JP2007321939A - Bearing assembling method, rolling bearing, and cage for bearing - Google Patents

Bearing assembling method, rolling bearing, and cage for bearing Download PDF

Info

Publication number
JP2007321939A
JP2007321939A JP2006155646A JP2006155646A JP2007321939A JP 2007321939 A JP2007321939 A JP 2007321939A JP 2006155646 A JP2006155646 A JP 2006155646A JP 2006155646 A JP2006155646 A JP 2006155646A JP 2007321939 A JP2007321939 A JP 2007321939A
Authority
JP
Japan
Prior art keywords
bearing
cage
rolling elements
raceway
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006155646A
Other languages
Japanese (ja)
Inventor
Daiki Umehara
大樹 梅原
Osamu Fujii
修 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006155646A priority Critical patent/JP2007321939A/en
Publication of JP2007321939A publication Critical patent/JP2007321939A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • F16C43/06Placing rolling bodies in cages or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for operating a bearing incorporated with a cage stably for a long time without reducing the strength of the cage. <P>SOLUTION: In this bearing assembling method, the bearing is constituted by providing the resin-made cage revolving while holding a plurality of rolling elements (rollers) 5 incorporated along a section between raceway surfaces 1s and 3s of inner and outer rings 1, 3 so as to roll freely, holding each rolling element in the cage so as to rotate freely centered on a rotary symmetrical axis Z to form a cross section crossing the rotary symmetrical axis orthogonally into a circular shape, and protruding annular collars (the small diameter collar 7, the large diameter collar 9) for holding and guiding the plurality of rolling elements along the raceway surfaces on either of the inner and outer rings and at least on one side of both raceway surfaces. When incorporating the plurality of rolling elements into the inner ring formed by protruding the small diameter collar together with the cage, the cage is heated and thermally expanded to incorporate each rolling element held in the cage into the raceway surface of the inner ring by crossing over the protruding end 7e of the small diameter collar part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受の組み立て方法の改良に関し、特に保持器と共に複数の転動体を軌道輪に組み込む技術に関する。   The present invention relates to an improvement in a method for assembling a bearing, and more particularly to a technique for incorporating a plurality of rolling elements together with a cage into a bearing ring.

従来、鉄道車両をはじめとする各種の駆動装置には、その回転機構を回転自在に支持する軸受が適用されており、当該軸受には、内外輪間に組み込まれた複数の転動体を回転自在に保持する複数のポケットを有する保持器が設けられている。かかる軸受としては、比較的小さな荷重を支持する際に適用する玉軸受と、比較的大きな荷重を支持する際に適用するころ軸受とがあるが、近年における高荷重下での高速回転に対応するために、ころ軸受が適用される場合が多くなっている。   Conventionally, various drive devices such as railway vehicles have been applied with bearings that rotatably support the rotation mechanism, and a plurality of rolling elements incorporated between the inner and outer rings can be freely rotated on the bearings. A retainer having a plurality of pockets to be held on is provided. As such a bearing, there are a ball bearing that is applied when supporting a relatively small load and a roller bearing that is applied when supporting a relatively large load, which corresponds to high-speed rotation under a high load in recent years. For this reason, roller bearings are often used.

ころ軸受には、例えば特許文献1に示すような保持器が転動体(ころ)と共に組み込まれている。かかる構成の一例として図1(a)には、複数の転動体(ころ)5の回転対称軸Zが軸受の回転中心軸(軌道輪1,3の回転中心を通る中心軸Q(図1(c)))上の一点に集束するように設計された円すいころ軸受が示されている。当該ころ軸受には、相対回転可能に対向配置された軌道輪(内輪1、外輪3)と、内外輪1,3の対向面にそれぞれ周方向に連続して形成された軌道面1s,3s間に沿って転動自在に組み込まれた複数の転動体(ころ)5と、複数の転動体(ころ)5を1つずつ回転自在に保持しながら、内外輪1,3間に沿って公転する樹脂製の保持器とが設けられている。   In the roller bearing, for example, a cage as shown in Patent Document 1 is incorporated together with rolling elements (rollers). As an example of such a configuration, in FIG. 1A, a rotationally symmetric axis Z of a plurality of rolling elements (rollers) 5 is a central axis Q (see FIG. c))) Tapered roller bearings designed to focus on one point are shown. The roller bearing includes a raceway (inner ring 1 and outer ring 3) arranged opposite to each other so as to be relatively rotatable, and a raceway surface 1s, 3s formed continuously on the opposing surfaces of the inner and outer rings 1, 3 in the circumferential direction. A plurality of rolling elements (rollers) 5 incorporated so as to be freely rotatable along the inner circumference and the plurality of rolling elements (rollers) 5 are revolved along the inner and outer rings 1 and 3 while being rotatably held one by one. A resin cage is provided.

かかる構成において、内外輪1,3のいずれか一方及び双方の軌道面1s,3sの少なくとも片側には、当該軌道面1s,3sに沿って環状の鍔部が突出されている。なお、図面には、内輪1の軌道面1sの両側に環状の鍔部7,9が突出した構成が例示されている。これにより、複数の転動体(ころ)5が内外輪1,3の軌道面1s,3s間を転動する際、各転動体(ころ)5は、環状の鍔部7,9の案内面7s,9sによって保持されながら内外輪1,3の軌道面1s,3s間に沿って案内される。このとき、各転動体(ころ)5は、保持器に形成された複数のポケット8に1つずつ保持されて回転対称軸Zを中心に回転する。   In such a configuration, an annular flange protrudes along the raceway surfaces 1s, 3s on at least one side of either one of the inner and outer rings 1, 3 and both raceway surfaces 1s, 3s. In the drawing, a configuration in which annular flanges 7 and 9 protrude on both sides of the raceway surface 1s of the inner ring 1 is illustrated. Thus, when the plurality of rolling elements (rollers) 5 roll between the raceway surfaces 1s, 3s of the inner and outer rings 1, 3, each rolling element (roller) 5 is guided by the guide surface 7s of the annular flanges 7, 9. , 9s, and guided along the raceway surfaces 1s, 3s of the inner and outer rings 1, 3. At this time, each rolling element (roller) 5 is held one by one in a plurality of pockets 8 formed in the cage and rotates about the rotational symmetry axis Z.

また、内外輪1,3の軌道面1s,3sは、各転動体(ころ)5の回転対称軸Zの集束方向に沿って傾斜しており、これに対応して、内輪1の軌道面1sの両側に突出した環状の鍔部7,9は、その突出端7e,9eの径寸法が相互に異なる。即ち、一方の鍔部9(以下、大径鍔部9という)は、比較的大径の突出端9eとなり、他方の鍔部7(以下、小径鍔部7という)は、一方の鍔部9よりも比較的小径の突出端7eとなっている。   Further, the raceway surfaces 1 s and 3 s of the inner and outer rings 1 and 3 are inclined along the focusing direction of the rotational symmetry axis Z of each rolling element (roller) 5, and correspondingly, the raceway surface 1 s of the inner ring 1. The ring-shaped flange portions 7 and 9 protruding on both sides of the protrusions 7e and 9e have different diameters. That is, one of the flanges 9 (hereinafter referred to as the large diameter flange 9) serves as a relatively large-diameter protruding end 9e, and the other flange 7 (hereinafter referred to as the small diameter flange 7) corresponds to the one flange 9. The protruding end 7e has a relatively small diameter.

また、保持器は、内外輪1,3間に沿って周方向に連続し且つ互いに同中心に所定の間隔を空けて対向配置された2つの円環部2,4と、これら円環部2,4の間に亘って延出し且つ当該円環部2,4に沿って周方向に等間隔で配列された複数の柱部6とを備えており、各ポケット8は、2つの円環部2,4と複数の柱部6とによって区画されて構成されている。この場合、2つの円環部2,4は、内外輪1,3の軌道面1s,3sの傾斜方向に沿って互いに異なる径に設計されている。即ち、一方の円環部(大径側円環部)4は、他方の円環部(小径側円環部)2よりも比較的大径に設計されており、これにより、保持器は、その全体が円錐台形状を成している。   Further, the cage includes two annular portions 2, 4 which are continuous in the circumferential direction between the inner and outer rings 1, 3 and are opposed to each other at a predetermined interval at the same center. , 4 and a plurality of column portions 6 that are arranged at equal intervals in the circumferential direction along the annular portions 2, 4, and each pocket 8 includes two annular portions. 2 and 4 and a plurality of pillars 6 are defined. In this case, the two annular portions 2, 4 are designed to have different diameters along the inclination direction of the raceway surfaces 1s, 3s of the inner and outer rings 1, 3. That is, one annular part (large diameter side annular part) 4 is designed to have a relatively larger diameter than the other annular part (small diameter side annular part) 2. The whole has a truncated cone shape.

