JP2007333084A - Cage for bearing - Google Patents

Cage for bearing Download PDF

Info

Publication number
JP2007333084A
JP2007333084A JP2006165686A JP2006165686A JP2007333084A JP 2007333084 A JP2007333084 A JP 2007333084A JP 2006165686 A JP2006165686 A JP 2006165686A JP 2006165686 A JP2006165686 A JP 2006165686A JP 2007333084 A JP2007333084 A JP 2007333084A
Authority
JP
Japan
Prior art keywords
bearing
cage
pocket
annular
bearing retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165686A
Other languages
Japanese (ja)
Inventor
Daiki Umehara
大樹 梅原
Osamu Fujii
修 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006165686A priority Critical patent/JP2007333084A/en
Publication of JP2007333084A publication Critical patent/JP2007333084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cage for a bearing capable of setting a large load capacity without lowering its strength, and controlling deformation in rotating the bearing. <P>SOLUTION: This cage 11 for the bearing moving along the inside of the bearing with a plurality of rolling elements while rotatably holding the plurality of rolling elements (conical rollers 5) in the bearing, comprises at least one annular portion 2, 4 continued in the circumferential direction along the inside of the bearing, a plurality of pillars 6 extending along the inside of the bearing from the annular portions and arranged at prescribed intervals in the circumferential direction along the annular portions, and a plurality of pockets 8 defined by inner peripheral faces 2s, 4s of the annular portions and inner wall faces 6s of the plurality of pillars and rotatably holding the plurality of rolling elements one by one, and a window angle θ between the inner wall faces of two pillar portions defining each pocket is determined to be 44-60°. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強度を低下させること無く且つ負荷容量を大きく設定可能であると共に、軸受回転時の変形を抑制可能な軸受用保持器に関する。   The present invention relates to a bearing cage capable of setting a large load capacity without reducing strength and capable of suppressing deformation during rotation of the bearing.

従来、鉄道車両や自動車、鉄鋼設備や建設機械をはじめとする産業機械には、その回転機構を回転自在に支持する各種の軸受が適用されている。かかる軸受としては、比較的小さな荷重を支持する際に適用する玉軸受と、比較的大きな荷重を支持する際に適用するころ軸受とがあるが、近年における高荷重下での高速回転に対応するために、ころ軸受が適用される場合が多くなっている。   2. Description of the Related Art Conventionally, various types of bearings that rotatably support a rotating mechanism are applied to industrial machines such as railway vehicles, automobiles, steel facilities, and construction machines. As such a bearing, there are a ball bearing that is applied when supporting a relatively small load and a roller bearing that is applied when supporting a relatively large load, which corresponds to high-speed rotation under a high load in recent years. For this reason, roller bearings are often used.

ころ軸受の一例として、図1(a),(b)に示された円すいころ軸受は、相対回転可能に対向配置された内輪1及び外輪3と、内外輪1,3の対向面に形成された軌道面1s,3s間に転動自在に組み込まれた複数の転動体5と、これら複数の転動体5を1つずつ回転自在に保持する複数のポケット8を有する保持器11とを備えて構成されている。この場合、各転動体5としては、その転動面5m(軌道面1s,3s間に沿って転がる面)が円すい形状を成した円すいころ5を想定しており、かかる円すいころを保持する保持器11としては、かご形保持器11が用いられている。   As an example of a roller bearing, the tapered roller bearing shown in FIGS. 1 (a) and 1 (b) is formed on opposing surfaces of an inner ring 1 and an outer ring 3, and inner and outer rings 1 and 3, which are arranged so as to be relatively rotatable. A plurality of rolling elements 5 rotatably incorporated between the raceway surfaces 1s and 3s, and a holder 11 having a plurality of pockets 8 for rotatably holding the plurality of rolling elements 5 one by one. It is configured. In this case, it is assumed that each rolling element 5 is a tapered roller 5 whose rolling surface 5m (the surface rolling between the raceway surfaces 1s and 3s) has a tapered shape, and holds the tapered roller. As the vessel 11, a cage retainer 11 is used.

かご形保持器11は、内外輪1,3間に沿って周方向に連続し且つ互いに同中心に所定の間隔を空けて対向配置された2つの円環部2,4と、これら円環部2,4の間に亘って延出し且つ当該円環部2,4に沿って周方向に等間隔で配列された複数の柱部6と、2つの円環部2,4の内周面2s,4s(図1(a))と複数の柱部6両側の内壁面6s(図1(e))とで区画された複数のポケット8とを備えている。この場合、2つの円環部2,4は、内外輪1,3の軌道面1s,3sの傾斜方向に沿って互いに異なる径に設計されている。即ち、一方の円環部(大径側円環部)4は、他方の円環部(小径側円環部)2よりも比較的大径に設計されており、これにより、保持器11は、その全体が例えば図2(a)に示すような円錐台形状を成している。   The cage retainer 11 includes two annular portions 2, 4 which are continuous in the circumferential direction between the inner and outer rings 1, 3 and are opposed to each other at a predetermined interval at the same center. 2 and 4 and a plurality of column portions 6 arranged at equal intervals in the circumferential direction along the annular portions 2 and 4, and the inner peripheral surface 2s of the two annular portions 2 and 4 , 4s (FIG. 1 (a)) and a plurality of pockets 8 defined by inner wall surfaces 6s (FIG. 1 (e)) on both sides of the plurality of column portions 6. In this case, the two annular portions 2, 4 are designed to have different diameters along the inclination direction of the raceway surfaces 1s, 3s of the inner and outer rings 1, 3. That is, one annular portion (large diameter side annular portion) 4 is designed to have a relatively larger diameter than the other annular portion (small diameter side annular portion) 2. The whole forms, for example, a truncated cone shape as shown in FIG.

このようなかご形保持器11において、複数の円すいころ5は、当該保持器11の各ポケット8に1つずつ回転自在に保持されるようになっている。即ち、各円すいころ5において、その転動面5mが隣り合う2つの柱部6の内壁面6sに保持されると共に、転動面5mの両側に形成された円形の側面5eが2つの円環部2,4の内周面2s,4sに保持される。そして、軸受回転中において、かご形保持器11は、その複数のポケット8に各円すいころ5を1つずつ回転自在に保持しながら、これら円すいころ5と共に内外輪1,3間に沿って公転する。   In such a cage retainer 11, a plurality of tapered rollers 5 are rotatably held one by one in each pocket 8 of the retainer 11. That is, in each tapered roller 5, its rolling surface 5m is held by the inner wall surface 6s of two adjacent column parts 6, and the circular side surfaces 5e formed on both sides of the rolling surface 5m are two annular rings. The inner peripheral surfaces 2s and 4s of the portions 2 and 4 are held. During the rotation of the bearing, the cage retainer 11 revolves along the space between the inner and outer rings 1 and 3 together with the tapered rollers 5 while holding the tapered rollers 5 one by one in the plurality of pockets 8. To do.

