JP2008002534A - Retainer for bearings - Google Patents

Retainer for bearings Download PDF

Info

Publication number
JP2008002534A
JP2008002534A JP2006171289A JP2006171289A JP2008002534A JP 2008002534 A JP2008002534 A JP 2008002534A JP 2006171289 A JP2006171289 A JP 2006171289A JP 2006171289 A JP2006171289 A JP 2006171289A JP 2008002534 A JP2008002534 A JP 2008002534A
Authority
JP
Japan
Prior art keywords
bearing
cage
bearing retainer
annular
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171289A
Other languages
Japanese (ja)
Inventor
Daiki Umehara
大樹 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006171289A priority Critical patent/JP2008002534A/en
Publication of JP2008002534A publication Critical patent/JP2008002534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/10Railway vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a retainer for bearings with high rigidity and high strength capable of maintaining lubrication performance inside a bearing constantly for a long period. <P>SOLUTION: The retainer 11 for the roller bearing revolves together with each rolling element along the inside of the bearing while holding a plurality of rolling elements (a tapered roller) 5 freely rotatably, and is partitioned by a series of annular portions 2, 4 continuous along the inside of the bearing in a peripheral direction a plurality of pillars 6 arranged circumferentially at prescribed intervals after extending along the inside of the bearing from the circular ring and internal peripheral surfaces 2s, 4s of the circular ring portion and inner wall surfaces 6s of a plurality of pillars, and the retainer comprises a plurality of pockets 8 which hold freely rotatably a plurality of rolling elements one by one, and in the internal wall surface of the pillar, at least a contact portion 6a to contact each rolling element outside the virtual circle PCD which ties mutual centers of a plurality of rolling elements after constituting the window angle θ of 0°-90° and an elongation part 6b which is situated in roughly inner side from the contact portion and marks a smaller angle ϕ than the window angle are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軸受内部の潤滑性能を長期に亘って一定に維持することが可能な高剛性で且つ高強度の軸受用保持器に関する。   The present invention relates to a highly rigid and high strength cage for a bearing capable of maintaining the lubrication performance inside the bearing constant over a long period of time.

従来、鉄道車両や自動車、鉄鋼設備や建設機械をはじめとする産業機械には、その回転機構を回転自在に支持する各種の軸受が適用されている。かかる軸受としては、比較的小さな荷重を支持する際に適用する玉軸受と、比較的大きな荷重を支持する際に適用するころ軸受とがあるが、近年における高荷重下での高速回転に対応するために、ころ軸受が適用される場合が多くなっている。   2. Description of the Related Art Conventionally, various types of bearings that rotatably support a rotating mechanism are applied to industrial machines such as railway vehicles, automobiles, steel facilities, and construction machines. As such a bearing, there are a ball bearing that is applied when supporting a relatively small load and a roller bearing that is applied when supporting a relatively large load, which corresponds to high-speed rotation under a high load in recent years. For this reason, roller bearings are often used.

ころ軸受の一例として、図1(a),(b)に示された円すいころ軸受は、相対回転可能に対向配置された内輪1及び外輪3と、内外輪1,3の対向面に形成された軌道面1s,3s間に転動自在に組み込まれた複数の転動体5と、これら複数の転動体5を1つずつ回転自在に保持する複数のポケット8を有する保持器11とを備えて構成されている。この場合、各転動体5としては、その転動面5m(軌道面1s,3s間に沿って転がる面)が円すい形状を成した円すいころ5を想定しており、かかる円すいころを保持する保持器11としては、かご形保持器11が用いられている。   As an example of a roller bearing, the tapered roller bearing shown in FIGS. 1 (a) and 1 (b) is formed on opposing surfaces of an inner ring 1 and an outer ring 3, and inner and outer rings 1 and 3, which are arranged so as to be relatively rotatable. A plurality of rolling elements 5 rotatably incorporated between the raceway surfaces 1s and 3s, and a holder 11 having a plurality of pockets 8 for rotatably holding the plurality of rolling elements 5 one by one. It is configured. In this case, it is assumed that each rolling element 5 is a tapered roller 5 whose rolling surface 5m (the surface rolling between the raceway surfaces 1s and 3s) has a tapered shape, and holds the tapered roller. As the vessel 11, a cage retainer 11 is used.

かかる構成において、内外輪1,3のいずれか一方及び双方の軌道面1s,3sの少なくとも片側には、当該軌道面1s,3sに沿って環状の鍔部が突出されている。なお、図面には、内輪1の軌道面1sの両側に環状の鍔部7,9が突出した構成が例示されている。また、内外輪1,3の軌道面1s,3sは、各円すいころ5の回転中心5z(図1(b)、図4(a))の集束方向に沿って傾斜しており、これに対応して、内輪1の軌道面1sの両側に突出した環状の鍔部7,9は、その突出端7e,9eの径寸法が相互に異なっている。即ち、一方の鍔部9(以下、大径鍔部9という)は、比較的大径の突出端9eとなり、他方の鍔部7(以下、小径鍔部7という)は、一方の鍔部9よりも比較的小径の突出端7eとなる。   In such a configuration, an annular flange protrudes along the raceway surfaces 1s, 3s on at least one side of either one of the inner and outer rings 1, 3 and both raceway surfaces 1s, 3s. In the drawing, a configuration in which annular flanges 7 and 9 protrude on both sides of the raceway surface 1s of the inner ring 1 is illustrated. Further, the raceway surfaces 1s and 3s of the inner and outer rings 1 and 3 are inclined along the focusing direction of the rotation center 5z (FIGS. 1B and 4A) of each tapered roller 5, and corresponding to this. The annular flanges 7 and 9 projecting on both sides of the raceway surface 1s of the inner ring 1 have different diameters at the projecting ends 7e and 9e. That is, one of the flanges 9 (hereinafter referred to as the large diameter flange 9) serves as a relatively large-diameter protruding end 9e, and the other flange 7 (hereinafter referred to as the small diameter flange 7) corresponds to the one flange 9. The protruding end 7e has a relatively small diameter.

これにより、複数の円すいころ5が内外輪1,3の軌道面1s,3s間を転動する際、各円すいころ5は、転動面5mの両側に形成された円形の側面5eが環状の鍔部7,9の案内面7s,9s(図1(a)、図4(a),(b))によって保持されながら、内外輪1,3の軌道面1s,3s間に沿って案内される。このとき、各円すいころ5は、保持器11に形成された複数のポケット8に1つずつ保持されて回転中心5z回りに回転する。   Thus, when the plurality of tapered rollers 5 roll between the raceway surfaces 1s and 3s of the inner and outer rings 1, 3, each tapered roller 5 has circular side surfaces 5e formed on both sides of the rolling surface 5m. Guided along the raceway surfaces 1s and 3s of the inner and outer rings 1 and 3 while being held by the guide surfaces 7s and 9s (FIGS. 1 (a), 4 (a) and 4 (b)) of the flanges 7 and 9. The At this time, each tapered roller 5 is held one by one in the plurality of pockets 8 formed in the cage 11 and rotates around the rotation center 5z.

また、かご形保持器11は、内外輪1,3間に沿って周方向に連続し且つ互いに同中心に所定の間隔を空けて対向配置された2つの円環部2,4と、これら円環部2,4の間に亘って延出し且つ当該円環部2,4に沿って周方向に等間隔で配列された複数の柱部6と、2つの円環部2,4の内周面2s,4sと複数の柱部6両側の内壁面6sとで区画された複数のポケット8とを備えている。この場合、2つの円環部2,4は、内外輪1,3の軌道面1s,3sの傾斜方向に沿って互いに異なる径に設計されている。即ち、一方の円環部(大径側円環部)4は、他方の円環部(小径側円環部)2よりも比較的大径に設計されており、これにより、保持器11は、その全体が例えば図6(a)に示すような円錐台形状を成している。   Further, the cage retainer 11 includes two annular portions 2 and 4 that are continuous in the circumferential direction between the inner and outer rings 1 and 3 and are arranged opposite to each other at a predetermined interval at the same center. A plurality of column parts 6 extending between the ring parts 2 and 4 and arranged along the ring parts 2 and 4 at equal intervals in the circumferential direction, and inner circumferences of the two ring parts 2 and 4 A plurality of pockets 8 defined by the surfaces 2 s and 4 s and inner wall surfaces 6 s on both sides of the plurality of column portions 6 are provided. In this case, the two annular portions 2, 4 are designed to have different diameters along the inclination direction of the raceway surfaces 1s, 3s of the inner and outer rings 1, 3. That is, one annular portion (large diameter side annular portion) 4 is designed to have a relatively larger diameter than the other annular portion (small diameter side annular portion) 2. The whole forms, for example, a truncated cone shape as shown in FIG.