このような円すいころ軸受を組み立てる場合には、例えば図1(b)に示すように、保持器の各ポケット8に転動体(ころ)5を保持させた後、環状の小径鍔部7を各転動体(ころ)5に位置付けるように内輪1を矢印Y方向に移動させる。このとき、小径鍔部7は、回転対称軸Zが軸受の回転中心軸Q(図1(c))に向けて集束して配列された各転動体(ころ)5の内側に入り込んでいくが、その後、当該小径鍔部7における突出端7eの環状表面7mと各転動体(ころ)5の転動面5mとの間の高低差Gにより、それ以上、内輪1を矢印Y方向に移動させることができない状態となる。   When assembling such a tapered roller bearing, for example, as shown in FIG. 1 (b), after rolling elements (rollers) 5 are held in the respective pockets 8 of the cage, the annular small-diameter flanges 7 are respectively attached. The inner ring 1 is moved in the arrow Y direction so as to be positioned on the rolling elements (rollers) 5. At this time, the small-diameter flange 7 enters the inside of each rolling element (roller) 5 in which the rotational symmetry axis Z is converged and arranged toward the rotation center axis Q of the bearing (FIG. 1 (c)). Thereafter, the inner ring 1 is further moved in the direction of the arrow Y due to the height difference G between the annular surface 7m of the protruding end 7e of the small diameter flange 7 and the rolling surface 5m of each rolling element (roller) 5. It becomes a state that can not be.

この状態において、保持器と共に複数の転動体(ころ)5を内輪1の軌道面1sに組み込むためには、各転動体(ころ)5を小径鍔部7の突出端7eを乗り越えて当該軌道面1sに組み込むことになる。このとき、保持器の小径側円環部2には、当該小径側円環部2を外径方向に押し広げようとする力が作用するが、小径側円環部2は、円錐台形状を成す保持器において径方向に幅広のフランジ状を成しており、大径側円環部4に比べて高い剛性を発揮する。この場合、各転動体(ころ)5を小径鍔部7の突出端7eを乗り越えて当該軌道面1sに組み込む際に保持器に加わった力は、その殆どが剛性の低い大径側円環部4に作用し、当該大径側円環部4を外径方向に押し広げようとする。このため、内輪1の軌道面1sに対する各転動体(ころ)5の組み込みが困難な状態となっていた。   In this state, in order to incorporate a plurality of rolling elements (rollers) 5 together with the cage into the raceway surface 1 s of the inner ring 1, each rolling element (roller) 5 gets over the protruding end 7 e of the small-diameter flange 7 and the raceway surface. It will be incorporated into 1s. At this time, a force is applied to the small-diameter-side annular portion 2 of the cage to push and expand the small-diameter-side annular portion 2 in the outer diameter direction, but the small-diameter-side annular portion 2 has a truncated cone shape. The formed cage has a wide flange shape in the radial direction, and exhibits higher rigidity than the large-diameter side annular portion 4. In this case, most of the force applied to the cage when the rolling elements (rollers) 5 are moved over the projecting end 7e of the small-diameter flange 7 and incorporated into the raceway surface 1s is the large-diameter side annular portion having a low rigidity. 4, and attempts to spread the large-diameter side annular portion 4 in the outer diameter direction. For this reason, it has been difficult to incorporate the rolling elements (rollers) 5 into the raceway surface 1 s of the inner ring 1.

そこで、例えば特許文献1には、保持器の小径側(各柱部6の小径側)の保持部分を減少させることで、各転動体(ころ)5の組込時に、当該保持器の小径側も外径方向に押し広げられるようにした技術が提案されている。しかしながら、このように保持器の小径側(各柱部6の小径側)の保持部分を減少させると、当該保持器の強度を一定に維持することが困難になり、軸受の使用状態や環境によっては、保持器が早期に劣化したり、摩損する虞がある。そうなると、当該保持器が組み込まれた軸受を長期に亘って安定して動作させることが困難になってしまう。
特開平8−247152号公報
Therefore, for example, in Patent Document 1, by reducing the holding portion on the small diameter side of the cage (small diameter side of each column portion 6), when each rolling element (roller) 5 is assembled, the small diameter side of the cage A technique has also been proposed that can be expanded in the outer diameter direction. However, if the holding portion on the small diameter side (small diameter side of each column portion 6) of the cage is reduced in this way, it becomes difficult to maintain the strength of the cage constant, and depending on the use state and environment of the bearing. In such a case, there is a possibility that the cage is deteriorated or worn out at an early stage. If it becomes so, it will become difficult to operate stably the bearing in which the said holder | retainer was integrated over a long period of time.
JP-A-8-247152

本発明は、このような問題を解決するためになされており、その目的は、保持器の強度を低下させること無く、当該保持器を組み込んだ軸受を長期に亘って安定して動作させることが可能な技術を提供することにある。   The present invention has been made in order to solve such a problem, and an object of the present invention is to stably operate a bearing incorporating the cage over a long period of time without reducing the strength of the cage. It is to provide possible technology.

かかる目的を達成するために、本発明は、相対回転可能に対向配置された軌道輪と、軌道輪の対向面にそれぞれ周方向に連続して形成された軌道面間に沿って転動自在に組み込まれた複数の転動体と、複数の転動体を1つずつ回転自在に保持しながら、軌道輪間に沿って公転する樹脂製の保持器とを備え、各転動体は、回転対称軸を中心に回転自在に保持器に保持され且つ当該回転対称軸に直交する横断面が円形を成していると共に、軌道輪のいずれか一方及び双方の軌道面の少なくとも片側には、当該軌道面に沿って複数の転動体を保持し且つ案内する環状の鍔部が突出されている軸受の組立方法であって、環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、保持器を加熱して熱膨張させることで、当該保持器に保持された各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込む。   In order to achieve such an object, the present invention is capable of rolling along a raceway that is disposed so as to be relatively rotatable and a raceway surface that is continuously formed in a circumferential direction on a facing surface of the raceway. Each of the rolling elements has a rotationally symmetric axis, and includes a plurality of incorporated rolling elements and a resin cage that revolves along the raceway while holding each of the rolling elements rotatably one by one. The cross section perpendicular to the rotational symmetry axis is circularly held at the center and rotatably held in the center, and at least one side of the raceway and at least one of the raceway surfaces are arranged on the raceway surface. A method for assembling a bearing in which a ring-shaped flange portion that holds and guides a plurality of rolling elements is protruded along a bearing ring that protrudes the ring-shaped flange portion together with a cage. When assembling, the cage is heated and thermally expanded. The rolling elements held in lifting device ride over a protruding end of the flange portion incorporating the raceway surface of the bearing ring.

本発明において、環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、予め保持器を加熱して熱膨張させた後、当該保持器に複数の転動体を保持させ、その状態で、各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込む。この場合、環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、予め保持器に保持させた複数の転動体を環状の鍔部に対して位置決めし、その状態で、各転動体及び保持器並びに鍔部が突出された軌道輪を同時に加熱して当該保持器を熱膨張させた後、各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込むようにしても良い。   In the present invention, when incorporating a plurality of rolling elements together with the cage into the raceway ring from which the annular flange protrudes, the cage is heated in advance and thermally expanded, and then a plurality of rolling elements are mounted on the cage. The moving body is held, and in this state, each rolling body gets over the protruding end of the flange and is incorporated into the raceway surface of the raceway. In this case, when incorporating a plurality of rolling elements together with the cage into the raceway from which the annular collar protrudes, the plurality of rolling elements previously held by the cage are positioned with respect to the annular collar. In this state, the rolling elements, the cage, and the race ring from which the flange is projected are heated at the same time to thermally expand the cage. You may make it incorporate in the track surface.