この場合、かご形保持器11の公転中、各ポケット8に保持された円すいころ5の回転性能を一定に維持するために、例えば特許文献1には、各ポケット8の窓角θ(図1(e))を55°以上80°以下に設定した保持器が提案されている。ここで、窓角θとは、図1(e)に示すように、各ポケット8を区画する2つの柱部6の内壁面6s相互の成す角度であり、かかる窓角θの大きさに応じて、ポケット8に保持された円すいころ5の転動面5mと当該円すいころ5が隣接する各柱部6の内壁面6sとの間の接触状態が良好に保たれる。また、窓角θは、かご形保持器11の内径側から外径側(即ち、柱部6の内径面6inから外径面6out)に向うに従って先細り形状を成しており、軸受回転中に作用する遠心力によって各ポケット8から円すいころ5が外れないようになっている。   In this case, in order to keep the rotational performance of the tapered roller 5 held in each pocket 8 constant during the revolution of the cage retainer 11, for example, Patent Document 1 discloses a window angle θ (see FIG. 1) of each pocket 8. A cage in which (e)) is set to 55 ° or more and 80 ° or less has been proposed. Here, as shown in FIG. 1 (e), the window angle θ is an angle formed between the inner wall surfaces 6 s of the two pillar portions 6 that define each pocket 8, and depends on the size of the window angle θ. Thus, the contact state between the rolling surface 5 m of the tapered roller 5 held in the pocket 8 and the inner wall surface 6 s of each column portion 6 adjacent to the tapered roller 5 is maintained well. Further, the window angle θ is tapered from the inner diameter side of the cage retainer 11 to the outer diameter side (that is, from the inner diameter surface 6in to the outer diameter surface 6out of the column portion 6), and during the rotation of the bearing. The tapered roller 5 is prevented from being detached from each pocket 8 by the acting centrifugal force.

ところで、軸受の使用目的や使用環境によっては、当該軸受の負荷容量を大きく設定しなければならない場合がある。この場合、ポケット8の数を増やすことで、保持可能な円すいころ5の個数を増加させれば良い。ポケット8の数を増加する場合には、その増加分だけ柱部6の本数を増やす必要があるが、そうなると、各柱部6を薄肉化しなければならず、その結果、かご形保持器11全体の強度が低下してしまう。従って、各柱部6の薄肉化には、一定の限界がある。そこで、各柱部6を薄肉化させること無く(即ち、各柱部6の断面係数を大きく確保しつつ)ポケット8の数を増やすためには、各柱部6を外輪3側に寄せることで、かご形保持器11全体径を広げれば良い。なお、断面係数とは、柱部6の図心軸(断面の中心)に関する断面二次モーメントを、その図心軸から断面の最も遠い点までの距離で割った値を指す。   By the way, depending on the purpose and environment of use of the bearing, it may be necessary to set a large load capacity of the bearing. In this case, the number of the tapered rollers 5 that can be held may be increased by increasing the number of pockets 8. When the number of pockets 8 is increased, it is necessary to increase the number of the column parts 6 by the increased amount. However, when this happens, each column part 6 must be thinned, and as a result, the entire cage retainer 11 The strength of the will decrease. Therefore, there is a certain limit to the thickness reduction of each column part 6. Therefore, in order to increase the number of pockets 8 without reducing the thickness of each column portion 6 (that is, while ensuring a large section modulus of each column portion 6), each column portion 6 is moved toward the outer ring 3 side. The overall diameter of the cage retainer 11 may be increased. The section modulus refers to a value obtained by dividing the sectional secondary moment with respect to the centroid axis (the center of the section) of the column portion 6 by the distance from the centroid axis to the farthest point in the section.

しかしながら、各柱部6を外輪3側に寄せる構成では、各ポケット8の窓角θが幾何学上大きくなるため、これにより、下記のような問題が生じる場合がある。即ち、軸受回転中において、各柱部6の内壁面6sと円すいころ5の転動面5mとの間の径方向への接触圧が大きくなるため、その接触圧の大きさによっては、かご形保持器11が径方向に変形してしまう場合がある。この場合、その変形の程度によっては、当該保持器11の外径側(特に、柱部6の外径面6out)が外輪3の軌道面3sに対して強く干渉(例えば、衝突、摺接)する虞がある。   However, in the configuration in which each column portion 6 is brought closer to the outer ring 3 side, the window angle θ of each pocket 8 is geometrically large, which may cause the following problems. That is, during the rotation of the bearing, the radial contact pressure between the inner wall surface 6s of each column 6 and the rolling surface 5m of the tapered roller 5 increases, so that depending on the magnitude of the contact pressure, the cage shape The cage 11 may be deformed in the radial direction. In this case, depending on the degree of deformation, the outer diameter side of the retainer 11 (particularly, the outer diameter surface 6out of the column portion 6) strongly interferes with the raceway surface 3s of the outer ring 3 (for example, collision, sliding contact). There is a risk of doing.

