portion of the ejector 11 are connected by the suction flow connection pipe 52. The outlet portion of the ejector 11 is connected to the inlet portion of the other divided second evaporator 12b by an ejector outlet portion connecting pipe 53. Further, a pipe is connected to the compressor 15 from the outlet of the second evaporator 12b via the low-pressure accumulator 13, thereby constituting a refrigeration cycle. In the first evaporator 12a, the refrigerant flows in from the expansion device outlet connection pipe 50 and flows out to the ejector suction flow connection pipe 52. In the second evaporator 12b, the refrigerant flows in from the ejector outlet connection pipe 53 and flows out to the evaporator outlet connection pipe 54.

次に本実施の形態の冷凍サイクル動作について説明する。圧縮機15を吐出した高温高圧の冷媒(B)は凝縮器17で冷蔵庫外部等に熱を放出して凝縮液化し、気液二相冷媒となる(C)。高圧の気液二相冷媒(C)は流路切換弁14で二方に分岐する。一方は絞り装置18にて減圧沸騰し、低圧の気液二相冷媒(D)となって絞り装置出口接続配管50を通って第1蒸発器12aに流れ込む。第1蒸発器12aでは庫内の空気を冷却することにより、蒸発気化する(E)。第1蒸発器12aを流出した蒸気冷媒(E)はエジェクタ吸引流接続配管52を通ってエジェクタ11の吸引部に流れ込む。   Next, the refrigeration cycle operation of the present embodiment will be described. The high-temperature and high-pressure refrigerant (B) discharged from the compressor 15 releases heat to the outside of the refrigerator or the like by the condenser 17 to be condensed and liquefied to become a gas-liquid two-phase refrigerant (C). The high-pressure gas-liquid two-phase refrigerant (C) branches in two directions by the flow path switching valve 14. One is boiled under reduced pressure by the expansion device 18 and flows into the first evaporator 12a through the expansion device outlet connection pipe 50 as a low-pressure gas-liquid two-phase refrigerant (D). The first evaporator 12a evaporates and evaporates by cooling the air in the warehouse (E). The vapor refrigerant (E) that has flowed out of the first evaporator 12 a flows into the suction portion of the ejector 11 through the ejector suction flow connection pipe 52.

流路切換弁14で分岐したもう一方の高圧気液二相冷媒(C)はエジェクタ11に流れ込み、ノズル部43で減圧膨張し、音速程度の高速度でノズル部43から流出する駆動流体となってエジェクタ11の混合部44に噴出する。この時、第1蒸発器12aからの蒸気冷媒(E)を吸引流体として吸引し、混合部44で混合する。その後、エジェクタのディフューザ部45で流速を減速しながら膨張して圧力を上昇させ、エジェクタ出口接続配管53を通って第2蒸発器12bに低圧状態で流れ込む(G)。この第2蒸発器12b内の冷媒の圧力は、圧縮機15から吐出する高圧状態よりも低圧であるが、第1蒸発器12aよりも高い圧力状態である。第2蒸発器12bでは庫内8の空気を冷却することにより、蒸発気化する(H)。その後、蒸発器出口接続配管54を通り吸入配管を介して圧縮機15へ流れ込む(A)。圧縮機15で低圧の蒸気冷媒は圧縮され再び凝縮器17に流れ込む。
ここで、流路切換弁14は、例えば単に2方向に冷媒流れを分岐させるものであり、圧縮機15が停止した場合にはどちらの流路も閉状態にする。
The other high-pressure gas-liquid two-phase refrigerant (C) branched by the flow path switching valve 14 flows into the ejector 11, expands under reduced pressure at the nozzle portion 43, and becomes a driving fluid that flows out of the nozzle portion 43 at a high speed of about the speed of sound. And ejected to the mixing section 44 of the ejector 11. At this time, the vapor refrigerant (E) from the first evaporator 12 a is sucked as a suction fluid and mixed by the mixing unit 44. Thereafter, the diffuser portion 45 of the ejector expands while decelerating the flow velocity to increase the pressure, and flows into the second evaporator 12b through the ejector outlet connection pipe 53 in a low pressure state (G). The pressure of the refrigerant in the second evaporator 12b is lower than the high pressure state discharged from the compressor 15, but is higher than that of the first evaporator 12a. The second evaporator 12b evaporates and evaporates by cooling the air in the cabinet 8 (H). Thereafter, the refrigerant flows into the compressor 15 through the evaporator outlet connection pipe 54 and the suction pipe (A). The low-pressure vapor refrigerant is compressed by the compressor 15 and flows into the condenser 17 again.
Here, the flow path switching valve 14 merely branches the refrigerant flow in, for example, two directions. When the compressor 15 is stopped, both flow paths are closed.

上記のように、エジェクタ11によって、吸引作用により蒸発器の冷媒を吸引すると共に、昇圧作用により圧縮機吸入圧の上昇を行う。このことから、エジェクタ11を用いることで、従来の圧縮機吸入圧力と圧縮機吸入温度条件で、より低い蒸発温度の冷却が可能となり、冷蔵庫を冷却する冷凍能力が大幅に向上する。その結果、従来と同一の圧縮機押しのけ量で運転した場合は冷却時間が短時間になり、消費電力量を低減することができる。または、従来同程度の冷却能力となるような圧縮機押しのけ量で運転させる場合は、圧縮機を小型化できる効果がある。即ち、エジェクタ11を搭載することで、冷凍サイクルの効率を向上できる効果がある。   As described above, the ejector 11 sucks the refrigerant of the evaporator by the suction action and raises the compressor suction pressure by the pressure raising action. For this reason, by using the ejector 11, cooling at a lower evaporation temperature is possible under the conventional compressor suction pressure and compressor suction temperature conditions, and the refrigeration capacity for cooling the refrigerator is greatly improved. As a result, when the compressor is operated with the same displacement as the conventional compressor, the cooling time is shortened and the power consumption can be reduced. Alternatively, when the compressor is operated with the displacement of the compressor so as to achieve the same cooling capacity as before, there is an effect that the compressor can be downsized. That is, mounting the ejector 11 has an effect of improving the efficiency of the refrigeration cycle.

本実施の形態では、エジェクタ11を庫内8の蒸発器12の近傍に配置する。具体的には、エジェクタ11を蒸発器12の上方で、蒸発器12の近傍に設けられている庫内送風機19の吹出口19aに対向する部分を避けるように、右側または左側に偏った位置に設置されている。換言すれば、正面から見て中央部分に設置されている庫内送風機19の羽根の回転部分に重ならないように設置する。
図9は本実施の形態に係るエジェクタ11の接続状態を模式的に示す説明図であり、蒸発器12a、12b周囲の冷蔵庫内の空気の流れと共に冷凍サイクルの冷媒の流れを示す。図中、実線矢印は冷媒の流れ方向、白抜き矢印は冷蔵庫内の空気の流れ方向を示す。エジェクタ11の接続状態をわかりやすくするため、この図ではエジェクタ11を設置位置からずらして示しており、実際には、点線で示すエジェクタの部分に配置する。
In the present embodiment, the ejector 11 is disposed in the vicinity of the evaporator 12 in the interior 8. Specifically, the ejector 11 is positioned above the evaporator 12 so as to be biased to the right side or the left side so as to avoid the portion facing the air outlet 19a of the internal fan 19 provided in the vicinity of the evaporator 12. is set up. In other words, it installs so that it may not overlap with the rotation part of the blade | wing of the internal fan 19 installed in the center part seeing from the front.
FIG. 9 is an explanatory diagram schematically showing the connection state of the ejector 11 according to the present embodiment, and shows the flow of refrigerant in the refrigeration cycle together with the flow of air in the refrigerator around the evaporators 12a and 12b. In the figure, solid arrows indicate the direction of refrigerant flow, and white arrows indicate the direction of air flow in the refrigerator. In order to make the connection state of the ejector 11 easy to understand, the ejector 11 is shown shifted from the installation position in this figure, and is actually arranged at the portion of the ejector indicated by a dotted line.

図に示すように、第1蒸発器12aは空気の流れ方向の下流側に設置し、空気流れ方向の上流側に第2蒸発器12bを設置する。絞り装置出口接続配管50を第1蒸発器12aの下部に接続し、冷媒が第1蒸発器12aの上部に位置するエジェクタ吸引流接続配管52に向かって、上昇流で流れるように構成する。また、エジェクタ出口部接続配管53を第2蒸発器12bの下部に接続し、第2蒸発器12b上部の蒸発器出口接続配管54に向かって、冷媒が上昇流を形成するように構成する。   As shown in the figure, the first evaporator 12a is installed on the downstream side in the air flow direction, and the second evaporator 12b is installed on the upstream side in the air flow direction. The throttle device outlet connection pipe 50 is connected to the lower part of the first evaporator 12a so that the refrigerant flows in an upward flow toward the ejector suction flow connection pipe 52 located at the upper part of the first evaporator 12a. Further, the ejector outlet connecting pipe 53 is connected to the lower part of the second evaporator 12b, and the refrigerant forms an upward flow toward the evaporator outlet connecting pipe 54 at the upper part of the second evaporator 12b.