また、上述した本発明の軸受組立方法で組み立てられた転がり軸受であって、環状の鍔部の突出端には、各転動体の軌道面への組込方向に沿って末広がり状に連続的に傾斜した所定傾斜角度のテーパ面が形成されている。この場合、テーパ面の傾斜角度は、軌道輪の回転中心を通る中心軸とテーパ面との成す角度で規定されている。なお、テーパ面のうち最も軌道面寄りの部位に、軌道輪の中心軸と平行に所定量だけ延在させた環状のストレート面を形成しても良い。   Further, in the rolling bearing assembled by the above-described bearing assembling method of the present invention, the projecting end of the annular flange portion is continuously widened along the direction of assembling the rolling elements into the raceway surface. An inclined tapered surface having a predetermined inclination angle is formed. In this case, the inclination angle of the tapered surface is defined by the angle formed by the central axis passing through the center of rotation of the race and the tapered surface. In addition, you may form the cyclic | annular straight surface extended only a predetermined amount in parallel with the center axis | shaft of a bearing ring in the site | part nearest to a raceway surface among taper surfaces.

本発明によれば、保持器の強度を低下させること無く、当該保持器を組み込んだ軸受を長期に亘って安定して動作させることが可能な技術を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which can operate | move the bearing incorporating the said holder | retainer stably over a long period of time can be implement | achieved, without reducing the intensity | strength of a holder | retainer.

以下、本発明の一実施の形態に係る軸受組立方法及び転がり軸受について、添付図面を参照して説明する。軸受としては、例えば鉄道車両や自動車、或いは各種の産業用及び工業用の装置に設けられた回転軸を支持する軸受などがあるが、ここでは一例として、新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受を想定する。なお、軸受としては、ラジアル軸受やスラスト軸受を適用することができるが、ここでは一例として、互いに相対回転可能にラジアル方向に対向配置された内輪及び外輪とを備えたラジアル軸受を想定する。   Hereinafter, a bearing assembly method and a rolling bearing according to an embodiment of the present invention will be described with reference to the accompanying drawings. Examples of bearings include, for example, a bearing that supports a rotating shaft provided in a railway vehicle, an automobile, or various industrial and industrial devices. Here, as an example, the bearing is provided in a high-speed railway vehicle such as a Shinkansen. Assume a bearing that supports a rotating shaft (for example, an axle) and an output shaft of the main motor. As a bearing, a radial bearing or a thrust bearing can be applied, but here, as an example, a radial bearing including an inner ring and an outer ring that are disposed to face each other in the radial direction so as to be relatively rotatable with each other is assumed.

本実施の形態では、図1(a),(b)に示された円すいころ軸受を想定して説明するが、既に説明した内容についての説明を省略する。この場合、転動体(ころ)5としては、例えば円筒ころ、針状ころ、円すいころ、球面ころ、凸面ころなどを適用することができる。なお、凸面ころは、これを2列に組み込んだ自動調心ころ軸受に適用される。いずれを適用した場合でも、転動体(ころ)5は、回転対称軸Zを中心に回転自在に保持器に保持され且つ当該回転対称軸Zに直交する横断面が円形を成し、周方向に連続した転動面5m(内外輪1,3の軌道面1s,3sに沿って摺接しながら転がる周面)と、その両側の円形の側面5e(図1(b))とで構成されている。   In the present embodiment, description will be made assuming the tapered roller bearing shown in FIGS. 1A and 1B, but description of the contents already described will be omitted. In this case, as the rolling element (roller) 5, for example, a cylindrical roller, a needle roller, a tapered roller, a spherical roller, a convex roller, or the like can be applied. The convex roller is applied to a self-aligning roller bearing in which this is incorporated in two rows. Regardless of which is applied, the rolling element (roller) 5 is held by the cage so as to be rotatable about the rotational symmetry axis Z, and the cross section perpendicular to the rotational symmetry axis Z forms a circle, and in the circumferential direction. It consists of a continuous rolling surface 5m (a circumferential surface that rolls while sliding along the raceway surfaces 1s and 3s of the inner and outer rings 1, 3) and circular side surfaces 5e on both sides (FIG. 1 (b)). .

また、転動面5mと側面5eとの間には、周方向に沿って連続した環状の端面が形成されており、ここに所定の面取り5rが施されている。この場合、面取り5rは、内外輪1,3間を転動する際に、例えば内外輪1,3の軌道面1s,3sや転動体(ころ)5の磨耗或いは摩損などを低減させるために施されており、その面取り5rの寸法は、例えば内外輪1,3の軌道面1s,3sや転動体(ころ)5の形状や材質などに応じて任意に設定されるため、ここでは特に数値限定はしない。   An annular end surface that is continuous along the circumferential direction is formed between the rolling surface 5m and the side surface 5e, and a predetermined chamfer 5r is provided here. In this case, the chamfer 5r is applied to reduce wear or wear of the raceway surfaces 1s, 3s of the inner and outer rings 1, 3 and the rolling elements (rollers) 5 when rolling between the inner and outer rings 1, 3. Since the dimensions of the chamfer 5r are arbitrarily set according to the raceway surfaces 1s, 3s of the inner and outer rings 1, 3 and the shape and material of the rolling elements (rollers) 5, for example, numerical values are limited here. Don't do it.

また、図3(a)には、図1(a),(b)に示された円すいころ軸受に組み込まれた保持器の全体構成が例示されており、当該保持器において、複数の柱部6は、小径側円環部2と大径側円環部4との間に亘って延出し、その両端部6eがそれぞれの円環部2,4に接合されている。この場合、2つの円環部2,4と複数の柱部6とは、保持器成形時に一体成形しても良いし、或いは、複数の柱部6を別体で成形し、その両端部6eを円環部2,4に後付けしても良い。   FIG. 3A illustrates the overall configuration of the cage incorporated in the tapered roller bearing shown in FIGS. 1A and 1B. In the cage, a plurality of column portions are illustrated. 6 extends between the small-diameter-side annular portion 2 and the large-diameter-side annular portion 4, and both end portions 6 e are joined to the respective annular portions 2, 4. In this case, the two annular portions 2 and 4 and the plurality of column portions 6 may be integrally formed at the time of molding the cage, or the plurality of column portions 6 may be formed separately, and both end portions 6e thereof. May be retrofitted to the ring parts 2 and 4.

なお、後付けする方法としては、各柱部6の両端部6eを円環部2,4に対して例えば接着、溶着、嵌合、ネジ止めするなどの各種の方法を適用することができるため、ここでは特に限定しない。また、保持器(円環部2,4、柱部6)の材質としては、樹脂に限定されることは無く、加熱による熱膨張を奏する金属材料を適用しても良い。更に、保持器の種類としては、例えばもみぬき形保持器、波形保持器、冠形保持器、かご形保持器、合せ保持器などを適用することができる。   As a method for retrofitting, various methods such as bonding, welding, fitting, and screwing the both end portions 6e of each column portion 6 to the annular portions 2, 4 can be applied. There is no particular limitation here. Further, the material of the cage (the annular portions 2 and 4 and the column portion 6) is not limited to resin, and a metal material that exhibits thermal expansion by heating may be applied. Further, as the type of cage, for example, a rice brace cage, a corrugated cage, a crown cage, a cage cage, a mating cage, etc. can be applied.

本実施の形態では、上述した図1(b)の組立方法において、環状の鍔部(小径鍔部7、大径鍔部9)が突出された軌道輪(図面では、内輪1)に対して保持器と共に複数の転動体(ころ)5を組み込む際に、保持器を加熱して熱膨張させることで、当該保持器に保持された各転動体(ころ)5を鍔部7の突出端7eを乗り越えて当該内輪1の軌道面1sに組み込むことができる。この場合、保持器の加熱タイミングとしては、例えば複数の転動体(ころ)5を保持する前に、予め保持器だけを加熱して熱膨張させた後、当該保持器に複数の転動体(ころ)5を保持させ、その状態で、各転動体(ころ)5を鍔部7の突出端7eを乗り越えて内輪1の軌道面1sに組み込む。   In the present embodiment, in the assembly method of FIG. 1B described above, with respect to the bearing ring (inner ring 1 in the drawing) from which the annular flanges (small-diameter flange 7 and large-diameter flange 9) protrude. When a plurality of rolling elements (rollers) 5 are assembled together with the cage, the rolling elements (rollers) 5 held by the cage are heated and thermally expanded by heating the cage, so that the protruding end 7e of the flange portion 7 is provided. Can be incorporated into the raceway surface 1 s of the inner ring 1. In this case, as the heating timing of the cage, for example, before holding the plurality of rolling elements (rollers) 5, only the cage is heated and thermally expanded in advance, and then the plurality of rolling elements (rollers) are placed in the cage. ) 5 is held, and in this state, each rolling element (roller) 5 gets over the protruding end 7e of the flange portion 7 and is incorporated into the raceway surface 1s of the inner ring 1.

