JP4429993B2 - Optical fiber preform manufacturing method - Google Patents

Optical fiber preform manufacturing method Download PDF

Info

Publication number
JP4429993B2
JP4429993B2 JP2005269970A JP2005269970A JP4429993B2 JP 4429993 B2 JP4429993 B2 JP 4429993B2 JP 2005269970 A JP2005269970 A JP 2005269970A JP 2005269970 A JP2005269970 A JP 2005269970A JP 4429993 B2 JP4429993 B2 JP 4429993B2
Authority
JP
Japan
Prior art keywords
porous body
glass fine
optical fiber
fine particle
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005269970A
Other languages
Japanese (ja)
Other versions
JP2007076981A (en
Inventor
成敏 山田
智宏 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005269970A priority Critical patent/JP4429993B2/en
Publication of JP2007076981A publication Critical patent/JP2007076981A/en
Application granted granted Critical
Publication of JP4429993B2 publication Critical patent/JP4429993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、VAD法(Vapor-phase axial deposition method:気相軸付け法)やOVD法(Outside vapor deposition method:外付け溶着法)によって光ファイバの製造に使用される石英ガラス製の光ファイバ母材を製造する方法に関し、特に、スート割れや気泡の発生を防止しながら、極限までかさ密度を高めたガラス微粒子多孔質体を製造できるようにすることにより大型母材の製造を可能にする光ファイバ母材の製造方法に関する。   The present invention relates to an optical fiber mother made of quartz glass used for manufacturing an optical fiber by the VAD method (Vapor-phase axial deposition method) or the OVD method (Outside vapor deposition method). In particular, a light that enables the production of large base materials by making it possible to produce porous glass bodies with an increased bulk density while preventing soot cracking and air bubble generation. The present invention relates to a method for manufacturing a fiber preform.

VAD法やOVD法によって光ファイバ母材を製造するには、図3に示すように、SiCl、あるいはSiClとGeClなどのガラス原料ガス、酸素ガス及び水素ガスをバーナー12に供給し、ガラス微粒子を含む酸水素火炎13を出発ロッド11に当ててガラス微粒子を堆積させてガラス微粒子多孔質体10を製造し、これを透明化して光ファイバ製造用の光ファイバ母材を製造している。また、図4は、ガラス微粒子多孔質体10の表面温度を放射温度計14で測定し、表面温度をモニターしながらガラス微粒子多孔質体10を製造する場合を例示している。 To manufacture the optical fiber preform by VAD method or OVD method, as shown in FIG. 3, by supplying glass raw material gas such as SiCl 4 or SiCl 4 and GeCl 4,, oxygen gas and hydrogen gas to the burner 12, An oxyhydrogen flame 13 containing glass fine particles is applied to the starting rod 11 to deposit glass fine particles to produce a glass fine particle porous body 10, which is made transparent to produce an optical fiber preform for optical fiber production. . FIG. 4 illustrates the case where the glass particulate porous body 10 is manufactured while the surface temperature of the glass particulate porous body 10 is measured by the radiation thermometer 14 and the surface temperature is monitored.

従来より、VAD法やOVD法による光ファイバ母材の製造においては、製造する光ファイバ母材を大型化しつつ、脱水・焼結装置のサイズはコンパクトにしたいとの要望がある。この要望を満たすための方法として、ガラス微粒子多孔質体のかさ密度を調整することが挙げられる。ガラス微粒子多孔質体のかさ密度を高くした方が、ガラス微粒子多孔質体のサイズが小さくなり、脱水・焼結装置のサイズが小さくて済む。また、かさ密度が高い方が、搬送中のクラックの発生、割れなどの予防にもなり、取り扱いやすい。   Conventionally, in the manufacture of optical fiber preforms by the VAD method or the OVD method, there is a demand for reducing the size of the dehydration / sintering apparatus while increasing the size of the optical fiber preform to be manufactured. As a method for satisfying this demand, adjusting the bulk density of the glass fine particle porous body can be mentioned. When the bulk density of the glass fine particle porous body is increased, the size of the glass fine particle porous body is reduced, and the size of the dehydration / sintering apparatus can be reduced. In addition, a higher bulk density is also easier to handle because it prevents cracks during transport and prevents cracks.

しかし、ガラス微粒子多孔質体のかさ密度を高くするためには、堆積中の温度やかさ密度を調整する必要があった。堆積中の温度やかさ密度が適正でないと、次の(A),(B)の問題を生じてしまう。
(A)ガラス微粒子堆積中の割れ(歩留まり低下)
温度、かさ密度が高い領域では、大きな収縮によりスート割れが生じる。
(B)焼結後母材の気泡の残留(歩留まり、品質低下)
温度、かさ密度の高い領域では、堆積時に微粒子同士の溶着が進行しすぎるため、雰囲気ガスを閉じ込め、気泡となってしまう。これは、紡糸中の断線、光ファイバの強度低下、光ファイバの損失増加、光ファイバの偏波分散の増大、光ファイバの外径変動などの原因となってしまう。
However, in order to increase the bulk density of the glass fine particle porous body, it is necessary to adjust the temperature during the deposition and the bulk density. If the temperature and bulk density during deposition are not appropriate, the following problems (A) and (B) will occur.
(A) Cracks during deposition of glass particles (decrease in yield)
In regions where the temperature and bulk density are high, soot cracks occur due to large shrinkage.
(B) Residual air bubbles in the base material after sintering (yield, quality degradation)
In the region where the temperature and bulk density are high, the welding of the fine particles proceeds too much during the deposition, so that the atmospheric gas is trapped and bubbles are formed. This is a cause of disconnection during spinning, a decrease in strength of the optical fiber, an increase in optical fiber loss, an increase in polarization dispersion of the optical fiber, a fluctuation in the outer diameter of the optical fiber, and the like.