本実施の形態における冷媒回路は、実線矢印で示すように、圧縮機15ー>凝縮器17−>流路切換弁14−>絞り装置18−>第1蒸発器12aー>エジェクタ11の吸引部という流れと、流路切換弁14−>エジェクタ11−>第2蒸発器12bー>低圧アクチュエータ−13−>圧縮機15で構成される。凝縮器17は筐体2の外壁5と内壁6の間に設けられており、例えば、底面ー>右側面ー>背面ー>左側面ー>上面ー>前面の順で流れ、流路切換弁14に接続する。このように機械室3、筐体2、庫内8にわたって冷媒配管で各機器を接続しており、接続配管の長さを極力短く、また単純な接続にすることが望ましい。もちろんこの循環の順序は、一例であり、これに限るものではない。   The refrigerant circuit in the present embodiment includes a compressor 15-> condenser 17-> flow path switching valve 14-> throttle device 18-> first evaporator 12 a-> suction part of the ejector 11 as indicated by solid arrows. And a flow path switching valve 14-> ejector 11-> second evaporator 12 b-> low pressure actuator 13-> compressor 15. The condenser 17 is provided between the outer wall 5 and the inner wall 6 of the housing 2. For example, the condenser 17 flows in the order of the bottom surface-> right side surface-> back surface-> left side surface-> top surface-> front surface, and the flow path switching valve. 14 is connected. As described above, it is desirable that each device is connected by the refrigerant pipe over the machine room 3, the casing 2, and the inside of the cabinet 8, and the length of the connection pipe is as short as possible and is simple. Of course, this circulation order is an example, and the present invention is not limited to this.

本実施の形態では、エジェクタ11を蒸発器12の近傍、例えば上部に設置したので、エジェクタ11と蒸発器12とを接続する配管であるエジェクタ吸引流接続配管52及びエジェクタ出口接続配管53の配管長さを短くできる。また、円筒状のエジェクタ11の軸を水平または上流側が上になるように傾斜した状態で設置すると、エジェクタ内部で駆動流が重力に対して上昇流ではなく水平流または下降流となる。このため、気泡が細分化されやすくなりエジェクタの効率が向上する。   In this embodiment, since the ejector 11 is installed in the vicinity of, for example, the upper part of the evaporator 12, the lengths of the ejector suction flow connection pipe 52 and the ejector outlet connection pipe 53 that are pipes connecting the ejector 11 and the evaporator 12. You can shorten it. Further, when the shaft of the cylindrical ejector 11 is installed in a state where it is inclined so that the horizontal or upstream side is on the upper side, the driving flow inside the ejector becomes a horizontal flow or a downward flow with respect to gravity instead of an upward flow. For this reason, bubbles are easily subdivided and the efficiency of the ejector is improved.

エジェクタ11に接続する3本の配管において、エジェクタ駆動流接続配管51によってエジェクタ駆動流入口部40と流路切換弁14を接続し、エジェクタ吸引流接続配管52によって第1蒸発器12a出口配管と吸引流入口部41とを接続し、エジェクタ出口接続配管53によってエジェクタ出口部と第2蒸発器12b入口配管とを接続する。本実施の形態の構成では、蒸発器12a、12b、流路切換弁14の配置は、一番上側に第1蒸発器12a、次に第2蒸発器12b、流路切換弁14は機械室3に配置され、一番下方に配置している。そこで、円筒状のエジェクタ11を吸引流入口部41がエジェクタ出口部よりも上方になるように傾斜させると、エジェクタ11におけるエジェクタ吸引流接続配管52との接続部がエジェクタ出口接続配管53との接続部よりも上方に向くことになるので、それぞれの配管52、53が接続する第1蒸発器12aと第2蒸発器12bの上下関係と同様となる。このため、配管52、53の長さを短くすることができ、さらに配管の取り回しを単純化できる。   In the three pipes connected to the ejector 11, the ejector drive inlet 40 and the flow path switching valve 14 are connected by the ejector drive outlet connection pipe 51, and the first evaporator 12 a outlet pipe and the suction are connected by the ejector suction outlet connection pipe 52. The inlet part 41 is connected, and the ejector outlet part and the second evaporator 12 b inlet pipe are connected by the ejector outlet connecting pipe 53. In the configuration of the present embodiment, the evaporators 12a and 12b and the flow path switching valve 14 are arranged such that the first evaporator 12a is the uppermost, and then the second evaporator 12b and the flow path switching valve 14 are the machine room 3. Arranged at the bottom. Therefore, when the cylindrical ejector 11 is tilted so that the suction inlet 41 is located above the ejector outlet, the connection of the ejector 11 with the ejector suction connection pipe 52 is connected to the ejector outlet connection pipe 53. Therefore, the vertical relationship between the first evaporator 12a and the second evaporator 12b to which the respective pipes 52 and 53 are connected is the same. For this reason, the length of the piping 52 and 53 can be shortened, and the handling of the piping can be simplified.

このように、冷媒回路を構成する接続配管の接続距離を短くすることは、接続配管内の冷媒圧力損失を低減する効果を奏する。また、接続配管の取り回しを単純化することは、製造過程においてエジェクタ11に対する接続配管のロー付け作業が容易となり、組立工程が単純化され製造コストの低減する効果を奏する。   Thus, shortening the connection distance of the connection pipe constituting the refrigerant circuit has an effect of reducing the refrigerant pressure loss in the connection pipe. Further, simplifying the handling of the connecting pipe facilitates the brazing operation of the connecting pipe to the ejector 11 during the manufacturing process, and has the effect of simplifying the assembly process and reducing the manufacturing cost.

図10は、本実施の形態に係り、蒸発器12を流れる冷媒温度の変化と蒸発器12を通過する庫内8の空気温度の変化を示すグラフである。図において、横軸に第2蒸発器12b、第1蒸発器12aの位置を示し、左側が下方の流入側、右側が上方の流出側である。また、縦軸は温度(℃)を示す。図中、破線矢印は蒸発器12a、12bを通過する庫内8の空気の温度変化を、実線矢印は蒸発器12a、12bの冷媒の流れ方向の温度変化を表している。第2蒸発器12bの吸い込み空気温度は−15℃程度であり、第2蒸発器12bはエジェクタ出口接続配管53から冷媒が供給され、入口の冷媒温度は−25℃程度で、第2蒸発器12bの周囲を通過する空気と熱交換して冷却する。第2蒸発器12b出口では冷媒温度は−26℃程度まで圧力損失で低下する。一方、通過空気は−15℃程度から−23℃程度まで冷却され、第1蒸発器12aに流れ込む。第1蒸発器12aの入口部は、絞り装置出口接続配管50から−30℃程度の冷媒が流れ込み、通過空気と熱交換を行う。第1蒸発器12aの出口部の冷媒は、圧力損失で−31℃程度まで低下する。通過空気は第1蒸発器12aによって−23℃程度から−27℃程度まで冷却され、庫内送風機19に吸込まれて分配風路31、32、33、34a、34bを介して、各冷却室1a〜1eへ供給される。   FIG. 10 is a graph showing a change in the temperature of the refrigerant flowing through the evaporator 12 and a change in the air temperature in the interior 8 passing through the evaporator 12 according to the present embodiment. In the figure, the horizontal axis indicates the positions of the second evaporator 12b and the first evaporator 12a, the left side being the lower inflow side and the right side being the upper outflow side. The vertical axis represents temperature (° C.). In the figure, a broken line arrow represents a temperature change of the air in the warehouse 8 passing through the evaporators 12a and 12b, and a solid line arrow represents a temperature change in the flow direction of the refrigerant in the evaporators 12a and 12b. The suction air temperature of the second evaporator 12b is about −15 ° C., the refrigerant is supplied to the second evaporator 12b from the ejector outlet connection pipe 53, the refrigerant temperature at the inlet is about −25 ° C., and the second evaporator 12b Cool by exchanging heat with the air that passes around. At the outlet of the second evaporator 12b, the refrigerant temperature decreases with a pressure loss to about -26 ° C. On the other hand, the passing air is cooled from about −15 ° C. to about −23 ° C. and flows into the first evaporator 12a. A refrigerant of about −30 ° C. flows from the expansion device outlet connection pipe 50 into the inlet portion of the first evaporator 12a to exchange heat with the passing air. The refrigerant at the outlet of the first evaporator 12a is reduced to about −31 ° C. due to pressure loss. The passing air is cooled from about −23 ° C. to about −27 ° C. by the first evaporator 12a, sucked into the internal fan 19, and passed through the distribution air passages 31, 32, 33, 34a, 34b to each cooling chamber 1a. To 1e.

冷媒の流れ方向に圧力損失が発生することで冷媒の蒸発温度が低下するが、この温度低下を考慮し、通過空気と並行流、即ち通過空気と冷媒との温度差が常にある程度以上、例えば3℃程度以上となるように冷媒の流れを構成する。このため、冷媒の冷熱が通過空気に効率よく受け渡され、生成した冷熱を無駄なく利用することができる。例えば、庫内8の空気の流れに対して、第1蒸発器12aを上流側、第2蒸発器12bを下流側に配置すると、第2蒸発器12bの流出側では空気温度とほぼ同一になり、冷熱が通過空気にうまく受け渡されない。さらに、蒸発器12a、12b内を空気の流れとは逆に上方から下方に冷媒が流れるように構成すると、図10の冷媒温度の変化が右上がりの傾斜となる。この場合にも冷媒温度と空気温度との差が小さい部分ができ、冷熱が通過空気にうまく受け渡されない。   When the pressure loss occurs in the flow direction of the refrigerant, the evaporating temperature of the refrigerant is lowered. Considering this temperature drop, the temperature difference between the passing air and the parallel flow, that is, the passing air and the refrigerant is always more than a certain value, for example, 3 The flow of the refrigerant is configured to be about ℃ or higher. For this reason, the cold heat of the refrigerant is efficiently transferred to the passing air, and the generated cold heat can be used without waste. For example, if the first evaporator 12a is disposed upstream and the second evaporator 12b is disposed downstream of the air flow in the cabinet 8, the air temperature is substantially the same on the outflow side of the second evaporator 12b. , Cold heat is not transferred to the passing air well. Further, if the refrigerant flows in the evaporators 12a and 12b from the upper side to the lower side as opposed to the air flow, the change in the refrigerant temperature in FIG. In this case as well, there is a portion where the difference between the refrigerant temperature and the air temperature is small, and the cold heat is not successfully transferred to the passing air.