ここで、保持器の熱膨張量としては、例えば図1(b)の組立方法において説明したような高低差Gを無くする程度か、それ以上に当該保持器全体を拡大させれば良い。なお、高低差Gとは、保持器を加熱しない場合において、各転動体(ころ)5が小径鍔部7の突出端7eを乗り越える量を指す。別の捉え方をすると、保持器を加熱しない場合において、環状の配列された複数の転動体(ころ)5が環状の小径鍔部7の突出端7eを乗り越える際、各転動体(ころ)5は外径方向に拡げられることになるが、このときの外径方向への拡大量を高低差Gとして表現することもできる。   Here, as the amount of thermal expansion of the cage, for example, the entire cage may be enlarged to the extent that the height difference G as described in the assembly method of FIG. The height difference G refers to the amount that each rolling element (roller) 5 gets over the protruding end 7e of the small-diameter flange 7 when the cage is not heated. In another way, when the cage is not heated, when the plurality of annularly arranged rolling elements (rollers) 5 get over the protruding end 7e of the annular small-diameter flange 7, each rolling element (roller) 5 Is expanded in the outer diameter direction, but the amount of expansion in the outer diameter direction at this time can also be expressed as a height difference G.

このように保持器を熱膨張させることで、各転動体(ころ)5を小径鍔部7の突出端7eに干渉させること無く、内輪1の軌道面1sに対してスムーズに組み込むことができる。このとき、各転動体(ころ)5と小径鍔部7の突出端7eとの間で例えば摩擦や衝突などの干渉は生じないため、各転動体(ころ)5や内輪1(小径鍔部7)が傷付いたり、破損するといった問題も起こらない。更に、このとき、小径鍔部7の突出端7eから各転動体(ころ)5に対して外力が作用することは無いため、組込時において保持器に対するストレス(圧力)を無くすることができる。これにより、当該ストレス(圧力)による保持器自体の変形や破損といった不具合も生じない。従って、本実施の形態の軸受組立方法によって保持器と共に複数の転動体(ころ)5が組み込まれた軸受によれば、当該軸受を長期に亘って安定して動作させることが可能となる。   By thermally expanding the cage in this manner, each rolling element (roller) 5 can be smoothly incorporated into the raceway surface 1s of the inner ring 1 without causing the rolling end (roller) 5 to interfere with the protruding end 7e of the small diameter flange portion 7. At this time, no interference such as friction or collision occurs between each rolling element (roller) 5 and the protruding end 7e of the small-diameter flange 7, so that each rolling element (roller) 5 or inner ring 1 (small-diameter flange 7). ) Will not be damaged or damaged. Further, at this time, since no external force acts on each rolling element (roller) 5 from the protruding end 7e of the small-diameter flange portion 7, it is possible to eliminate stress (pressure) on the cage during assembly. . As a result, there is no problem such as deformation or breakage of the cage itself due to the stress (pressure). Therefore, according to the bearing in which the plurality of rolling elements (rollers) 5 are incorporated together with the cage by the bearing assembling method of the present embodiment, the bearing can be stably operated over a long period of time.

なお、加熱により熱膨張させた保持器は、各転動体(ころ)5を内輪1の軌道面1sに組み込んだ後、そのまま放置して自然に冷却したり、或いは、既存の冷却装置などで冷却することで、加熱前の初期状態に復帰させることができる。これにより、複数の転動体(ころ)5は、保持器によって1つずつ回転自在に保持された状態で内輪1の軌道面1sに安定して組み込まれる。このとき、各転動体(ころ)5の転動面5mを内輪1の軌道面1sに対して正確に着座させることができる。この後、外輪3を組み付けることで、保持器と共に内外輪1,3間に組み込まれた複数の転動体(ころ)5は、当該内外輪1,3の軌道面1s,3s間に沿って安定して転動可能となり、その結果、軸受(内外輪1,3)の回転性能を長期に亘って一定に維持することができる。   In addition, the cage that has been thermally expanded by heating, after each rolling element (roller) 5 is incorporated in the raceway surface 1s of the inner ring 1, is allowed to cool as it is, or is cooled by an existing cooling device or the like. By doing so, it is possible to return to the initial state before heating. As a result, the plurality of rolling elements (rollers) 5 are stably incorporated into the raceway surface 1s of the inner ring 1 in a state where the rolling elements (rollers) 5 are rotatably held one by one by the cage. At this time, the rolling surface 5 m of each rolling element (roller) 5 can be accurately seated on the raceway surface 1 s of the inner ring 1. After that, by assembling the outer ring 3, the plurality of rolling elements (rollers) 5 assembled between the inner and outer rings 1 and 3 together with the cage are stabilized along the raceway surfaces 1 s and 3 s of the inner and outer rings 1 and 3. As a result, the rotation performance of the bearings (inner and outer rings 1, 3) can be kept constant over a long period of time.

また、保持器の加熱タイミングについては、上述した実施の形態に限定されることは無く、以下のようなタイミングに設定しても良い。図1(c)には、軸受組立方法の他の実施の形態の説明図が示されており、まず、予め保持器に保持させた複数の転動体(ころ)5を小径鍔部7の突出端7eに対して位置決めする。その状態で、各転動体(ころ)5及び保持器並びに小径鍔部7が突出された内輪1を同時に加熱して当該保持器を熱膨張させる。このとき、各転動体(ころ)5を小径鍔部7の突出端7eを乗り越えて当該内輪1の軌道面1sに組み込む。   Moreover, about the heating timing of a holder | retainer, it is not limited to embodiment mentioned above, You may set to the following timings. FIG. 1 (c) shows an explanatory view of another embodiment of the bearing assembling method. First, a plurality of rolling elements (rollers) 5 previously held by a cage are projected from the small-diameter flange 7. Position relative to the end 7e. In this state, the rolling elements (rollers) 5 and the cage and the inner ring 1 from which the small-diameter flange portion 7 is projected are simultaneously heated to thermally expand the cage. At this time, each rolling element (roller) 5 gets over the protruding end 7 e of the small-diameter flange portion 7 and is incorporated into the raceway surface 1 s of the inner ring 1.

かかる軸受組立方法は、樹脂製の保持器と鋼材製の転動体(ころ)5及び内輪1との間の線膨張係数の違いを利用したものである。この場合、鋼材に比べて樹脂の線膨張係数が大きいため、転動体(ころ)5及び内輪1に比べて保持器の熱膨張量は大きくなる。これにより、上記実施の形態(図1(a),(b))と同様の効果を実現することができる。なお、当該効果については既に説明済みであるため、その説明は省略する。
また、上述した各実施の形態(図1(a)〜(c))において、保持器を加熱する際の加熱温度や加熱時間については、例えば保持器の形状や大きさ、材質(樹脂の種類)などに応じて任意に設定されるため、ここでは特に限定しない。
Such a bearing assembling method utilizes a difference in linear expansion coefficient between the resin cage, the steel rolling elements (rollers) 5 and the inner ring 1. In this case, since the linear expansion coefficient of the resin is larger than that of the steel material, the amount of thermal expansion of the cage is larger than that of the rolling elements (rollers) 5 and the inner ring 1. Thereby, the same effect as the above-described embodiment (FIGS. 1A and 1B) can be realized. In addition, since the said effect has already been demonstrated, the description is abbreviate | omitted.
In each of the above-described embodiments (FIGS. 1A to 1C), the heating temperature and heating time for heating the cage are, for example, the shape and size of the cage, material (type of resin) ) Or the like, and is not particularly limited here.

なお、本発明は、上述した各実施の形態に限定されることは無く、以下のような変形例も本発明の技術範囲に含まれる。
第1の変形例として図2(a)に示すように、環状の小径鍔部7の突出端7eにおいて、その環状表面7mを所定傾斜角度αのテーパ面7mとして形成しても良い。なお、テーパ面7mは、内輪1の軌道面1sへの各転動体(ころ)5の組込方向に沿って末広がり状に連続的に傾斜させて形成されている。
The present invention is not limited to the above-described embodiments, and the following modifications are also included in the technical scope of the present invention.
As a first modification, as shown in FIG. 2A, the annular surface 7m may be formed as a tapered surface 7m having a predetermined inclination angle α at the protruding end 7e of the annular small-diameter flange portion 7. The taper surface 7m is formed by continuously inclining in a divergent shape along the direction in which each rolling element (roller) 5 is assembled to the raceway surface 1s of the inner ring 1.