このようなかご形保持器11において、複数の円すいころ5は、当該保持器11の各ポケット8に1つずつ回転自在に保持されるようになっている。即ち、各円すいころ5において、その転動面5mが隣り合う2つの柱部6の内壁面6sに保持されると共に、転動面5mの両側に形成された円形の側面5eが2つの円環部2,4の内周面2s,4sに保持される。そして、軸受回転中において、かご形保持器11は、その複数のポケット8に各円すいころ5を1つずつ回転自在に保持しながら、これら円すいころ5と共に内外輪1,3間に沿って公転する。   In such a cage retainer 11, a plurality of tapered rollers 5 are rotatably held one by one in each pocket 8 of the retainer 11. That is, in each tapered roller 5, its rolling surface 5m is held by the inner wall surface 6s of two adjacent column parts 6, and the circular side surfaces 5e formed on both sides of the rolling surface 5m are two annular rings. The inner peripheral surfaces 2s and 4s of the portions 2 and 4 are held. During the rotation of the bearing, the cage retainer 11 revolves along the space between the inner and outer rings 1 and 3 together with the tapered rollers 5 while holding the tapered rollers 5 one by one in the plurality of pockets 8. To do.

このとき、ポケット8に保持された円すいころ5の回転性能を一定に維持するために、従来から例えば図5に示すように、各ポケット8の窓角θを一定の角度に設定した保持器が提案されている。ここで、窓角θとは、各ポケット8を区画する2つの柱部6の内壁面6s相互の成す角度であり、かご形保持器11の内径側から外径側(即ち、柱部6の内径面6inから外径面6out)に向うに従って先細り形状を成している。   At this time, in order to keep the rotational performance of the tapered roller 5 held in the pocket 8 constant, conventionally, as shown in FIG. 5, for example, a cage in which the window angle θ of each pocket 8 is set to a constant angle has been conventionally used. Proposed. Here, the window angle θ is an angle formed between the inner wall surfaces 6s of the two column portions 6 that define each pocket 8, and from the inner diameter side to the outer diameter side (that is, the column portion 6 of the cage-shaped cage 11). A tapered shape is formed from the inner surface 6in to the outer surface 6out).

具体的に説明すると、かご形保持器11において、各柱部6の内壁面6sは、保持器11の中心11h(図1(a),(b)、図6(a))と円すいころ5の回転中心5z(図1(b)、図4(a))とを通る第1基準線11xに対して一定の傾斜角度(窓角)θを成す平面状に設定されており、円すいころ5の転動面5mに対して1箇所(1点)P1(図5)で線状に接触する。これにより、軸受回転中、各ポケット8内の円すいころ5は、柱部6の内壁面6sに線接触することで、当該ポケット8から脱落すること無く回転することになる。   More specifically, in the cage retainer 11, the inner wall surface 6 s of each column portion 6 has a center 11 h (FIGS. 1A, 1 B, 6 A) of the retainer 11 and a tapered roller 5. Of the first reference line 11x passing through the center of rotation 5z (FIGS. 1B and 4A), the tapered roller 5 is set to have a constant inclination angle (window angle) θ. The rolling contact surface 5m is linearly contacted at one place (one point) P1 (FIG. 5). Thereby, the taper roller 5 in each pocket 8 rotates in line with the inner wall surface 6s of the column portion 6 without falling off from the pocket 8 during rotation of the bearing.

この場合、軸受回転中において、円すいころ5と保持器11(柱部6の内壁面6s)との摩擦抵抗を軽減するために、例えば特許文献1には、当該保持器11の外径側(特に、柱部6の外径面6out)に各種の窪みを形成し、ここに潤滑剤を溜めることで、軸受内部の潤滑性能を長期に亘って一定に維持する技術が提案されている。   In this case, in order to reduce the frictional resistance between the tapered roller 5 and the retainer 11 (the inner wall surface 6s of the column portion 6) during rotation of the bearing, for example, Patent Document 1 discloses an outer diameter side of the retainer 11 ( In particular, a technique has been proposed in which various indentations are formed in the outer diameter surface 6out) of the column portion 6 and a lubricant is stored therein to maintain the lubricating performance inside the bearing constant over a long period of time.

しかしながら、各種の窪みを形成した保持器11は、その窪み近傍に応力が集中し易い構成となり、その結果、当該保持器11の剛性や強度を低下させてしまう場合がある。また、高荷重下で高速回転させるような鉄道車両用軸受には、高剛性で且つ高強度の保持器が要求されるが、各種の窪みを形成した保持器11は、かかる要求を満足できるものでは無い。そこで、剛性や強度が比較的高い金属製の保持器を適用することも考えられるが、かかる金属製保持器では、軸受回転に伴って磨耗した金属粉が潤滑剤に混入する場合があり、そうなると、軸受内部の潤滑性能を長期に亘って一定に維持することができなくなってしまう虞がある。   However, the cage 11 in which various depressions are formed has a configuration in which stress is easily concentrated in the vicinity of the depression, and as a result, the rigidity and strength of the cage 11 may be reduced. In addition, a high-rigidity and high-strength cage is required for a railway vehicle bearing that rotates at a high speed under a high load. However, the cage 11 having various depressions can satisfy such a requirement. Not. Therefore, it is conceivable to use a metal cage having relatively high rigidity and strength. However, in such a metal cage, metal powder that is worn as the bearing rotates may be mixed into the lubricant. There is a possibility that the lubrication performance inside the bearing cannot be maintained constant over a long period of time.

また、軸受の一定期間使用後に、保持器11を取り出して検査すると、各柱部6の内径面6inに比較的多くの潤滑剤が付着していることが確認された。この場合、例えば各柱部6の内径面6inの面積を拡大すれば、当該内径面6inに付着する潤滑剤量を飛躍的に増加させることができる。なお、図5において、柱部6の内径面6inの面積は、保持器11の中心11hと柱部6の中心6zとを通る第2基準線11y(図1(b))からの幅寸法Iとして規定されている。従って、かかる幅寸法Iを大きくすることで、軸受内部を効率良く潤滑することが可能となり、軸受内部の潤滑性能を長期に亘って一定に維持することができる。しかし、かかる効果を実現することができる保持器は知られていない。
特開2005−121097号公報
Further, when the cage 11 was taken out and inspected after the bearing was used for a certain period of time, it was confirmed that a relatively large amount of lubricant adhered to the inner diameter surface 6in of each column portion 6. In this case, for example, if the area of the inner diameter surface 6in of each column part 6 is increased, the amount of lubricant adhering to the inner diameter surface 6in can be dramatically increased. In FIG. 5, the area of the inner diameter surface 6in of the column portion 6 is the width dimension I from the second reference line 11y (FIG. 1 (b)) passing through the center 11h of the retainer 11 and the center 6z of the column portion 6. It is defined as 0 . Therefore, by increasing such width I 0, it is possible to efficiently lubricate the internal bearings, it can be maintained constant over the lubrication performance of the bearing in long-term. However, a cage capable of realizing such an effect is not known.
JP 2005-121097 A

本発明は、このような問題を解決するためになされており、その目的は、軸受内部の潤滑性能を長期に亘って一定に維持することが可能な高剛性で且つ高強度の軸受用保持器を提供することにある。また、別の効果として、各柱部の断面積を大きくすることができるため、当該柱部の強度を向上させることができる。   The present invention has been made to solve such a problem, and the object thereof is to provide a highly rigid and high strength bearing retainer capable of maintaining the lubricating performance inside the bearing constant over a long period of time. Is to provide. Moreover, since the cross-sectional area of each pillar part can be enlarged as another effect, the intensity | strength of the said pillar part can be improved.

このような目的を達成するために、本発明は、軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、軸受内部に沿って周方向に連続した少なくとも1つの円環部と、円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、円環部の内周面と複数の柱部の内壁面とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを備えており、柱部の内壁面には、少なくとも、0°以上90°以下の窓角を成し且つ複数の転動体の中心相互を結んだ仮想円よりも外側で各転動体に接触する接触部と、接触部から内側寄りに位置し且つ前記窓角よりも小さい角度を成して延在した延在部とが設けられている。   In order to achieve such an object, the present invention is a bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while rotatably holding the plurality of rolling elements inside the bearing, At least one annular portion that is continuous in the circumferential direction along the inside of the bearing, and a plurality of column portions that extend from the annular portion along the inside of the bearing and are arranged at predetermined intervals in the circumferential direction along the annular portion And a plurality of pockets which are partitioned by the inner peripheral surface of the annular portion and the inner wall surfaces of the plurality of column portions and rotatably hold the plurality of rolling elements one by one on the inner wall surface of the column portion. Is at least a contact angle that forms a window angle of 0 ° or more and 90 ° or less and contacts the rolling elements outside the virtual circle that connects the centers of the plurality of rolling elements, and is positioned inward from the contact portion. And an extending portion extending at an angle smaller than the window angle. It is.