本実施の形態では、蒸発器12a、12bの冷媒流入側から冷媒流出側に向かって、冷蔵庫内の空気を通過させることにより、空気と冷媒の温度差を保つことが可能となり蒸発器を小型化できる。   In the present embodiment, by passing the air in the refrigerator from the refrigerant inflow side to the refrigerant outflow side of the evaporators 12a and 12b, the temperature difference between the air and the refrigerant can be maintained, and the evaporator is downsized. it can.

さらに、2つの蒸発器12a、12bを備え、それぞれを異なる蒸発温度となるように動作させる。そして、まず、蒸発温度の高い第2蒸発器12bの冷媒と庫内空気とを熱交換させ、空気温度が低下した状態で、蒸発温度の低い第1蒸発器12aの冷媒と熱交換させる。これにより、温度差を保ちながら、効率良い熱交換が可能で、蒸発器12を更に小型化することができる。   Furthermore, two evaporators 12a and 12b are provided, and each is operated to have different evaporation temperatures. Then, first, heat exchange is performed between the refrigerant of the second evaporator 12b having a high evaporation temperature and the internal air, and heat exchange is performed with the refrigerant of the first evaporator 12a having a low evaporation temperature in a state where the air temperature is lowered. Thereby, efficient heat exchange is possible, maintaining a temperature difference, and the evaporator 12 can be further reduced in size.

図11は庫内8に格納される蒸発器12、庫内送風機19、風路の一部を一体に取り付けた部材Kを簡略化して示す構成図であり、図11(a)は斜めから見た構成図、図11(b)は図11(a)のXIIB−XIIB線における断面構成図である。冷凍冷蔵庫1の組立工程において、予め庫内送風機19と蒸発器12を取り付けた部材Kを形成し、筐体2で囲まれた庫内8に部材Kを例えば正面側から嵌め込む。この後、冷却室1a〜1eを同様に嵌め込むことで、簡単に庫内8を形成できる。   FIG. 11 is a schematic diagram showing the evaporator 12 housed in the warehouse 8, the internal fan 19, and a member K to which a part of the air path is integrally attached, and FIG. 11A is viewed obliquely. FIG. 11B is a sectional view taken along line XIIB-XIIB in FIG. In the assembly process of the refrigerator 1, a member K to which the internal fan 19 and the evaporator 12 are attached is formed in advance, and the member K is fitted into the internal space 8 surrounded by the housing 2 from the front side, for example. Thereafter, the interior 8 can be easily formed by fitting the cooling chambers 1a to 1e in the same manner.

部材Kは例えばABSであり、蒸発器12の近傍、例えば上方には庫内送風機19を設置し、庫内送風機19の周辺の背面や上方は風路を形成するための凹凸が成型されている。庫内送風機19の動作領域及び吹出口19aは、正面から見て円形であり、庫内送風機19の例えば左側にエジェクタ11、右側に低圧アキュムレータ−13を設置する。組立工程で蒸発器12及び庫内送風機19と同様に、部材Kにエジェクタ11及び低圧アキュムレータ−13を予め取り付けておけば、エジェクタ11を備えた冷凍冷蔵庫を生産性よく組み立てることができ、コストの削減にもつながる。   The member K is, for example, ABS, and an internal fan 19 is installed in the vicinity of the evaporator 12, for example, above, and unevenness for forming an air passage is formed on the back and upper sides of the peripheral fan 19. . The operation area of the internal fan 19 and the air outlet 19a are circular when viewed from the front, and the ejector 11 is installed on the left side of the internal fan 19, for example, and the low-pressure accumulator 13 is installed on the right side. If the ejector 11 and the low-pressure accumulator 13 are previously attached to the member K in the assembly process, as with the evaporator 12 and the internal fan 19, the refrigerator-freezer equipped with the ejector 11 can be assembled with high productivity. It also leads to reduction.

本実施の形態では、蒸発器12の近傍で、庫内送風機19の円形状によってできる円周部分の空間を利用してエジェクタ11を配置する。このため、冷却室の容積には影響を及ぼすことなく、エジェクタ11を搭載して効率の良い冷凍サイクルを実現できる。
なお、エジェクタ11を配置する蒸発器12の近傍とは、蒸発器12の上方、下方、右側、左側、前面、背面で、蒸発器12に近い領域、蒸発器12との距離が例えば10cm〜15cm程度の近い領域のことである。庫内8には空間的にほとんど余裕がなく、図2に示した構成では、蒸発器12の上方の送風機19との間にできた空間を利用している。また、庫内送風機19を配置する蒸発器12の近傍も、蒸発器12の上方、下方、右側、左側、前面、背面で、蒸発器12に近い領域、蒸発器12との距離が例えば10cm〜15cm程度の近い領域のことである。庫内送風機19は蒸発器12と風路31との間に配置するので、図2に示す構成では蒸発器12の上方に設置している。
In this Embodiment, the ejector 11 is arrange | positioned in the vicinity of the evaporator 12 using the space of the circumferential part formed by the circular shape of the internal fan 19. For this reason, the ejector 11 can be mounted and an efficient refrigeration cycle can be realized without affecting the volume of the cooling chamber.
In addition, the vicinity of the evaporator 12 which arrange | positions the ejector 11 means the area | region near the evaporator 12 in the upper part of the evaporator 12, the lower part, the right side, the left side, the front surface, and the back surface, and the distance with the evaporator 12 is 10 cm-15 cm. It is an area close to the extent. The interior 8 has almost no room in space, and the configuration shown in FIG. 2 uses a space formed between the blower 19 above the evaporator 12. Moreover, the vicinity of the evaporator 12 which arrange | positions the air blower 19 in a store | warehouse | chamber is the area near the evaporator 12 in the upper part, the lower part, the right side, the left side, the front surface, and the back surface of the evaporator 12, and the distance with the evaporator 12 is 10 cm- It is a close region of about 15 cm. Since the internal blower 19 is disposed between the evaporator 12 and the air path 31, it is installed above the evaporator 12 in the configuration shown in FIG. 2.

図12は本実施の形態の冷凍冷蔵庫の別の構成に係るエジェクタ11の接続状態を示す説明図である。図において、断熱材7の部分を斜線で示す。駆動流入口部40に接続するエジェクタ駆動流接続配管51は30℃程度になり、吸引流入口部41に接続するエジェクタ吸引流接続配管52はー30℃程度になり、エジェクタ出口部に接続するエジェクタ出口接続配管53はー25℃程度になる。庫内8の温度は、−15℃程度以下であり、エジェクタ11を格納する蒸発器12近傍では−27℃程度になる。そこで、図12では、エジェクタ11の駆動流入口部40に接続する駆動流接続配管51のうち、少なくとも庫内8に格納される接続配管の周囲に断熱材7を設けている。   FIG. 12 is an explanatory view showing a connection state of the ejector 11 according to another configuration of the refrigerator-freezer of the present embodiment. In the figure, the portion of the heat insulating material 7 is indicated by oblique lines. The ejector drive flow connection pipe 51 connected to the drive inlet 40 is about 30 ° C., the ejector suction flow connection pipe 52 connected to the suction inlet 41 is about −30 ° C., and the ejector connected to the ejector outlet The outlet connection pipe 53 is about -25 ° C. The temperature of the inside 8 is about −15 ° C. or less, and is about −27 ° C. in the vicinity of the evaporator 12 storing the ejector 11. Therefore, in FIG. 12, the heat insulating material 7 is provided around at least the connection pipe stored in the interior 8 of the drive flow connection pipe 51 connected to the drive inlet port 40 of the ejector 11.

エジェクタ11の配置位置の周囲温度と、接続配管内を通る冷媒温度とを考慮すると、エジェクタ吸引流接続配管52とエジェクタ出口接続配管53は低温であり問題ないが、エジェクタ駆動流接続配管51は高温であるのでこの接続配管から放熱すると、庫内温度が上昇する。そこで、エジェクタ駆動流接続配管51の、少なくとも庫内8に格納される部分の周囲に断熱材7を設けることで、庫内温度が上昇するのを防止する。   In consideration of the ambient temperature at the position where the ejector 11 is disposed and the refrigerant temperature passing through the connection pipe, the ejector suction flow connection pipe 52 and the ejector outlet connection pipe 53 are low in temperature and have no problem, but the ejector drive flow connection pipe 51 is high in temperature. Therefore, if the heat is radiated from the connection pipe, the internal temperature rises. Then, the heat-insulating material 7 is provided at least around the portion of the ejector drive flow connection pipe 51 stored in the interior 8 to prevent the interior temperature from rising.