そうなると、軸受回転に伴って当該保持器11をスムーズに公転させることが困難になり、その結果、軸受の回転性能(例えば、回転安定性、回転円滑性)を一定に維持することが困難になってしまう。また、保持器11の外径側(柱部6の外径面6out)と外輪3の軌道面3sとの間の干渉の程度によっては、干渉箇所の磨耗や摩損が促進され、その結果、軸受寿命の延命化を図ることが困難になってしまう。更に、かご形保持器11の全体が樹脂材料で成形されているような場合には、軸受回転時の軸受周りの温度上昇に伴って当該保持器11が大きく熱膨張し、これにより、上述したような干渉が増大する虞がある。特に軸受が高速回転で使用される用途では、遠心力の作用が加わることで保持器11が更に膨張し、前記干渉が更に助長されてしまう。
特開2005−188738号公報
As a result, it becomes difficult to smoothly revolve the retainer 11 as the bearing rotates, and as a result, it becomes difficult to maintain the rotational performance (for example, rotational stability, rotational smoothness) of the bearing constant. End up. Further, depending on the degree of interference between the outer diameter side of the retainer 11 (outer diameter surface 6out of the column portion 6) and the raceway surface 3s of the outer ring 3, the wear and wear of the interference portion are promoted. It becomes difficult to extend the life of the product. Furthermore, in the case where the entire cage retainer 11 is formed of a resin material, the retainer 11 greatly expands as the temperature around the bearing increases during the rotation of the bearing, and as a result, Such interference may increase. Particularly in applications where the bearing is used at high speed rotation, the cage 11 is further expanded by the application of centrifugal force, and the interference is further promoted.
JP 2005-188738 A

本発明は、このような問題を解決するためになされており、その目的は、強度を低下させること無く且つ負荷容量を大きく設定可能であると共に、軸受回転時の変形を抑制可能な軸受用保持器を提供することにある。   The present invention has been made in order to solve such problems, and the object thereof is to maintain a bearing that can set a large load capacity without reducing strength and can suppress deformation during rotation of the bearing. Is to provide a vessel.

このような目的を達成するために、本発明は、軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、軸受内部に沿って周方向に連続した少なくとも1つの円環部と、円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、円環部の内周面と複数の柱部の内壁面とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを備えており、各ポケットを区画する2つの柱部の内壁面相互の成す窓角は、44°以上60°以下に設定されている。
この場合、各ポケットには、転動体としてころを回転自在に保持可能である。また、保持器は、その全体が樹脂材料で成形されている。
In order to achieve such an object, the present invention is a bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while rotatably holding the plurality of rolling elements inside the bearing, At least one annular portion that is continuous in the circumferential direction along the inside of the bearing, and a plurality of column portions that extend from the annular portion along the inside of the bearing and are arranged at predetermined intervals in the circumferential direction along the annular portion And a plurality of pockets which are partitioned by the inner peripheral surface of the annular portion and the inner wall surfaces of the plurality of column portions and rotatably hold the plurality of rolling elements one by one. The window angle formed between the inner wall surfaces of the two column portions is set to 44 ° or more and 60 ° or less.
In this case, in each pocket, a roller can be rotatably held as a rolling element. Further, the entire cage is formed of a resin material.

本発明の軸受用保持器によれば、保持器の各ポケットの窓角を44°以上60°以下に設定したことで、強度を低下させること無く且つ負荷容量を大きく設定することができると共に、軸受回転時の変形を抑制することができる。   According to the bearing cage of the present invention, by setting the window angle of each pocket of the cage to 44 ° or more and 60 ° or less, the load capacity can be set large without reducing the strength, Deformation during bearing rotation can be suppressed.

以下、本発明の一実施の形態に係る軸受用保持器について、添付図面を参照して説明する。なお、本実施の形態は、上述したようなころ軸受(図1(a),(b))に用いたかご形保持器11の改良であり、他の構成は同図に示した構成と同一であるため、以下、改良部分の保持器11の説明にとどめる。   Hereinafter, a bearing cage according to an embodiment of the present invention will be described with reference to the accompanying drawings. The present embodiment is an improvement of the cage retainer 11 used for the roller bearing (FIGS. 1A and 1B) as described above, and the other configurations are the same as those shown in FIG. Therefore, hereinafter, the description will be limited to the cage 11 of the improved portion.

図1(c),(d)に示すように、本実施の形態に係る軸受用保持器において、各ポケットを区画する2つの柱部の内壁面相互の成す窓角θ(図1(e))は、44°以上60°以下に設定されている。これによれば、窓角を最小θmin=44°(図1(c))から最大θmax=60°(図1(d))に大きくするに従って、各柱部6が外輪3側に寄ることになり、これにより、かご形保持器11のポケット8の数を増やすことができる。この場合、各柱部6を薄肉化させること無く(即ち、各柱部6の断面係数を大きく確保しつつ)当該保持器11に保持可能な円すいころ5の個数を増加させることができるため、保持器11の強度を低下させることは無い。この結果、当該保持器11を円すいころ5と共に組み込んだ軸受の負荷容量を大きくすることができる。   As shown in FIGS. 1C and 1D, in the bearing retainer according to the present embodiment, the window angle θ formed between the inner wall surfaces of the two pillar portions that define each pocket (FIG. 1E). ) Is set to 44 ° or more and 60 ° or less. According to this, as the window angle is increased from the minimum θmin = 44 ° (FIG. 1 (c)) to the maximum θmax = 60 ° (FIG. 1 (d)), each column portion 6 approaches the outer ring 3 side. Thus, the number of pockets 8 of the cage retainer 11 can be increased. In this case, the number of tapered rollers 5 that can be held in the retainer 11 can be increased without reducing the thickness of each column 6 (that is, while ensuring a large section modulus of each column 6). The strength of the cage 11 is not reduced. As a result, the load capacity of the bearing in which the cage 11 is incorporated with the tapered roller 5 can be increased.

また、本実施の形態によれば、軸受回転中において、各柱部6の内壁面6sと円すいころ5の転動面5mとの間の径方向への接触圧を従来技術(例えば、特許文献1)に比べて約20%以上低減することができる。これにより、かご形保持器11の径方向への変形を抑制することができる。この結果、当該保持器11の外径側(特に、柱部6の外径面6out)が外輪3の軌道面3sに対して干渉(例えば、衝突、摺接)するといった従来の問題を解消することができる。この場合、軸受回転に伴ってかご形保持器11をスムーズに公転させることができるため、軸受の回転性能(例えば、回転安定性、回転円滑性)を一定に維持することが可能となり、軸受寿命の延命化を図ることが可能となる。   Further, according to the present embodiment, during the rotation of the bearing, the contact pressure in the radial direction between the inner wall surface 6s of each column portion 6 and the rolling surface 5m of the tapered roller 5 is determined by a conventional technique (for example, Patent Documents). Compared with 1), it can be reduced by about 20% or more. Thereby, the deformation | transformation to the radial direction of the cage retainer 11 can be suppressed. As a result, the conventional problem that the outer diameter side of the retainer 11 (particularly, the outer diameter surface 6out of the column portion 6) interferes with the raceway surface 3s of the outer ring 3 (for example, collision or sliding contact) is solved. be able to. In this case, since the cage retainer 11 can be smoothly revolved as the bearing rotates, it becomes possible to maintain the bearing rotational performance (for example, rotational stability, rotational smoothness) constant, and the bearing life. Can be extended.