本発明において、接触部は、保持器の中心と転動体の中心とを通る第1基準線に対して所定の傾斜角度を成す平面状に設定されており、延在部は、保持器の中心と柱部の中心とを通る第2基準線に対して所定の傾斜角度を成す平面状に設定されている。この場合、接触部を保持器の中心と転動体の中心とを通る第1基準線に対して所定の傾斜角度を成す平面状に設定し、延在部を前記接触部に対して所定の曲率半径で接線接続する円弧状に設定しても良い。また、本発明の軸受用保持器は、その全体が樹脂材料で成形されており、鉄道車両に設けられた回転軸を支持する軸受に適用可能である。   In the present invention, the contact portion is set in a planar shape having a predetermined inclination angle with respect to a first reference line passing through the center of the cage and the center of the rolling element, and the extending portion is the center of the cage. And a second reference line that passes through the center of the column part and is set to a plane that forms a predetermined inclination angle. In this case, the contact portion is set in a planar shape having a predetermined inclination angle with respect to the first reference line passing through the center of the cage and the center of the rolling element, and the extending portion has a predetermined curvature with respect to the contact portion. You may set in the circular arc shape which carries out tangent connection by a radius. The bearing cage of the present invention is entirely formed of a resin material, and can be applied to a bearing that supports a rotating shaft provided in a railway vehicle.

本発明によれば、軸受内部の潤滑性能を長期に亘って一定に維持することが可能な高剛性で且つ高強度の軸受用保持器を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly rigid and high intensity | strength cage for a bearing which can maintain the lubricating performance inside a bearing constant over a long period of time is realizable.

以下、本発明の一実施の形態に係る軸受用保持器について、添付図面を参照して説明する。本実施の形態は、上述したようなころ軸受(図1(a),(b)、図4(a))に用いたかご形保持器11(図6(a))の改良であり、他の軸受構成は同図に示した構成と同一であるため、以下、改良部分の保持器11の説明にとどめる。ここでは、例えば新幹線などの鉄道車両に設けられた回転軸(車軸、各種の駆動軸など)を支持する軸受に適用される保持器11を想定する。   Hereinafter, a bearing cage according to an embodiment of the present invention will be described with reference to the accompanying drawings. This embodiment is an improvement of the cage retainer 11 (FIG. 6 (a)) used for the roller bearings (FIGS. 1 (a), (b) and 4 (a)) described above. Since the structure of the bearing is the same as that shown in the figure, only the cage 11 of the improved part will be described below. Here, for example, a cage 11 applied to a bearing that supports a rotating shaft (an axle, various drive shafts, etc.) provided in a railway vehicle such as a Shinkansen is assumed.

図1(c)〜(e)に示すように、本実施の形態に係る軸受用保持器において、各柱部6の内壁面6sには、少なくとも、0°以上90°以下の窓角2θを成し且つ複数の円すいころ5の中心(回転中心5z:図1(b)、図4(a))相互を結んだ仮想円PCDよりも外側で各円すいころ5に接触する接触部6aと、接触部6aから内側寄りに位置し且つ前記窓角2θよりも小さい角度2φを成して延在した延在部6bとが設けられている。   As shown in FIGS. 1C to 1E, in the bearing retainer according to the present embodiment, the inner wall surface 6s of each column portion 6 has at least a window angle 2θ of 0 ° or more and 90 ° or less. The center of the plurality of tapered rollers 5 (rotation center 5z: FIG. 1 (b), FIG. 4 (a)), a contact portion 6a that contacts each tapered roller 5 outside the virtual circle PCD that connects each other; An extending portion 6b is provided which is located on the inner side from the contact portion 6a and extends at an angle 2φ smaller than the window angle 2θ.

具体的に説明すると、接触部6aは、保持器11の中心11h(図1(a),(b)、図6(a))と円すいころ5の中心(回転中心5z:図1(b)、図4(a))とを通る第1基準線11xに対して所定の傾斜角度(窓角)θを成す平面状に設定されている。また、延在部6bは、保持器11の中心11hと柱部6の中心6zとを通る第2基準線11yに対して所定の傾斜角度φを成す平面状に設定されている。   More specifically, the contact portion 6a includes the center 11h (FIGS. 1A, 1B, 6A) of the retainer 11 and the center of the tapered roller 5 (rotation center 5z: FIG. 1B). 4 (a)) is set to a plane that forms a predetermined inclination angle (window angle) θ with respect to the first reference line 11x passing through FIG. The extending portion 6b is set in a planar shape that forms a predetermined inclination angle φ with respect to the second reference line 11y that passes through the center 11h of the cage 11 and the center 6z of the column portion 6.

この場合、接触部6aの傾斜角度(窓角)θと、延在部6bの傾斜角度φとは、下記(1)式を満足するように設定することが好ましい。
180/Z+θ>φ≧0 … (1)
なお、Zは、円すいころ5の総数を示す。
In this case, the inclination angle (window angle) θ of the contact portion 6a and the inclination angle φ of the extending portion 6b are preferably set so as to satisfy the following expression (1).
180 / Z + θ> φ ≧ 0 (1)
Z indicates the total number of tapered rollers 5.

以上、本実施の形態によれば、各柱部6の内壁面6sにおいて、上記(1)式を満足するように2つの接触部6a及び延在部6bの傾斜角度θ及びφを設定することにより、柱部6の内径面6inの面積を従来に比べて格段に大きくすることができる。この場合、柱部6の内径面6in側に設けられた延在部6bは、接触部6aとの接続境界P3から円すいころ5に向けて延出し、その延出端P2は、転動面5mに対して非接触状態に位置決めされている。このため、柱部6の内壁面6sは、その接触部6aの一箇所(1点)P1で円すいころ5に対して接触する構成となる。   As described above, according to the present embodiment, the inclination angles θ and φ of the two contact portions 6a and the extending portion 6b are set on the inner wall surface 6s of each column portion 6 so as to satisfy the above expression (1). Thus, the area of the inner diameter surface 6in of the column portion 6 can be significantly increased as compared with the conventional case. In this case, the extending portion 6b provided on the inner diameter surface 6in side of the column portion 6 extends from the connection boundary P3 with the contact portion 6a toward the tapered roller 5, and the extending end P2 has a rolling surface 5m. Is positioned in a non-contact state. For this reason, the inner wall surface 6s of the column portion 6 is configured to come into contact with the tapered roller 5 at one point (one point) P1 of the contact portion 6a.

かかる構成において、柱部6の内径面6inの面積を上記第2基準線11yからの幅寸法Iとして規定すると、当該幅寸法Iは、従来の幅寸法Iよりも大きくなる(I>I)。即ち、上記(1)式を満足するように柱部6の内壁面6s(接触部6a及び延在部6b)を構成(図1(e))することにより、従来の柱部6の構成(図5)に比べて、本実施の形態の柱部6の内径面6inの面積(幅寸法I、断面積)を大きく(I>I)設定することができる。この場合、従来に比べて、(I−I)×2×柱部6の本数分だけ内径面6inの面積(幅寸法I)を大きく設定することができる。これにより、当該内径面6inに付着する潤滑剤量を飛躍的に増加させることができる。この結果、軸受内部を効率良く潤滑することが可能となり、軸受内部の潤滑性能を長期に亘って一定に維持することができる。更に、各柱部6の断面積が大きくできる分だけ、当該柱部6の強度更には保持器11の強度を向上させることができる。 In such a configuration, when defining the area of the inner diameter surface 6in column portions 6 as the width I from the second reference line 11y, the width I is greater than the conventional width I 0 (I> I 0 ). That is, by configuring the inner wall surface 6s (the contact portion 6a and the extending portion 6b) of the column portion 6 so as to satisfy the above formula (1) (FIG. 1 (e)), the configuration of the conventional column portion 6 ( Compared to FIG. 5), the area (width dimension I, cross-sectional area) of the inner diameter surface 6in of the column portion 6 of the present embodiment can be set larger (I> I 0 ). In this case, the area (width dimension I) of the inner diameter surface 6in can be set larger than the conventional one by the number of (I−I 0 ) × 2 × columns 6. Thereby, the amount of lubricant adhering to the inner diameter surface 6in can be dramatically increased. As a result, the inside of the bearing can be efficiently lubricated, and the lubricating performance inside the bearing can be maintained constant over a long period of time. Furthermore, the strength of the column 6 and further the strength of the cage 11 can be improved by the amount that the cross-sectional area of each column 6 can be increased.

