JP2007320781A - Method for manufacturing glass preform - Google Patents

Method for manufacturing glass preform Download PDF

Info

Publication number
JP2007320781A
JP2007320781A JP2006149849A JP2006149849A JP2007320781A JP 2007320781 A JP2007320781 A JP 2007320781A JP 2006149849 A JP2006149849 A JP 2006149849A JP 2006149849 A JP2006149849 A JP 2006149849A JP 2007320781 A JP2007320781 A JP 2007320781A
Authority
JP
Japan
Prior art keywords
glass
rod
base material
glass base
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006149849A
Other languages
Japanese (ja)
Other versions
JP4453680B2 (en
Inventor
Tomohiro Ishihara
朋浩 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006149849A priority Critical patent/JP4453680B2/en
Publication of JP2007320781A publication Critical patent/JP2007320781A/en
Application granted granted Critical
Publication of JP4453680B2 publication Critical patent/JP4453680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass preform by which a glass preform with stable characteristics even in the end part can be obtained without causing cost increase. <P>SOLUTION: The method comprises forming a diameter reduction part 12, that gradually reduces the diameter towards the side of one end surface 11a, at the connection end of a glass rod 11 with a dummy rod 13, making a starting rod 15 by connecting the glass rod 11 with the dummy rod 13, and accumulating glass fine particles around the starting rod 15 to form an accumulation G1 of glass fine particles. By heating the accumulation G1 of glass fine particles with a heater 41 in a state that the accumulation G1 is hung so that the side of the diameter reduction part 12 becomes an upper side, a sintered and vitrified transparent glass preform G2 is obtained. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、ガラス微粒子を堆積させたガラス微粒子堆積体を焼結して、透明化されたガラス母材とするガラス母材の製造方法に関する。   The present invention relates to a method for producing a glass base material by sintering a glass fine particle deposit on which glass fine particles are deposited to make a transparent glass base material.

一般に、コアとクラッドよりなる光ファイバは、光ファイバ用のガラス母材を線引きして製造される。光ファイバ用ガラス母材は、VAD(Vapour-phase Axial Deposition method)法やOVD(Outside Vapour-phase Deposition method)法などにより、バーナの火炎中に生成したガラス微粒子をコア部とクラッド部を有するガラスロッドの周りに堆積させてガラス微粒子堆積体を形成し、その後、このガラス微粒子堆積体を焼結炉内にて加熱して透明ガラス化することにより製造される。   In general, an optical fiber composed of a core and a clad is manufactured by drawing a glass preform for an optical fiber. The glass base material for optical fiber is a glass having a core portion and a cladding portion made of glass fine particles generated in a flame of a burner by a VAD (Vapor-phase Axial Deposition method) method or an OVD (Outside Vapor-phase Deposition method) method. It is manufactured by depositing around a rod to form a glass fine particle deposit, and then heating the glass fine particle deposit in a sintering furnace to form a transparent glass.

ところで、ガラス微粒子堆積体を形成する際、端部では、ガスの供給量や温度が不安定になるため、ガラス微粒子の堆積密度やガラス微粒子堆積体の外径を制御しにくい。このためコア部とクラッド部を含むガラスロッドの両端に、安価な石英ガラスからなるダミーロッドを接続し、ガラスロッドの端部まで有効に利用することが行われている。   By the way, when the glass fine particle deposit is formed, the supply amount of gas and the temperature become unstable at the end, so that it is difficult to control the deposition density of the glass fine particles and the outer diameter of the glass fine particle deposit. For this reason, dummy rods made of inexpensive quartz glass are connected to both ends of the glass rod including the core portion and the clad portion, and the end portions of the glass rod are effectively used.

このようにダミーロッドを用いてガラス母材を製造する技術として、ガラスロッドに対するダミーロッドの外径差を2mm以下とすることにより、ガラス母材の端部における割れの発生を抑える技術が開示されている(例えば、特許文献1参照)。
また、ガラスロッドよりもダミーロッドを小径とし、さらに、ダミーロッドの粘度をガラスロッドの粘度に近づけることにより、焼結時におけるガラスロッド端部への収縮力の集中を抑え、安定した特性を有するガラス母材を製造する技術も開示されている(例えば、特許文献2参照)。
As a technique for manufacturing a glass base material using a dummy rod in this way, a technique for suppressing the occurrence of cracks at the end of the glass base material by setting the outer diameter difference of the dummy rod to the glass rod to 2 mm or less is disclosed. (For example, refer to Patent Document 1).
In addition, the diameter of the dummy rod is smaller than that of the glass rod, and the viscosity of the dummy rod is made closer to the viscosity of the glass rod, thereby suppressing the concentration of shrinkage force on the end of the glass rod during sintering and having stable characteristics. A technique for producing a glass base material is also disclosed (see, for example, Patent Document 2).

特開平11−71125号公報Japanese Patent Laid-Open No. 11-71125 特開2004−115301号公報JP 2004-115301 A

ところで、上記特許文献1の技術は、端部における割れを抑えることができるが、焼結時の端部におけるガラスロッドへの収縮力の集中を抑えることはできない。   By the way, although the technique of the said patent document 1 can suppress the crack in an edge part, it cannot suppress the concentration of the contraction force to the glass rod in the edge part at the time of sintering.

