JP2007315805A - Surface inspection device - Google Patents

Surface inspection device Download PDF

Info

Publication number
JP2007315805A
JP2007315805A JP2006143191A JP2006143191A JP2007315805A JP 2007315805 A JP2007315805 A JP 2007315805A JP 2006143191 A JP2006143191 A JP 2006143191A JP 2006143191 A JP2006143191 A JP 2006143191A JP 2007315805 A JP2007315805 A JP 2007315805A
Authority
JP
Japan
Prior art keywords
inspection
rod
air
member holding
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006143191A
Other languages
Japanese (ja)
Inventor
Hideo Mori
秀夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTS Optics Corp
Kirin Techno System Co Ltd
Original Assignee
KTS Optics Corp
Kirin Techno System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KTS Optics Corp, Kirin Techno System Co Ltd filed Critical KTS Optics Corp
Priority to JP2006143191A priority Critical patent/JP2007315805A/en
Publication of JP2007315805A publication Critical patent/JP2007315805A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection device capable of elongating an inspection rod, without degrading inspection quality and which is capable of rotating the inspection at a high speed. <P>SOLUTION: The surface inspection device 1 is equipped with the inspection rod 21 which can be inserted in a hole 100a of an inspection target 100, a reflecting mirror 219 provided to the inspection rod 21 and a support table 22 for supporting the inspection rod 21. The inspection rod 21 has a base part 211 attached to the support table 22, a rotary head 212 attached to the base part 211, in a state of being rotatable about an axial line CL, while holding the reflecting mirror 219. The rotary head 212 is rotated, by blowing air against the impeller 221 provided to the rotary head 212. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、穴が形成された被検査物の穴の内周面に存在する異物、傷等の欠陥を検査する表面検査装置に関する。   The present invention relates to a surface inspection apparatus for inspecting defects such as foreign matter and scratches present on the inner peripheral surface of a hole of an inspection object in which a hole is formed.

穴が形成された被検査物、例えば内燃機関のシリンダライナやシリンダボア等の内周面を検査する表面検査装置として、その内周面に検査光を投光し、かつ内周面からの反射光を受け入れるように構成した棒状の検査ロッドを穴に挿入し、その上で検査ロッドを長手方向に延びる軸線回りに回転させつつ被検査物に対して相対的に軸線方向に進退させることにより、穴の内周面を検査できるようにしたものがある(例えば、特許文献1参照)。   As a surface inspection device that inspects the inner peripheral surface of an object to be inspected, for example, a cylinder liner or a cylinder bore of an internal combustion engine, the inspection light is projected onto the inner peripheral surface, and the reflected light from the inner peripheral surface By inserting a rod-shaped inspection rod configured to receive the hole into the hole, and then moving the inspection rod around the axis extending in the longitudinal direction, the rod moves forward and backward relative to the object to be inspected. There is one that can inspect the inner peripheral surface (see, for example, Patent Document 1).

特開平11−281582号公報JP-A-11-281582

このような検査装置では、検査ロッドの長さを長くすればするほど、より深い穴の内周面を検査することができる。しかし、検査ロッドの全体を回転させる場合、検査ロッドが長くなるほど回転が不安定になり検査精度が悪化する。検査ロッドの外径を太くして剛性を高めることにより回転を安定化できる。しかし、被検査物の穴径よりも検査ロッドが太くなってしまえば検査が不可能になるので、検査可能な検査対象が制限される。また、各部の加工精度を高めることで検査ロッドの回転を安定させることができるが、それだけ加工コストが嵩む。このような事情から、要求される検査精度を確保するには検査ロッドの回転速度を抑えざるを得ないため、検査時間が長引く結果を招いていた。特許文献1には、検査ロッドの先端に設けられた光路変更手段のみを回転させる構造にできる旨の記載があるが、その回転を実現する構造の明示はない。   In such an inspection apparatus, the longer the length of the inspection rod is, the deeper the inner peripheral surface of the hole can be inspected. However, when the entire inspection rod is rotated, the longer the inspection rod is, the more unstable the rotation becomes and the inspection accuracy deteriorates. The rotation can be stabilized by increasing the outer diameter of the inspection rod and increasing the rigidity. However, if the inspection rod becomes thicker than the hole diameter of the object to be inspected, the inspection becomes impossible, and the inspection targets that can be inspected are limited. Further, although the rotation of the inspection rod can be stabilized by increasing the processing accuracy of each part, the processing cost increases accordingly. Under these circumstances, in order to ensure the required inspection accuracy, the rotation speed of the inspection rod must be suppressed, resulting in a prolonged inspection time. Japanese Patent Application Laid-Open No. 2004-228561 has a description that it can be configured to rotate only the optical path changing means provided at the tip of the inspection rod, but there is no explicit structure for realizing the rotation.