ガラス微粒子堆積中の温度やかさ密度を調整する方法として、従来、例えば特許文献1〜3に開示された技術が提案されている。
特許文献1には、スート割れや気泡発生のない大型母材の製法として、堆積厚さを薄くし、堆積面の温度を所定の範囲にする方法が開示されている。
特許文献2には、外径定常部と外径非定常部の温度を所定の範囲に調整し、端部の外径非定常部の温度の局所的上昇を抑えるように制御する光ファイバ母材の製造方法が開示されている。
特許文献3には、温度を測定し基準温度に対して所定の範囲になるよう加熱条件を制御する方法が開示されている。
Conventionally, for example, techniques disclosed in Patent Documents 1 to 3 have been proposed as methods for adjusting the temperature and bulk density during the deposition of glass particles.
Patent Document 1 discloses a method for reducing the deposition thickness and keeping the temperature of the deposition surface within a predetermined range as a method for producing a large base material without soot cracking or bubble generation.
Patent Document 2 discloses an optical fiber preform that adjusts the temperature of the outer diameter steady portion and the outer diameter unsteady portion to a predetermined range and controls to suppress a local increase in the temperature of the outer diameter unsteady portion at the end. A manufacturing method is disclosed.
Patent Document 3 discloses a method of measuring a temperature and controlling a heating condition so that the temperature is within a predetermined range with respect to a reference temperature.

また、ガラス微粒子多孔質体のスート割れや気泡を防止する方法として、従来、例えば特許文献4〜6に開示された技術が提案されている。
特許文献4には、ガラス微粒子合成用バーナーから出る酸水素火炎の堆積面から50mmの位置での温度を1500℃以上に保持することによって、ガラス微粒子堆積体の両端に形成される非有効部の最先端部近傍の嵩密度を0.6〜1.5g/cmとするガラス微粒子堆積体の製造方法が開示されている。
特許文献5には、最初に出発材に付着するガラス微粒子堆積体の嵩密度を0.2〜0.6g/cmに調整しながら、出発材の外径の50%以下の厚さの薄いガラス微粒子堆積層を付着させ、次いで、その上に所望の厚さのガラス微粒子堆積層を形成することを特徴とするガラス微粒子堆積体の製造方法が開示されている。
特許文献6には、ガラス微粒子堆積層の出発材表面から所定層までのかさ密度を0.5g/cm以上に制御する光ファイバ母材の製造方法が開示されている。
特開2000−272930号公報 特許第3521681号公報 特開2001−247330号公報 特開2003−40625号公報 特公平7−17390号公報 特開平−215727号公報
In addition, as a method for preventing soot cracks and bubbles in the porous glass fine particle, conventionally, for example, techniques disclosed in Patent Documents 4 to 6 have been proposed.
Patent Document 4 discloses an ineffective portion formed at both ends of a glass particulate deposit by maintaining the temperature at a position of 50 mm or more from the deposition surface of the oxyhydrogen flame coming out of the glass particulate synthesis burner at 1500 ° C. or higher. A method for producing a glass fine particle deposited body in which the bulk density in the vicinity of the most advanced portion is 0.6 to 1.5 g / cm 3 is disclosed.
In Patent Document 5, the volume density of the glass fine particle deposit that first adheres to the starting material is adjusted to 0.2 to 0.6 g / cm 3, and the thickness is 50% or less of the outer diameter of the starting material. Disclosed is a method for producing a glass particulate deposit, which comprises depositing a glass particulate deposition layer and then forming a glass particulate deposition layer of a desired thickness thereon.
Patent Document 6 discloses a method of manufacturing an optical fiber preform in which the bulk density from the starting material surface of the glass fine particle deposition layer to a predetermined layer is controlled to 0.5 g / cm 3 or more.
JP 2000-272930 A Japanese Patent No. 3521681 JP 2001-247330 A JP 2003-40625 A Japanese Patent Publication No. 7-17390 JP-A-215727

前述したように、従来技術では、温度やかさ密度をパラメーターとして、ガラス微粒子多孔質体の形成状態を管理していた。しかしながら、前述した従来技術では、ガラス微粒子多孔質体のスート割れや気泡発生などの抑止効果に再現性が得られない場合があり、限界までかさ密度を高め、ガラス微粒子多孔質体の堆積を縮減せしめ、装置のコンパクト化を図るには限界があり、製造条件のマージンを大きくとる必要があった。   As described above, in the prior art, the formation state of the glass fine particle porous body is managed using the temperature and bulk density as parameters. However, with the above-described conventional technology, reproducibility may not be obtained for the suppression effect of soot cracking and bubble generation of the glass particulate porous body, increasing the bulk density to the limit and reducing the deposition of the glass particulate porous body. As a result, there is a limit to downsizing the apparatus, and a margin for manufacturing conditions has to be increased.

すなわち、ガラス微粒子多孔質体の形成状態を温度管理だけで行うと、かさ密度が決まらない。ネッキング(多孔質母材を構成するガラス微粒子相互の溶融焼結)の進行は温度と時間などの複合である熱履歴が大きく関わるからである。
また、ガラス微粒子多孔質体の形成状態をかさ密度だけで行う場合も、知り得る情報は平均的な密度の情報であり、局所的に過剰なネッキングの進行までは確認できない。
さらに、温度やかさ密度測定値とスート割れや気泡との関係を経験的に掴んだとしても、バーナーの個体差、劣化などの変動により左右される面があり、余裕を持つために設定を低めにせざるを得ない。
さらにドーパントを使用した場合、同じ温度設定にしても、かさ密度が異なって、前記の問題を生じる。温度が指標になり得ない。
That is, if the formation state of the glass fine particle porous body is performed only by temperature control, the bulk density cannot be determined. This is because the progress of necking (melting and sintering of glass fine particles constituting the porous base material) is greatly related to a thermal history that is a composite of temperature and time.
Further, even when the formation state of the glass fine particle porous body is performed only by the bulk density, the information that can be known is information on the average density, and it cannot be confirmed until the progress of excessive necking locally.
Furthermore, even if the relationship between temperature and bulk density measurement values and soot cracks and bubbles are empirically grasped, there are aspects that are influenced by variations in individual burners and deterioration, etc. I must.
Furthermore, when a dopant is used, even if it sets the same temperature, a bulk density differs and the said problem is produced. Temperature cannot be an indicator.