更に、本実施の形態によれば、かご形保持器11の全体が樹脂材料で成形された仕様において、軸受回転時の軸受周りの温度上昇に伴って当該保持器11が熱膨張しても、外輪3の軌道面3sに対する干渉の程度を大幅に低く抑えることができる。これは、特に軸受が高速回転で使用される用途においても同様である。   Furthermore, according to the present embodiment, in the specification in which the entire cage retainer 11 is formed of a resin material, even if the retainer 11 is thermally expanded as the temperature rises around the bearing during rotation of the bearing, The degree of interference with the raceway surface 3s of the outer ring 3 can be significantly reduced. The same applies to applications in which the bearing is used at high speed rotation.

なお、本実施の形態の軸受用保持器に適用可能な樹脂材料としては、その種類に限定はされないが、例えばポリアミド6(PA6)、ポリアミド66(PA66)、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド46(PA46)、ポリブチレンテレフタレート(PBT)、ポリオキシメチレン(POM)、ポリテトラフロロエチレン(PTFE)、ポリアリレート(PAR)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)などを挙げることができる。   The resin material applicable to the bearing cage of the present embodiment is not limited to the kind thereof, but, for example, polyamide 6 (PA6), polyamide 66 (PA66), polyamide 11 (PA11), polyamide 12 ( PA12), polyamide 46 (PA46), polybutylene terephthalate (PBT), polyoxymethylene (POM), polytetrafluoroethylene (PTFE), polyarylate (PAR), polyethersulfone (PES), polyphenylene sulfide (PPS), Examples include polyetherimide (PEI), polyamideimide (PAI), polyetheretherketone (PEEK), and polyimide (PI).

また、本実施の形態の保持器11は、複数の円すいころ5を保持する円すいころ軸受であるため、当該保持器11は、軸受非回転時(静止時)、その自重によって各円すいころ5(特に、図1(a),(b)の上側)にもたれかかっている状態となっている。この状態において軸受(内外輪1,3)を回転させると、各円すいころ5は各柱部6を押しながら回転するため、当該柱部6には窓角θ(図1(e))に応じた押圧力が作用する。このとき、円すいころ5の転動面5mと柱部6の内壁面6sとの間には摩擦力が作用するが、かかる摩擦力が円すいころ5を押し戻そうとする力より大きくなると(即ち、無潤滑状態になると)、各ポケット8内において円すいころ5と柱部6とが互いに噛み込んでしまう場合がある。   In addition, since the cage 11 of the present embodiment is a tapered roller bearing that holds a plurality of tapered rollers 5, the cage 11 is configured so that each tapered roller 5 ( In particular, it is in a state of leaning on the upper side of FIGS. 1 (a) and 1 (b). When the bearings (inner and outer rings 1, 3) are rotated in this state, each tapered roller 5 rotates while pushing each column part 6, so that the column part 6 has a window angle θ (FIG. 1 (e)). The pressing force acts. At this time, a frictional force acts between the rolling surface 5 m of the tapered roller 5 and the inner wall surface 6 s of the column portion 6, but when the frictional force becomes larger than a force for pushing back the tapered roller 5 (that is, When in a non-lubricated state), the tapered roller 5 and the column portion 6 may bite into each other in each pocket 8.

ここで、各ポケット8を区画する2つの柱部6の内壁面6s相互の成す窓角θと、静止摩擦係数μとの関係は、下記(1)式で表され、かかる関係を満たすときに、上述したような噛み込み現象が発生する。
μ≧tanθ/2 … (1)
この場合、保持器11の材料において、乾燥時の静止摩擦係数(対鋼)が0.4以下となる材料についても、窓角θが44°以上であれば、円すいころ5と柱部6との噛み込み現象の発生を回避することができる。
Here, the relationship between the window angle θ formed between the inner wall surfaces 6s of the two pillars 6 that define each pocket 8 and the static friction coefficient μ is expressed by the following equation (1). The biting phenomenon as described above occurs.
μ ≧ tan θ / 2 (1)
In this case, in the material of the cage 11, the material having a coefficient of static friction (against steel) at the time of drying of 0.4 or less also has a tapered roller 5 and a column portion 6 as long as the window angle θ is 44 ° or more. The occurrence of the biting phenomenon can be avoided.

上述した保持器11の樹脂材料は、乾燥時の静止摩擦係数(対鋼)が0.4以下であり、かかる樹脂材料を用いた保持器11において、各ポケット8の窓角θを44°以上に設定することにより、軸受回転中に上述したような無潤滑状態となった場合でも、円すいころ5と柱部6との噛み込み現象の発生を回避することができる。   The resin material of the cage 11 described above has a coefficient of static friction (against steel) at the time of drying of 0.4 or less. In the cage 11 using such a resin material, the window angle θ of each pocket 8 is 44 ° or more. Thus, even when the non-lubricated state as described above occurs during rotation of the bearing, the occurrence of the biting phenomenon between the tapered roller 5 and the column portion 6 can be avoided.

一方、各ポケット8の窓角θを大きく設定すると、各柱部6の内壁面6sと円すいころ5の転動面5mとの間の径方向への接触圧(押付力)が大きくなるため、当該押付力の大きさによっては、かご形保持器11が径方向に変形してしまう場合がある。かかる保持器11の変形量については、円すいころ5の大きさや数、各円すいころ5の中心相互を結んで形成した仮想円の直径(PCD)、軸受の使用状態や使用環境などに応じて変化するため、一概には言えないが、これらの条件を一定にした場合、窓角θと押付力Fとの関係は、下記(2)式で表される。
=F×sinθ/2 … (2)
:円すいころ5の周方向接触力
On the other hand, if the window angle θ of each pocket 8 is set large, the contact pressure (pressing force) in the radial direction between the inner wall surface 6s of each column 6 and the rolling surface 5m of the tapered roller 5 increases. Depending on the magnitude of the pressing force, the cage retainer 11 may be deformed in the radial direction. The amount of deformation of the cage 11 varies depending on the size and number of the tapered rollers 5, the diameter (PCD) of a virtual circle formed by connecting the centers of the tapered rollers 5, and the use state and environment of the bearing. to, can not be said sweepingly, when these conditions constant, the relationship between the window angle θ and the pressing force F R is expressed by the following equation (2).
F R = F C × sin θ / 2 (2)
F C : Contact force in the circumferential direction of the tapered roller 5