さらに、エジェクタ駆動流接続配管51を流れる冷媒は、凝縮器17から流出される高圧の気液二相冷媒である。この状態でエジェクタのノズル部43に流入させると、喉部43cで冷媒が沸騰しやすく、ノズル出口部43dから噴出する冷媒流れの液滴が微粒化される。このため、混合部44で気液の速度差が低減して均質流となることで、ノズル効率を向上できる。これに対し、エジェクタ駆動流接続配管51が庫内8に露出した状態であると、内部を流れる冷媒が冷却されて過冷却状態となって液冷媒となる。駆動流体として液冷媒がノズル部43に流入すると、混合部44で吸入流体と混合率が低下する。これはエジェクタ11の効率低下につながる。図12に示す構成では、断熱材7をエジェクタ駆動流接続配管51の周囲に設けているので、エジェクタ駆動流接続配管51の内部を流れる冷媒状態を気液二相状態に保ち、エジェクタ効率の低下を防止できる。   Furthermore, the refrigerant flowing through the ejector drive flow connection pipe 51 is a high-pressure gas-liquid two-phase refrigerant that flows out of the condenser 17. If it is made to flow in the nozzle part 43 of an ejector in this state, a refrigerant | coolant will boil easily in the throat part 43c, and the droplet of the refrigerant | coolant flow which ejects from the nozzle exit part 43d will be atomized. For this reason, nozzle efficiency can be improved by the speed difference of a gas-liquid reducing in the mixing part 44, and becoming a homogeneous flow. On the other hand, when the ejector drive flow connection pipe 51 is exposed to the interior 8, the refrigerant flowing through the interior is cooled to become a supercooled state and becomes a liquid refrigerant. When the liquid refrigerant flows into the nozzle portion 43 as the driving fluid, the mixing fluid decreases in the mixing portion 44 and the mixing rate. This leads to a reduction in the efficiency of the ejector 11. In the configuration shown in FIG. 12, since the heat insulating material 7 is provided around the ejector drive flow connection pipe 51, the state of the refrigerant flowing inside the ejector drive flow connection pipe 51 is maintained in a gas-liquid two-phase state, and the ejector efficiency decreases. Can be prevented.

もちろん、運転条件によって庫内8の温度と接続配管内の冷媒温度とで、差がある場合には、エジェクタ吸引流接続配管52及びエジェクタ出口接続配管53の一方または両方で、少なくとも庫内8に格納される部分の周囲に断熱材を設けてもよい。   Of course, if there is a difference between the temperature of the interior 8 and the refrigerant temperature in the connection pipe depending on the operating conditions, at least one of or both of the ejector suction flow connection pipe 52 and the ejector outlet connection pipe 53 is in the interior 8. A heat insulating material may be provided around the portion to be stored.

図12の構成において、エジェクタ11の背面側は、筐体2の背面2aを構成する内壁6である。そこで、流路切換弁14に接続するエジェクタ駆動流接続配管51を筐体2の内壁6と外壁5の間に格納し、エジェクタ11の近傍になるまでエジェクタ駆動流接続配管51を背面筐体2aの内壁6と外壁5の間を通し、エジェクタ11の駆動流入口部40に接続する直前で、庫内8に導くようにしてもよい。このように構成すれば、庫内8に露出するエジェクタ駆動流接続配管51の長さを短くでき、内部を流れる冷媒が庫内8の冷気で冷却されるのを防止できると共に、配管51から庫内8に放熱される熱損失を防止できる。従って、エジェクタ効率のよい冷凍サイクルを構成できる。なお、庫内8に露出するエジェクタ駆動流接続配管51が例えば10mm程度以下で短い場合には、配管の周囲に断熱材7を設けなくてもよい。ただし、配管の取り回しの都合で長くなる場合には、庫内8に露出する部分の配管51の周囲に断熱材7を設けたほうがよい。   In the configuration of FIG. 12, the back side of the ejector 11 is an inner wall 6 constituting the back surface 2 a of the housing 2. Therefore, the ejector drive flow connection pipe 51 connected to the flow path switching valve 14 is stored between the inner wall 6 and the outer wall 5 of the casing 2, and the ejector drive flow connection pipe 51 is connected to the rear casing 2 a until it is close to the ejector 11. Alternatively, it may be guided between the inner wall 6 and the outer wall 5 and immediately before being connected to the drive inlet 40 of the ejector 11. If comprised in this way, while the length of the ejector drive flow connection piping 51 exposed in the store | warehouse | chamber 8 can be shortened, it can prevent that the refrigerant | coolant which flows through the inside is cooled with the cold air of the store | warehouse | chamber 8 It is possible to prevent the heat loss that is radiated to the inside 8. Therefore, a refrigeration cycle with high ejector efficiency can be configured. In addition, when the ejector drive flow connection piping 51 exposed to the inside 8 is short, for example about 10 mm or less, it is not necessary to provide the heat insulating material 7 around the piping. However, when it becomes long for the convenience of piping, it is better to provide the heat insulating material 7 around the piping 51 of the part exposed to the inside 8 of a store | warehouse | chamber.

また、エジェクタ11を例えば背面の筐体2aの内壁6に接触して設置すれば、エジェクタ駆動流接続配管51の庫内8に露出する長さをさらに短くでき、エジェクタ効率の低下を防止でき、熱損失を低減できる。   Further, if the ejector 11 is installed in contact with, for example, the inner wall 6 of the rear casing 2a, the length of the ejector drive flow connection pipe 51 exposed to the inside 8 can be further shortened, and the ejector efficiency can be prevented from being lowered. Heat loss can be reduced.

図13は本実施の形態による冷凍冷蔵庫の別の構成に係り、エジェクタ11の設置状態を示す説明図である。図では、背面の筐体2aの断面構成に対してエジェクタ11の設置状態を示している。ここで、筐体2aの向かって左側は庫内8であり、右側は外部である。また、斜線は筐体2を構成する断熱材4を示し、エジェクタ11を背面の筐体2aの内壁6に接触するように設置する。そして、庫内8に格納されている蒸発器12に接続する配管であるエジェクタ吸引流接続配管52及びエジェクタ出口接続配管53は、そのまま庫内8を通って各蒸発器12に接続する。エジェクタ11の駆動流入口部40に接続するエジェクタ駆動流接続配管51は、エジェクタ11が接触している内壁6を通って庫内8の外に導き、さらに筐体2aの断熱材4を通って断熱材4の外壁5側に配管を通す。この状態で、機械室3の近くまで導き、機械室3に格納されている流路切換弁14と接続する。   FIG. 13 is an explanatory diagram showing an installation state of the ejector 11 in another configuration of the refrigerator-freezer according to the present embodiment. In the figure, the installation state of the ejector 11 is shown with respect to the cross-sectional configuration of the housing 2a on the back surface. Here, the left side of the housing 2a is the inside 8 and the right side is the outside. The hatched lines indicate the heat insulating material 4 constituting the housing 2, and the ejector 11 is installed so as to contact the inner wall 6 of the housing 2a on the back surface. Then, the ejector suction flow connection pipe 52 and the ejector outlet connection pipe 53 that are pipes connected to the evaporator 12 stored in the inside 8 are connected to the respective evaporators 12 through the inside 8 as they are. The ejector drive flow connection pipe 51 connected to the drive inlet port 40 of the ejector 11 is guided outside the interior 8 through the inner wall 6 with which the ejector 11 is in contact, and further through the heat insulating material 4 of the housing 2a. Pipe is passed through the outer wall 5 side of the heat insulating material 4. In this state, it leads to the vicinity of the machine room 3 and is connected to the flow path switching valve 14 stored in the machine room 3.

この構成例では、上述のように内壁6に接触するようにエジェクタ11の本体を設置したので、エジェクタ駆動流接続配管51の庫内8に露出される部分が最小限になるように構成できる。このため、エジェクタ効率の低下を防止でき、熱損失を低減することができる。 In this configuration example, since the main body of the ejector 11 is installed so as to be in contact with the inner wall 6 as described above, the portion exposed to the interior 8 of the ejector drive flow connection pipe 51 can be minimized. For this reason, a decline in ejector efficiency can be prevented and heat loss can be reduced.

また、エジェクタ11の入口部を出口部よりも上方に配置すれば、エジェクタ11内で下降流となり、エジェクタの効率を向上できる。水平または水平よりも入口側が上方になるように傾けて設置すればよい。   Further, if the inlet portion of the ejector 11 is disposed above the outlet portion, the ejector 11 becomes a downward flow and the efficiency of the ejector can be improved. It may be installed horizontally or inclined so that the entrance side is above the horizontal.

さらに、エジェクタ吸引流接続配管52との接続部であるエジェクタ吸引流入口部を、エジェクタ出口接続配管53との接続部であるエジェクタ出口部よりも上方になるように設置している。本実施の形態の蒸発器12の配置は、エジェクタ吸引流接続配管52と接続する第1蒸発器12aのほうがエジェクタ出口接続配管53と接続する第2蒸発器12bよりも上方に設置されている。このため、エジェクタ吸引流入口部41をエジェクタ出口部よりも上方になるように設置すれば、エジェクタ吸引流接続配管52及びエジェクタ出口接続配管53の配管長さを短くでき、圧力損失を低減できると共に、配管取り回しを簡単化できる。   Furthermore, an ejector suction inlet port portion that is a connection portion with the ejector suction flow connection piping 52 is set to be higher than an ejector outlet portion that is a connection portion with the ejector outlet connection piping 53. In the arrangement of the evaporator 12 according to the present embodiment, the first evaporator 12 a connected to the ejector suction connection pipe 52 is installed above the second evaporator 12 b connected to the ejector outlet connection pipe 53. For this reason, if the ejector suction inlet 41 is disposed above the ejector outlet, the lengths of the ejector suction connection pipe 52 and the ejector outlet connection pipe 53 can be shortened, and the pressure loss can be reduced. , Piping can be simplified.

また、エジェクタ11の駆動流入口部40に接続する駆動流接続配管51が筐体2の断熱材4の外壁5側を通るように冷媒回路を構成している。このため、駆動流接続配管51の内側には断熱材4が設けられており、高温の冷媒が流れる駆動流接続配管51の熱が庫内8に影響を及ぼすのを防止できる。   Further, the refrigerant circuit is configured so that the driving flow connection pipe 51 connected to the driving inlet 40 of the ejector 11 passes through the outer wall 5 side of the heat insulating material 4 of the housing 2. For this reason, the heat insulating material 4 is provided inside the drive flow connection pipe 51, and the heat of the drive flow connection pipe 51 through which the high-temperature refrigerant flows can be prevented from affecting the interior 8.