また、特許文献2の技術は、端部におけるガラスロッドへの収縮力の集中を抑え、特性の安定化を図ることができるが、粘度を調整したダミーロッドが必要であるため、安価で汎用的な合成石英製のダミーロッドを用いることができず、製造のコストアップを招いてしまう。また、ガラスロッドの平均粘度は、コアとクラッドの外径比率やドーパント分布によって変化するため、このガラスロッドの粘度変化に合わせた適切な粘度のダミーロッドを用意するのが困難であった。   Moreover, although the technique of patent document 2 can suppress concentration of the shrinkage force to the glass rod at the end portion and can stabilize the characteristics, since a dummy rod with adjusted viscosity is necessary, it is inexpensive and versatile. A dummy rod made of a synthetic quartz cannot be used, resulting in an increase in manufacturing cost. In addition, since the average viscosity of the glass rod varies depending on the outer diameter ratio of the core and the clad and the dopant distribution, it is difficult to prepare a dummy rod having an appropriate viscosity according to the viscosity change of the glass rod.

本発明は、製造コストを抑えつつ、ガラスロッドとダミーロッドの接続部の極めて近傍まで特性の安定したガラス母材を得ることが可能なガラス母材の製造方法を提供することを目的としている。   An object of the present invention is to provide a glass base material manufacturing method capable of obtaining a glass base material having stable characteristics up to the very vicinity of the connecting portion between the glass rod and the dummy rod while suppressing the manufacturing cost.

上記課題を解決することのできる本発明に係るガラス母材の製造方法は、コア部とクラッド部を有するガラスロッドにダミーロッドを接続して出発ロッドを作成し、当該出発ロッドにガラス微粒子を堆積させガラス微粒子堆積体を形成し、当該ガラス微粒子堆積体を焼結して透明ガラス化してガラス母材を製造するガラス母材の製造方法であって、前記出発ロッドにおける前記ガラスロッドの前記ダミーロッドとの接続端部に、前記ダミーロッドへ向かって次第に縮径する縮径部を形成しておき、当該出発ロッドにガラス微粒子を堆積させることを特徴とする。   The method for manufacturing a glass base material according to the present invention capable of solving the above-mentioned problem is to create a starting rod by connecting a dummy rod to a glass rod having a core portion and a cladding portion, and deposit glass particles on the starting rod. Forming a glass fine particle deposit, and sintering the glass fine particle deposit to form a transparent glass to produce a glass preform, the dummy rod of the glass rod in the starting rod A diameter-reducing portion that gradually decreases in diameter toward the dummy rod is formed at the connection end with the glass rod, and glass particles are deposited on the starting rod.

また、本発明に係るガラス母材の製造方法において、前記縮径部は、長手方向にわたって前記ガラスロッドの外径と前記コア部の直径の比が略一定に形成されていることが好ましい。   Moreover, in the manufacturing method of the glass base material which concerns on this invention, it is preferable that the said diameter reduction part is formed so that ratio of the outer diameter of the said glass rod and the diameter of the said core part may become substantially constant over a longitudinal direction.

また、本発明に係るガラス母材の製造方法において、前記縮径部の長手方向の長さ寸法Lが、12mm≦L≦60mmを満たすことが好ましい。   Moreover, in the manufacturing method of the glass base material which concerns on this invention, it is preferable that the length dimension L of the longitudinal direction of the said reduced diameter part satisfy | fills 12 mm <= L <= 60mm.

また、本発明に係るガラス母材の製造方法において、前記ガラスロッドの、接続端部に設けた縮径部を除いた部分の平均外径Da、前記縮径部の最小外径Dm及び前記縮径部の長さ寸法Lの関係が、0.05≦(Da−Dm)/L≦0.66を満たすことが好ましい。   Further, in the glass base material manufacturing method according to the present invention, an average outer diameter Da of the glass rod excluding a reduced diameter portion provided at a connection end, a minimum outer diameter Dm of the reduced diameter portion, and the reduced diameter. It is preferable that the relationship of the length L of the diameter portion satisfies 0.05 ≦ (Da−Dm) /L≦0.66.

また、本発明に係るガラス母材の製造方法において、前記ガラスロッドと前記ダミーロッドとの接続に先立ち、前記ガラスロッドの前記ダミーロッドとの接続端部に、その先端へ向かって次第に縮径する縮径先端部を形成しておくことが好ましい。
その際、前記縮径先端部は、半球形状であることが好ましい。
Further, in the method for manufacturing a glass base material according to the present invention, prior to the connection between the glass rod and the dummy rod, the diameter of the glass rod is gradually reduced toward the tip at the connection end portion of the glass rod with the dummy rod. It is preferable to form a reduced diameter tip.
In that case, it is preferable that the said diameter reduction front-end | tip part is hemispherical shape.

本発明のガラス母材の製造方法によれば、製造コストを抑えつつ、ガラスロッドとダミーロッドの接続部の極めて近傍まで特性の安定したガラス母材を製造することができる。   According to the method for manufacturing a glass base material of the present invention, it is possible to manufacture a glass base material having stable characteristics up to the very vicinity of the connecting portion between the glass rod and the dummy rod while suppressing the manufacturing cost.

以下、本発明に係るガラス母材の製造方法の実施形態について図面を参照して説明する。
(ロッド形成工程)
図1に示すように、まず、コアとその周囲がクラッドの一部とされたガラスロッド11を用意し、このガラスロッド11の一端に、その先端へ向かって次第に縮径する縮径先端部12aを形成する。本実施形態の縮径先端部12aは、半球形状とする。
Hereinafter, an embodiment of a method for producing a glass base material according to the present invention will be described with reference to the drawings.
(Rod forming process)
As shown in FIG. 1, first, a glass rod 11 having a core and a part of the cladding around the core is prepared, and a reduced-diameter tip portion 12a that gradually decreases in diameter toward one end of the glass rod 11 toward the tip. Form. The reduced diameter distal end portion 12a of the present embodiment is hemispherical.