本発明は前記事情に鑑みてなされ、ガラス微粒子多孔質体製造時に限界までかさ密度を高めてガラス微粒子多孔質体の体積を縮減せしめ、大型母材が製造可能となり、しかも装置のコンパクト化を図ることが可能な光ファイバ母材の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and at the time of manufacturing a glass fine particle porous body, the bulk density is increased to the limit, the volume of the glass fine particle porous body is reduced, a large base material can be manufactured, and the device is made compact. An object of the present invention is to provide a method for manufacturing an optical fiber preform that can be used.

前記目的を達成するため、本発明は、ガラス原料ガス、酸素ガス及び水素ガスをバーナーに供給し、ガラス微粒子を含む酸水素火炎を出発ロッドに当ててガラス微粒子を堆積させてガラス微粒子多孔質体を製造し、これを透明化して光ファイバ母材を製造する方法において、ガラス微粒子多孔質体の有効部堆積面を調べ、直径3mm以上の斑点状凸部の個数が100個/10cm以下となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することを特徴とする光ファイバ母材の製造方法を提供する。 In order to achieve the above-mentioned object, the present invention supplies a glass raw material gas, oxygen gas and hydrogen gas to a burner, applies an oxyhydrogen flame containing glass fine particles to a starting rod, and deposits the glass fine particles to form a porous glass fine particle. In the method for producing an optical fiber preform by making this transparent, the effective portion deposition surface of the glass fine particle porous body is examined, and the number of spotted convex portions having a diameter of 3 mm or more is 100/10 cm 2 or less. There is provided a method for producing an optical fiber preform characterized by producing a porous glass fine particle while controlling deposition conditions.

本発明の光ファイバ母材の製造方法において、有効部堆積面の表面温度(B)℃が、有効部堆積面に直径3mm以上の斑点状凸部が0.5〜10個/10cm発生する温度(A)℃に対し、A≦B<(A+50)の範囲となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することが好ましい。 In the method for producing an optical fiber preform of the present invention, the surface temperature (B) ° C. of the effective portion deposition surface is 0.5-10 spots / 10 cm 2 of spotted convex portions having a diameter of 3 mm or more on the effective portion deposition surface. It is preferable to manufacture the glass fine particle porous body while controlling the deposition conditions so that the temperature (A) ° C. is in the range of A ≦ B <(A + 50).

本発明の光ファイバ母材の製造方法において、斑点状凸部が1段の単純な隆起構造をなしていることが好ましい。   In the method for manufacturing an optical fiber preform of the present invention, it is preferable that the spot-like convex portion has a simple raised structure with one step.

本発明の光ファイバ母材の製造方法において、ガラス微粒子多孔質体の有効部堆積面を画像処理装置によって調べ、斑点状凸部の単位面積当たり個数を計測し、それが適正範囲となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することが好ましい。   In the method for producing an optical fiber preform of the present invention, the effective portion deposition surface of the glass fine particle porous body is examined by an image processing apparatus, and the number of spotted convex portions is measured per unit area so that it is within an appropriate range. It is preferable to produce a glass fine particle porous body while controlling the deposition conditions.

本発明の光ファイバ母材の製造方法において、ガス流量、バーナーと有効部堆積面間の距離、有効部堆積面の回転速度、有効部堆積面とバーナーとの相対移動速度からなる群から選択される1つ又は2つ以上の堆積条件を制御することが好ましい。   In the optical fiber preform manufacturing method of the present invention, the gas flow rate, the distance between the burner and the effective portion deposition surface, the rotation speed of the effective portion deposition surface, and the relative movement speed between the effective portion deposition surface and the burner are selected. Preferably, one or more deposition conditions are controlled.

本発明の光ファイバ母材の製造方法において、ガラス微粒子多孔質体の平均かさ密度が0.6〜0.8g/cmの範囲となるように製造することが好ましい。 In the manufacturing method of the optical fiber preform of the present invention, it is preferable to manufacture the glass fine particle porous body so that the average bulk density is in the range of 0.6 to 0.8 g / cm 3 .

本発明によれば、光ファイバ母材の製造工程において、スート割れや気泡の発生を防止しながら、極限までかさ密度を高めたガラス微粒子多孔質体を製造できるようになり、大型母材を容易に製造することができる。   According to the present invention, in a manufacturing process of an optical fiber preform, it becomes possible to manufacture a porous glass fine particle having a bulk density increased to the limit while preventing soot cracking and air bubble generation, thereby easily making a large preform. Can be manufactured.

本発明者らは、ガラス微粒子多孔質体の製造において、かさ密度を高めたガラス微粒子多孔質体を得るための方法を鋭意検討した結果、その本質は、局所的にかさ密度の高すぎる部分が生じてはならないところにあること、その指標として最適なのがガラス微粒子多孔質体の有効部堆積面に発生する斑点状凸部であることを見出した。なお、本発明において「有効部堆積面」とは、出発ロッド上に堆積されたガラス微粒子多孔質体のうち、両端部の外径変動部分(非有効部)を除く、中央部の外径がほぼ一定な領域を指す。   The inventors of the present invention have intensively studied a method for obtaining a glass fine particle porous body having an increased bulk density in the production of a glass fine particle porous body. As a result, the essence is that a portion where the bulk density is too high locally. It was found that it should not occur, and that the optimum index is a spot-like convex portion generated on the effective portion deposition surface of the porous glass fine particle. In the present invention, the “effective portion deposition surface” refers to the outer diameter of the central portion excluding the outer diameter fluctuation portions (ineffective portions) at both ends of the porous glass particulate material deposited on the starting rod. An almost constant area.