また、本実施の形態によれば、保持器11の外径側(特に、柱部6の外径面6out)に潤滑剤を溜めるための各種の窪みを形成する必要が無いため、応力集中し難い保持器構成を実現することができる。これにより、保持器11の剛性や強度を高く設定することができる。この結果、当該保持器11を高荷重下で高速回転させるような鉄道車両用軸受に適用した場合でも、上述した潤滑性能の維持と共に、当該軸受の回転安定性や安全性を長期に亘って維持することが可能となる。   In addition, according to the present embodiment, there is no need to form various depressions for storing the lubricant on the outer diameter side of the retainer 11 (particularly, the outer diameter surface 6out of the column portion 6). A difficult cage configuration can be realized. Thereby, the rigidity and strength of the cage 11 can be set high. As a result, even when the cage 11 is applied to a railway vehicle bearing that rotates at high speed under a heavy load, the above-described lubrication performance is maintained, and the rotational stability and safety of the bearing are maintained over a long period of time. It becomes possible to do.

なお、上述した実施の形態において、2つの接触部6a及び延在部6bの傾斜角度θ及びφの値については特に言及しなかったが、傾斜角度(窓角)θは、例えば円すいころ5の大きさ(直径)、内外輪1,3間における保持器11の位置や、保持器11の形状や種類などに応じて任意に設定されるため、ここでは特に数値限定はしない。また、傾斜角度φは、柱部6の本数や大きさ並びに形状などに応じて任意に設定されるため、ここでは特に数値限定はしない。   In the embodiment described above, the values of the inclination angles θ and φ of the two contact portions 6a and the extending portions 6b are not particularly mentioned, but the inclination angle (window angle) θ is, for example, that of the tapered roller 5 Since it is arbitrarily set according to the size (diameter), the position of the retainer 11 between the inner and outer rings 1 and 3, the shape and type of the retainer 11, the numerical value is not particularly limited here. In addition, the inclination angle φ is arbitrarily set according to the number, size, shape, and the like of the column parts 6, and is not specifically limited here.

また、上述した実施の形態において、接触部6aと延在部6bとの接続境界P3は、図面上で角張った形状を成しているが、ここにフィレットを設けて角を丸めるように構成しても良い。角張った部分には、比較的応力が集中し易くなるが、フィレットを設けることで、接触部6aと延在部6bとを滑らかに連続させることが可能となり、その結果、当該保持器11の強度を向上させることができる。   In the above-described embodiment, the connection boundary P3 between the contact portion 6a and the extension portion 6b has an angular shape on the drawing. However, the fillet is provided here to round the corner. May be. Stress is relatively easily concentrated on the angular portion, but by providing a fillet, the contact portion 6a and the extending portion 6b can be smoothly continuous, and as a result, the strength of the cage 11 Can be improved.

また、本発明の他の実施の形態に係る軸受用保持器として、図2に示すようなかご形保持器11を適用しても、上述した実施の形態(図1(e))と同様の効果を実現することができる。かかる保持器11において、接触部6aは、保持器11の中心11hと円すいころ5の回転中心5zとを通る第1基準線11xに対して所定の傾斜角度(窓角)θを成す平面状に設定されており、延在部6bは、前記接触部6aに対して所定の曲率半径Rで接線接続する円弧状に設定されている。   Further, even when a cage retainer 11 as shown in FIG. 2 is applied as a bearing retainer according to another embodiment of the present invention, the same as the above-described embodiment (FIG. 1 (e)). The effect can be realized. In the cage 11, the contact portion 6 a has a planar shape that forms a predetermined inclination angle (window angle) θ with respect to the first reference line 11 x that passes through the center 11 h of the cage 11 and the rotation center 5 z of the tapered roller 5. The extending portion 6b is set in an arc shape tangentially connected to the contact portion 6a with a predetermined radius of curvature R.

かかる他の実施の形態によれば、延在部6bを円弧状とすることで、軸受回転中において内壁面6s(接触部6a)と円すいころ5との接触点P1を変動し難くできるため、軸受の回転安定性を更に向上させることが可能となる。また、円弧状の延在部6bを接触部6aに対して所定の曲率半径Rで接線接続させることで、接触部6aと延在部6bとを滑らかに連続させることが可能となり、その結果、当該保持器11の強度を向上させることができる。なお、その他の効果は、上述した実施の形態と同様であるため、その説明は省略する。   According to such another embodiment, since the extending portion 6b is formed in an arc shape, the contact point P1 between the inner wall surface 6s (contact portion 6a) and the tapered roller 5 can be hardly changed during rotation of the bearing. It becomes possible to further improve the rotational stability of the bearing. Further, by connecting the arc-shaped extending portion 6b tangentially to the contact portion 6a with a predetermined radius of curvature R, it becomes possible to smoothly connect the contact portion 6a and the extending portion 6b. The strength of the cage 11 can be improved. Since other effects are the same as those of the above-described embodiment, description thereof is omitted.

また、上述した各実施の形態(図1(e)、図2)において、柱部6の内壁面6s(接触部6a及び延在部6b)の表面形状については特に言及しなかったが、例えば図3(a),(b)に示すような保持器構成としても良い。即ち、各柱部6の内壁面6sのうち小径側円環部2寄りの領域には、当該保持器11と共に複数の円すいころ5を軸受内部(図面では、内輪1)に組み込む際に各円すいころ5と接触する接触部が形成され、且つ、各柱部6の内壁面6sのうち大径側円環部4寄りの領域には、常に各円すいころ5と非接触となる非接触部6cが形成されている。この場合、内壁面6sのうち接触部が形成された領域に、上述した2つの接触部6a及び延在部6bが設けられている。   Moreover, in each embodiment mentioned above (FIG.1 (e), FIG.2), although it did not mention in particular about the surface shape of the inner wall surface 6s (the contact part 6a and the extension part 6b) of the pillar part 6, It is good also as a holder | retainer structure as shown to Fig.3 (a), (b). That is, in the region of the inner wall surface 6 s of each column portion 6 near the small-diameter-side annular portion 2, each of the tapered rollers 5 together with the retainer 11 is incorporated into the inside of the bearing (in the drawing, the inner ring 1). A contact portion that contacts the roller 5 is formed, and a non-contact portion 6c that is always in non-contact with each tapered roller 5 is formed in an area near the large-diameter-side annular portion 4 of the inner wall surface 6s of each column portion 6. Is formed. In this case, the two contact portions 6a and the extending portion 6b described above are provided in the region where the contact portion is formed in the inner wall surface 6s.

なお、図3(a)には、第1の保持器構成として、内壁面6sに沿って略台形状に形成された接触部が示されている。かかる接触部は、小径側円環部2に接合された柱部6の端部6eから当該柱部6両側を通り且つ大径側円環部4の端部6eに向うに従ってアキシアル方向(軸受の回転中心軸Q(図1(a))に平行な方向)に先細り形状を成し、そのまま当該大径側円環部4の内径側に潜り込むように延出されている。
また、図3(b)には、第2の保持器構成として、内壁面6sに沿って略矩形状に形成された接触部が示されている。かかる接触部は、小径側円環部2に接合された柱部6の端部6eから当該柱部6両側をラジアル方向(軸受の回転中心軸Q(図1(a))に直交する方向)に横断して形成されている。
FIG. 3A shows a contact portion formed in a substantially trapezoidal shape along the inner wall surface 6s as the first cage configuration. Such a contact portion passes through both sides of the column portion 6 from the end portion 6e of the column portion 6 joined to the small-diameter side annular portion 2 and toward the end portion 6e of the large-diameter side annular portion 4 in the axial direction (the bearing). It has a tapered shape about the rotation center axis Q (in a direction parallel to FIG. 1A), and extends so as to enter the inner diameter side of the large-diameter side annular portion 4 as it is.
FIG. 3B shows a contact portion formed in a substantially rectangular shape along the inner wall surface 6s as the second cage configuration. Such a contact portion has a radial direction from the end portion 6e of the column portion 6 joined to the small-diameter-side annular portion 2 (direction perpendicular to the rotation center axis Q of the bearing (FIG. 1A)). It is formed across.