具体的には、例えば、平均外径32〜40mm、長さ寸法1000mmのガラスロッド11を酸水素旋盤に設置し、一端側をバーナによって加熱しつつ、ガラスロッド11の一端側へ適当な外径のダミーガラス棒を溶着し、さらに加熱して、溶着したダミーガラス棒を引きちぎる。このとき、ガラスロッド11の外径とコア径の比は実質的に一定に保たれる。   Specifically, for example, a glass rod 11 having an average outer diameter of 32 to 40 mm and a length dimension of 1000 mm is placed on an oxyhydrogen lathe, and one end side is heated by a burner, and an appropriate outer diameter is applied to one end side of the glass rod 11. The dummy glass rod is welded and further heated, and the welded dummy glass rod is torn off. At this time, the ratio of the outer diameter of the glass rod 11 to the core diameter is kept substantially constant.

次に、例えば、平均外径が23mm〜38mm、長さ寸法500mmのダミーロッド13をガラスロッド11と同様にその一端側を半球形状にして、ガラスロッド11の縮径先端部12aが形成された一端側の接続端部と突合せ、加熱しながら、ガラスロッド11とダミーロッド13を溶着接続する。
なお、このダミーロッド13としては、安価な合成石英ガラス製のものを用いるのが好ましい。
Next, for example, the dummy rod 13 having an average outer diameter of 23 mm to 38 mm and a length of 500 mm is made hemispherical on one end side in the same manner as the glass rod 11, and the reduced diameter tip portion 12 a of the glass rod 11 is formed. The glass rod 11 and the dummy rod 13 are welded and connected to each other while abutting with the connecting end portion on one end side and heating.
As the dummy rod 13, it is preferable to use an inexpensive synthetic quartz glass.

このようにして、ガラスロッド11とダミーロッド13が接続されて、図2のような縮径部12を有する出発ロッド15の中間部品が形成される。この縮径部12は、ガラスロッド11のダミーロッド13との接続端部で、ダミーロッド13へ向かって次第に縮径している。   In this way, the glass rod 11 and the dummy rod 13 are connected to form an intermediate part of the starting rod 15 having the reduced diameter portion 12 as shown in FIG. The reduced diameter portion 12 is a connecting end portion of the glass rod 11 with the dummy rod 13 and gradually decreases in diameter toward the dummy rod 13.

さらに、図3に示すように、ガラスロッド11の他端側に、このガラスロッド11の外径と略等しい外径を有する安価な合成石英ガラス製のダミーロッド14を接続する。
これにより、ガラスロッド11の両端に、ダミーロッド13,14が接続された1本の出発ロッド15が作製される。
Further, as shown in FIG. 3, an inexpensive synthetic quartz glass dummy rod 14 having an outer diameter substantially equal to the outer diameter of the glass rod 11 is connected to the other end side of the glass rod 11.
Thereby, one starting rod 15 in which the dummy rods 13 and 14 are connected to both ends of the glass rod 11 is produced.

ここで、図2の縮径部12は、その長さ寸法をL、ガラスロッド11の外径均一部分の平均外径をDa、縮径部12の最小外径をDmとしたときに、次の関係(1)〜(3)が成り立つように形成するのが好ましい。
12mm≦L≦60mm …(1)
0.05≦(Da−Dm)/L≦0.66 …(2)
2mm≦Da−Dm≦8mm …(3)
Here, the reduced diameter portion 12 of FIG. 2 has the length dimension L, the average outer diameter of the uniform outer diameter portion of the glass rod 11 is Da, and the minimum outer diameter of the reduced diameter portion 12 is Dm. It is preferable to form so that these relationships (1) to (3) are satisfied.
12 mm ≦ L ≦ 60 mm (1)
0.05 ≦ (Da−Dm) /L≦0.66 (2)
2 mm ≦ Da−Dm ≦ 8 mm (3)

(ガラス微粒子堆積工程)
次に、上記のようにして作製した出発ロッド15の外周にガラス微粒子を堆積させる。
図4に示す製造装置21はガラス微粒子堆積装置の一例であり、VAD法により、反応容器22の内側の空間内で出発ロッド15に対してガラス微粒子を堆積させてガラス微粒子堆積体G1を形成するものである。
(Glass fine particle deposition process)
Next, glass fine particles are deposited on the outer periphery of the starting rod 15 produced as described above.
A manufacturing apparatus 21 shown in FIG. 4 is an example of a glass particulate deposition apparatus, and deposits glass particulates on the starting rod 15 in a space inside the reaction vessel 22 by the VAD method to form a glass particulate deposit G1. Is.