この場合、窓角θを60°以下に設定することで、従来の窓角の上限である80°に比べて径方向に押付力(接触圧)を約20%以上低減することができる。これにより、かご形保持器11の径方向への変形を抑制することが可能となり、当該保持器11の外径側(特に、柱部6の外径面6out)が外輪3の軌道面3sに対して干渉(例えば、衝突、摺接)するといった従来の問題を解消することができる。   In this case, by setting the window angle θ to 60 ° or less, the pressing force (contact pressure) in the radial direction can be reduced by about 20% or more compared to 80 ° which is the upper limit of the conventional window angle. Thereby, it becomes possible to suppress the deformation | transformation to the radial direction of the cage retainer 11, and the outer diameter side (especially outer diameter surface 6out of the column part 6) of the said retainer 11 is on the track surface 3s of the outer ring | wheel 3. On the other hand, conventional problems such as interference (for example, collision and sliding contact) can be solved.

なお、上述した実施の形態では、転動体5として円すいころを想定し、これを保持可能な保持器11を想定して説明したが、これ以外に例えば円筒ころ、針状ころ、球面ころ、凸面ころなどを保持可能な保持器11にも本発明の技術的構成を施すことで、上述したような効果を実現することができる。   In the above-described embodiment, a tapered roller is assumed as the rolling element 5 and the cage 11 that can hold the tapered roller 11 is described. However, other than this, for example, a cylindrical roller, a needle roller, a spherical roller, a convex surface The effects as described above can be realized by applying the technical configuration of the present invention to the retainer 11 that can retain rollers and the like.

また、本発明の変形例に係る保持器11としては、例えば図2(a)に示すように、各ポケット8の四隅において、円環部2,4のうち柱部6の両端部6eに隣接した部分に、所定深さだけ窪ませて形成した逃げ部10を設けても良い。この場合、逃げ部10は、各ポケット8の四隅に設けられており、軸受の回転中心軸Q(図1(a))に沿った方向に窪ませて(凹ませて)形成されている。別の言い方をすると、各逃げ部10は、軸受回転方向に沿って窪ませて(凹ませて)形成されてはいない。   Further, as the cage 11 according to the modified example of the present invention, for example, as shown in FIG. 2A, adjacent to both end portions 6 e of the column portion 6 in the annular portions 2 and 4 at the four corners of each pocket 8. You may provide the escape part 10 formed in the part which was depressed by predetermined depth. In this case, the relief portions 10 are provided at the four corners of each pocket 8 and are formed to be recessed (recessed) in the direction along the rotation center axis Q of the bearing (FIG. 1A). In other words, each relief portion 10 is not formed to be recessed (recessed) along the bearing rotation direction.

具体的に説明すると、図2(b)〜(d)に示すように、逃げ部10は、円環部2,4を横断して平坦状に形成された1つの平坦状面10sと、平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率(例えば、曲率半径)で連続した2つの円弧状面R1,R2とから構成されている。ここで、平坦状面10sは、軸受の回転中心軸を直交する方向に沿って平行に円環部2,4を横断して形成されており、2つの円弧状面R1,R2のうち、一方の円弧状面R1は、平坦状面10sの一方側から円環部2,4の内周面2s,4sに連続し、且つ、他方の円弧状面R2は、平坦状面10sの他方側から柱部6の内壁面6sに連続している。   More specifically, as shown in FIGS. 2B to 2D, the relief portion 10 includes a flat surface 10s formed flat across the annular portions 2 and 4 and a flat surface. It is composed of two arcuate surfaces R1 and R2 that are continuous with a predetermined curvature (for example, a radius of curvature) from both sides of the surface 10s toward the annular portions 2 and 4 and the column portion 6. Here, the flat surface 10s is formed so as to cross the annular portions 2 and 4 in parallel along the direction orthogonal to the rotation center axis of the bearing, and one of the two arc-shaped surfaces R1 and R2. The arcuate surface R1 is continuous from one side of the flat surface 10s to the inner peripheral surfaces 2s and 4s of the annular portions 2 and 4, and the other arcuate surface R2 is from the other side of the flat surface 10s. It is continuous with the inner wall surface 6 s of the column portion 6.

このような逃げ部10において、2つの円弧状面R1,R2から1つの平坦状面10sに亘る全体の幅寸法を2nとすると、当該幅寸法2nは、円すいころ5の端面(転動面5mと側面5eとの間に周方向に沿って連続した環状の端面)に形成された面取り5rの寸法(図1(a))よりも大きく設定されている。また、逃げ部10は、その深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定して構成されている。ここで、逃げ部10の深さ寸法kが円弧状面R1,R2の曲率半径ρと近似(ρ=k)しているとして、曲率半径ρと幅寸法Hとの比(ρ/H)で表わすと、当該逃げ部10は、0.1≦ρ/H≦0.3なる関係を満足するように設定されている。   In such a relief portion 10, assuming that the overall width dimension from the two arcuate surfaces R1 and R2 to one flat surface 10s is 2n, the width dimension 2n is the end face of the tapered roller 5 (the rolling surface 5m). Is set larger than the dimension (FIG. 1A) of the chamfer 5r formed on the annular end face that is continuous along the circumferential direction between the side face 5e and the side face 5e. Further, the relief portion 10 is configured by setting the depth dimension k within a range of 10% to 30% of the width dimension H of the annular portions 2 and 4. Here, assuming that the depth dimension k of the relief portion 10 approximates the curvature radius ρ of the arcuate surfaces R1 and R2 (ρ = k), the ratio (ρ / H) of the curvature radius ρ and the width dimension H In terms of representation, the clearance 10 is set so as to satisfy the relationship of 0.1 ≦ ρ / H ≦ 0.3.