斑点状凸部の発生原因は、(1)極度に粒成長したSiO微粒子が堆積表面に付着し、その後、その上にスートの堆積を続けることによる表面形状の変化や、(2)熱によるスートの収縮(引き攣れ)による。ここで、(1)が起きると(2)は助長されやすい傾向にある。
また、さらに高温の場合には、閉孔したガラス内のガスの膨張による表面の隆起も並行して起こる。
The cause of the occurrence of the spot-like convex part is (1) the change in the surface shape caused by excessively grown SiO 2 fine particles adhering to the deposition surface, and then continuing the deposition of soot, or (2) the heat Due to soot contraction. Here, when (1) occurs, (2) tends to be promoted.
In the case of higher temperatures, surface bulges due to gas expansion in the closed glass also occur in parallel.

いずれの状態も、透明ガラス化後に気泡などの欠陥を残しやすいとされ、従来は凹凸が発生しない状態でスートを堆積させるよう温度を調整するような提案がなされていた。例えば、特許文献4でも、非有効部を凹凸が発生する高温の状態にし、高かさ密度にしてスート割れを防いでいるが、有効部はこれよりも低温の凹凸が発生しない条件にしている。   In any state, defects such as bubbles are likely to remain after transparent vitrification. Conventionally, proposals have been made to adjust the temperature so that soot is deposited without unevenness. For example, even in Patent Document 4, the ineffective portion is in a high temperature state where unevenness is generated and the soot crack is prevented by increasing the bulk density, but the effective portion has a condition that unevenness at a lower temperature is not generated.

しかし、本発明者らが検討した結果、ガラス微粒子多孔質体に凹凸が発生しても、透明ガラス化後に気泡などの欠陥が発生しないスポット的な領域が存在することを見出し、この領域を活用することにより、従来以上に高かさ密度でかつ透明化後に欠陥の生じないガラス微粒子多孔質体を作製できることを確認した。
この領域は、温度範囲にして50℃程度と限られた範囲であるが、それゆえに、
・ピンポイントの指標になり得るため、制御性を格段に向上させることができる、
・また、ドープ剤の有無や、火炎温度又はそれを形成するバーナーの構造やガス条件などに左右されない絶対的な指標を提供できる、
などの効果をもつ。
However, as a result of investigations by the present inventors, it was found that even if irregularities occur in the glass fine particle porous body, there is a spot-like region where defects such as bubbles do not occur after transparent vitrification, and this region is utilized. As a result, it was confirmed that a glass fine particle porous body having a higher bulk density than that of the prior art and free from defects after being made transparent can be produced.
This region is a limited range of about 50 ° C. as a temperature range.
・ Because it can be a pinpoint index, controllability can be greatly improved.
・ Also, it can provide an absolute indicator that does not depend on the presence or absence of the dopant, the flame temperature, the structure of the burner that forms it, the gas conditions, etc.
It has effects such as.

本発明において、検出する斑点状凸部は、高さが0.3mm以上、直径3mm以上の半球状の隆起を対象にしているが、本発明者らが実験を行った範囲では、直径15mm以上の隆起が発生する場合には、多段の隆起になることが多く、透明ガラス化後のガラスに欠陥が発生しやすいことから、現実的には、斑点状凸部は直径3mm〜15mm程度の隆起とするのが好ましい。   In the present invention, the spot-like convex portions to be detected are intended for hemispherical ridges having a height of 0.3 mm or more and a diameter of 3 mm or more. However, in the range in which the inventors have conducted experiments, the diameter is 15 mm or more. In many cases, when the ridge is raised, it becomes a multi-stage ridge, and defects are likely to occur in the glass after transparent vitrification. Is preferable.

前記斑点状凸部は、目視での観察、画像処理が可能であることから、取り扱いが容易である。また、スート割れや気泡の発生などなどの本質的な原因とよく対応したパラメーターである。また、オンラインで確認可能なパラメーターである。   The spotted convex portions are easy to handle because visual observation and image processing are possible. In addition, the parameters correspond well to essential causes such as soot cracking and bubble generation. It is a parameter that can be confirmed online.

さらに、斑点状凸部がかさ密度の指標としてよいことに加え、斑点状凸部の発生温度を超えても、ある範囲では特性上問題の無いことが確認できた。詳細な検討によりその限界を確認した。つまり、本発明は、ガラス微粒子多孔質体の製造において、その有効部堆積面に生じる斑点状凸部という視覚的に捉えやすい指標を利用することに特徴がある。一方、温度による管理は、温度計の校正が必要であり、もしずれた場合には不良が生じてしまう。   Further, in addition to the fact that the spot-like convex portions may be used as an index of bulk density, it has been confirmed that there is no problem in characteristics within a certain range even when the temperature at which the spot-like convex portions are generated is exceeded. The limit was confirmed by detailed examination. That is, the present invention is characterized in that, in the production of a glass fine particle porous body, a visually easy-to-understand index called a spot-like convex portion generated on the effective portion deposition surface is used. On the other hand, management by temperature requires calibration of a thermometer, and if it is shifted, a defect occurs.

本発明では、ガラス微粒子多孔質体の製造において、その有効部堆積面に斑点状凸部が出た時点で確認ができ、しかも不良が出ない範囲であれば、ガス流量、バーナーと有効部堆積面間の距離、有効部堆積面の回転速度、有効部堆積面とバーナーとの相対移動速度からなる群から選択される1つ又は2つ以上の堆積条件を制御することによって、事前に不良の発生を抑えられる。   In the present invention, in the production of the glass fine particle porous body, the gas flow rate, the burner and the effective portion deposition can be confirmed when spotted convex portions appear on the effective portion deposition surface and the defect does not appear. By controlling one or more deposition conditions selected from the group consisting of the distance between the surfaces, the rotation speed of the effective portion deposition surface, and the relative movement speed of the effective portion deposition surface and the burner, Occurrence can be suppressed.