反応容器22は、ガラス微粒子を生成して堆積させる際の高温の環境条件においても、塩素ガス等による腐食が極めて起こりにくい、二酸化ケイ素、炭化ケイ素、ニッケル、ニッケル合金、SUS、アルミ等の材料を用いて形成されている。
反応容器22の中には、垂直方向に昇降可能な把持具25が収容されている。この把持具25は、長尺状の出発ロッド15の上端を把持して、出発ロッド15を垂直方向に支持する。また、把持具25は、その上方で回転引き上げ装置26に接続されている。回転引き上げ装置26は、把持具25及び把持した出発ロッド15を、その軸回りに回転させる。
The reaction vessel 22 is made of a material such as silicon dioxide, silicon carbide, nickel, nickel alloy, SUS, and aluminum that is extremely unlikely to be corroded by chlorine gas even under high temperature environmental conditions when generating and depositing glass particles. It is formed using.
A holding tool 25 that can be moved up and down in the vertical direction is housed in the reaction vessel 22. The gripping tool 25 grips the upper end of the long starting rod 15 and supports the starting rod 15 in the vertical direction. Further, the gripping tool 25 is connected to the rotation pulling device 26 above the gripping tool 25. The rotary pulling device 26 rotates the gripping tool 25 and the gripped starting rod 15 about its axis.

反応容器22の中には、ガラス微粒子生成用のバーナ31が設けられている。このバーナ31は、ガスを吹き出す複数のポートを有しており、そのポートからそれぞれ燃焼ガスとガラス原料ガスを吹き出し、燃焼ガスの燃焼により生じる酸水素火炎中において、ガラス原料を加水分解反応させて、ガラス微粒子を生成するものである。なお、燃焼ガスには、水素(H)からなる燃焼性ガスと酸素(O)からなる助燃性ガスが含まれ、ガラス原料ガスには四塩化ケイ素(SiCl)が含まれる。また、バーナ31は、生成したガラス微粒子を出発ロッド15に堆積させるように、出発ロッド15に向けて斜め上方に傾けて配置されている。 In the reaction vessel 22, a burner 31 for generating glass fine particles is provided. The burner 31 has a plurality of ports for blowing out gas. The combustion gas and the glass raw material gas are blown out from the ports, respectively, and the glass raw material is hydrolyzed in an oxyhydrogen flame generated by the combustion of the combustion gas. The glass fine particles are generated. The combustion gas includes a combustible gas composed of hydrogen (H 2 ) and an auxiliary combustible gas composed of oxygen (O 2 ), and the glass raw material gas includes silicon tetrachloride (SiCl 4 ). Further, the burner 31 is disposed so as to be inclined obliquely upward toward the starting rod 15 so that the generated glass fine particles are deposited on the starting rod 15.

上記構成の製造装置21によって出発ロッド15にガラス微粒子を堆積させる場合は、まず、出発ロッド15を、そのガラスロッド11の縮径部12とダミーロッド13とが接続された端部側を上にして反応容器22内に入れ、この端部を把持具25に接続して吊り下げる。   When glass particles are deposited on the starting rod 15 by the manufacturing apparatus 21 having the above-described configuration, first, the starting rod 15 is placed with the end side where the reduced diameter portion 12 of the glass rod 11 and the dummy rod 13 are connected upward. Then, it is placed in the reaction vessel 22 and this end is connected to the gripping tool 25 and suspended.

この状態で、反応容器22内に吊り下げた出発ロッド15を回転引き上げ装置26によって軸回りに回転させながら、上方向に徐々に引き上げ、バーナ31によってガラス微粒子を吹き付ける。
このようにすると、出発ロッド15の外周にガラス微粒子が堆積されたガラス微粒子堆積体G1が形成される。
In this state, the starting rod 15 suspended in the reaction vessel 22 is gradually lifted upward while being rotated about the axis by the rotary pulling device 26, and glass fine particles are sprayed by the burner 31.
In this way, a glass particulate deposit G1 in which glass particulates are deposited on the outer periphery of the starting rod 15 is formed.

(焼結工程)
上記のようにして出発ロッド15の外周にガラス微粒子を堆積させたガラス微粒子堆積体G1を形成したら、このガラス微粒子堆積体G1を焼結して透明ガラス化する。
具体的には、図5(a)に示すように、ガラスロッド11の縮径部12を上方側にした状態で、ガラス微粒子堆積体G1を焼結用の加熱炉内に設置し、ヒータ41によって、ガラス微粒子堆積体G1の下部から上部へ向けて加熱する。
このようにすると、ガラス微粒子堆積体G1は、出発ロッド15の外周に堆積させたガラス微粒子が下部から上部へ向けて、収縮しながら透明化する。
(Sintering process)
When the glass particulate deposit G1 in which the glass particulates are deposited on the outer periphery of the starting rod 15 is formed as described above, the glass particulate deposit G1 is sintered to form a transparent glass.
Specifically, as shown in FIG. 5A, the glass fine particle deposit G1 is placed in a sintering furnace with the reduced diameter portion 12 of the glass rod 11 facing upward, and the heater 41 Thus, the glass fine particle deposit G1 is heated from the lower part toward the upper part.
In this way, the glass particulate deposit G1 becomes transparent while shrinking the glass particulates deposited on the outer periphery of the starting rod 15 from the lower part toward the upper part.

これにより、図5(b)に示すように、出発ロッド15の周囲に透明ガラス化されたクラッド部16を有するガラス母材G2が得られる。
そして、このガラス母材G2におけるガラス母材外径とコア径の比は、ガラスロッド11におけるダミーロッドとの接続端部の極めて近傍まで略均一化されており、このガラス母材G2から安定した特性の光ファイバを線引きすることができる。
As a result, as shown in FIG. 5B, a glass base material G <b> 2 having a clad portion 16 that is made into a transparent glass around the starting rod 15 is obtained.
The ratio of the outer diameter of the glass base material to the core diameter in the glass base material G2 is substantially uniform up to the very vicinity of the connecting end portion of the glass rod 11 with the dummy rod, and is stable from the glass base material G2. Characteristic optical fibers can be drawn.