かかる第1及び第2の保持器構成によれば、図4(b)に示すように、環状の鍔部7が突出された内輪1に対して保持器11と共に複数の円すいころ5を組み込む際、鍔部7の突出端7eに当接した各円すいころ5により各柱部6の接触部(接触部6a及び延在部6b)のみが押圧され、内壁面6sの非接触部6cには、各円すいころ5が接触しない。このため、小径側円環部2のみが外径方向に押し広げられる。この状態で、内輪1を更に矢印Y方向に移動させることで、当該保持器11に保持された各円すいころ5を鍔部7の突出端7eを乗り越えて当該内輪1の軌道面1sに組み込むことができる。   According to the first and second cage configurations, as shown in FIG. 4B, when the plurality of tapered rollers 5 are assembled together with the cage 11 into the inner ring 1 from which the annular flange portion 7 is projected. Only the contact portions (contact portions 6a and extending portions 6b) of the column portions 6 are pressed by the tapered rollers 5 in contact with the protruding ends 7e of the flange portion 7, and the non-contact portions 6c of the inner wall surface 6s are Each tapered roller 5 does not contact. For this reason, only the small diameter side annular portion 2 is expanded in the outer diameter direction. In this state, by moving the inner ring 1 further in the direction of arrow Y, each tapered roller 5 held by the retainer 11 gets over the protruding end 7e of the flange 7 and is incorporated into the raceway surface 1s of the inner ring 1. Can do.

このように、内輪1の軌道面1sに対する各円すいころ5の組込時に、小径側円環部2のみを外径方向に押し広げるようにしたことにより、保持器全体を押し広げる場合に比べて、各円すいころ5と内輪1の軌道面1sとの間に働く締付力(圧縮力)を低減させることができる。これにより、組込時において各円すいころ5や内輪1(軌道面1s)が傷付いたり、破損するといったような不具合の発生を抑制することができる。   As described above, when each tapered roller 5 is assembled to the raceway surface 1s of the inner ring 1, only the small-diameter-side annular portion 2 is expanded in the outer diameter direction, so that the entire cage is expanded. The tightening force (compression force) acting between each tapered roller 5 and the raceway surface 1s of the inner ring 1 can be reduced. As a result, it is possible to suppress the occurrence of problems such as damage or breakage of each tapered roller 5 or inner ring 1 (track surface 1s) during assembly.

なお、各柱部6の内壁面6sにおいて、接触部(接触部6a及び延在部6b)は、円すいころ5の転動面5mと接触するようにポケット8の開口を狭める向きに出っ張らせて形成され、これに対して、非接触部6cは、円すいころ5の転動面5mから離間するようにポケット8の開口を広げる向きに引っ込めて形成される。この場合、接触部((接触部6a及び延在部6b))の出張量や非接触部6cの引込量は、例えば保持器11の形状や大きさ、ポケット8の形状や大きさ、或いは、ポケット8に保持される円すいころ5の転動面5mの形状や大きさなどに応じて任意に設定されるため、ここでは特に限定しない。   In addition, in the inner wall surface 6s of each column part 6, the contact part (the contact part 6a and the extension part 6b) protrudes in the direction which narrows the opening of the pocket 8 so that it may contact with the rolling surface 5m of the tapered roller 5. On the other hand, the non-contact portion 6c is formed by retracting the opening of the pocket 8 so as to be separated from the rolling surface 5m of the tapered roller 5. In this case, the amount of business trip of the contact portion ((contact portion 6a and extension portion 6b)) and the amount of retraction of the non-contact portion 6c are, for example, the shape and size of the cage 11, the shape and size of the pocket 8, or Since it is arbitrarily set according to the shape and size of the rolling surface 5m of the tapered roller 5 held in the pocket 8, there is no particular limitation here.

また、第1及び第2の保持器構成において、接触部((接触部6a及び延在部6b))の形成領域(例えば、長さ、幅など)は、例えば保持器11の種類や形状、大きさや剛性などによって任意に設定されるため、ここでは特に限定しない。例えば第3の保持器構成として、図3(c)に示すように、各柱部6の内壁面6s全体に亘って且つ当該柱部6の長手方向に沿って、上述した2つの接触部6a及び延在部6bを設けても良い。   Further, in the first and second cage configurations, the formation region (for example, length, width, etc.) of the contact portion ((contact portion 6a and extension portion 6b)) is, for example, the type and shape of the cage 11, Since it is arbitrarily set depending on the size and rigidity, it is not particularly limited here. For example, as the third cage configuration, as shown in FIG. 3C, the two contact portions 6 a described above are arranged over the entire inner wall surface 6 s of each column portion 6 and along the longitudinal direction of the column portion 6. And the extension part 6b may be provided.

なお、上述した各実施の形態(図1(e)、図2)において、かご形保持器11の材質については特に言及しなかったが、その全体を樹脂材料で成形しても良いし、金属材料で成形しても良い。この場合、当該保持器11の材料は、高剛性で且つ高強度であれば任意の材料を選択することができるため、ここでは特に限定しない。また、軸受回転時には高温下にさらされることになるため、耐熱性に優れた材料を選択することが好ましい。   In each of the above-described embodiments (FIGS. 1 (e) and 2), the material of the cage retainer 11 is not particularly mentioned, but the whole may be formed of a resin material, or metal You may shape | mold with a material. In this case, any material can be selected as the material of the cage 11 as long as it has high rigidity and high strength, and is not particularly limited here. Further, since the bearing is exposed to high temperatures during rotation of the bearing, it is preferable to select a material having excellent heat resistance.

また、上述した各実施の形態(図1(e)、図2)では、転動体5として円すいころを想定し、これを保持可能な保持器11を想定して説明したが、これ以外に、例えば円筒ころ、針状ころ、球面ころ、凸面ころなどを保持可能な保持器11にも本発明の技術的構成を施すことで、上述したような効果を実現することができる。
また、上述した各実施の形態では、各柱部6の内壁面6sにおいて、接触部6aの一箇所(1点)P1で円すいころ5に対して接触し、延在部6bの延出端P2は円すいころ5に対して非接触となる構成を例示したが、これに限定されることは無く、接触部6aの一箇所(1点)P1及び延在部6bの延出端P2が双方共に円すいころ5に対して接触するような構成としても良い。
Moreover, in each embodiment mentioned above (FIG.1 (e), FIG.2), although the tapered roller was assumed as the rolling element 5, and it demonstrated supposing the holder | retainer 11 which can hold | maintain this, For example, the above-described effects can be realized by applying the technical configuration of the present invention to the cage 11 that can hold cylindrical rollers, needle rollers, spherical rollers, convex rollers, and the like.
Moreover, in each embodiment mentioned above, in the inner wall surface 6s of each pillar part 6, it contacts with the tapered roller 5 at one place (one point) P1 of the contact part 6a, and the extension end P2 of the extension part 6b. Exemplifies a configuration in which the tapered roller 5 is not in contact with each other. However, the configuration is not limited to this, and one (one point) P1 of the contact portion 6a and the extending end P2 of the extending portion 6b are both. It is good also as a structure which contacts with respect to the tapered roller 5. FIG.

また、本発明の変形例に係る保持器11としては、例えば図6(a)に示すように、各ポケット8の四隅において、円環部2,4のうち柱部6の両端部6eに隣接した部分に、所定深さだけ窪ませて形成した逃げ部10を設けても良い。この場合、逃げ部10は、各ポケット8の四隅に設けられており、軸受の回転中心軸Q(図1(a))に沿った方向に窪ませて(凹ませて)形成されている。別の言い方をすると、各逃げ部10は、軸受回転方向に沿って窪ませて(凹ませて)形成されてはいない。   Further, as the cage 11 according to the modified example of the present invention, for example, as shown in FIG. 6A, at the four corners of each pocket 8, it is adjacent to both end portions 6e of the column portion 6 in the annular portions 2, 4. You may provide the escape part 10 formed in the part which was depressed by predetermined depth. In this case, the relief portions 10 are provided at the four corners of each pocket 8 and are formed to be recessed (recessed) in the direction along the rotation center axis Q of the bearing (FIG. 1A). In other words, each relief portion 10 is not formed to be recessed (recessed) along the bearing rotation direction.