さらに、ガラス微粒子多孔質体表面の斑点状凸部の発生状況をつぶさに観察したところ、斑点状凸部が1段である場合には特性上問題なく、斑点状凸部の上に更に小さな起伏ができた状態では、品質に影響が出てしまうことが分かった。例えば、1段の斑点状凸部が発生した状態で製造を行い、2段目の起伏の消滅、あるいは、起伏の多段化が生じた場合に、調整を行えばよい。調整は、予め温度、燃料流量などとの相関データを取っておけば、容易に調整可能となる。   Furthermore, when the state of occurrence of the spotted protrusions on the surface of the glass fine particle porous body was closely observed, there was no problem in characteristics when the spotted protrusions were one step, and even smaller undulations were formed on the spotted protrusions. It was found that quality could be affected in the finished state. For example, the manufacturing may be performed in a state where the first-stage spotted convex portion is generated, and the adjustment may be performed when the second-stage undulation disappears or the undulations are multistaged. Adjustment can be easily performed by previously obtaining correlation data with temperature, fuel flow rate, and the like.

図1は、本発明の製造方法を適用したガラス微粒子多孔質体の製造工程の一例を示す構成図である。本例示によるガラス微粒子多孔質体の製造工程は、SiClなどのガラス原料ガス、酸素ガス及び水素ガスをバーナー12に供給し、ガラス微粒子を含む酸水素火炎13を出発ロッド11に当ててガラス微粒子を堆積させてガラス微粒子多孔質体10を製造する際に、ガラス微粒子多孔質体10の有効部堆積面をカメラ15で撮像し、その画像データを画像処理装置16に送り、斑点状凸部を検出できるようにしている。 FIG. 1 is a configuration diagram showing an example of a manufacturing process of a glass fine particle porous body to which the manufacturing method of the present invention is applied. In the manufacturing process of the glass fine particle porous body according to the present example, the glass raw material gas such as SiCl 4 , oxygen gas and hydrogen gas are supplied to the burner 12, and the oxyhydrogen flame 13 containing the glass fine particles is applied to the starting rod 11 to form the glass fine particles. When the glass particulate porous body 10 is manufactured by depositing the glass, the effective portion deposition surface of the glass particulate porous body 10 is imaged by the camera 15, and the image data is sent to the image processing device 16, and the spot-like convex portions are formed. It can be detected.

また図2は、本発明の製造方法を適用したガラス微粒子多孔質体の製造工程の別な例を示す構成図である。本例示によるガラス微粒子多孔質体の製造工程は、図1と同様の構成要素を備え、更に、ガラス微粒子多孔質体10の有効部堆積面の表面温度を放射温度計14で測定し、表面温度をモニターしながらガラス微粒子多孔質体10を製造する場合を例示している。   Moreover, FIG. 2 is a block diagram which shows another example of the manufacturing process of the glass fine particle porous body to which the manufacturing method of this invention is applied. The manufacturing process of the glass fine particle porous body according to the present example includes the same components as those in FIG. 1, and the surface temperature of the effective portion deposition surface of the glass fine particle porous body 10 is measured by the radiation thermometer 14. The case where the glass fine particle porous body 10 is manufactured while monitoring the above is illustrated.

図1、図2に示すように、ガラス微粒子多孔質体10の有効部堆積面をカメラ15で撮像し、そのデータを画像処理装置16に送り、直径3mm以上の斑点状凸部の単位面積当たり個数を計測し、この斑点状凸部の個数が100個/10cm以下となるように堆積条件を制御しながらガラス微粒子多孔質体を製造する。この斑点状凸部の個数が100個/10cm以を超えると、局所的にかさ密度が高くなりすぎるため、透明ガラス化後に気泡などの欠陥を残しやすくなるので、好ましくない。 As shown in FIG. 1 and FIG. 2, the effective portion deposition surface of the glass fine particle porous body 10 is imaged with a camera 15, and the data is sent to the image processing device 16, and per unit area of spotted convex portions having a diameter of 3 mm or more. The number of particles is measured, and a glass fine particle porous body is manufactured while controlling the deposition conditions so that the number of the spot-like convex portions is 100/10 cm 2 or less. If the number of the spot-like convex portions exceeds 100/10 cm 2 , the bulk density becomes too high locally, and defects such as bubbles are likely to remain after transparent vitrification, which is not preferable.

ここで、制御すべき堆積条件としては、ガス流量、バーナーと有効部堆積面間の距離、有効部堆積面の回転速度、有効部堆積面とバーナーとの相対移動速度からなる群から選択される1つ又は2つ以上の条件とすることができる。   Here, the deposition conditions to be controlled are selected from the group consisting of the gas flow rate, the distance between the burner and the effective portion deposition surface, the rotation speed of the effective portion deposition surface, and the relative movement speed of the effective portion deposition surface and the burner. There can be one or more conditions.

本発明の光ファイバ母材の製造方法において、有効部堆積面の表面温度(B)℃が、有効部堆積面に直径3mm以上の斑点状凸部が0.5〜10個/10cm発生する温度(A)℃に対し、A≦B<(A+50)の範囲となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することが好ましい。この温度(B)℃が、温度(A)℃よりも低いと、かさ密度が低すぎ、多孔質体のサイズが大きくなりすぎ、コンパクト化が達成できないので好ましくない。また、この温度(B)℃がA+50℃よりも高いと、局所的又は全体的にかさ密度が高くなりすぎるため、透明ガラス化後に気泡などの欠陥を残しやすくなるため好ましくない。 In the method for producing an optical fiber preform of the present invention, the surface temperature (B) ° C. of the effective portion deposition surface is 0.5-10 spots / 10 cm 2 of spotted convex portions having a diameter of 3 mm or more on the effective portion deposition surface. It is preferable to manufacture the glass fine particle porous body while controlling the deposition conditions so that the temperature (A) ° C. is in the range of A ≦ B <(A + 50). If the temperature (B) ° C. is lower than the temperature (A) ° C., the bulk density is too low, the size of the porous body becomes too large, and compactness cannot be achieved. In addition, when the temperature (B) ° C. is higher than A + 50 ° C., the bulk density becomes too high locally or as a whole, so that defects such as bubbles are easily left after vitrification.