ここで、図6(a)に示すものは、縮径先端部のないガラスロッド11の両端に合成石英ガラスからなるダミーロッド13,14を接続して縮径部12のない出発ロッド15を作製し、この出発ロッド15にガラス微粒子を堆積させて得られたガラス微粒子堆積体G1である。
そして、このガラス微粒子堆積G1をヒータ41によって焼結すると、図6(b)に示すように、焼結時にガラス微粒子が収縮することにより、上端側におけるガラスロッド11とダミーロッド13との接続部にて、ガラスロッド11の端部が膨出するような変形が生じる。
Here, in FIG. 6 (a), a dummy rod 13, 14 made of synthetic quartz glass is connected to both ends of a glass rod 11 without a reduced diameter tip portion, and a starting rod 15 without a reduced diameter portion 12 is produced. This is a glass particulate deposit G1 obtained by depositing glass particulates on the starting rod 15.
When this glass particulate deposit G1 is sintered by the heater 41, as shown in FIG. 6B, the glass particulate contracts during the sintering, so that the connecting portion between the glass rod 11 and the dummy rod 13 on the upper end side. Thus, deformation occurs such that the end of the glass rod 11 bulges out.

これは、焼結温度におけるダミーロッド13の粘度が、コア部を含むガラスロッド11の粘度よりも高いため、焼結時におけるガラス微粒子の収縮により、粘度の低いコア部を含むガラスロッド11の端部に収縮力が集中的に付与されることにより生じる。
そして、このように、コア部を含むガラスロッド11に変形が生じると、得られたガラス母材G2から光ファイバを線引きしたときに、長手方向での特性変化が生じるおそれがあり、特に変動が大きいときには、特性不良に至る場合もある。
This is because the viscosity of the dummy rod 13 at the sintering temperature is higher than the viscosity of the glass rod 11 including the core portion, so that the end of the glass rod 11 including the core portion having a low viscosity is caused by shrinkage of the glass fine particles during sintering. This is caused by concentrating the contraction force on the part.
And when a deformation | transformation arises in the glass rod 11 containing a core part in this way, when an optical fiber is drawn from the obtained glass preform | base_material G2, there exists a possibility that the characteristic change in a longitudinal direction may arise, especially a fluctuation | variation occurs. When it is large, it may lead to characteristic failure.

これに対して、本実施形態では、予めガラスロッド11の端部に縮径部12を形成しておくので、ガラスロッド11の上端側のテーパ状の縮径部12が、焼結時にガラスロッド11の上端部において生じる圧縮変形を吸収することにより、ガラスロッド11のより端部まで母材外径とコア径との比率が安定したガラス母材G2を製造することができる。
つまり、焼結時の粘度をガラスロッド11の粘度に合わせた高価なダミーロッド13を用いることなく、一般的に用いられる安価な合成石英ガラスからなるダミーロッド13を用いることができ、製造コストを抑えつつ、ガラスロッドとダミーロッドの接続部の極めて近傍まで特性の安定したガラス母材G2を製造することができる。
On the other hand, in this embodiment, since the reduced diameter portion 12 is formed in advance at the end portion of the glass rod 11, the tapered reduced diameter portion 12 on the upper end side of the glass rod 11 is converted into the glass rod during sintering. By absorbing the compressive deformation that occurs at the upper end portion of the glass 11, the glass base material G2 in which the ratio of the outer diameter of the base material and the core diameter is stable up to the end of the glass rod 11 can be manufactured.
That is, the dummy rod 13 made of inexpensive synthetic quartz glass that is generally used can be used without using the expensive dummy rod 13 whose viscosity at the time of sintering matches the viscosity of the glass rod 11, and the manufacturing cost can be reduced. While suppressing, it is possible to manufacture the glass base material G2 having stable characteristics up to the very vicinity of the connection portion between the glass rod and the dummy rod.

そして、このガラス母材G2から光ファイバを線引きすることにより、特性が不安定のために不良となる光ファイバ長を極力低減することができる。
特に、縮径部12の長さ寸法Lを12mm以上60mm以下とすることで、焼結時にガラスロッド11の端部に生じる圧縮変形をより効果的に吸収することが可能である。
By drawing an optical fiber from the glass base material G2, the length of the optical fiber that becomes defective due to unstable characteristics can be reduced as much as possible.
In particular, by setting the length L of the reduced diameter portion 12 to 12 mm or more and 60 mm or less, it is possible to more effectively absorb the compressive deformation that occurs at the end of the glass rod 11 during sintering.

なお、上記実施形態では、ガラスロッド11の上端側に縮径部12を設け、このガラスロッド11の上端に、縮径部12の最小径Dmと略同一径のダミーロッド13を接続したが、図7に示すように、ガラスロッド11の上端に接続するダミーロッド13にも縮径部13aを形成し、このダミーロッド13の接続端部をガラスロッド11の上端部の外径に合わせても良い。   In the above embodiment, the reduced diameter portion 12 is provided on the upper end side of the glass rod 11, and the dummy rod 13 having the same diameter as the minimum diameter Dm of the reduced diameter portion 12 is connected to the upper end of the glass rod 11. As shown in FIG. 7, a reduced diameter portion 13 a is also formed in the dummy rod 13 connected to the upper end of the glass rod 11, and the connection end portion of the dummy rod 13 is matched with the outer diameter of the upper end portion of the glass rod 11. good.