なお、図14に示すように、エジェクタ駆動流接続配管51を背面の筐体2aの断熱材4の中を通すように駆動流接続配管51を構成してもよい。断熱材4の内部を通すことで、高温の冷媒が流れる駆動流接続配管51の熱が庫内8及び外部に影響を及ぼすのを防止できる。   In addition, as shown in FIG. 14, you may comprise the drive flow connection piping 51 so that the ejector drive flow connection piping 51 may pass through the heat insulating material 4 of the housing | casing 2a of a back surface. By passing the inside of the heat insulating material 4, it is possible to prevent the heat of the driving flow connection pipe 51 through which the high-temperature refrigerant flows from affecting the inside 8 and the outside.

さらに、図15に示すように、エジェクタ駆動流接続配管51をエジェクタ11に接続するために、庫内8に露出する冷媒配管の周囲に斜線で示す断熱材7を設けてもよい。この断熱材7は例えばウレタンであり、前述と同様、熱損失が生じるのを防止できると共に、エジェクタ効率の低減を防止できる。   Further, as shown in FIG. 15, in order to connect the ejector drive flow connection pipe 51 to the ejector 11, a heat insulating material 7 indicated by hatching may be provided around the refrigerant pipe exposed in the interior 8. The heat insulating material 7 is, for example, urethane, and similarly to the above, heat loss can be prevented and reduction in ejector efficiency can be prevented.

また、図13、図14、図15において、エジェクタ11を、円筒状の軸が縦方向になるように格納しているが、これに限るものではなく、エジェクタ11の軸が斜め方向になってもよく、また水平方向になってもよい。また、エジェクタ11を蒸発器12の近傍で、背面の筐体2aの内壁6に接触するように配設したが、これに限るものではない。蒸発器12の設置状態によっては、側面の筐体2dが近いこともある。蒸発器12の近傍で筐体2を構成している一番近い内壁6の近くにまたは接触させてエジェクタ11を配設すればよい。そして、エジェクタ駆動流接続配管51をなるべく庫内8に露出しないように、筐体2の外壁5と内壁6の間を通るように構成すればよい。   Further, in FIGS. 13, 14, and 15, the ejector 11 is stored so that the cylindrical axis is in the vertical direction, but the present invention is not limited to this, and the axis of the ejector 11 is in the oblique direction. It may also be horizontal. Further, although the ejector 11 is disposed in the vicinity of the evaporator 12 so as to come into contact with the inner wall 6 of the housing 2a on the back surface, the present invention is not limited to this. Depending on the installation state of the evaporator 12, the side housing 2d may be close. The ejector 11 may be disposed near or in contact with the nearest inner wall 6 constituting the housing 2 in the vicinity of the evaporator 12. The ejector drive flow connection pipe 51 may be configured to pass between the outer wall 5 and the inner wall 6 of the housing 2 so as not to be exposed to the interior 8 as much as possible.

また、上記実施の形態では、エジェクタ駆動流接続配管51を冷凍冷蔵庫の背面を構成する筐体2aの外壁5と内壁6の間を通るように冷媒回路を構成したが、これに限るものではない。例えば冷蔵庫の左右の側面を構成する筐体2dの外壁5と内壁6の間を通るように冷媒回路を構成しても、熱損失が生じるのを防止できる効果がある。   Moreover, in the said embodiment, although the refrigerant circuit was comprised so that the ejector drive flow connection piping 51 might pass between the outer wall 5 and the inner wall 6 of the housing | casing 2a which comprises the back surface of a refrigerator-freezer, it is not restricted to this. . For example, even if the refrigerant circuit is configured so as to pass between the outer wall 5 and the inner wall 6 of the housing 2d constituting the left and right side surfaces of the refrigerator, it is possible to prevent heat loss from occurring.

図16は本実施の形態の冷凍冷蔵庫の別の構成に係るエジェクタ11の設置状態を示す説明図である。この構成は、エジェクタ11を庫内8の冷却室1a〜1e間の仕切り壁10の中に設置している。冷却室1a〜1eの隣接している部分は、2、3cm程度の仕切り壁10で隔離され、仕切り壁10の内側は空間である。図16では、この仕切り壁10内の空間を利用してエジェクタ11を設置する構成例を示す。例えば、蒸発器12に最も近い仕切り壁10である野菜室1dと冷凍室1eの間の仕切り壁10の中にエジェクタ11を格納する。   FIG. 16 is an explanatory diagram showing an installation state of the ejector 11 according to another configuration of the refrigerator-freezer of the present embodiment. In this configuration, the ejector 11 is installed in the partition wall 10 between the cooling chambers 1 a to 1 e in the interior 8. The adjacent portions of the cooling chambers 1a to 1e are separated by a partition wall 10 of about 2 to 3 cm, and the inside of the partition wall 10 is a space. In FIG. 16, the structural example which installs the ejector 11 using the space in this partition wall 10 is shown. For example, the ejector 11 is stored in the partition wall 10 between the vegetable compartment 1d and the freezer compartment 1e, which is the partition wall 10 closest to the evaporator 12.

図2に示すように冷却室1a〜1eの背面側には、風路が設けられている構成である。仕切り壁10の中に格納されているエジェクタ11に接続される3本の接続配管のうち、エジェクタ吸引流接続配管52とエジェクタ出口接続配管53は、冷却室1a〜1eの背面側の風路を通っても、温度的にはそれほど問題がない。内部を高温冷媒が流れるエジェクタ駆動流接続配管51は、例えば側面の筐体2dの内壁6を通って、側面の筐体2dの断熱材4内または、断熱材4の外壁5側を通るように配管を導く。このように構成すれば、エジェクタ駆動流接続配管51から庫内8に放熱されるのを防止でき、熱損失を低減できる。   As shown in FIG. 2, it is the structure by which the air path is provided in the back side of the cooling chambers 1a-1e. Of the three connection pipes connected to the ejector 11 stored in the partition wall 10, the ejector suction flow connection pipe 52 and the ejector outlet connection pipe 53 are provided on the rear side of the cooling chambers 1 a to 1 e. Even if it passes, there is not much problem in temperature. The ejector drive flow connection pipe 51 through which the high-temperature refrigerant flows is, for example, passed through the inner wall 6 of the side casing 2d and through the heat insulating material 4 of the side casing 2d or the outer wall 5 side of the heat insulating material 4. Guide the piping. If comprised in this way, it can prevent heat radiating from the ejector drive flow connection piping 51 to the inside 8 and heat loss can be reduced.

また、エジェクタ11との接続の都合上、エジェクタ駆動流接続配管51の仕切り壁10内に格納される部分の配管の周囲に断熱材7を設けることで、さらにエジェクタ駆動流接続配管51から庫内8に放熱されるのを防止でき、熱損失を低減できる。また、エジェクタ駆動流接続配管51に設けた断熱材7によって、冷媒が過冷却になるのを防止でき、エジェクタ効率が低下するのを防ぐことができる。   Further, for the convenience of connection with the ejector 11, by providing the heat insulating material 7 around the portion of the pipe stored in the partition wall 10 of the ejector drive flow connection pipe 51, the ejector drive flow connection pipe 51 is further connected to the inside of the chamber. 8 can be prevented from radiating heat and heat loss can be reduced. Moreover, it can prevent that a refrigerant | coolant becomes overcooling with the heat insulating material 7 provided in the ejector drive flow connection piping 51, and can prevent that ejector efficiency falls.

なお、蒸発器12の上方にエジェクタ11を配置したが、蒸発器12の近傍に存在する空間に配置すればよい。冷却室の容積を低減することなく、熱損失が生じるのを防止できる効果がある。   Although the ejector 11 is disposed above the evaporator 12, it may be disposed in a space existing in the vicinity of the evaporator 12. There is an effect that heat loss can be prevented without reducing the volume of the cooling chamber.

冷凍冷蔵庫の冷凍サイクル構成として図7の冷媒回路に限るものではなく、他の冷媒回路でもよい。例えば絞り装置18や低圧アクチュエーター13や流路切換弁14を有する構成でなくてもよく、また、蒸発器が1つで構成されていてもよい。冷媒回路の構成が異なると、エジェクタ11に接続する3本の接続配管は異なる機器に接続することになる可能性はあるが、冷凍サイクルの構成がどのようなものであっても、少なくともエジェクタ吸引流接続配管52は蒸発器12の出口側と接続することになる。このため、蒸発器12の近傍にエジェクタ11を配置すると、接続配管の長さを短くすることができ、圧力損失を低減できると共に、配管の取り回しが容易になるという効果を奏する。   The refrigeration cycle configuration of the refrigerator / refrigerator is not limited to the refrigerant circuit of FIG. 7, but may be other refrigerant circuits. For example, the configuration does not have to include the expansion device 18, the low pressure actuator 13, and the flow path switching valve 14, and the evaporator may be configured with one. If the configuration of the refrigerant circuit is different, the three connecting pipes connected to the ejector 11 may be connected to different devices, but at least ejector suction regardless of the configuration of the refrigeration cycle. The flow connection pipe 52 is connected to the outlet side of the evaporator 12. For this reason, when the ejector 11 is disposed in the vicinity of the evaporator 12, the length of the connection pipe can be shortened, the pressure loss can be reduced, and the piping can be easily handled.