具体的に説明すると、図6(b)〜(d)に示すように、逃げ部10は、円環部2,4を横断して平坦状に形成された1つの平坦状面10sと、平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率(例えば、曲率半径)で連続した2つの円弧状面R1,R2とから構成されている。ここで、平坦状面10sは、軸受の回転中心軸を直交する方向に沿って平行に円環部2,4を横断して形成されており、2つの円弧状面R1,R2のうち、一方の円弧状面R1は、平坦状面10sの一方側から円環部2,4の内周面2s,4sに連続し、且つ、他方の円弧状面R2は、平坦状面10sの他方側から柱部6の内壁面6sに連続している。   More specifically, as shown in FIGS. 6B to 6D, the relief portion 10 includes a flat surface 10s formed flat across the annular portions 2, 4 and a flat surface. It is composed of two arcuate surfaces R1 and R2 that are continuous with a predetermined curvature (for example, a radius of curvature) from both sides of the surface 10s toward the annular portions 2 and 4 and the column portion 6. Here, the flat surface 10s is formed so as to cross the annular portions 2 and 4 in parallel along the direction orthogonal to the rotation center axis of the bearing, and one of the two arc-shaped surfaces R1 and R2. The arcuate surface R1 is continuous from one side of the flat surface 10s to the inner peripheral surfaces 2s and 4s of the annular portions 2 and 4, and the other arcuate surface R2 is from the other side of the flat surface 10s. It is continuous with the inner wall surface 6 s of the column portion 6.

このような逃げ部10において、2つの円弧状面R1,R2から1つの平坦状面10sに亘る全体の幅寸法を2nとすると、幅寸法2nは、円すいころ5の端面(転動面5mと側面5eとの間に周方向に沿って連続した環状の端面)に形成された面取り5rの寸法(図1(a)、図4(a),(b))よりも大きく設定されている。また、逃げ部10は、その深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定して構成されている。ここで、逃げ部10の深さ寸法kが円弧状面R1,R2の曲率半径ρと近似(ρ=k)しているとして、曲率半径ρと幅寸法Hとの比(ρ/H)で表わすと、当該逃げ部10は、0.1≦ρ/H≦0.3なる関係を満足するように設定されている。   In such a relief portion 10, assuming that the overall width dimension from the two arcuate surfaces R1, R2 to one flat surface 10s is 2n, the width dimension 2n is the end face of the tapered roller 5 (the rolling surface 5m and It is set to be larger than the dimensions (FIGS. 1A, 4A, and 4B) of a chamfer 5r formed on an annular end surface that is continuous with the side surface 5e along the circumferential direction. Further, the relief portion 10 is configured by setting the depth dimension k within a range of 10% to 30% of the width dimension H of the annular portions 2 and 4. Here, assuming that the depth dimension k of the relief portion 10 approximates the curvature radius ρ of the arcuate surfaces R1 and R2 (ρ = k), the ratio (ρ / H) of the curvature radius ρ and the width dimension H In terms of representation, the clearance 10 is set so as to satisfy the relationship of 0.1 ≦ ρ / H ≦ 0.3.

なお、図面上において、各円弧状面R1,R2は、連続した一定(単一)の曲率半径ρで形成されているが、この場合、曲率半径ρの大きさは、例えば逃げ部10の深さ寸法kや幅寸法2nに応じて任意に設定されるため、ここでは特に数値限定はしない。また、逃げ部10の深さ寸法kや幅寸法2nは、例えば図示しない転動体(円すいころ)の大きさや形状、当該転動体(円すいころ)を保持するポケット8の大きさや形状に応じて任意に設定されるため、ここでは特に数値限定はしない。   In the drawing, each of the arcuate surfaces R1 and R2 is formed with a continuous constant (single) radius of curvature ρ. In this case, the magnitude of the radius of curvature ρ is, for example, the depth of the relief portion 10. Since it is arbitrarily set according to the length dimension k and the width dimension 2n, the numerical value is not particularly limited here. Further, the depth dimension k and the width dimension 2n of the relief portion 10 are arbitrary depending on, for example, the size and shape of a rolling element (cone roller) (not shown) and the size and shape of the pocket 8 that holds the rolling element (cone roller). Therefore, the numerical value is not particularly limited here.

以上、本変形例の保持器11によれば、1つの平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率半径ρで連続した2つの円弧状面で構成された逃げ部10をポケット8の四隅に設けたことにより、曲率半径の増大が制約された条件下においてもポケット8の四隅への過度の応力集中を低減することができる。これにより、従来に比べて保持器11の強度を一定に維持することが可能となり、その結果、当該保持器11の延命化や信頼性の向上を図ることができる。   As described above, according to the cage 11 of this modification, the cage 11 is composed of two arcuate surfaces that are continuous with a predetermined radius of curvature ρ from both sides of one flat surface 10s toward the annular portions 2 and 4 and the column portion 6. By providing the relief portions 10 at the four corners of the pocket 8, excessive stress concentration at the four corners of the pocket 8 can be reduced even under a condition in which an increase in the radius of curvature is restricted. As a result, the strength of the cage 11 can be kept constant as compared with the conventional case. As a result, the life of the cage 11 can be extended and the reliability can be improved.

また、本変形例によれば、逃げ部10の幅寸法2nを円すいころ5の面取り5rの寸法よりも大きく設定したことで、軸受に封入されている潤滑剤(グリース、油)の掻き取り防止や当該保持器11のポケット8の偏磨耗の防止を図ることができる。即ち、各ポケット8の四隅において、潤滑剤を円すいころ5の端面に付着・保持させることが可能となり、これにより、円すいころ5の端面と内外輪1,3に形成された環状の鍔部7,9(軌道面1sの両側に突設されたころ案内)との接触部位に常時潤滑剤を供給し続けることができる。この結果、円すいころ5及び内外輪1,3の磨耗や摩損を低減させることが可能となり、軸受寿命の延命化を図ることができる。   Further, according to this modification, the width dimension 2n of the relief portion 10 is set larger than the dimension of the chamfer 5r of the tapered roller 5, thereby preventing scraping of the lubricant (grease, oil) enclosed in the bearing. Further, uneven wear of the pocket 8 of the cage 11 can be prevented. That is, at the four corners of each pocket 8, it becomes possible to adhere and hold the lubricant to the end face of the tapered roller 5, whereby the annular flange 7 formed on the end face of the tapered roller 5 and the inner and outer rings 1, 3. , 9 (the roller guide projecting on both sides of the raceway surface 1s) can be continuously supplied with the lubricant. As a result, it is possible to reduce wear and wear of the tapered roller 5 and the inner and outer rings 1 and 3, and to extend the life of the bearing.

更に、本変形例によれば、逃げ部10の深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定したことにより、保持器11全体としての強度を一定に維持することが可能となり、その結果、軸受の回転性能を長期に亘って一定に維持することができる。特に新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受には、高速回転下において高負荷が作用するため、それに対応するように保持器11の強度も高いものが要求されるが、本変形例の保持器11は、これに充分に対応することができる。   Furthermore, according to this modification, the depth k of the relief portion 10 is set in the range of 10% to 30% of the width dimension H of the annular portions 2 and 4, thereby increasing the strength of the cage 11 as a whole. It becomes possible to keep constant, and as a result, the rotational performance of the bearing can be kept constant over a long period of time. In particular, the bearings that support the rotating shafts (for example, axles) provided on high-speed railway vehicles such as the Shinkansen and the output shafts of the main motors are subjected to high loads under high-speed rotation. Although the container 11 is required to have a high strength, the retainer 11 of the present modification can sufficiently cope with this.

ここで、上述したような本変形例の保持器11の効果について、応力の発生モデルを用いて実証する。
図7(a)には、ポケット8(図6)に逃げ部10の無い保持器モデルが示されており、その円環部2,4は、厚さ寸法T=8、幅寸法H=10の割合に設定され、その柱部6は、長さ寸法E=15、円環部中央までの柱長L=20の割合に設定されている。そして、柱部6に荷重F=50(例えば、50ニュートン)を作用させて保持器モデルにモーメントMを発生させる。このとき、柱部6には均等な分布荷重Wが作用しているものとする。
Here, the effect of the cage 11 of the present modification as described above will be demonstrated using a stress generation model.
FIG. 7 (a) shows a cage model in which the pocket 8 (FIG. 6) does not have the relief portion 10, and the annular portions 2, 4 have a thickness dimension T = 8 and a width dimension H = 10. The column portion 6 is set to have a length dimension E = 15 and a column length L = 20 to the center of the annular portion. Then, a load F = 50 (for example, 50 Newton) is applied to the column portion 6 to generate a moment M in the cage model. At this time, it is assumed that a uniform distributed load W acts on the column portion 6.