実施例1〜8として、平均外径Da、縮径部の最小外径Dm、縮径部の長さ寸法L、外径差Da−Dm及び外径差と長さ寸法との比(Da−Dm)/Lの異なる縮径部を有するガラスロッドを用意し、これらガラスロッドにガラス微粒子を堆積させ、その後焼結・透明化してガラス母材を製造したときの、ガラスロッド上部におけるダミーロッドとの接続端部から下方200mmの区間におけるガラス母材の外径とコア径の比の変動幅を求めた。以下この変動幅を比率ばらつき幅と呼ぶ。
比率ばらつき幅は、具体的には、ガラスロッド上端から200mmにおけるガラス母材外径とコア径の比の変動幅を、ガラスロッド上端から200mmの区間におけるガラス母材外径とコア径の比の平均値を100%として、当該変動幅を数値化したものである。
As Examples 1 to 8, the average outer diameter Da, the minimum outer diameter Dm of the reduced diameter portion, the length L of the reduced diameter portion, the outer diameter difference Da-Dm, and the ratio of the outer diameter difference to the length dimension (Da- Dm) When preparing glass rods having reduced diameter portions with different diameters, depositing glass fine particles on these glass rods, and then sintering and transparentizing to produce a glass base material, The fluctuation range of the ratio between the outer diameter of the glass base material and the core diameter in the section 200 mm below from the connection end of the glass was determined. Hereinafter, this fluctuation range is referred to as a ratio variation range.
Specifically, the ratio variation width is the fluctuation width of the ratio of the glass base material outer diameter and the core diameter at 200 mm from the upper end of the glass rod, and the ratio of the glass base material outer diameter to the core diameter in the section of 200 mm from the upper end of the glass rod. The fluctuation range is quantified with an average value of 100%.

また、比較例として、縮径部のないガラスロッドを用意し、このガラスロッドにガラス微粒子を堆積させ、その後焼結・透明化してガラス母材を製造したときの、比率ばらつき幅を同様に求めた。
なお、各ガラスロッドへのガラス微粒子堆積工程及び焼結工程は共通の条件にて行った。
また、各ガラスロッドへ接続するダミーロッドとしては、合成石英ガラスからなり、各ガラスロッドとの接続面における外径が、ガラスロッドの接続端における外径に対して±1mm以内のものを用いた。その結果を表1に示す。
In addition, as a comparative example, a glass rod without a reduced diameter portion is prepared, glass fine particles are deposited on the glass rod, and then sintered and transparentized to obtain a glass base material in the same manner. It was.
The glass fine particle deposition step and the sintering step on each glass rod were performed under common conditions.
The dummy rod connected to each glass rod is made of synthetic quartz glass, and the outer diameter at the connection surface with each glass rod is within ± 1 mm with respect to the outer diameter at the connection end of the glass rod. . The results are shown in Table 1.

Figure 2007320781
Figure 2007320781

表1からわかるように、縮径部を有するガラスロッドを用いた実施例1〜8においては、比率ばらつき幅が±1%以下であった。これに対して、縮径部のないガラスロッドを用いた比較例では、比率ばらつき幅が±2.50%と大きく変動した。
つまり、縮径部を有するガラスロッドを用いることにより、比率ばらつき幅を大幅に抑制することができることがわかった。
As can be seen from Table 1, in Examples 1 to 8 using the glass rod having the reduced diameter portion, the ratio variation width was ± 1% or less. On the other hand, in the comparative example using the glass rod without the reduced diameter portion, the ratio variation width greatly fluctuated to ± 2.50%.
That is, it was found that the ratio variation width can be significantly suppressed by using the glass rod having the reduced diameter portion.

特に、実施例2〜4では、比率ばらつき幅が±0.45%以下と最も安定した結果が得られた。これは、縮径部の長さ寸法Lが好適な範囲である12mm≦L≦60mmの範囲にあり、さらに、外径差と長さ寸法との比率(Da−Dm)/Lも好適な範囲である0.05≦(Da−Dm)/L≦0.66の範囲にあるためである。   In particular, in Examples 2 to 4, the most stable result was obtained with a ratio variation width of ± 0.45% or less. This is in the range of 12 mm ≦ L ≦ 60 mm, which is the preferred range of the length dimension L of the reduced diameter portion, and the ratio of the outer diameter difference to the length dimension (Da−Dm) / L is also a preferred range. This is because it is in the range of 0.05 ≦ (Da−Dm) /L≦0.66.

なお、実施例6は、外径差と長さ寸法との比率(Da−Dm)/Lが好適な範囲である0.05≦(Da−Dm)/L≦0.66の範囲の臨界点(0.05)にあり、実施例7は、0.05≦(Da−Dm)/L≦0.66の範囲から僅かに外れた点(0.67)にあるため、実施例2〜4の比率ばらつき幅(±0.45%以下)より、僅かに高め(±0.80%)になったと考えられる。
また、実施例8は、外径差Da−Dmが臨界点(2mm)にあるため、実施例2〜4の比率ばらつき幅(±0.45%以下)より、僅かに高め(±0.80%)になったと考えられる。
In Example 6, the critical point in the range of 0.05 ≦ (Da−Dm) /L≦0.66, in which the ratio (Da−Dm) / L between the outer diameter difference and the length dimension is a suitable range. (0.05), and Example 7 is at a point (0.67) slightly deviating from the range of 0.05 ≦ (Da−Dm) /L≦0.66. It is considered that the ratio variation width (± 0.45% or less) was slightly higher (± 0.80%).
In Example 8, since the outer diameter difference Da-Dm is at the critical point (2 mm), the ratio variation width (± 0.45% or less) in Examples 2 to 4 is slightly higher (± 0.80). %).