また、ここでは複数の蒸発器12a、12bを並べて配置しているが、複数の蒸発器を離れた位置に配置してもよい。この場合、複数の蒸発器のうちで、吸引流体としてエジェクタ11に吸引する冷媒を流出する蒸発器の近傍に、エジェクタ11を設置すればよい。エジェクタ11を蒸発器の近傍に設置することで、蒸発器に接続する接続配管の距離を短くでき、配管取り回しを簡単にでき、熱損失を低減できる。また、エジェクタも蒸発器と同様、複数備えていてもよい。
また、蒸発器12の配置がどこであったとしても、蒸発器12の近傍に送風機19を設置している場合に、送風機19の円周側にできてしまう空間で、送風機19の吹出口19aに対向する部分を避けるようにエジェクタ11を配置すれば、庫内8の空間を有効に利用でき、冷却室1a〜1eの容積を低減することなく、エジェクタを搭載する冷凍サイクルを構成できる。
In addition, although the plurality of evaporators 12a and 12b are arranged side by side here, the plurality of evaporators may be arranged at positions separated from each other. In this case, the ejector 11 may be installed in the vicinity of the evaporator that flows out the refrigerant sucked into the ejector 11 as a suction fluid among the plurality of evaporators. By installing the ejector 11 in the vicinity of the evaporator, the distance of the connecting pipe connected to the evaporator can be shortened, the piping can be simplified, and the heat loss can be reduced. Also, a plurality of ejectors may be provided in the same manner as the evaporator.
Further, wherever the evaporator 12 is disposed, when the blower 19 is installed in the vicinity of the evaporator 12, the space formed on the circumferential side of the blower 19 is provided at the outlet 19 a of the blower 19. If the ejector 11 is arranged so as to avoid the opposing portions, the space in the interior 8 can be used effectively, and a refrigeration cycle equipped with the ejector can be configured without reducing the volume of the cooling chambers 1a to 1e.

また、エジェクタ11の構成は図6に限るものではない。ここでは、軸方向から駆動流体が流入する構成であるが、吸入流体と同様、側面に駆動流体の接続配管が設けられていてもよい。また、吸入流体の流入部がエジェクタの円筒の周囲に複数設けられていてもよく、この場合には吸入流体が駆動流に対して均等に吸入され、混合部で混合されやすくなる。エジェクタの混合部での混合性能を向上することは、エジェクタ11の効率向上につながり、さらには冷凍サイクルの性能を向上することができる。
また、図6の構成では、膨張比が一定の固定エジェクタを使用しているが、ニードルなどを用いて喉部の断面積を可変する膨張比変化型の可変絞りエジェクタを用いても、同様の効果を奏する。ただし、固定エジェクタでは、可変絞りエジェクタに比べ、運転状態によって過膨張や不足膨張が生じることがない。例えば過膨張になると衝撃波の発生によって損失が生じたりするが、これを防止できるので、ノズルから噴射される液滴をできるだけ微細化することができ、混合を促進してエジェクタ効率を高く維持することができる。
Moreover, the structure of the ejector 11 is not restricted to FIG. Here, the driving fluid flows in from the axial direction, but a driving fluid connection pipe may be provided on the side surface in the same manner as the suction fluid. Also, a plurality of suction fluid inflow portions may be provided around the ejector cylinder. In this case, the suction fluid is sucked in evenly with respect to the driving flow and is easily mixed in the mixing portion. Improving the mixing performance in the mixing section of the ejector leads to an improvement in the efficiency of the ejector 11, and can further improve the performance of the refrigeration cycle.
In the configuration of FIG. 6, a fixed ejector having a constant expansion ratio is used. However, even if an expansion ratio change type variable throttle ejector that changes the cross-sectional area of the throat using a needle or the like is used, There is an effect. However, the fixed ejector does not cause overexpansion or underexpansion depending on the operation state, compared to the variable throttle ejector. For example, loss due to shock waves can occur when overexpanded, but this can be prevented, so that the droplets ejected from the nozzle can be made as fine as possible, and mixing can be promoted to maintain high ejector efficiency. Can do.

本実施の形態では冷媒にR600aを用いたがこれに限ることなく、二酸化炭素などのその他自然冷媒はもちろんのこと、HFC系冷媒でも同様の効果を奏する。   In the present embodiment, R600a is used as the refrigerant. However, the present invention is not limited to this, and other natural refrigerants such as carbon dioxide as well as HFC refrigerants have the same effect.

また、ここでは5つの冷却室1a〜1eを有する冷凍冷蔵庫に適用する実施例を記載したが、これに限るものではなく、冷却室の数はいくつでもよく、また、冷凍庫のみを有する冷凍庫や、冷凍室のない冷蔵庫に適用しても、同様の効果を奏する。また、各冷却室1a〜1eの配置も、図1に示すものに限らず、どのように配置されていてもよい。
また、筐体2の外壁5と内壁6の間の断熱材として、例えばウレタンを用いたがこれに限るものではなく、例えば一部分に真空断熱パネルを設けると、断熱効果を向上できる。
Moreover, although the Example applied to the refrigerator-freezer which has five cooling chambers 1a-1e was described here, it is not restricted to this, The number of cooling chambers may be how many, and the freezer which has only a freezer, Even if it is applied to a refrigerator without a freezer, the same effect is obtained. Further, the arrangement of the cooling chambers 1a to 1e is not limited to that shown in FIG. 1 and may be arranged in any manner.
Moreover, although urethane was used as the heat insulating material between the outer wall 5 and the inner wall 6 of the housing 2, for example, this is not restrictive. For example, if a vacuum heat insulating panel is provided in a part, the heat insulating effect can be improved.

上記では、冷凍冷蔵庫1を構成する各機器の配置において、機械室3に圧縮機15と流路切換弁14と機械室送風機16を配置しているが、これに限るものではない。他の別の機器が配置されていてもよいし、流路切換弁14を有しない構成でもよい。
また、圧縮機15を格納する機械室3を背面で下方に設けたがこれに限るものではなく、背面の上方など、機械室はどこに設けられていてもよい。また、蒸発器12を冷凍室1eと野菜室1dの背面側に設置したが、これに限らず、どこに設置されていてもよい。
Although the compressor 15, the flow path switching valve 14, and the machine room blower 16 are arranged in the machine room 3 in the arrangement of the devices constituting the refrigerator 1 in the above, the present invention is not limited to this. Another device may be arranged, or a configuration without the flow path switching valve 14 may be employed.
Moreover, although the machine room 3 which stores the compressor 15 was provided in the downward direction on the back, it is not restricted to this, The machine room may be provided anywhere, such as above the back. Moreover, although the evaporator 12 was installed in the back side of the freezer compartment 1e and the vegetable compartment 1d, it is not restricted to this and may be installed anywhere.

以上のように、本発明では、高圧状態の冷媒を吐出する圧縮機15と、前記圧縮機15からの前記高圧状態の冷媒を凝縮させる凝縮器17と、前記凝縮器17で凝縮した冷媒を減圧して高速度で流出する駆動流体により吸引流体を吸引し混合した後、膨張させて低圧状態で流出するエジェクタ11と、前記エジェクタ11からの低圧状態の冷媒を蒸発させる蒸発器12と、前記圧縮機15、前記凝縮器17、前記エジェクタ11、及び前記蒸発器12を冷媒配管で接続して冷媒を循環させる冷媒回路と、前記蒸発器12で得られる冷熱を冷却室1a〜1eに輸送する風路31、32、33、34a、34b及び送風機19と、前記圧縮機15を格納する機械室3と、を備え、前記冷却室1a〜1e、前記蒸発器12、風路31、32、33、34a、34b及び送風機19並びに前記エジェクタ11を庫内8に格納すると共に、前記エジェクタ11を前記蒸発器12の近傍に配置したことにより、冷却室1a〜1eの容積を低減することなくエジェクタを搭載し、冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   As described above, in the present invention, the compressor 15 that discharges the high-pressure refrigerant, the condenser 17 that condenses the high-pressure refrigerant from the compressor 15, and the refrigerant condensed in the condenser 17 is decompressed. Then, the suction fluid is sucked and mixed by the driving fluid that flows out at a high speed, and then the ejector 11 that is expanded and flows out in a low-pressure state, the evaporator 12 that evaporates the low-pressure refrigerant from the ejector 11, and the compression A refrigerant circuit that circulates the refrigerant by connecting the machine 15, the condenser 17, the ejector 11, and the evaporator 12 by refrigerant piping, and wind that transports the cold heat obtained by the evaporator 12 to the cooling chambers 1a to 1e. Passages 31, 32, 33, 34a, 34b and the blower 19, and a machine room 3 for storing the compressor 15, the cooling chambers 1a to 1e, the evaporator 12, the air passages 31, 32, 33, 4a, 34b, the blower 19, and the ejector 11 are housed in the cabinet 8, and the ejector 11 is disposed in the vicinity of the evaporator 12, so that the ejector is mounted without reducing the volume of the cooling chambers 1a to 1e. And the refrigerator-freezer which can aim at the improvement of the efficiency of a refrigerating cycle is obtained.

また、前記送風機19を前記蒸発器12の近傍に配置し、前記送風機19の吹出口19aに対向する部分を避けるように前記エジェクタ11を配置したことにより、冷却室1a〜1eの容積を低減することなくエジェクタを搭載して、冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   Further, the volume of the cooling chambers 1a to 1e is reduced by arranging the blower 19 in the vicinity of the evaporator 12 and arranging the ejector 11 so as to avoid the portion facing the blower outlet 19a of the blower 19. A refrigerator-freezer that can be mounted with an ejector and can improve the efficiency of the refrigeration cycle can be obtained.

また、前記エジェクタ11の駆動流入口部40に接続する駆動流接続配管51のうち、少なくとも前記庫内8に格納される接続配管の周囲に断熱材7を設けたことにより、配管51での熱損失を削減でき、エジェクタ効率の低下を防止して冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   In addition, among the drive flow connection pipes 51 connected to the drive inlet port 40 of the ejector 11, the heat insulating material 7 is provided at least around the connection pipes stored in the interior 8, so that the heat in the pipes 51 can be obtained. It is possible to obtain a refrigerator-freezer that can reduce loss, prevent a decrease in ejector efficiency, and improve the efficiency of the refrigeration cycle.