なお、図面上において、各円弧状面R1,R2は、連続した一定(単一)の曲率半径ρで形成されているが、この場合、曲率半径ρの大きさは、例えば逃げ部10の深さ寸法kや幅寸法2nに応じて任意に設定されるため、ここでは特に数値限定はしない。また、逃げ部10の深さ寸法kや幅寸法2nは、例えば図示しない転動体(円すいころ)の大きさや形状、当該転動体(円すいころ)を保持するポケット8の大きさや形状に応じて任意に設定されるため、ここでは特に数値限定はしない。   In the drawing, each of the arcuate surfaces R1 and R2 is formed with a continuous constant (single) radius of curvature ρ. In this case, the magnitude of the radius of curvature ρ is, for example, the depth of the relief portion 10. Since it is arbitrarily set according to the length dimension k and the width dimension 2n, the numerical value is not particularly limited here. Further, the depth dimension k and the width dimension 2n of the relief portion 10 are arbitrary depending on, for example, the size and shape of a rolling element (cone roller) (not shown) and the size and shape of the pocket 8 that holds the rolling element (cone roller). Therefore, the numerical value is not particularly limited here.

以上、本変形例の保持器11によれば、1つの平坦状面10sの両側から円環部2,4及び柱部6に向けて所定の曲率半径ρで連続した2つの円弧状面で構成された逃げ部10をポケット8の四隅に設けたことにより、曲率半径の増大が制約された条件下においてもポケット8の四隅への過度の応力集中を低減することができる。これにより、従来に比べて保持器11の強度を一定に維持することが可能となり、その結果、当該保持器11の延命化や信頼性の向上を図ることができる。   As described above, according to the cage 11 of this modification, the cage 11 is composed of two arcuate surfaces that are continuous with a predetermined radius of curvature ρ from both sides of one flat surface 10s toward the annular portions 2 and 4 and the column portion 6. By providing the relief portions 10 at the four corners of the pocket 8, excessive stress concentration at the four corners of the pocket 8 can be reduced even under a condition in which an increase in the radius of curvature is restricted. As a result, the strength of the cage 11 can be kept constant as compared with the conventional case. As a result, the life of the cage 11 can be extended and the reliability can be improved.

また、本変形例によれば、逃げ部10の幅寸法2nを円すいころ5の面取り5rの寸法よりも大きく設定したことにより、軸受に封入されている潤滑剤(グリース、油)の掻き取り防止や当該保持器のポケット8の偏磨耗の防止を図ることができる。即ち、各ポケット8の四隅において、潤滑剤を円すいころ5の端面に付着・保持させることが可能となり、これにより、円すいころ5の端面と内外輪1,3に形成された環状の鍔部7,9(軌道面1sの両側に突設されたころ案内)との接触部位に常時潤滑剤を供給し続けることができる。この結果、円すいころ5及び内外輪1,3の磨耗や摩損を低減させることが可能となり、軸受寿命の延命化を図ることができる。   Further, according to this modification, the width dimension 2n of the relief portion 10 is set to be larger than the dimension of the chamfer 5r of the tapered roller 5, thereby preventing the lubricant (grease, oil) sealed in the bearing from being scraped off. Further, uneven wear of the pocket 8 of the cage can be prevented. That is, at the four corners of each pocket 8, it becomes possible to adhere and hold the lubricant to the end face of the tapered roller 5, whereby the annular flange 7 formed on the end face of the tapered roller 5 and the inner and outer rings 1, 3. , 9 (the roller guide projecting on both sides of the raceway surface 1s) can be continuously supplied with the lubricant. As a result, it is possible to reduce wear and wear of the tapered roller 5 and the inner and outer rings 1 and 3, and to extend the life of the bearing.

更に、本変形例によれば、逃げ部10の深さ寸法kを円環部2,4の幅寸法Hの10%〜30%の範囲に設定したことにより、保持器11全体としての強度を一定に維持することが可能となり、その結果、軸受の回転性能を長期に亘って一定に維持することができる。特に新幹線などの高速鉄道車両に設けられた回転軸(例えば、車軸)や、その主電動機の出力軸を支持する軸受には、高速回転下において高負荷が作用するため、それに対応するように保持器11の強度も高いものが要求されるが、本変形例の保持器11は、これに充分に対応することができる。   Furthermore, according to this modification, the depth k of the relief portion 10 is set in the range of 10% to 30% of the width dimension H of the annular portions 2 and 4, thereby increasing the strength of the cage 11 as a whole. It becomes possible to keep constant, and as a result, the rotational performance of the bearing can be kept constant over a long period of time. In particular, the bearings that support the rotating shafts (for example, axles) provided on high-speed railway vehicles such as the Shinkansen and the output shafts of the main motors are subjected to high loads under high-speed rotation. Although the container 11 is required to have a high strength, the retainer 11 of the present modification can sufficiently cope with this.

ここで、上述したような本変形例の保持器11の効果について、応力の発生モデルを用いて実証する。
図3(a)には、ポケット8(図2)に逃げ部10の無い保持器モデルが示されており、その円環部2,4は、厚さ寸法T=8、幅寸法H=10の割合に設定され、その柱部6は、長さ寸法E=15、円環部中央までの柱長L=20の割合に設定されている。そして、柱部6に荷重F=50(例えば、50ニュートン)を作用させて保持器モデルにモーメントMを発生させる。このとき、柱部6には均等な分布荷重Wが作用しているものとする。
Here, the effect of the cage 11 of the present modification as described above will be demonstrated using a stress generation model.
FIG. 3 (a) shows a cage model in which the pocket 8 (FIG. 2) does not have the relief portion 10, and the annular portions 2, 4 have a thickness dimension T = 8 and a width dimension H = 10. The column portion 6 is set to have a length dimension E = 15 and a column length L = 20 to the center of the annular portion. Then, a load F = 50 (for example, 50 Newton) is applied to the column portion 6 to generate a moment M in the cage model. At this time, it is assumed that a uniform distributed load W acts on the column portion 6.