さらに、実施例1,5は、縮径部の長さ寸法Lが好適な範囲である12mm≦L≦60mmの範囲から外れた長さ寸法(8mm,70mm)であるため、実施例2〜4の比率ばらつき幅(±0.45%以下)より、高め(±1.00%)になったと考えられる。つまり、実施例1では、縮径部の長さ寸法Lが短いため、焼結時に生じるガラスロッドの圧縮変形の吸収が少なく、また、実施例8では、縮径部の長さ寸法Lが長いため、焼結時のガラスロッドの圧縮変形が生じない領域において、ガラス母材の外径に対してガラスロッドを縮径した影響が現れたことによると考えられる。   Furthermore, since Examples 1 and 5 are length dimensions (8 mm, 70 mm) that are outside the range of 12 mm ≦ L ≦ 60 mm, which is a preferable range of the length dimension L of the reduced diameter portion, Examples 2 to 4 This is considered to be higher (± 1.00%) than the ratio variation width (± 0.45% or less). That is, in Example 1, since the length dimension L of the reduced diameter portion is short, absorption of the compression deformation of the glass rod generated during sintering is small, and in Example 8, the length dimension L of the reduced diameter portion is long. For this reason, it is considered that an effect of reducing the diameter of the glass rod with respect to the outer diameter of the glass base material appeared in a region where the glass rod does not undergo compressive deformation during sintering.

上記の結果より、縮径部の長さ寸法Lは60mm以下が好ましく、さらに50mm以下とするのがより好ましい。また、縮径部の長さ寸法Lが60mmを越えると、焼結時のガラスロッドの圧縮変形が縮径部の全長に及ばないため、縮径部を形成することによるガラスロッドの外径変化が母材外径変動に現れてしまう。また、縮径部を長くすることは製作上の難易度が高く、この点を考慮すると縮径部の長さ寸法Lの上限は50mmとするのがよい。   From the above results, the length L of the reduced diameter portion is preferably 60 mm or less, and more preferably 50 mm or less. Further, if the length dimension L of the reduced diameter portion exceeds 60 mm, the compression deformation of the glass rod during sintering does not reach the entire length of the reduced diameter portion, so the outer diameter change of the glass rod by forming the reduced diameter portion. Will appear in the outer diameter fluctuation of the base material. In addition, it is difficult to make the diameter-reduced part longer, and considering this point, the upper limit of the length L of the diameter-reduced part is preferably 50 mm.

本発明の実施形態にて用いるガラスロッドの端部形状を示す斜視図である。It is a perspective view which shows the edge part shape of the glass rod used in embodiment of this invention. ガラスロッドとダミーロッドとの接続部分を示す斜視図である。It is a perspective view which shows the connection part of a glass rod and a dummy rod. ガラスロッドとダミーロッドとからなる出発ロッドを示す側面図である。It is a side view which shows the starting rod which consists of a glass rod and a dummy rod. 出発ロッドへのガラス微粒子堆積工程を示す概略側面図である。It is a schematic side view which shows the glass fine particle deposition process to a starting rod. ガラス微粒子堆積体を焼結してガラス母材とする焼結工程を示す概略断面図である。It is a schematic sectional drawing which shows the sintering process which sinters a glass fine particle deposit body and makes it a glass base material. ガラス微粒子堆積体を焼結してガラス母材とする焼結工程を示す概略断面図である。It is a schematic sectional drawing which shows the sintering process which sinters a glass fine particle deposit body and makes it a glass base material. 他の構造の出発ロッドを備えたガラス微粒子堆積体の概略断面図である。It is a schematic sectional drawing of the glass fine particle deposit body provided with the starting rod of another structure.

符号の説明Explanation of symbols

11 ガラスロッド
11a 一端面
12 縮径部
13 ダミーロッド
15 出発ロッド
Da ガラスロッドの平均外径
Dm 縮径部の最小外径
G2 ガラス母材
L 縮径部の長さ寸法
DESCRIPTION OF SYMBOLS 11 Glass rod 11a One end surface 12 Reduced diameter part 13 Dummy rod 15 Starting rod Da The average outer diameter of a glass rod Dm The minimum outer diameter of a reduced diameter part G2 Glass base material L Length dimension of a reduced diameter part

Claims (6)