本発明の光ファイバ母材の製造方法において、ガラス微粒子多孔質体の平均かさ密度が0.6〜0.8g/cmの範囲となるように製造することが好ましい。かさ密度が前記範囲であれば、スートサイズのコンパクト化を実現できると共に、スート割れを生じ難い高かさ密度のガラス微粒子多孔質体を得ることができる。平均かさ密度が前記範囲より小さいと、多孔質体のサイズが大きくなりすぎ、コンパクト化が達成できないので好ましくない。一方、平均かさ密度が前記範囲を超えると、焼結時に脱泡が十分できず、気泡が残ったり、脱水プロセスがある場合には脱水が十分にできなかったりするので好ましくない。 In the manufacturing method of the optical fiber preform of the present invention, it is preferable to manufacture the glass fine particle porous body so that the average bulk density is in the range of 0.6 to 0.8 g / cm 3 . When the bulk density is within the above range, soot size can be made compact, and a high-density glass fine particle porous body that does not easily cause soot cracking can be obtained. If the average bulk density is smaller than the above range, the size of the porous body becomes too large, and compactness cannot be achieved. On the other hand, if the average bulk density exceeds the above range, it is not preferable because defoaming cannot be sufficiently performed at the time of sintering, and bubbles remain or dehydration cannot be sufficiently performed when there is a dehydration process.

斑点状凸部の個数の範囲は、ガラス微粒子多孔質体10の製造条件を決めるときに、表面温度を所定範囲で変え、それぞれの温度条件における斑点状凸部の発生を確認し、所定の範囲になるように製造条件を確定することによって把握する。そして、ガラス微粒子多孔質体10の製造において、その時の温度と斑点状凸部の相関関係から温度調整を行いながら製造することが望ましい。また、堆積後の多孔質体の表面状態により、調整が意図するように実施されたかの確認をしてもよい。さらに、堆積面を画像処理して、斑点状凸部の様子をオンラインでモニターしてもよい。   The range of the number of the spot-like protrusions is determined by changing the surface temperature within a predetermined range when determining the manufacturing conditions of the glass fine particle porous body 10, and confirming the occurrence of the spot-like protrusions under each temperature condition. By confirming the manufacturing conditions so that And in manufacture of the glass fine particle porous body 10, it is desirable to manufacture, adjusting temperature from the correlation of the temperature at that time, and a spot-like convex part. Moreover, you may confirm whether adjustment was implemented as intended by the surface state of the porous body after deposition. Further, the deposited surface may be image-processed to monitor the appearance of the spot-like convex portion online.

なお、斑点状凸部の個数を計測することに変えて、斑点状凸部の個数変化をガラス微粒子多孔質体10表面の輝度変化として捉え、画像処理することもできる。そして、その画像処理結果をもとに、温度を調整するフィードバックをかける。この場合、画像処理しやすいように照明光をあて、斑点状凸部による輝度変化を捉え易くすることが望ましい。
また、斑点状凸部の発生する温度よりも低めの温度領域で製造を実施し、斑点状凸部が発生した場合、その発生状態により温度を調整するフィードバックをかけてもよい。
In addition, instead of measuring the number of the spot-like convex portions, the change in the number of the spot-like convex portions can be regarded as a luminance change on the surface of the glass fine particle porous body 10 and image processing can be performed. Then, feedback for adjusting the temperature is applied based on the image processing result. In this case, it is desirable to make it easy to capture the luminance change due to the spot-like convex portions by applying illumination light so that image processing is easy.
In addition, when manufacturing is performed in a temperature region lower than the temperature at which the spot-like convex portions are generated and the spot-like convex portions are generated, feedback for adjusting the temperature according to the generation state may be applied.