かかる条件下における材料力学的な関係から、柱部6に生じる応力σ(基準応力)は、下記の(2)(3)式より(1)式として算出される。
σ=M/Z (Z:断面係数) … (1)
M=W・L/2 … (2)
Z=T・H/6 … (3)
From the material mechanical relationship under such conditions, the stress σ 0 (reference stress) generated in the column portion 6 is calculated as the following equation (1) from the following equations (2) and (3).
σ 0 = M / Z (Z: section modulus) (1)
M = W · L 2/2 ... (2)
Z = T · H 2/6 ... (3)

図3(b)には、ポケット8(図2)に既存の逃げ部10aを有する保持器モデルが示されており、逃げ部10aは、柱部6の端部6eに隣接した部分において、単一の曲率半径ρのみで形成された円弧形状を成している。この場合、円環部2,4に生じる曲げ応力を材料力学的な関係から求めると、応力集中を考慮した場合の各ポケット8の四隅で発生する引張応力σmaxは、(4)式として算出される。
σmax=ασ (α:応力集中係数) … (4)
FIG. 3 (b) shows a cage model having an existing relief portion 10a in the pocket 8 (FIG. 2). The relief portion 10a is formed in a portion adjacent to the end portion 6e of the column portion 6 at a single portion. It has an arc shape formed with only one curvature radius ρ. In this case, when the bending stress generated in the annular portions 2 and 4 is obtained from the material mechanical relationship, the tensile stress σmax generated at the four corners of each pocket 8 in consideration of the stress concentration is calculated as Equation (4). The
σmax = ασ 0 (α: Stress concentration factor) (4)

ここで、図3(b)の保持器モデルについて、有限要素法に基づく構造解析(FEM解析)を行って、その解析結果から得られたσmaxと材料力学的に求めた基準応力σとから応力集中係数αは、(5)式として算出される。
α=σmax/σ … (5)
Here, structural analysis (FEM analysis) based on the finite element method is performed on the cage model of FIG. 3B, and from the σmax obtained from the analysis result and the reference stress σ 0 obtained from material mechanics. The stress concentration coefficient α is calculated as equation (5).
α = σmax / σ 0 (5)

図4(a)には、図3(b)の保持器モデルにおける応力集中係数αの算出結果が示されており、逃げ部10aの曲率半径をρ、深さ寸法をk、円環部2,4の幅寸法をHとし、ρ=kとすると、応力集中係数αは、ρ/H=0.1〜0.3の範囲で極値(α=3.65〜3.76、αmin=3.39)をとることがわかる。   FIG. 4 (a) shows the calculation result of the stress concentration coefficient α in the cage model of FIG. 3 (b). The radius of curvature of the relief portion 10a is ρ, the depth dimension is k, the annular portion 2 is shown. , 4 is H and ρ = k, the stress concentration coefficient α is an extreme value (α = 3.65 to 3.76, αmin = in the range of ρ / H = 0.1 to 0.3). It can be seen that 3.39) is taken.

図3(c)には、ポケット8(図2)に既存の逃げ部10を有する本実施の形態の保持器モデルが示されており、逃げ部10の幅寸法を2n、ρ/H=0.2とし、これに基づいて応力集中係数αを算出すると、図4(b)に示すような算出結果が得られる。かかる算出結果によれば、n/ρ=1.0は、図4(a)の応力集中係数αの最小値(αmin=3.39)を示した諸寸法(単一の曲率半径ρ)であり、当該n/ρが1.0を越えると、応力集中係数αが減少し、応力の集中を低減させる効果を発揮することがわかる。この場合、n/ρ=2.0以降は略一定の極値をとるため、n/ρが2.0以上となるように逃げ部10を設定することが好ましい。   FIG. 3C shows a cage model of the present embodiment having an existing relief portion 10 in the pocket 8 (FIG. 2), where the width dimension of the relief portion 10 is 2n, ρ / H = 0. When the stress concentration coefficient α is calculated based on this, a calculation result as shown in FIG. 4B is obtained. According to this calculation result, n / ρ = 1.0 is the dimensions (single curvature radius ρ) indicating the minimum value (αmin = 3.39) of the stress concentration coefficient α in FIG. It can be seen that when n / ρ exceeds 1.0, the stress concentration coefficient α decreases, and the effect of reducing stress concentration is exhibited. In this case, since n / ρ = 2.0 or later takes a substantially constant extreme value, it is preferable to set the relief portion 10 so that n / ρ is 2.0 or more.

(a)は、円すいころ軸受の縦断面図、(b)は、同図(a)の横断面図、(c)は、本発明の一実施の形態において、最小の窓角に設定された軸受用保持器が組み込まれた軸受の一部を拡大して示す断面図、(d)は、本発明の一実施の形態において、最大の窓角に設定された軸受用保持器が組み込まれた軸受の一部を拡大して示す断面図、(e)は、窓角の構成を示す図。(a) is a longitudinal sectional view of a tapered roller bearing, (b) is a transverse sectional view of FIG. (a), and (c) is set to a minimum window angle in one embodiment of the present invention. Sectional drawing which expands and shows a part of bearing in which the cage for bearings was integrated, (d) is an embodiment of the present invention, in which the cage for bearings set to the maximum window angle is incorporated Sectional drawing which expands and shows a part of bearing, (e) is a figure which shows the structure of a window angle. (a)は、本発明の変形例に係る軸受用保持器の全体の構成例を示す斜視図、(b)は、同図(a)の保持器の一部を外側から見た拡大図、(c)は、同図(a)の保持器の一部を内側から見た拡大図、(d)は、逃げ部の構成を拡大して示す図。(a) is a perspective view showing an overall configuration example of a bearing retainer according to a modification of the present invention, (b) is an enlarged view of a part of the retainer of FIG. (c) is the enlarged view which looked at some cages of the figure (a) from the inside, (d) is the figure which expands and shows the structure of an escape part. 応力の発生モデルを示す図であって、(a)は、ポケットに逃げ部の無い保持器モデル、(b)は、既存の逃げ部を有する保持器モデル、(c)は、本変形例の保持器モデル。It is a figure which shows the generation | occurrence | production model of stress, (a) is a cage model without a relief part in a pocket, (b) is a cage model which has an existing relief part, (c) is this modification example. Cage model. 応力集中計数のFEM解析結果を示す図であって、(a)は、既存の保持器における解析結果、(b)は、本変形例の保持器の解析結果。It is a figure which shows the FEM analysis result of a stress concentration count, Comprising: (a) is the analysis result in the existing cage, (b) is the analysis result of the cage of this modification.