ここで、テーパ面7mの傾斜角度αは、軌道輪(内輪1)の回転中心を通る回転中心軸Qとテーパ面7mとの成す角度で規定されている。この場合、傾斜角度αは、例えば保持器に保持された状態における各転動体(ころ)5の転動面5mと上記中心軸Qとの成す角度(図2(a))に設定しても良いし、或いは、内輪1の軌道面1sと上記中心軸Qとの成す角度(図1(c))に設定しても良い。いずれの場合でも、傾斜角度αは、例えば転動体(ころ)5の種類や大きさ並びにその形状、或いは軌道輪(内輪1)の形状や大きさ、小径鍔部7の突出端7eの大きさや形状などに応じて最適な角度に設定されるため、ここでは特に数値限定はしない。   Here, the inclination angle α of the tapered surface 7m is defined by the angle formed between the rotation center axis Q passing through the rotation center of the raceway ring (inner ring 1) and the taper surface 7m. In this case, the inclination angle α may be set to, for example, an angle (FIG. 2A) formed by the rolling surface 5m of each rolling element (roller) 5 and the central axis Q in a state of being held by the cage. Alternatively, the angle formed between the raceway surface 1s of the inner ring 1 and the central axis Q (FIG. 1 (c)) may be set. In any case, the inclination angle α is, for example, the type and size of the rolling element (roller) 5 and the shape thereof, or the shape and size of the bearing ring (inner ring 1), the size of the protruding end 7e of the small-diameter flange 7 and the like. Since the optimum angle is set according to the shape and the like, there is no particular numerical limitation here.

以上、第1の変形例によれば、小径鍔部7の突出端7eにテーパ面7mを形成したことにより、上述した各実施の形態(図1(a)〜(c))において、複数の転動体(ころ)5を内輪1の軌道面1sに組み込む際に、各転動体(ころ)5がテーパ面7mに沿って案内されるため、全ての転動体(ころ)5をばらつくこと無くスムーズに且つ正確に軌道面1sに組み込むことができる。これにより、組込作業がし易くなり、軸受の組立効率を飛躍的に向上させることが可能となる。   As described above, according to the first modification, by forming the tapered surface 7m on the protruding end 7e of the small-diameter flange portion 7, in each of the above-described embodiments (FIGS. 1A to 1C), a plurality of When the rolling elements (rollers) 5 are incorporated into the raceway surface 1s of the inner ring 1, each rolling element (roller) 5 is guided along the taper surface 7m, so that all the rolling elements (rollers) 5 do not vary. And can be accurately incorporated into the raceway surface 1s. As a result, the assembly work is facilitated, and the assembly efficiency of the bearing can be dramatically improved.

また、第2の変形例として図2(b)に示すように、上述したテーパ面7mのうち最も軌道面1s寄りの部位(エッジ部とも言う)に、内輪1(軸受)の回転中心軸Qと平行に所定量だけ延在させた環状のストレート面7mpを形成しても良い。この場合、ストレート面7mpの形成幅δは、例えば内輪1の形状や大きさ、或いは小径鍔部7の突出端7eの形状や大きさなどに応じて任意に設定されるため、ここでは特に数値限定はしない。   Further, as shown in FIG. 2 (b) as a second modification, the rotation center axis Q of the inner ring 1 (bearing) is located at a portion (also referred to as an edge portion) closest to the raceway surface 1s in the tapered surface 7m described above. Alternatively, an annular straight surface 7mp may be formed that extends in parallel with a predetermined amount. In this case, the formation width δ of the straight surface 7mp is arbitrarily set in accordance with, for example, the shape and size of the inner ring 1 or the shape and size of the protruding end 7e of the small-diameter flange portion 7, and is particularly numerical here. There is no limitation.

以上、第2の変形例によれば、小径鍔部7の突出端7eにおいて、そのテーパ面7mにストレート面7mpを形成することで、複数の転動体(ころ)5を内輪1の軌道面1sに組み込む際に、各転動体(ころ)5が上記エッジ部に相互に干渉して当該転動体(ころ)5が例えば傷付いたり磨耗するといった不具合の発生を防止することができる。また、内輪1に対する熱処理後にストレート面7mpに対して各種の仕上げ加工(例えば、L3加工、研削加工など)を施すことで、小径鍔部7の寸法のバラツキを無くすことが可能となり、その結果、内輪1の歩留まりを向上させることができる。   As described above, according to the second modification, at the protruding end 7e of the small-diameter flange portion 7, the straight surface 7mp is formed on the tapered surface 7m, so that the plurality of rolling elements (rollers) 5 are connected to the raceway surface 1s of the inner ring 1. When the rolling elements (rollers) 5 are incorporated into the rolling elements, it is possible to prevent the rolling elements (rollers) 5 from interfering with the edge portion and causing the rolling elements (rollers) 5 to be damaged or worn, for example. In addition, by performing various finishing processes (for example, L3 processing, grinding process, etc.) on the straight surface 7mp after the heat treatment for the inner ring 1, it becomes possible to eliminate the variation in the dimensions of the small-diameter flange portion 7, and as a result, The yield of the inner ring 1 can be improved.

また、上述した各実施の形態(図1(a)〜(c))、第1及び第2の変形例(図2(a),(b))に対して下記のような新たな構成を付加することも可能である。
即ち、図3〜図5には、本発明の第3の変形例に係る軸受用保持器が示されており、このような保持器において、各ポケット8には、円環部2,4のうち柱部6の両端部6eに隣接した部分を所定深さだけ窪ませて形成した逃げ部10が設けられている。この場合、逃げ部10は、各ポケット8の四隅に設けられており、軸受の回転中心軸Q(図1(c))に沿った方向に窪ませて(凹ませて)形成されている。別の言い方をすると、各逃げ部10は、軸受回転方向に沿って窪ませて(凹ませて)形成されてはいない。
Further, the following new configurations are provided for the above-described embodiments (FIGS. 1A to 1C) and the first and second modifications (FIGS. 2A and 2B). It is also possible to add.
That is, FIGS. 3 to 5 show a bearing retainer according to a third modification of the present invention. In such a retainer, each pocket 8 has an annular portion 2,4. Among them, a relief portion 10 is provided which is formed by recessing a portion adjacent to both end portions 6e of the column portion 6 by a predetermined depth. In this case, the relief portions 10 are provided at the four corners of each pocket 8 and are formed to be recessed (recessed) in a direction along the rotation center axis Q (FIG. 1C) of the bearing. In other words, each relief portion 10 is not formed to be recessed (recessed) along the bearing rotation direction.

具体的に説明すると、図3(b)〜(d)に示すように、逃げ部10は、円環部2,4を横断して平坦状に形成された1つの平坦状面10sと、平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率(例えば、曲率半径)で連続した2つの円弧状面R1,R2とから構成されている。ここで、平坦状面10sは、軸受の回転中心軸Qを直交する方向に沿って平行に円環部2,4を横断して形成されており、2つの円弧状面R1,R2のうち、一方の円弧状面R1は、平坦状面10sの一方側から円環部2,4の内周面2s,4sに連続し、且つ、他方の円弧状面R2は、平坦状面10sの他方側から柱部6の内壁面6sに連続している。   More specifically, as shown in FIGS. 3B to 3D, the escape portion 10 has a flat surface 10s formed flat across the annular portions 2 and 4 and a flat surface. It is composed of two arcuate surfaces R1 and R2 that are continuous with a predetermined curvature (for example, a radius of curvature) from both sides of the surface 10s toward the annular portions 2 and 4 and the column portion 6. Here, the flat surface 10s is formed so as to cross the annular portions 2, 4 in parallel along the direction orthogonal to the rotation center axis Q of the bearing, and the two arc-shaped surfaces R1, R2 are One arcuate surface R1 is continuous from one side of the flat surface 10s to the inner peripheral surfaces 2s and 4s of the annular portions 2 and 4, and the other arcuate surface R2 is the other side of the flat surface 10s. To the inner wall surface 6 s of the column portion 6.