コア部とクラッド部を有するガラスロッドにダミーロッドを接続して出発ロッドを作成し、当該出発ロッドにガラス微粒子を堆積させガラス微粒子堆積体を形成し、当該ガラス微粒子堆積体を焼結して透明ガラス化してガラス母材を製造するガラス母材の製造方法であって、
前記出発ロッドにおける前記ガラスロッドの前記ダミーロッドとの接続端部に、前記ダミーロッドへ向かって次第に縮径する縮径部を形成しておき、当該出発ロッドにガラス微粒子を堆積させることを特徴とするガラス母材の製造方法。
A dummy rod is connected to a glass rod having a core part and a clad part to create a starting rod, glass fine particles are deposited on the starting rod to form a glass fine particle deposit, and the glass fine particle deposit is sintered to be transparent. A method for producing a glass base material that is vitrified to produce a glass base material,
In the starting rod, a diameter-reducing portion that gradually decreases in diameter toward the dummy rod is formed at a connection end portion of the glass rod with the dummy rod, and glass fine particles are deposited on the starting rod. A method for manufacturing a glass base material.
請求項1に記載のガラス母材の製造方法であって、
前記縮径部は、長手方向にわたって前記ガラスロッドの外径と前記コア部の直径の比が略一定に形成されていることを特徴とするガラス母材の製造方法。
It is a manufacturing method of the glass base material of Claim 1,
The reduced diameter portion has a ratio of the outer diameter of the glass rod and the diameter of the core portion formed substantially constant over the longitudinal direction.
請求項1または請求項2に記載のガラス母材の製造方法であって、
前記縮径部の長手方向の長さ寸法Lが、12mm≦L≦60mmを満たすことを特徴とするガラス母材の製造方法。
It is a manufacturing method of the glass base material according to claim 1 or 2,
A method for producing a glass base material, wherein a length dimension L in a longitudinal direction of the reduced diameter portion satisfies 12 mm ≦ L ≦ 60 mm.
請求項1から3のいずれか1項に記載のガラス母材の製造方法であって、
前記ガラスロッドの、接続端部に設けた縮径部を除いた部分の平均外径Da、前記縮径部の最小外径Dm及び前記縮径部の長さ寸法Lの関係が、0.05≦(Da−Dm)/L≦0.66を満たすことを特徴とするガラス母材の製造方法。
It is a manufacturing method of the glass base material given in any 1 paragraph of Claims 1-3,
The relationship between the average outer diameter Da of the glass rod excluding the reduced diameter portion provided at the connection end, the minimum outer diameter Dm of the reduced diameter portion, and the length L of the reduced diameter portion is 0.05. <(Da-Dm) / L <= 0.66 is satisfied, The manufacturing method of the glass base material characterized by the above-mentioned.
請求項1から4のいずれか1項に記載のガラス母材の製造方法であって、
前記ガラスロッドと前記ダミーロッドとの接続に先立ち、前記ガラスロッドの前記ダミーロッドとの接続端部に、その先端へ向かって次第に縮径する縮径先端部を形成しておくことを特徴とするガラス母材の製造方法。
A method for producing a glass base material according to any one of claims 1 to 4,
Prior to the connection between the glass rod and the dummy rod, a diameter-reducing tip portion that gradually decreases in diameter toward the tip is formed at a connection end portion of the glass rod with the dummy rod. Manufacturing method of glass base material.
請求項5に記載のガラス母材の製造方法であって、
前記縮径先端部は、半球形状であることを特徴とするガラス母材の製造方法。
It is a manufacturing method of the glass base material according to claim 5,
The method for producing a glass base material, wherein the reduced diameter tip has a hemispherical shape.
JP2006149849A 2006-05-30 2006-05-30 Manufacturing method of glass base material Active JP4453680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149849A JP4453680B2 (en) 2006-05-30 2006-05-30 Manufacturing method of glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149849A JP4453680B2 (en) 2006-05-30 2006-05-30 Manufacturing method of glass base material

Publications (2)

Publication Number Publication Date
JP2007320781A true JP2007320781A (en) 2007-12-13
JP4453680B2 JP4453680B2 (en) 2010-04-21

Family

ID=38853911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149849A Active JP4453680B2 (en) 2006-05-30 2006-05-30 Manufacturing method of glass base material

Country Status (1)

Country Link
JP (1) JP4453680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230020384A1 (en) * 2021-07-01 2023-01-19 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230020384A1 (en) * 2021-07-01 2023-01-19 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform
US11680007B2 (en) * 2021-07-01 2023-06-20 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform

Also Published As

Publication number Publication date
JP4453680B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US8375749B2 (en) Method for fabricating porous silica preform
EP2380855A2 (en) Burner for manufacturing porous glass preform
JP2006193370A (en) Optical fiber preform and method of manufacturing the same
JP4453680B2 (en) Manufacturing method of glass base material
US8919153B2 (en) Manufacturing method for glass base material
JPH0624784A (en) Production of optical fiber
JP4348341B2 (en) Optical fiber preform manufacturing method
JP4704760B2 (en) Optical fiber preform manufacturing method and optical fiber preform
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP7115095B2 (en) Manufacturing method of preform for optical fiber
JP5533205B2 (en) Glass base material manufacturing method
JP6015301B2 (en) Manufacturing method of glass tube
JP5778895B2 (en) Glass base material manufacturing method
JP4506681B2 (en) Manufacturing method of glass base material
JP2018118887A (en) Method for manufacturing porous quartz glass preform
JP4472308B2 (en) Method for producing porous quartz base material
JP4429993B2 (en) Optical fiber preform manufacturing method
US20230286851A1 (en) Method for manufacturing optical fiber preform
JP5459241B2 (en) Glass base material manufacturing method
JP2011230985A (en) Manufacturing method for glass preform
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP2006160561A (en) Method for manufacturing optical fiber preform and optical fiber preform
JP3553423B2 (en) Manufacturing method of optical fiber preform
JP5843084B2 (en) Glass base material manufacturing method
JP2003171136A (en) Porous material for optical fiber and manufacturing method therefor, optical fiber preform and manufacturing method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250