かかる条件下における材料力学的な関係から、柱部6に生じる応力σ(基準応力)は、下記の(2)(3)式より(1)式として算出される。
σ=M/Z (Z:断面係数) … (1)
M=W・L/2 … (2)
Z=T・H/6 … (3)
From the material mechanical relationship under such conditions, the stress σ 0 (reference stress) generated in the column portion 6 is calculated as the following equation (1) from the following equations (2) and (3).
σ 0 = M / Z (Z: section modulus) (1)
M = W · L 2/2 ... (2)
Z = T · H 2/6 ... (3)

図7(b)には、ポケット8(図6)に既存の逃げ部10aを有する保持器モデルが示されており、逃げ部10aは、柱部6の端部6eに隣接した部分において、単一の曲率半径ρのみで形成された円弧形状を成している。この場合、円環部2,4に生じる曲げ応力を材料力学的な関係から求めると、応力集中を考慮した場合の各ポケット8の四隅で発生する引張応力σmaxは、(4)式として算出される。
σmax=ασ (α:応力集中係数) … (4)
FIG. 7 (b) shows a cage model having an existing relief portion 10a in the pocket 8 (FIG. 6). The relief portion 10a is formed at a portion adjacent to the end portion 6e of the column portion 6 at a single position. It has an arc shape formed with only one curvature radius ρ. In this case, when the bending stress generated in the annular portions 2 and 4 is obtained from the material mechanical relationship, the tensile stress σmax generated at the four corners of each pocket 8 in consideration of the stress concentration is calculated as Equation (4). The
σmax = ασ 0 (α: Stress concentration factor) (4)

ここで、図7(b)の保持器モデルについて、有限要素法に基づく構造解析(FEM解析)を行って、その解析結果から得られたσmaxと材料力学的に求めた基準応力σとから応力集中係数αは、(5)式として算出される。
α=σmax/σ … (5)
Here, structural analysis (FEM analysis) based on the finite element method is performed on the cage model of FIG. 7B, and from the σmax obtained from the analysis result and the reference stress σ 0 obtained from the material mechanics. The stress concentration coefficient α is calculated as equation (5).
α = σmax / σ 0 (5)

図8(a)には、図7(b)の保持器モデルにおける応力集中係数αの算出結果が示されており、逃げ部10aの曲率半径をρ、深さ寸法をk、円環部2,4の幅寸法をHとし、ρ=kとすると、応力集中係数αは、ρ/H=0.1〜0.3の範囲で極値(α=3.65〜3.76、αmin=3.39)をとることがわかる。   FIG. 8 (a) shows the calculation result of the stress concentration coefficient α in the cage model of FIG. 7 (b). The radius of curvature of the relief portion 10a is ρ, the depth dimension is k, the annular portion 2 is shown. , 4 is H and ρ = k, the stress concentration coefficient α is an extreme value (α = 3.65 to 3.76, αmin = in the range of ρ / H = 0.1 to 0.3). It is understood that 3.39) is taken.

図7(c)には、ポケット8(図6)に既存の逃げ部10を有する本変形例の保持器モデルが示されており、逃げ部10の幅寸法を2n、ρ/H=0.2とし、これに基づいて応力集中係数αを算出すると、図8(b)に示すような算出結果が得られる。かかる算出結果によれば、n/ρ=1.0は、図8(a)の応力集中係数αの最小値(αmin=3.39)を示した諸寸法(単一の曲率半径ρ)であり、当該n/ρが1.0を越えると、応力集中係数αが減少し、応力の集中を低減させる効果を発揮することがわかる。この場合、n/ρ=2.0以降は略一定の極値をとるため、n/ρが2.0以上となるように逃げ部10を設定することが好ましい。   FIG. 7 (c) shows a cage model of the present modified example having the existing relief portion 10 in the pocket 8 (FIG. 6), where the width dimension of the relief portion 10 is 2n, ρ / H = 0. When the stress concentration coefficient α is calculated based on this, a calculation result as shown in FIG. 8B is obtained. According to this calculation result, n / ρ = 1.0 is the dimensions (single curvature radius ρ) indicating the minimum value (αmin = 3.39) of the stress concentration coefficient α in FIG. It can be seen that when n / ρ exceeds 1.0, the stress concentration coefficient α decreases, and the effect of reducing stress concentration is exhibited. In this case, since n / ρ = 2.0 or later takes a substantially constant extreme value, it is preferable to set the relief portion 10 so that n / ρ is 2.0 or more.

(a)は、円すいころ軸受の縦断面図、(b)は、同図(a)の横断面図、(c)は、本発明の一実施の形態に係る軸受用保持器において、柱部の外径面側に形成された内壁面の構成を一部拡大して示す断面図、(d)は、本発明の一実施の形態に係る軸受用保持器において、柱部の内径面側に形成された内壁面の構成を一部拡大して示す断面図、(e)は、柱部の内壁面に形成された2つの接触部及び延在部の構成を拡大して示す図。(a) is a longitudinal sectional view of a tapered roller bearing, (b) is a transverse sectional view of FIG. (a), and (c) is a column portion in a bearing cage according to an embodiment of the present invention. Sectional drawing which expands and shows partially the structure of the inner wall surface formed in the outer-diameter surface side, (d) is a bearing retainer which concerns on one embodiment of this invention. Sectional drawing which expands and shows partially the structure of the formed inner wall surface, (e) is a figure which expands and shows the structure of the two contact parts and extension part which were formed in the inner wall surface of a pillar part. 本発明の他の実施の形態に係る軸受用保持器において、柱部の内壁面に形成された2つの接触部及び延在部の構成を拡大して示す図。In the bearing retainer which concerns on other embodiment of this invention, the figure which expands and shows the structure of the two contact parts and extension part which were formed in the inner wall face of a pillar part. (a)は、本発明の第1の保持器構成を一部拡大して示す断面図、(b)は、本発明の第2の保持器構成を一部拡大して示す断面図、(c)は、本発明の第3の保持器構成を一部拡大して示す断面図。(a) is a cross-sectional view showing a partially enlarged view of the first cage structure of the present invention, (b) is a cross-sectional view showing a partially expanded view of the second cage structure of the present invention, (c) ) Is a partially enlarged cross-sectional view of the third cage structure of the present invention. (a)は、本発明の一実施の形態に係る軸受用保持器が複数の転動体と共に組み込まれた軸受の一部を拡大して示す断面図、(b)は、各転動体を軸受に組み込んでいる状態を示す図。(a) is sectional drawing which expands and shows a part of bearing in which the cage for bearings which concerns on one embodiment of this invention was integrated with the several rolling element, (b) is each rolling element to a bearing. The figure which shows the state incorporating. 従来の軸受用保持器において、柱部の内壁面の構成を一部拡大して示す図。The figure which expands and shows a part of structure of the inner wall face of a pillar part in the conventional cage for bearings. (a)は、本発明の変形例に係る軸受用保持器の全体の構成例を示す斜視図、(b)は、同図(a)の保持器の一部を外側から見た拡大図、(c)は、同図(a)の保持器の一部を内側から見た拡大図、(d)は、逃げ部の構成を拡大して示す図。(a) is a perspective view showing an overall configuration example of a bearing retainer according to a modification of the present invention, (b) is an enlarged view of a part of the retainer of FIG. (c) is the enlarged view which looked at some cages of the figure (a) from the inside, (d) is the figure which expands and shows the structure of an escape part. 応力の発生モデルを示す図であって、(a)は、ポケットに逃げ部の無い保持器モデル、(b)は、既存の逃げ部を有する保持器モデル、(c)は、本変形例の保持器モデル。It is a figure which shows the generation | occurrence | production model of stress, (a) is a cage model without a relief part in a pocket, (b) is a cage model which has an existing relief part, (c) is this modification example. Cage model. 応力集中計数のFEM解析結果を示す図であって、(a)は、既存の保持器における解析結果、(b)は、本変形例の保持器の解析結果。It is a figure which shows the FEM analysis result of a stress concentration count, Comprising: (a) is the analysis result in the existing cage, (b) is the analysis result of the cage of this modification.