このような逃げ部10において、2つの円弧状面R1,R2から1つの平坦状面10sに亘る全体の幅寸法を2nとすると、当該幅寸法2nは、転動体(ころ)5(図1(a))の端面に形成された面取り5r(図1(a))の寸法よりも大きく設定されている。また、逃げ部10は、その深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定して構成されている。ここで、逃げ部10の深さ寸法kが円弧状面R1,R2の曲率半径ρと近似(ρ=k)しているとして、曲率半径ρと幅寸法Hとの比(ρ/H)で表わすと、当該逃げ部10は、0.1≦ρ/H≦0.3なる関係を満足するように設定されている。   In such a relief portion 10, assuming that the overall width dimension from the two arcuate surfaces R1, R2 to one flat surface 10s is 2n, the width dimension 2n is the rolling element (roller) 5 (FIG. 1 ( The dimension is set larger than the dimension of the chamfer 5r (FIG. 1 (a)) formed on the end face of a)). Further, the relief portion 10 is configured by setting the depth dimension k within a range of 10% to 30% of the width dimension H of the annular portions 2 and 4. Here, assuming that the depth dimension k of the relief portion 10 approximates the curvature radius ρ of the arcuate surfaces R1 and R2 (ρ = k), the ratio (ρ / H) of the curvature radius ρ and the width dimension H In terms of representation, the clearance 10 is set so as to satisfy the relationship of 0.1 ≦ ρ / H ≦ 0.3.

なお、図面上において、各円弧状面R1,R2は、連続した一定(単一)の曲率半径ρで形成されているが、この場合、曲率半径ρの大きさは、例えば逃げ部10の深さ寸法kや幅寸法2nに応じて任意に設定されるため、ここでは特に数値限定はしない。また、逃げ部10の深さ寸法kや幅寸法2nは、例えば転動体(ころ)5の大きさや形状、当該転動体(ころ)5を保持するポケット8の大きさや形状に応じて任意に設定されるため、ここでは特に数値限定はしない。   In the drawing, each of the arcuate surfaces R1 and R2 is formed with a continuous constant (single) radius of curvature ρ. In this case, the magnitude of the radius of curvature ρ is, for example, the depth of the relief portion 10. Since it is arbitrarily set according to the length dimension k and the width dimension 2n, the numerical value is not particularly limited here. Further, the depth dimension k and the width dimension 2n of the relief portion 10 are arbitrarily set according to, for example, the size and shape of the rolling element (roller) 5 and the size and shape of the pocket 8 that holds the rolling element (roller) 5. Therefore, the numerical values are not particularly limited here.

以上、第3の変形例の軸受用保持器によれば、1つの平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率半径ρで連続した2つの円弧状面で構成された逃げ部10をポケット8の四隅に設けたことにより、曲率半径の増大が制約された条件下においてもポケット8の四隅への過度の応力集中を低減することができる。これにより、従来に比べて保持器の強度を一定に維持することが可能となり、その結果、当該保持器の延命化や信頼性の向上を図ることができる。   As described above, according to the bearing cage of the third modified example, two arcs continuous with a predetermined radius of curvature ρ from both sides of one flat surface 10 s toward the annular portions 2, 4 and the column portion 6. By providing the relief portions 10 formed of surfaces at the four corners of the pocket 8, excessive stress concentration at the four corners of the pocket 8 can be reduced even under a condition in which an increase in the radius of curvature is restricted. As a result, the strength of the cage can be maintained constant as compared with the conventional case, and as a result, the life of the cage can be extended and the reliability can be improved.

また、本変形例によれば、逃げ部10の幅寸法2nを転動体(ころ)5の端面に形成された面取り5rの寸法よりも大きく設定したことにより、軸受に封入されている潤滑剤(グリース、油)の掻き取り防止や当該保持器のポケット8の偏磨耗の防止を図ることができる。即ち、各ポケット8の四隅において、潤滑剤を転動体(ころ)5の端面に付着・保持させることが可能となり、これにより、転動体(ころ)5の端面と内外輪1,3のつば面(図面上では、内輪1の軌道面1sの両側に突設された鍔部7,9の案内面7s,9s(図1(a),(b)))との接触部位に常時潤滑剤を供給し続けることができる。この結果、転動体(ころ)5及び内外輪1,3の磨耗や摩損を低減させることが可能となり、軸受寿命の延命化を図ることができる。   Further, according to the present modification, the width dimension 2n of the relief portion 10 is set to be larger than the dimension of the chamfer 5r formed on the end face of the rolling element (roller) 5, so that the lubricant ( It is possible to prevent scraping of grease and oil) and uneven wear of the pocket 8 of the cage. That is, at the four corners of each pocket 8, it becomes possible to attach and hold the lubricant to the end face of the rolling element (roller) 5, and thereby the end face of the rolling element (roller) 5 and the collar face of the inner and outer rings 1, 3. (In the drawing, the lubricant is always applied to the contact portion with the guide surfaces 7s, 9s (FIGS. 1A, 1B) of the flanges 7, 9 protruding on both sides of the raceway surface 1s of the inner ring 1. Can continue to supply. As a result, it becomes possible to reduce the wear and wear of the rolling elements (rollers) 5 and the inner and outer rings 1 and 3, and to extend the life of the bearing.

更に、本実施の形態によれば、逃げ部10の深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定したことにより、保持器全体としての強度を一定に維持することが可能となり、その結果、軸受の回転性能を長期に亘って一定に維持することができる。特に新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受には、高速回転下において高負荷が作用するため、それに対応するように保持器の強度も高いものが要求されるが、本実施の形態の保持器は、これに充分に対応することができる。   Furthermore, according to the present embodiment, the depth k of the relief portion 10 is set in the range of 10% to 30% of the width H of the annular portions 2 and 4, thereby increasing the strength of the entire cage. It becomes possible to keep constant, and as a result, the rotational performance of the bearing can be kept constant over a long period of time. In particular, the bearings that support the rotating shafts (for example, axles) provided on high-speed railway vehicles such as the Shinkansen and the output shafts of the main motors are subjected to high loads under high-speed rotation. Although a container having a high strength is required, the cage of the present embodiment can sufficiently cope with this.

ここで、上述したような本実施の形態の軸受用保持器の効果について、応力の発生モデルを用いて実証する。
図4(a)には、ポケット8(図3)に逃げ部10の無い保持器モデルが示されており、その円環部2,4は、厚さ寸法T=8、幅寸法H=10の割合に設定され、その柱部6は、長さ寸法E=15、円環部中央までの柱長L=20の割合に設定されている。そして、柱部6に荷重F=50(例えば、50ニュートン)を作用させて保持器モデルにモーメントMを発生させる。このとき、柱部6には均等な分布荷重Wが作用しているものとする。
Here, the effect of the bearing cage of the present embodiment as described above will be demonstrated using a stress generation model.
FIG. 4 (a) shows a cage model in which the pocket 8 (FIG. 3) does not have a relief portion 10, and the annular portions 2, 4 have a thickness dimension T = 8 and a width dimension H = 10. The column portion 6 is set to have a length dimension E = 15 and a column length L = 20 to the center of the annular portion. Then, a load F = 50 (for example, 50 Newton) is applied to the column portion 6 to generate a moment M in the cage model. At this time, it is assumed that a uniform distributed load W acts on the column portion 6.

かかる条件下における材料力学的な関係から、柱部6に生じる応力σ(基準応力)は、下記の(2)(3)式より(1)式として算出される。
σ=M/Z (Z:断面係数) … (1)
M=W・L/2 … (2)
Z=T・H/6 … (3)
From the material mechanical relationship under such conditions, the stress σ 0 (reference stress) generated in the column portion 6 is calculated as the following equation (1) from the following equations (2) and (3).
σ 0 = M / Z (Z: section modulus) (1)
M = W · L 2/2 ... (2)
Z = T · H 2/6 ... (3)

図4(b)には、ポケット8(図3)に既存の逃げ部10aを有する保持器モデルが示されており、逃げ部10aは、柱部6の端部6eに隣接した部分において、単一の曲率半径ρのみで形成された円弧形状を成している。この場合、円環部2,4に生じる曲げ応力を材料力学的な関係から求めると、応力集中を考慮した場合の各ポケット8の四隅で発生する引張応力σmaxは、(4)式として算出される。
σmax=ασ (α:応力集中係数) … (4)
FIG. 4 (b) shows a cage model having an existing relief portion 10a in the pocket 8 (FIG. 3). The relief portion 10a is formed at a portion adjacent to the end portion 6e of the pillar portion 6 at a single position. It has an arc shape formed with only one curvature radius ρ. In this case, when the bending stress generated in the annular portions 2 and 4 is obtained from the material mechanical relationship, the tensile stress σmax generated at the four corners of each pocket 8 in consideration of the stress concentration is calculated as Equation (4). The
σmax = ασ 0 (α: Stress concentration factor) (4)