(実施例1〜3)
直径30mm×長さ1000mm のコア材に、焼結後のガラス径がφ110mmになるようにガラス微粒子を外付けし、ガラス微粒子多孔質体を製造した。外付け法によってガラス微粒子多孔質体を製造する際に、ガラス微粒子多孔質体の表面を画像処理装置(日立エンジニアリング社製、画像処理装置MIP−77)によって調べ、斑点状凸部の単位面積当たり個数が適正範囲となるように水素および酸素ガスにフィードバックして、火炎温度ひいては堆積面の表面温度を制御しながらガラス微粒子多孔質体を製造した。ガラス微粒子多孔質体の表面温度はNEC三栄社製のサーモトレーサを用いて測定した。
表1に、多重管バーナであるバーナAを用い、原料として、SiClガス、酸素ガス及び水素ガスをバーナーAに供給し製造した際の結果を示す。使用したバーナAのノズルは、中心の最内管からSiClガス、2段目の管から不活性ガス(Arガス)、3段目の管から水素ガス、最外管から酸素ガスがそれぞれ噴出される構造になっている。
表2に、マルチノズル型バーナであるバーナーBを用い、原料として、SiClガス、酸素ガス及び水素ガスをバーナーAに供給し製造した際の結果を示す。使用したバーナBのノズルは、中心の最内管からSiClガス、2段目の管から不活性ガス(Arガス)、その外側から水素ガス及びそれと別個に配置された複数の口から酸素ガスがそれぞれ噴出される構造になっている。
表3に、バーナーAでGeOを0.5質量%ドープした場合の結果を示す。
なお、表面温度は、斑点状凸部が0.5〜10個/10cmになる温度Aを基準に、10℃高い温度をA+10℃、10℃低い場合をA−10℃と記した。
また、斑点状凸部の個数は、単位面積10cmあたりの個数を記している。
気泡はスート割れせずに透明ガラス化できた母材において、母材1本当たりに観察された直径0.3mm以上の気泡の個数で表している。
スート割れは、多孔質体製造時にスートが割れ、多孔質体の形成が完了しなかった場合を1回とした場合の回数で表している。
かさ密度は、一定堆積のスートサンプルの質量を測定し、かさ密度=サンプル質量/サンプル体積として算出した。
(Examples 1-3)
Glass fine particles were externally attached to a core material having a diameter of 30 mm and a length of 1000 mm so that the glass diameter after sintering was 110 mm, thereby producing a porous glass fine particle. When the glass fine particle porous body is manufactured by the external method, the surface of the glass fine particle porous body is examined by an image processing apparatus (manufactured by Hitachi Engineering Co., Ltd., image processing apparatus MIP-77). The glass fine particle porous body was manufactured while feeding back to hydrogen and oxygen gas so that the number was in an appropriate range, and controlling the flame temperature and the surface temperature of the deposition surface. The surface temperature of the glass fine particle porous body was measured using a thermotracer manufactured by NEC Sanei Co., Ltd.
Table 1 shows the results when the burner A, which is a multi-tube burner, is used by supplying SiCl 4 gas, oxygen gas and hydrogen gas as raw materials to the burner A. The burner A nozzle used was SiCl 4 gas from the innermost tube at the center, inert gas (Ar gas) from the second tube, hydrogen gas from the third tube, and oxygen gas from the outer tube. It has become a structure.
Table 2 shows the results when the burner B, which is a multi-nozzle burner, is used by supplying SiCl 4 gas, oxygen gas and hydrogen gas as raw materials to the burner A. The nozzle of the burner B used is SiCl 4 gas from the innermost tube at the center, inert gas (Ar gas) from the second tube, hydrogen gas from the outside, and oxygen gas from a plurality of ports arranged separately from it. Each has a structure that is ejected.
Table 3 shows the results when the burner A is doped with 0.5% by mass of GeO 2 .
The surface temperature was described as A-10 ° C. when the temperature was 10 ° C. higher than A + 10 ° C. by 10 ° C., based on the temperature A at which the spot-like convex portions became 0.5-10 pieces / 10 cm 2 .
Further, the number of the spot-like convex portions is the number per unit area 10 cm 2 .
Bubbles are represented by the number of bubbles having a diameter of 0.3 mm or more observed per base material in a base material that can be transparently vitrified without soot cracking.
Soot cracking is expressed as the number of times when the soot cracks during the production of the porous body and the formation of the porous body is not completed once.
The bulk density was calculated by measuring the mass of a soot sample with a constant deposition and bulk density = sample mass / sample volume.

(比較例1,2)
堆積面の表面温度を変えるために、水素及び酸素ガス流量を調節する以外は、実施例1〜3と同様にしてガラス微粒子多孔質体を製造した。
表1に、多重管バーナであるバーナAを用い、原料として、SiClガス、酸素ガス及び水素ガスをバーナーAに供給し製造した際の結果を示す。
表2に、マルチノズル型バーナであるバーナーBを用い、原料として、SiClガス、酸素ガス及び水素ガスをバーナーAに供給し製造した際の結果を示す。
表3に、バーナーAでGeOを0.5質量%ドープした場合の結果を示す。
(Comparative Examples 1 and 2)
A glass fine particle porous body was produced in the same manner as in Examples 1 to 3, except that the flow rates of hydrogen and oxygen gas were adjusted in order to change the surface temperature of the deposition surface.
Table 1 shows the results when the burner A, which is a multi-tube burner, is used by supplying SiCl 4 gas, oxygen gas and hydrogen gas as raw materials to the burner A.
Table 2 shows the results when the burner B, which is a multi-nozzle burner, is used by supplying SiCl 4 gas, oxygen gas and hydrogen gas as raw materials to the burner A.
Table 3 shows the results when the burner A is doped with 0.5% by mass of GeO 2 .

Figure 0004429993
Figure 0004429993

Figure 0004429993
Figure 0004429993

Figure 0004429993
Figure 0004429993

表1〜3の結果より、本発明に係る実施例1〜3では、スート割れや気泡の発生を防止しながら、極限までかさ密度を高めたガラス微粒子多孔質体を製造可能であることがわかる。
一方、斑点状凸部の個数が本発明の範囲になるような製造条件になっていない比較例1,2では、気泡の発生やスート割れが発生し、またかさ密度の高いガラス微粒子多孔質体を製造することができなかった。
From the results of Tables 1 to 3, it can be seen that in Examples 1 to 3 according to the present invention, it is possible to produce a glass fine particle porous body with a bulk density increased to the limit while preventing soot cracking and bubble generation. .
On the other hand, in Comparative Examples 1 and 2 in which the number of spotted convex portions is not within the range of the present invention, the generation of bubbles and soot cracks occur, and the glass fine particle porous body having a high bulk density Could not be manufactured.

本発明の製造方法を適用したガラス微粒子多孔質体の製造工程の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing process of the glass fine particle porous body to which the manufacturing method of this invention is applied. 本発明の製造方法を適用したガラス微粒子多孔質体の製造工程の別な例を示す構成図である。It is a block diagram which shows another example of the manufacturing process of the glass fine particle porous body to which the manufacturing method of this invention is applied. 従来のガラス微粒子多孔質体の製造工程の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing process of the conventional glass fine particle porous body. 従来のガラス微粒子多孔質体の製造工程の別な例を示す構成図である。It is a block diagram which shows another example of the manufacturing process of the conventional glass fine particle porous body.

符号の説明Explanation of symbols

10…ガラス微粒子多孔質体、11…出発ロッド、12…バーナー、13…酸水素火炎、14…放射温度計、15…カメラ、16…画像処理装置。   DESCRIPTION OF SYMBOLS 10 ... Glass fine particle porous body, 11 ... Starting rod, 12 ... Burner, 13 ... Oxyhydrogen flame, 14 ... Radiation thermometer, 15 ... Camera, 16 ... Image processing apparatus.