また、前記庫内8を包囲する筐体2を、外壁5と、内壁6と、前記外壁5及び前記内壁6の間に設けられた断熱材4で構成し、前記庫内8の前記エジェクタ11の駆動流入口部40に接続する駆動流接続配管51が前記筐体2の前記外壁5と前記内壁6の間を通るように前記冷媒回路を構成することにより、配管51での熱損失を削減でき、エジェクタ効率の低下を防止して冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   The housing 2 surrounding the interior 8 is constituted by an outer wall 5, an inner wall 6, and a heat insulating material 4 provided between the outer wall 5 and the inner wall 6, and the ejector 11 in the interior 8. By configuring the refrigerant circuit so that the driving flow connection pipe 51 connected to the driving inlet port 40 of the casing 2 passes between the outer wall 5 and the inner wall 6 of the housing 2, heat loss in the pipe 51 is reduced. Thus, a refrigerator-freezer capable of preventing the decrease in ejector efficiency and improving the efficiency of the refrigeration cycle can be obtained.

また、前記エジェクタ11を前記内壁6に接触して設置することにより、駆動流接続配管51を短くして、接続配管51での熱損失を削減でき、エジェクタ効率の低下を防止して冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   Further, by installing the ejector 11 in contact with the inner wall 6, the drive flow connecting pipe 51 can be shortened, heat loss in the connecting pipe 51 can be reduced, and the efficiency of the refrigeration cycle can be prevented by lowering the ejector efficiency. A refrigerator-freezer capable of improving efficiency is obtained.

また、前記エジェクタ11の駆動流入口部40に接続する駆動流接続配管51が前記筐体2の前記断熱材4の間または前記断熱材4の前記外壁5側を通るように前記冷媒回路を構成したことにより、配管51での熱損失を削減でき、エジェクタ効率の低下を防止して冷凍サイクルの効率の向上を図ることができる冷凍冷蔵庫が得られる。   Further, the refrigerant circuit is configured such that the driving flow connection pipe 51 connected to the driving inlet port 40 of the ejector 11 passes between the heat insulating material 4 of the housing 2 or the outer wall 5 side of the heat insulating material 4. As a result, it is possible to obtain a refrigerator-freezer that can reduce heat loss in the pipe 51, can prevent a decrease in ejector efficiency, and can improve the efficiency of the refrigeration cycle.

本発明の実施の形態1に係る冷凍冷蔵庫を示す正面図である。It is a front view which shows the refrigerator-freezer which concerns on Embodiment 1 of this invention. 本発明の実施の形態1係り、図1のII−II線における断面構成図である。FIG. 2 is a cross-sectional configuration view taken along line II-II in FIG. 1 according to the first embodiment of the present invention. 本発明の実施の形態1に係る筐体の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of housing | casing which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、冷凍冷蔵庫の基本構成を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the basic composition of a refrigerator-freezer. 本発明の実施の形態1に係り、冷蔵庫扉を取り除いて冷凍冷蔵庫の正面から見た筐体を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and removes the refrigerator door and shows the housing | casing seen from the front of the refrigerator-freezer. 本発明の実施の形態1に係るエジェクタの構成及び動作を示す説明図であり、図6(a)はエジェクタの軸に沿った断面構成を示す説明図、図6(b)は図6(a)のX1〜X6の各位置に対応する圧力分布を示すグラフである。It is explanatory drawing which shows the structure and operation | movement of the ejector which concerns on Embodiment 1 of this invention, FIG. 6 (a) is explanatory drawing which shows the cross-sectional structure along the axis | shaft of an ejector, FIG.6 (b) is FIG. It is a graph which shows the pressure distribution corresponding to each position of X1-X6. 本発明の実施の形態1に係る冷凍サイクル構成を示す回路構成図である。It is a circuit block diagram which shows the refrigerating cycle structure which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクルのP−h線図であり、横軸にエンタルピーh、縦軸に圧力Pを示す。It is a Ph diagram of the refrigerating cycle concerning Embodiment 1 of the present invention, and the horizontal axis shows enthalpy h and the vertical axis shows pressure P. 本発明の実施の形態1に係るエジェクタの接続状態を示す説明図であり、蒸発器周囲の冷蔵庫内の空気の流れと共に冷凍サイクルの冷媒の流れを示す。It is explanatory drawing which shows the connection state of the ejector which concerns on Embodiment 1 of this invention, and shows the flow of the refrigerant | coolant of a refrigerating cycle with the flow of the air in the refrigerator around an evaporator. 本発明の実施の形態1に係り、蒸発器を流れる冷媒温度の変化と蒸発器を通過する庫内の空気温度の変化を示すグラフである。It is a graph which concerns on Embodiment 1 of this invention and shows the change of the refrigerant temperature which flows through an evaporator, and the change of the air temperature in the store | warehouse | chamber which passes an evaporator. 本発明の実施の形態1に係り、庫内に格納される蒸発器、庫内送風機、風路の一部を一体に取り付けた部材を簡略化して示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which concerns on Embodiment 1 of this invention, and simplifies and shows the member which attached the evaporator in the store | warehouse | chamber, the fan in a store | warehouse | chamber, and a part of air path integrally. 本発明の実施の形態1による冷凍冷蔵庫の別の構成に係るエジェクタの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of the ejector which concerns on another structure of the refrigerator-freezer by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫の別の構成に係り、エジェクタの設置状態を示す説明図である。It is explanatory drawing which concerns on another structure of the refrigerator-freezer by Embodiment 1 of this invention, and shows the installation state of an ejector. 本発明の実施の形態1による冷凍冷蔵庫の別の構成に係り、エジェクタの設置状態を示す説明図である。It is explanatory drawing which concerns on another structure of the refrigerator-freezer by Embodiment 1 of this invention, and shows the installation state of an ejector. 本発明の実施の形態1による冷凍冷蔵庫の別の構成に係り、エジェクタの設置状態を示す説明図である。It is explanatory drawing which concerns on another structure of the refrigerator-freezer by Embodiment 1 of this invention, and shows the installation state of an ejector. 本発明の実施の形態1による冷凍冷蔵庫の別の構成に係り、筐体のエジェクタ格納部近傍の断面を示す説明図である。It is explanatory drawing which concerns on another structure of the refrigerator-freezer by Embodiment 1 of this invention, and shows the cross section of the ejector storage part vicinity of a housing | casing.

符号の説明Explanation of symbols

1 冷凍冷蔵庫
1a〜1e 冷却室
2 筐体
3 機械室
4 断熱材
5 外壁
6 内壁
7 断熱材
8 庫内
9 冷蔵庫扉
10 仕切り壁
11 エジェクタ
12、12a、12b 蒸発器
15 圧縮機
17 凝縮器
18 絞り装置
19 送風機
31、32、33、34a、34b 風路
35、36 戻り風路
40 駆動流入口部
41 吸引流入口部
42 吸引部
43 ノズル部
44 混合部
45 ディフューザ部
50 絞り装置出口接続配管
51 駆動流接続配管
52 吸引流接続配管
53 エジェクタ出口部接続配管
54 蒸発器出口接続配管
DESCRIPTION OF SYMBOLS 1 Refrigeration refrigerator 1a-1e Cooling room 2 Case 3 Machine room 4 Heat insulation material 5 Outer wall 6 Inner wall 7 Heat insulation material 8 Inside 9 Refrigerator door 10 Partition wall 11 Ejector 12, 12a, 12b Evaporator 15 Compressor 17 Condenser 18 Restriction Device 19 Blower 31, 32, 33, 34a, 34b Air passage 35, 36 Return air passage 40 Drive inlet portion 41 Suction inlet portion 42 Suction portion 43 Nozzle portion 44 Mixing portion 45 Diffuser portion 50 Throttle device outlet connection piping 51 Drive Flow connection piping 52 Suction flow connection piping 53 Ejector outlet connection piping 54 Evaporator outlet connection piping

Claims (5)