ここで、図4(b)の保持器モデルについて、有限要素法に基づく構造解析(FEM解析)を行って、その解析結果から得られたσmaxと材料力学的に求めた基準応力σとから応力集中係数αは、(5)式として算出される。
α=σmax/σ … (5)
Here, structural analysis (FEM analysis) based on the finite element method is performed on the cage model of FIG. 4B, and σmax obtained from the analysis result and the reference stress σ 0 obtained from material mechanics are used. The stress concentration coefficient α is calculated as equation (5).
α = σmax / σ 0 (5)

図5(a)には、図4(b)の保持器モデルにおける応力集中係数αの算出結果が示されており、逃げ部10aの曲率半径をρ、深さ寸法をk、円環部2,4の幅寸法をHとし、ρ=kとすると、応力集中係数αは、ρ/H=0.1〜0.3の範囲で極値(α=3.65〜3.76、αmin=3.39)をとることがわかる。   FIG. 5 (a) shows the calculation result of the stress concentration coefficient α in the cage model of FIG. 4 (b). The radius of curvature of the relief portion 10a is ρ, the depth dimension is k, the annular portion 2 is shown. , 4 is H and ρ = k, the stress concentration coefficient α is an extreme value (α = 3.65 to 3.76, αmin = in the range of ρ / H = 0.1 to 0.3). It can be seen that 3.39) is taken.

図4(c)には、ポケット8(図3)に既存の逃げ部10を有する本変形例の保持器モデルが示されており、逃げ部10の幅寸法を2n、ρ/H=0.2とし、これに基づいて応力集中係数αを算出すると、図5(b)に示すような算出結果が得られる。かかる算出結果によれば、n/ρ=1.0は、図5(a)の応力集中係数αの最小値(αmin=3.39)を示した諸寸法(単一の曲率半径ρ)であり、当該n/ρが1.0を越えると、応力集中係数αが減少し、応力の集中を低減させる効果を発揮することがわかる。この場合、n/ρ=2.0以降は略一定の極値をとるため、n/ρが2.0以上となるように逃げ部10を設定することが好ましい。   FIG. 4 (c) shows a cage model of the present modified example having the existing relief portion 10 in the pocket 8 (FIG. 3), and the width dimension of the relief portion 10 is 2n, ρ / H = 0. When the stress concentration coefficient α is calculated based on this, a calculation result as shown in FIG. 5B is obtained. According to this calculation result, n / ρ = 1.0 is the dimensions (single curvature radius ρ) indicating the minimum value (αmin = 3.39) of the stress concentration coefficient α in FIG. It can be seen that when n / ρ exceeds 1.0, the stress concentration coefficient α decreases, and the effect of reducing stress concentration is exhibited. In this case, since n / ρ = 2.0 or later takes a substantially constant extreme value, it is preferable to set the relief portion 10 so that n / ρ is 2.0 or more.

(a)は、本発明の一実施の形態に係る軸受組立方法で組み立てられた軸受の一部を拡大して示す断面図、(b)は、同図(a)の軸受を組み立てている状態を示す図、(c)は、本発明の他の実施の形態に係る軸受組立方法を示す図。(a) is sectional drawing which expands and shows a part of bearing assembled with the bearing assembly method which concerns on one embodiment of this invention, (b) is the state which has assembled the bearing of the same figure (a) FIG. 6C is a diagram showing a bearing assembling method according to another embodiment of the present invention. (a)は、本発明の第1の変形例に係る軸受の構成を分解し、その一部を拡大して示す断面図、(b)は、本発明の第2の変形例に係る軸受の構成を一部拡大して示す断面図。(a) is a disassembled sectional view of the structure of the bearing according to the first modification of the present invention, and a part thereof is enlarged, (b) is a view of the bearing according to the second modification of the present invention. Sectional drawing which expands and shows a structure partially. (a)は、本発明の第3の変形例に係る軸受用保持器の全体の構成例を示す斜視図、(b)は、同図(a)の保持器の一部を外側から見た拡大図、(c)は、同図(a)の保持器の一部を内側から見た拡大図、(d)は、逃げ部の構成を拡大して示す図。(a) is a perspective view which shows the example of a whole structure of the bearing retainer which concerns on the 3rd modification of this invention, (b) saw a part of retainer of the same figure (a) from the outside. An enlarged view, (c) is an enlarged view of a part of the cage of FIG. (A) as viewed from the inside, and (d) is an enlarged view showing a configuration of the escape portion. 応力の発生モデルを示す図であって、(a)は、ポケットに逃げ部の無い保持器モデル、(b)は、既存の逃げ部を有する保持器モデル、(c)は、第3の変形例の保持器モデル。It is a figure which shows the generation | occurrence | production model of stress, Comprising: (a) is a cage model without a relief part in a pocket, (b) is a cage model which has the existing relief part, (c) is a 3rd deformation | transformation. Example cage model. 応力集中計数のFEM解析結果を示す図であって、(a)は、既存の保持器における解析結果、(b)は、第3の変形例の保持器の解析結果。It is a figure which shows the FEM analysis result of stress concentration count, Comprising: (a) is the analysis result in the existing cage, (b) is the analysis result of the cage of the 3rd modification.

符号の説明Explanation of symbols

1 内輪
1s 内輪の軌道面
3 外輪
3s 外輪の軌道面
5 転動体(ころ)
7 小径鍔部
7e 突出端
9 大径鍔部
Z 転動体の回転対称軸
DESCRIPTION OF SYMBOLS 1 Inner ring 1s Inner ring raceway surface 3 Outer ring 3s Outer ring raceway surface 5 Rolling element (roller)
7 Small-diameter flange 7e Projection end 9 Large-diameter flange Z Rotational symmetry axis of rolling element

Claims (10)