符号の説明Explanation of symbols

2,4 円環部
2s,4s 内周面
6 柱部
6s 内壁面
8 ポケット
θ 窓角
2,4 torus
2s, 4s Inner circumferential surface 6 Column 6s Inner wall surface 8 Pocket θ Window angle

Claims (7)

軸受内部において複数の転動体を回転自在に保持しながら、これら複数の転動体と共に軸受内部に沿って公転する軸受用保持器であって、
軸受内部に沿って周方向に連続した少なくとも1つの円環部と、
円環部から軸受内部に沿って延出し、当該円環部に沿って周方向に所定間隔で配列された複数の柱部と、
円環部の内周面と複数の柱部の内壁面とによって区画され、複数の転動体を1つずつ回転自在に保持する複数のポケットとを備えており、
各ポケットを区画する2つの柱部の内壁面相互の成す窓角は、44°以上60°以下に設定されていることを特徴とする軸受用保持器。
A bearing retainer that revolves along the inside of the bearing together with the plurality of rolling elements while holding the plurality of rolling elements within the bearing rotatably,
At least one annular portion that is circumferentially continuous along the bearing interior;
A plurality of pillars extending from the annular part along the inside of the bearing, and arranged at predetermined intervals in the circumferential direction along the annular part;
A plurality of pockets that are partitioned by the inner peripheral surface of the annular portion and the inner wall surfaces of the plurality of column portions and rotatably hold the plurality of rolling elements one by one;
A bearing retainer characterized in that a window angle formed between inner wall surfaces of two pillar portions defining each pocket is set to 44 ° or more and 60 ° or less.
各ポケットには、転動体としてころを回転自在に保持可能であることを特徴とする請求項1に記載の軸受用保持器。   The bearing cage according to claim 1, wherein each pocket can rotatably hold a roller as a rolling element. 全体が樹脂材料で成形されていることを特徴とする請求項1又は2に記載の軸受用保持器。   The bearing retainer according to claim 1 or 2, wherein the whole is formed of a resin material. 各ポケットには、円環部のうち柱部に隣接した部分を所定深さだけ窪ませて形成した逃げ部が設けられており、
逃げ部は、円環部を横断して平坦状に形成された1つの平坦状面と、平坦状面の両側から円環部及び柱部に向けて所定の曲率で連続した2つの円弧状面とから構成されていることを特徴とする1〜3のいずれかに記載の軸受用保持器。
Each pocket is provided with a relief portion formed by recessing a portion of the annular portion adjacent to the pillar portion by a predetermined depth,
The escape portion includes one flat surface formed flat across the annular portion, and two arc-shaped surfaces continuous at a predetermined curvature from both sides of the flat surface toward the annular portion and the column portion. The bearing retainer according to any one of 1 to 3, wherein
転動体としてころを適用した軸受において、逃げ部は、2つの円弧状面から1つの平坦状面に亘る全体の幅寸法をころの端面に形成された面取り寸法よりも大きく設定して構成されていることを特徴とする請求項4に記載の軸受用保持器。   In a bearing in which a roller is applied as a rolling element, the relief portion is configured by setting the overall width dimension from two arcuate surfaces to one flat surface larger than the chamfer dimension formed on the end surface of the roller. The bearing retainer according to claim 4, wherein the bearing retainer is provided. 逃げ部は、その深さ寸法を円環部の幅寸法の10%〜30%の範囲に設定して構成されていることを特徴とする請求項4又は5に記載の軸受用保持器。   The bearing retainer according to claim 4 or 5, wherein the relief portion is configured with a depth dimension set in a range of 10% to 30% of a width dimension of the annular portion. 鉄道車両に設けられた回転軸を支持する軸受に適用可能であることを特徴とする請求項1〜6のいずれかに記載の軸受用保持器。
The bearing retainer according to any one of claims 1 to 6, wherein the bearing retainer is applicable to a bearing that supports a rotating shaft provided in a railway vehicle.
JP2006165686A 2006-06-15 2006-06-15 Cage for bearing Pending JP2007333084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165686A JP2007333084A (en) 2006-06-15 2006-06-15 Cage for bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006165686A JP2007333084A (en) 2006-06-15 2006-06-15 Cage for bearing

Publications (1)

Publication Number Publication Date
JP2007333084A true JP2007333084A (en) 2007-12-27

Family

ID=38932750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165686A Pending JP2007333084A (en) 2006-06-15 2006-06-15 Cage for bearing

Country Status (1)

Country Link
JP (1) JP2007333084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035745A1 (en) * 2011-09-06 2013-03-14 日本精工株式会社 Rolling bearing cage and rolling bearing
JP2018003942A (en) * 2016-06-30 2018-01-11 株式会社ジェイテクト Conical roller bearing
WO2024029462A1 (en) * 2022-08-02 2024-02-08 Ntn株式会社 Roller bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035745A1 (en) * 2011-09-06 2013-03-14 日本精工株式会社 Rolling bearing cage and rolling bearing
JP2013053734A (en) * 2011-09-06 2013-03-21 Nsk Ltd Cage for rolling bearing and rolling bearing
CN103097753A (en) * 2011-09-06 2013-05-08 日本精工株式会社 Rolling bearing cage and rolling bearing
US8944693B2 (en) 2011-09-06 2015-02-03 Nsk Ltd. Rolling bearing cage and rolling bearing
EP2754907A4 (en) * 2011-09-06 2015-07-29 Nsk Ltd Rolling bearing cage and rolling bearing
JP2018003942A (en) * 2016-06-30 2018-01-11 株式会社ジェイテクト Conical roller bearing
WO2024029462A1 (en) * 2022-08-02 2024-02-08 Ntn株式会社 Roller bearing

Similar Documents

Publication Publication Date Title
JP2008185107A (en) Ball bearing
JP2017089845A (en) Rolling bearing
WO2003060340A1 (en) Rolling bearing
JP2008051272A (en) Wheel bearing device
JP2010025155A (en) Conical roller bearing for wheel
JP2006300133A (en) Rolling bearing
JP2007333084A (en) Cage for bearing
JP2008002534A (en) Retainer for bearings
JP2007321940A (en) Cage for bearing, rolling bearing, and bearing assembling method
JP2010019284A (en) Retainer for conical roller bearing, and conical roller bearing
JP2007321939A (en) Bearing assembling method, rolling bearing, and cage for bearing
JP2015102144A (en) Self-aligning roller bearing
JP2011094716A (en) Thrust roller bearing
JP6340794B2 (en) Cylindrical roller bearing
JP2017145843A (en) Thrust roller bearing
JP2003314542A (en) Tapered roller bearing
JP2020070857A (en) Slewing bearing
JP2006112555A (en) Roller bearing with aligning ring
JP2014105809A (en) Retainer for rolling bearing
JP2018066416A (en) Cylinder roller bearing
JP2007321911A (en) Cage for bearing
JP2007239929A (en) Roller bearing
JP6914712B2 (en) Tapered roller bearing
JP2010065827A (en) Ball bearing
JPH1182522A (en) Touchdown bearing for magnetic bearing device