高圧状態の冷媒を吐出する圧縮機と、
前記圧縮機から吐出された冷媒を凝縮する凝縮器と、
この凝縮器で凝縮した冷媒を減圧する絞り装置と、
この絞り装置の出口部に一方が接続する絞り装置出口接続配管と、
この絞り装置出口接続配管の他方が入口部に接続され、前記絞り装置で減圧された冷媒を蒸発させる第1蒸発器と、
前記凝縮器と絞り装置の間から分岐する駆動流接続配管と、
前記第1蒸発器の出口部に一方が接続する吸引流接続配管と、
前記駆動流接続配管が接続される駆動流入口部、前記吸引流接続配管の他方が接続される吸引流入口部、前記駆動流接続配管を通って前記駆動流入口部から流入する前記凝縮器で凝縮した冷媒を減圧して高速度で噴出するノズル部、前記吸引流接続配管を通して前記第1蒸発器で蒸発した冷媒を前記吸引流入口部から吸引し、前記ノズル部から噴出した冷媒と混合する混合部、この混合部で混合された冷媒の圧力を上昇させるディフューザ部、から成り、このディフューザ部で圧力上昇した冷媒を出口部から流出するエジェクタと、
このエジェクタの出口部に一方が接続するエジェクタ出口接続配管と、
このエジェクタ出口接続配管の他方が入口部に接続され、前記エジェクタからの冷媒を、前記第1蒸発器の蒸発温度よりも高い蒸発温度で蒸発させ第2蒸発器と、
この第2蒸発器の出口部から前記第2蒸発器で蒸発した冷媒を前記圧縮機へと導く蒸発器出口接続配管と、
を有する冷媒回路を具備すると共に、
前記第1蒸発器および第2蒸発器を通過して冷却された庫内空気が供給される冷却室と
この冷却室を冷却した後の庫内空気を前記冷却室から前記第1蒸発器および第2蒸発器へと戻す戻り風路と、を備え、
前記戻り風路を通って再び前記第1蒸発器および第2蒸発器を通過する庫内空気の流れに対して、前記第2蒸発器が上流側に、前記第1蒸発器が下流側となるように、前記第1蒸発器が前記第2蒸発器の上方に並んで配置され、前記通過する庫内空気が、先に蒸発温度の高い前記第2蒸発器の冷媒と熱交換し、空気温度が低下した状態で蒸発温度の低い前記第1蒸発器の冷媒と熱交換すると共に、
前記通過する庫内空気の流れが、前記第1蒸発器および第2蒸発器のそれぞれにおいて、前記入口部から前記出口部に向かう冷媒の流れに対して並行流となるように、前記第1蒸発器の入口部に接続する前記絞り装置出口接続配管が前記第1蒸発器の下部に、前記第1蒸発器の出口部に接続する前記吸引流接続配管が前記第1蒸発器の上部に位置して、冷媒が前記第1蒸発器を上昇流で流れ、かつ、前記第2蒸発器の入口部に接続する前記エジェクタ出口接続配管が前記第2蒸発器の下部に、前記第2蒸発器の出口部に接続する前記蒸発器出口接続配管が前記第2蒸発器の上部に位置して、冷媒が前記第2蒸発器を上昇流で流れることを特徴とする冷凍冷蔵庫。
A compressor that discharges high-pressure refrigerant;
A condenser for condensing the refrigerant discharged from the compressor;
A throttle device for depressurizing the refrigerant condensed in the condenser;
A throttle device outlet connection pipe, one of which is connected to the outlet portion of the throttle device,
A first evaporator for connecting the other end of the expansion device outlet connection pipe to an inlet portion and evaporating the refrigerant decompressed by the expansion device;
A driving flow connection pipe branched from between the condenser and the throttle device;
A suction flow connection pipe, one of which is connected to the outlet of the first evaporator;
A driving inlet part to which the driving flow connection pipe is connected; a suction inlet part to which the other of the suction flow connection pipes is connected; and the condenser that flows from the driving inlet part through the driving flow connection pipe nozzle portion for ejecting at a high speed the condensed refrigerant by decompression, sucks the refrigerant evaporated in the first evaporator through the suction flow connection pipe from the suction inlet unit is mixed with the refrigerant jetted from the nozzle portion An ejector that comprises a mixing section, a diffuser section that increases the pressure of the refrigerant mixed in the mixing section, and that discharges the refrigerant whose pressure has increased in the diffuser section from the outlet section ;
Ejector outlet connection piping that one side connects to the outlet of this ejector,
The other of the ejector outlet connection pipe is connected to the inlet, the refrigerant from the ejector, and a second evaporator Ru evaporated in high evaporation temperature than the evaporation temperature of the first evaporator,
An evaporator outlet connection pipe for guiding the refrigerant evaporated in the second evaporator from the outlet portion of the second evaporator to the compressor ;
A refrigerant circuit having
A cooling chamber to which the internal air cooled by passing through the first evaporator and the second evaporator is supplied ;
A return air passage for returning the air in the cabinet after cooling the cooling chamber from the cooling chamber to the first evaporator and the second evaporator ,
The second evaporator is on the upstream side and the first evaporator is on the downstream side with respect to the flow of the internal air passing through the first evaporator and the second evaporator again through the return air passage. As described above, the first evaporators are arranged side by side above the second evaporator, and the passing air passes through the heat exchange with the refrigerant of the second evaporator having a high evaporation temperature first, and the air temperature Heat exchange with the refrigerant of the first evaporator having a low evaporation temperature in a state where the
In the first evaporator and the second evaporator , the flow of the internal air passing therethrough is parallel to the refrigerant flow from the inlet portion toward the outlet portion. The expansion device outlet connection pipe connected to the inlet of the evaporator is located in the lower part of the first evaporator, and the suction flow connection pipe connected to the outlet of the first evaporator is located in the upper part of the first evaporator. Then, the refrigerant flows in an upward flow through the first evaporator, and the ejector outlet connection pipe connected to the inlet portion of the second evaporator is disposed at the lower portion of the second evaporator, and the outlet of the second evaporator. the evaporator outlet connection pipe is positioned above the second evaporator, refrigerator characterized by flow Rukoto in refrigerant upward flow of the second evaporator connected to the part.
記エジェクタが前記第1熱交換器の上方に設置されていることを特徴とする請求項1記載の冷凍冷蔵庫。 Refrigerator according to claim 1, wherein the pre-Symbol ejector is characterized in that it is placed above the first heat exchanger. 前記エジェクタが、円筒状であると共に、前記駆動流入口部が前記エジェクタ出口部よりも上方に位置するように傾斜した状態で設置され、前記駆動流入口部から流入する冷媒が前記エジェクタ内で下降流となることを特徴とする請求項1または請求項2記載の冷凍冷蔵庫。 The ejector has a cylindrical shape and is installed in an inclined state so that the drive inlet portion is positioned above the ejector outlet portion, and the refrigerant flowing from the drive inlet portion descends in the ejector. The refrigerator-freezer according to claim 1 or 2, wherein the refrigerator is a flow . 記エジェクタは、前記吸引流入口部が前記エジェクタ出口部よりも上方に位置するように設置されていることを特徴とする請求項1乃至3のいずれかに記載の冷凍冷蔵庫。 Before SL ejector refrigerator of any crab according to claim 1乃Optimum 3 the suction inlet unit is characterized that you have placed so as to be positioned above said ejector outlet portion. 庫内に前記冷却室を複数有し、隣接する前記冷却室を隔離する仕切り壁を備え、
前記エジェクタが、前記仕切り壁の中に格納されていることを特徴とする請求項1乃至のいずれかに記載の冷凍冷蔵庫。
A plurality of the cooling chambers in a cabinet, comprising a partition wall that separates the adjacent cooling chambers;
The refrigerator-freezer according to any one of claims 1 to 4 , wherein the ejector is stored in the partition wall .
JP2007081598A 2007-03-27 2007-03-27 Freezer refrigerator Active JP4623031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081598A JP4623031B2 (en) 2007-03-27 2007-03-27 Freezer refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081598A JP4623031B2 (en) 2007-03-27 2007-03-27 Freezer refrigerator

Publications (2)

Publication Number Publication Date
JP2008241112A JP2008241112A (en) 2008-10-09
JP4623031B2 true JP4623031B2 (en) 2011-02-02

Family

ID=39912681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081598A Active JP4623031B2 (en) 2007-03-27 2007-03-27 Freezer refrigerator

Country Status (1)

Country Link
JP (1) JP4623031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923562B2 (en) * 2014-07-31 2016-05-24 株式会社平和 Game machine
JP7223581B2 (en) * 2019-01-23 2023-02-16 日立グローバルライフソリューションズ株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234843A (en) * 1999-02-15 2000-08-29 Toshiba Corp Refrigerator
JP2001116427A (en) * 1999-10-12 2001-04-27 Hitachi Ltd Refrigerator and manufacturing method
JP2003202168A (en) * 2002-01-10 2003-07-18 Denso Corp Gas-liquid separator for eject cycle
JP2006143124A (en) * 2004-11-24 2006-06-08 Denso Corp Refrigeration cycle device for vehicle
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818965B2 (en) * 1990-04-05 1998-10-30 株式会社日立製作所 Refrigeration equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234843A (en) * 1999-02-15 2000-08-29 Toshiba Corp Refrigerator
JP2001116427A (en) * 1999-10-12 2001-04-27 Hitachi Ltd Refrigerator and manufacturing method
JP2003202168A (en) * 2002-01-10 2003-07-18 Denso Corp Gas-liquid separator for eject cycle
JP2006143124A (en) * 2004-11-24 2006-06-08 Denso Corp Refrigeration cycle device for vehicle
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine

Also Published As

Publication number Publication date
JP2008241112A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
CN100422664C (en) Ejector cycle device
JP5050563B2 (en) Ejector and ejector type refrigeration cycle unit
CN101809388B (en) Refrigerator
US7950245B2 (en) Refrigerator related technology
KR20110071167A (en) Refrigerator
JP2006266636A (en) Freezing apparatus
JP2006003022A (en) Refrigerating unit and intermediate pressure receiver
JP2014048030A (en) Cooling warehouse
KR101096412B1 (en) Roof-Top Type Air-Conditioning System for Bus
JP5617791B2 (en) Refrigeration cycle equipment
JP4548266B2 (en) Vapor compression refrigeration cycle equipment
JP4623031B2 (en) Freezer refrigerator
KR102289303B1 (en) A refrigerator
JP2010014353A (en) Evaporator unit for ejector refrigeration cycle
JP2008057941A (en) Refrigerant cycle device
JP4992477B2 (en) vending machine
JP2005241204A (en) Evaporator, heat pump, and heat utilization device
CN104823010A (en) Refrigerator
JP2018048799A (en) refrigerator
JP2008241111A (en) Refrigerator-freezer
JP2008241113A (en) Refrigerator-freezer
JP2014013111A (en) Refrigerator
RU2773123C2 (en) Refrigerator
WO2023135628A1 (en) Freezer/refrigerator
JP7229348B2 (en) refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R151 Written notification of patent or utility model registration

Ref document number: 4623031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250