相対回転可能に対向配置された軌道輪と、軌道輪の対向面にそれぞれ周方向に連続して形成された軌道面間に沿って転動自在に組み込まれた複数の転動体と、複数の転動体を1つずつ回転自在に保持しながら、軌道輪間に沿って公転する樹脂製の保持器とを備え、各転動体は、回転対称軸を中心に回転自在に保持器に保持され且つ当該回転対称軸に直交する横断面が円形を成していると共に、軌道輪のいずれか一方及び双方の軌道面の少なくとも片側には、当該軌道面に沿って複数の転動体を保持し且つ案内する環状の鍔部が突出されている軸受の組立方法であって、
環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、保持器を加熱して熱膨張させることで、当該保持器に保持された各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込むことを特徴とする軸受組立方法。
A plurality of rolling elements, which are arranged so as to be rotatable relative to each other, a plurality of rolling elements which are rotatably integrated along the raceways formed on the opposing surfaces of the bearing rings in the circumferential direction, and a plurality of rolling elements. Each of the rolling elements is held by the holder so as to be rotatable about a rotationally symmetric axis. A cross section perpendicular to the rotational symmetry axis is circular, and a plurality of rolling elements are held and guided along at least one of the raceways and at least one of the raceways. A method for assembling a bearing in which an annular flange is projected,
When incorporating a plurality of rolling elements together with the cage into the raceway from which the annular flange protrudes, the rolling elements held by the cage are A bearing assembling method, wherein the bearing assembly is mounted on the raceway surface of the raceway over the protruding end of the part.
環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、予め保持器を加熱して熱膨張させた後、当該保持器に複数の転動体を保持させ、その状態で、各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込むことを特徴とする請求項1に記載の軸受組立方法。   When incorporating a plurality of rolling elements together with the cage into the raceway ring from which the annular flange protrudes, the cage is heated in advance and thermally expanded, and then the plurality of rolling elements are held in the cage. The bearing assembly method according to claim 1, wherein each rolling element is mounted on the raceway surface of the raceway over the protruding end of the flange in that state. 環状の鍔部が突出された軌道輪に対して保持器と共に複数の転動体を組み込む際には、予め保持器に保持させた複数の転動体を環状の鍔部に対して位置決めし、その状態で、各転動体及び保持器並びに鍔部が突出された軌道輪を同時に加熱して当該保持器を熱膨張させた後、各転動体を鍔部の突出端を乗り越えて当該軌道輪の軌道面に組み込むことを特徴とする請求項1に記載の軸受組立方法。   When incorporating a plurality of rolling elements together with the cage into the raceway from which the annular collar protrudes, the plurality of rolling elements previously held by the cage are positioned with respect to the annular collar, and the state Then, the rolling elements, the cage, and the raceway from which the flange portion protrudes are heated at the same time to thermally expand the cage, and then the rolling elements get over the protruding end of the flange portion and the raceway surface of the raceway ring. The bearing assembly method according to claim 1, wherein the bearing assembly method is incorporated into a bearing assembly. 請求項1〜3のいずれかに記載の軸受組立方法で組み立てられた転がり軸受であって、
環状の鍔部の突出端には、各転動体の軌道面への組込方向に沿って末広がり状に連続的に傾斜した所定傾斜角度のテーパ面が形成されていることを特徴とする転がり軸受。
A rolling bearing assembled by the bearing assembling method according to claim 1,
A rolling bearing characterized in that a taper surface having a predetermined inclination angle that is continuously inclined in a divergent shape along the direction of incorporation of each rolling element into the raceway surface is formed at the protruding end of the annular flange portion. .
テーパ面の傾斜角度は、軌道輪の回転中心を通る中心軸とテーパ面との成す角度で規定されていることを特徴とする請求項4に記載の転がり軸受。   The rolling bearing according to claim 4, wherein the inclination angle of the tapered surface is defined by an angle formed by a central axis passing through the rotation center of the raceway and the tapered surface. テーパ面のうち最も軌道面寄りの部位には、軌道輪の中心軸と平行に所定量だけ延在させた環状のストレート面が形成されていることを特徴とする請求項4又は5に記載の転がり軸受。   The annular straight surface extended by a predetermined amount in parallel with the central axis of the raceway ring is formed at a portion closest to the raceway surface among the tapered surfaces. Rolling bearing. 請求項4〜6のいずれかに記載の転がり軸受に組み込まれた軸受用保持器であって、
樹脂製の保持器は、軸受内部に沿って周方向に連続した少なくとも1つの円環部と、円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、円環部と複数の柱部とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを具備し、
各ポケットには、円環部のうち柱部に隣接した部分を所定深さだけ窪ませて形成した逃げ部が設けられており、
逃げ部は、円環部を横断して平坦状に形成された1つの平坦状面と、平坦状面の両側から円環部及び柱部に向けて所定の曲率で連続した2つの円弧状面とから構成されていることを特徴とする軸受用保持器。
A bearing retainer incorporated in the rolling bearing according to any one of claims 4 to 6,
The resin cage includes at least one annular part continuous in the circumferential direction along the inside of the bearing, and extends from the annular part along the inside of the bearing, and along the annular part at a predetermined interval in the circumferential direction. A plurality of arranged pillars, and a plurality of pockets that are partitioned by an annular part and a plurality of pillars, and that hold a plurality of rolling elements rotatably one by one,
Each pocket is provided with a relief portion formed by recessing a portion of the annular portion adjacent to the pillar portion by a predetermined depth,
The escape portion includes one flat surface formed flat across the annular portion, and two arc-shaped surfaces continuous at a predetermined curvature from both sides of the flat surface toward the annular portion and the column portion. A bearing retainer characterized by comprising:
転動体としてころを適用した軸受において、逃げ部は、2つの円弧状面から1つの平坦状面に亘る全体の幅寸法をころの端面に形成された面取り寸法よりも大きく設定して構成されていることを特徴とする請求項7に記載の軸受用保持器。   In a bearing in which a roller is applied as a rolling element, the relief portion is configured by setting the overall width dimension from two arcuate surfaces to one flat surface larger than the chamfer dimension formed on the end surface of the roller. The bearing retainer according to claim 7, wherein the bearing retainer is provided. 逃げ部は、その深さ寸法を円環部の幅寸法の10%〜30%の範囲に設定して構成されていることを特徴とする請求項7又は8に記載の軸受用保持器。   The bearing retainer according to claim 7 or 8, wherein the escape portion is configured with a depth dimension set in a range of 10% to 30% of a width dimension of the annular portion. 鉄道車両に設けられた回転軸を支持する軸受に適用可能であることを特徴とする請求項7〜9のいずれかに記載の軸受用保持器。
The bearing retainer according to any one of claims 7 to 9, wherein the bearing retainer is applicable to a bearing that supports a rotating shaft provided in a railway vehicle.
JP2006155646A 2006-06-05 2006-06-05 Bearing assembling method, rolling bearing, and cage for bearing Pending JP2007321939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155646A JP2007321939A (en) 2006-06-05 2006-06-05 Bearing assembling method, rolling bearing, and cage for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155646A JP2007321939A (en) 2006-06-05 2006-06-05 Bearing assembling method, rolling bearing, and cage for bearing

Publications (1)

Publication Number Publication Date
JP2007321939A true JP2007321939A (en) 2007-12-13

Family

ID=38854932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155646A Pending JP2007321939A (en) 2006-06-05 2006-06-05 Bearing assembling method, rolling bearing, and cage for bearing

Country Status (1)

Country Link
JP (1) JP2007321939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076429A (en) * 2011-09-29 2013-04-25 Nsk Ltd Conical roller bearing
WO2014171405A1 (en) * 2013-04-17 2014-10-23 Ntn株式会社 Tapered roller bearing
CN105275999A (en) * 2015-11-11 2016-01-27 宝塔实业股份有限公司 Compression device for bearing basket-shaped retainer
JP2016053422A (en) * 2016-01-19 2016-04-14 日本精工株式会社 Assembly method of conical roller bearing
US9683599B2 (en) 2015-03-23 2017-06-20 Jtekt Corporation Tapered roller bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130120U (en) * 1982-02-26 1983-09-02 日本精工株式会社 Tapered roller bearing with non-separable outer ring flange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130120U (en) * 1982-02-26 1983-09-02 日本精工株式会社 Tapered roller bearing with non-separable outer ring flange

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076429A (en) * 2011-09-29 2013-04-25 Nsk Ltd Conical roller bearing
WO2014171405A1 (en) * 2013-04-17 2014-10-23 Ntn株式会社 Tapered roller bearing
US10208797B2 (en) 2013-04-17 2019-02-19 Ntn Corporation Tapered roller bearing
US9683599B2 (en) 2015-03-23 2017-06-20 Jtekt Corporation Tapered roller bearing
CN105275999A (en) * 2015-11-11 2016-01-27 宝塔实业股份有限公司 Compression device for bearing basket-shaped retainer
JP2016053422A (en) * 2016-01-19 2016-04-14 日本精工株式会社 Assembly method of conical roller bearing

Similar Documents

Publication Publication Date Title
TW201819790A (en) Rolling bearing cage and rolling bearing
JPWO2006057258A1 (en) Method of manufacturing spherical roller bearing with cage and cage for spherical roller bearing
JP2007321940A (en) Cage for bearing, rolling bearing, and bearing assembling method
JP2007263304A (en) Roller bearing, retainer segment, and main shaft supporting structure of wind power generator
JP2007321939A (en) Bearing assembling method, rolling bearing, and cage for bearing
CN105992882A (en) Cylindrical roller bearing and bearing device for transmission
WO2017047506A1 (en) Double-row self-aligning roller bearing
JP2008002534A (en) Retainer for bearings
JP6171444B2 (en) Rolling bearing device and pinion shaft support device for vehicle
JP2004162913A (en) Method for manufacturing rolling bearing unit for supporting wheel, and manufacturing apparatus
JP2009041757A (en) Manufacturing method of metal retainer
JP2008267400A (en) Ball bearing
JP2007255569A (en) Tapered roller bearing, spacer, and spindle supporting structure of wind power generator
JP2007333084A (en) Cage for bearing
JP2008002535A (en) Retainer for bearing and bearing assembly method
JP6171506B2 (en) Tapered roller bearing cage and tapered roller bearing
JP2010025191A (en) Self-aligning roller bearing
JP2010091012A (en) Roller bearing with retainer
JP4308234B2 (en) Conical roller bearing for main shaft support of wind power generator and main shaft support structure of wind power generator
JP2007247820A (en) Roller bearing, retainer segment, and main shaft supporting structure of wind power generator
JP2007321911A (en) Cage for bearing
JP2006349081A (en) Self-aligning roller bearing
JP2007298184A (en) Angular ball-bearing
JP2008163999A (en) Conical roller bearing, conical roller bearing incorporating method and main spindle supporting structure of wind power generator
JP2008019986A (en) Roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726