Claims (6)

ガラス原料ガス、酸素ガス及び水素ガスをバーナーに供給し、ガラス微粒子を含む酸水素火炎を出発ロッドに当ててガラス微粒子を堆積させてガラス微粒子多孔質体を製造し、これを透明化して光ファイバ母材を製造する方法において、
ガラス微粒子多孔質体の有効部堆積面を調べ、直径3mm以上の斑点状凸部の個数が100個/10cm以下となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することを特徴とする光ファイバ母材の製造方法。
A glass raw material gas, oxygen gas and hydrogen gas are supplied to a burner, and an oxyhydrogen flame containing glass fine particles is applied to a starting rod to deposit glass fine particles to produce a glass fine particle porous body, which is made transparent and optical fiber In a method of manufacturing a base material,
The effective part deposition surface of the glass fine particle porous body is examined, and the glass fine particle porous body is manufactured while controlling the deposition conditions so that the number of spot-like convex parts having a diameter of 3 mm or more is 100/10 cm 2 or less. A method for manufacturing an optical fiber preform characterized by the above.
有効部堆積面の表面温度(B)℃が、有効部堆積面に直径3mm以上の斑点状凸部が0.5〜10個/10cm発生する温度(A)℃に対し、A≦B<(A+50)の範囲となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することを特徴とする請求項1に記載の光ファイバ母材の製造方法。 The surface temperature (B) ° C. of the effective portion deposition surface is such that A ≦ B <with respect to the temperature (A) ° C. at which spot-like convex portions having a diameter of 3 mm or more are generated on the effective portion deposition surface by 0.5 to 10/10 cm 2. The method for producing an optical fiber preform according to claim 1, wherein the glass fine particle porous body is produced while controlling the deposition conditions so as to be in the range of (A + 50). 斑点状凸部が1段の単純な隆起構造をなしていることを特徴とする請求項1又は2に記載の光ファイバ母材の製造方法。   3. The method of manufacturing an optical fiber preform according to claim 1, wherein the spot-like convex portion has a simple raised structure with one step. ガラス微粒子多孔質体の有効部堆積面を画像処理装置によって調べ、斑点状凸部の単位面積当たり個数を計測し、それが適正範囲となるように堆積条件を制御しながらガラス微粒子多孔質体を製造することを特徴とする請求項1〜3のいずれかに記載の光ファイバ母材の製造方法。   The effective surface of the glass particulate porous body is examined by an image processing device, the number of spotted convex portions per unit area is measured, and the deposition conditions are controlled so that it falls within the appropriate range. The method for manufacturing an optical fiber preform according to any one of claims 1 to 3, wherein the optical fiber preform is manufactured. ガス流量、バーナーと有効部堆積面間の距離、有効部堆積面の回転速度、有効部堆積面とバーナーとの相対移動速度からなる群から選択される1つ又は2つ以上の堆積条件を制御することを特徴とする請求項1〜4に記載の光ファイバ母材の製造方法。   Controls one or more deposition conditions selected from the group consisting of gas flow rate, distance between burner and effective portion deposition surface, rotation speed of effective portion deposition surface, and relative movement speed of effective portion deposition surface and burner. The method for manufacturing an optical fiber preform according to claim 1, wherein: ガラス微粒子多孔質体の平均かさ密度が0.6〜0.8g/cmの範囲となるように製造することを特徴とする請求項1〜5のいずれかに記載の光ファイバ母材の製造方法。

The optical fiber preform according to any one of claims 1 to 5, wherein the average bulk density of the glass fine particle porous body is in the range of 0.6 to 0.8 g / cm 3. Method.

JP2005269970A 2005-09-16 2005-09-16 Optical fiber preform manufacturing method Active JP4429993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269970A JP4429993B2 (en) 2005-09-16 2005-09-16 Optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269970A JP4429993B2 (en) 2005-09-16 2005-09-16 Optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2007076981A JP2007076981A (en) 2007-03-29
JP4429993B2 true JP4429993B2 (en) 2010-03-10

Family

ID=37937650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269970A Active JP4429993B2 (en) 2005-09-16 2005-09-16 Optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP4429993B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102659434B1 (en) * 2023-03-14 2024-04-22 비씨엔씨 주식회사 A device capable of controlling cracks in silica soot by through a healing pass process

Also Published As

Publication number Publication date
JP2007076981A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP2005154162A (en) Method and apparatus for processing glass pipe, and glass pipe
US20070084248A1 (en) Vapor axial deposition apparatus and vapor axial deposition method
JPH10114535A (en) Production of optical fiber base material
US11577984B2 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
US7647792B2 (en) Method for fabricating porous silica preform
JP5578024B2 (en) Manufacturing method of glass base material
JP4429993B2 (en) Optical fiber preform manufacturing method
JP4348341B2 (en) Optical fiber preform manufacturing method
EP1505039B1 (en) Method of manufacturing an optical fiber preform
JP2003335541A (en) Method for manufacturing porous preform
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
EP3354627B1 (en) Method of producing porous quartz glass preform
US20080053155A1 (en) Optical fiber preform having large size soot porous body and its method of preparation
JP3567636B2 (en) Base material for optical fiber and method of manufacturing the same
JP2009114045A (en) Method for manufacturing optical fiber glass preform
US20230286851A1 (en) Method for manufacturing optical fiber preform
JP5000333B2 (en) Method for producing porous silica glass for optical fiber
JP4453680B2 (en) Manufacturing method of glass base material
JPH0986948A (en) Production of porous glass base material for optical fiber
KR20050006057A (en) Method of producing glass-particle-deposited body and glass-particle-synthesizing burner
JPH11349345A (en) Production of porous preform
JPH0524854A (en) Production of glass article
JP5136106B2 (en) Method for producing quartz glass
JP4483434B2 (en) Manufacturing method of glass base material
JP4176978B2 (en) Manufacturing method of large optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4429993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250