符号の説明Explanation of symbols

2,4 円環部
2s,4s 内周面
5 転動体(円すいころ)
6 柱部
6a 接触部
6b 延在部
6s 内壁面
8 ポケット
11 保持器
2,4 torus
2s, 4s Inner peripheral surface 5 Rolling elements (cone rollers)
6 pillar part 6a contact part 6b extension part 6s inner wall surface 8 pocket 11 cage

Claims (8)

軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、
軸受内部に沿って周方向に連続した少なくとも1つの円環部と、
円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、
円環部と複数の柱部の内壁面とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを備えており、
柱部の内壁面には、少なくとも、0°以上90°以下の窓角を成し且つ複数の転動体の中心相互を結んだ仮想円よりも外側で各転動体に接触する接触部と、接触部から内側寄りに位置し且つ前記窓角よりも小さい角度を成して延在した延在部とが設けられていることを特徴とする軸受用保持器。
A bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while holding the plurality of rolling elements within the bearing rotatably,
At least one annular portion that is circumferentially continuous along the bearing interior;
A plurality of pillars extending from the annular part along the inside of the bearing, and arranged at predetermined intervals in the circumferential direction along the annular part;
A plurality of pockets that are partitioned by an annular part and inner wall surfaces of a plurality of pillars, and that hold a plurality of rolling elements one by one,
A contact portion that contacts each rolling element at least outside a virtual circle that forms a window angle of 0 ° or more and 90 ° or less and connects the centers of the plurality of rolling elements on the inner wall surface of the column part, and a contact A bearing retainer is provided, wherein the bearing retainer is provided with an extending portion that is located inward from the portion and extends at an angle smaller than the window angle.
接触部は、保持器の中心と転動体の中心とを通る第1基準線に対して所定の傾斜角度を成す平面状に設定されており、延在部は、保持器の中心と柱部の中心とを通る第2基準線に対して所定の傾斜角度を成す平面状に設定されていることを特徴とする請求項1に記載の軸受用保持器。   The contact portion is set in a planar shape having a predetermined inclination angle with respect to the first reference line passing through the center of the cage and the center of the rolling element, and the extending portion is formed between the center of the cage and the column portion. The bearing retainer according to claim 1, wherein the bearing retainer is set in a planar shape having a predetermined inclination angle with respect to a second reference line passing through the center. 接触部は、保持器の中心と転動体の中心とを通る第1基準線に対して所定の傾斜角度を成す平面状に設定されており、延在部は、前記接触部に対して所定の曲率半径で接線接続する円弧状に設定されていることを特徴とする請求項1に記載の軸受用保持器。   The contact portion is set in a planar shape having a predetermined inclination angle with respect to the first reference line passing through the center of the cage and the center of the rolling element, and the extending portion is a predetermined shape with respect to the contact portion. 2. The bearing retainer according to claim 1, wherein the bearing retainer is set in an arc shape tangentially connected with a radius of curvature. 全体が樹脂材料で成形されていることを特徴とする請求項1〜3のいずれかに記載の軸受用保持器。   The bearing retainer according to claim 1, wherein the bearing retainer is entirely formed of a resin material. 各ポケットには、円環部のうち柱部に隣接した部分を所定深さだけ窪ませて形成した逃げ部が設けられており、
逃げ部は、円環部を横断して平坦状に形成された1つの平坦状面と、平坦状面の両側から円環部及び柱部に向けて所定の曲率で連続した2つの円弧状面とから構成されていることを特徴とする請求項1〜4のいずれかに記載の軸受用保持器。
Each pocket is provided with a relief portion formed by recessing a portion of the annular portion adjacent to the pillar portion by a predetermined depth,
The escape portion includes one flat surface formed flat across the annular portion, and two arc-shaped surfaces continuous at a predetermined curvature from both sides of the flat surface toward the annular portion and the column portion. The bearing retainer according to any one of claims 1 to 4, wherein:
転動体としてころを適用した軸受において、逃げ部は、2つの円弧状面から1つの平坦状面に亘る全体の幅寸法をころの端面に形成された面取り寸法よりも大きく設定して構成されていることを特徴とする請求項5に記載の軸受用保持器。   In a bearing in which a roller is applied as a rolling element, the relief portion is configured by setting the overall width dimension from two arcuate surfaces to one flat surface larger than the chamfer dimension formed on the end surface of the roller. The bearing retainer according to claim 5, wherein the bearing retainer is provided. 逃げ部は、その深さ寸法を円環部の幅寸法の10%〜30%の範囲に設定して構成されていることを特徴とする請求項5又は6に記載の軸受用保持器。   The bearing retainer according to claim 5 or 6, wherein the relief portion is configured with a depth dimension set in a range of 10% to 30% of a width dimension of the annular portion. 鉄道車両に設けられた回転軸を支持する軸受に適用可能であることを特徴とする請求項1〜7のいずれかに記載の軸受用保持器。
The bearing retainer according to any one of claims 1 to 7, wherein the bearing retainer is applicable to a bearing that supports a rotating shaft provided in a railway vehicle.
JP2006171289A 2006-06-21 2006-06-21 Retainer for bearings Pending JP2008002534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171289A JP2008002534A (en) 2006-06-21 2006-06-21 Retainer for bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171289A JP2008002534A (en) 2006-06-21 2006-06-21 Retainer for bearings

Publications (1)

Publication Number Publication Date
JP2008002534A true JP2008002534A (en) 2008-01-10

Family

ID=39007086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171289A Pending JP2008002534A (en) 2006-06-21 2006-06-21 Retainer for bearings

Country Status (1)

Country Link
JP (1) JP2008002534A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068031A1 (en) * 2014-10-29 2016-05-06 株式会社ジェイテクト Tapered roller bearing
US20170370411A1 (en) 2014-10-29 2017-12-28 Jtekt Corporation Taper roller bearing
US10138939B2 (en) 2014-10-29 2018-11-27 Jtekt Corporation Taper Roller Bearing
US10215233B2 (en) 2014-10-29 2019-02-26 Jtekt Corporation Taper roller bearing
US10221891B2 (en) 2014-10-29 2019-03-05 Jtekt Corporation Taper roller bearing
US10408266B2 (en) 2014-10-29 2019-09-10 Jtekt Corporation Cage for taper roller bearing and taper roller bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068031A1 (en) * 2014-10-29 2016-05-06 株式会社ジェイテクト Tapered roller bearing
JP2016089846A (en) * 2014-10-29 2016-05-23 株式会社ジェイテクト Conical roller bearing
CN107110216A (en) * 2014-10-29 2017-08-29 株式会社捷太格特 Tapered roller bearing
US20170370411A1 (en) 2014-10-29 2017-12-28 Jtekt Corporation Taper roller bearing
US10138939B2 (en) 2014-10-29 2018-11-27 Jtekt Corporation Taper Roller Bearing
US10215233B2 (en) 2014-10-29 2019-02-26 Jtekt Corporation Taper roller bearing
US10221891B2 (en) 2014-10-29 2019-03-05 Jtekt Corporation Taper roller bearing
US10352358B2 (en) 2014-10-29 2019-07-16 Jtekt Corporation Taper roller bearing
US10408266B2 (en) 2014-10-29 2019-09-10 Jtekt Corporation Cage for taper roller bearing and taper roller bearing
CN107110216B (en) * 2014-10-29 2020-01-03 株式会社捷太格特 Tapered roller bearing
US10539184B2 (en) 2014-10-29 2020-01-21 Jtekt Corporation Taper roller bearing

Similar Documents

Publication Publication Date Title
JP2008002534A (en) Retainer for bearings
JP2007146896A (en) Ball bearing
JP2000170775A (en) Conical roller bearing and gear shaft support device for vehicle
JP2008298105A (en) Bearing cage
JP5228654B2 (en) Tapered roller bearing cage and tapered roller bearing
JP2007321940A (en) Cage for bearing, rolling bearing, and bearing assembling method
JP2008232295A (en) Tapered roller bearing
JP4661424B2 (en) Rotation support
JP2007321939A (en) Bearing assembling method, rolling bearing, and cage for bearing
JP2008249127A (en) Radial ball bearing cage and radial ball bearing
JP5532157B2 (en) Tapered roller bearing cage and tapered roller bearing
JP2007321911A (en) Cage for bearing
JP2007333084A (en) Cage for bearing
JP2018066416A (en) Cylinder roller bearing
JP7089369B2 (en) Roller with cage and planetary gear support structure
JP4545122B2 (en) Roller bearing
JP2010091012A (en) Roller bearing with retainer
JP2008261482A (en) Retainer for radial ball bearing and radial ball bearing
JP5050910B2 (en) Ball bearing cage and ball bearing
JP2007321941A (en) Cage for bearing
JP2007298184A (en) Angular ball-bearing
JP2010071433A (en) Tapered roller bearing
JP2008032169A (en) Angular ball bearing
JP2008002535A (en) Retainer for bearing and bearing assembly method
JP2004301232A (en) Retainer for cylindrical roller bearing