そこで、本発明は、検査精度を悪化させずに、検査ロッドを長くでき、かつ高速に回転させることができる表面検査装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a surface inspection apparatus that can lengthen an inspection rod and rotate it at high speed without deteriorating inspection accuracy.

本発明の表面検査装置(1)は、穴(100a)が形成された被検査物(100)の前記穴に挿入可能な検査ロッド(21)と、前記検査ロッドに設けられて、前記穴の内周面に検査光が投光されるように検査光の進行方向を変更するとともに、前記穴の内周面に投光された検査光の反射光の進行方向を変更する光路変更部材(219)と、前記検査ロッドを支持する支持手段(22)と、を備え、前記検査ロッドは、前記支持手段に取り付けられた基部(211)と、前記光路変更部材を保持しつつ前記検査ロッドの長手方向に延びる軸線(CL)回りに回転可能な状態で前記基部に取り付けられた部材保持部(212)とを有し、空気の流れを利用して前記部材保持部を前記軸線回りに回転させる回転駆動手段(221、222、223)を更に備えることにより、上述した課題を解決する。   The surface inspection apparatus (1) of the present invention includes an inspection rod (21) that can be inserted into the hole of the object to be inspected (100) in which the hole (100a) is formed, and the inspection rod. An optical path changing member (219) that changes the traveling direction of the inspection light so that the inspection light is projected onto the inner peripheral surface and changes the traveling direction of the reflected light of the inspection light projected onto the inner peripheral surface of the hole. ) And support means (22) for supporting the inspection rod, the inspection rod holding a base (211) attached to the support means and the length of the inspection rod while holding the optical path changing member And a member holding part (212) attached to the base in a state of being rotatable around an axial line (CL) extending in the direction, and rotating the member holding part around the axis by using an air flow Driving means (221, 222, 223 By further comprising, for solving the above problems.

この検査装置によれば、空気の流れを利用することで、検査ロッドの基部を回転させないで部材保持部のみを回転させることができる。基部の長さを長くすることで検査ロッドの全体が長くなった場合でも、その寸法の増加が部材保持部の回転に影響しない。従って、部材保持部の回転速度を高速化しても検査精度を悪化させることはない。特に、被検査物の穴径との関係で、穴の内周面と検査ロッドとの間のクリアランスが小さくなってしまう場合がある。このような場合でも部材保持部の振れが少なくて済むため、検査ロッドが内周面に接触する危険性は低下する。従って安全性が向上する。また、部材保持部は空気の流れによって回転駆動されるので、その空気の流れを利用して被検査対象の内周面に付着した異物などを検査開始前に吹き飛ばすことも容易に実現できる。そのため検査面に付着した異物を欠陥として誤検出することを防止できる。また、検査ロッドの全体を回転させる態様と比較して回転部分が相対的に小さくなるので、オペレータ等が誤って回転部分にアクセスする機会が減る。従って、そのような誤ったアクセスを防止する安全対策に要するコストを削減できる。   According to this inspection device, by utilizing the air flow, only the member holding portion can be rotated without rotating the base portion of the inspection rod. Even when the entire length of the inspection rod is increased by increasing the length of the base portion, the increase in the size does not affect the rotation of the member holding portion. Therefore, even if the rotation speed of the member holding portion is increased, the inspection accuracy is not deteriorated. In particular, the clearance between the inner peripheral surface of the hole and the inspection rod may be reduced due to the relationship with the hole diameter of the object to be inspected. Even in such a case, since the swing of the member holding portion is small, the risk that the inspection rod comes into contact with the inner peripheral surface is reduced. Therefore, safety is improved. In addition, since the member holding portion is rotationally driven by the air flow, it is possible to easily realize the use of the air flow to blow off foreign matters or the like adhering to the inner peripheral surface of the inspection target before starting the inspection. Therefore, it is possible to prevent the foreign matter adhering to the inspection surface from being erroneously detected as a defect. In addition, since the rotating portion is relatively small as compared with the aspect in which the entire inspection rod is rotated, the opportunity for an operator or the like to erroneously access the rotating portion is reduced. Therefore, the cost required for safety measures for preventing such erroneous access can be reduced.

本発明に係る回転駆動手段はどのような態様でもよいが、その一態様としては、前記回転駆動手段は、吹き付けられた空気を利用して前記部材保持部を前記軸線回りに回転させる回転力を発生させる回転力発生手段(221)と、前記回転力発生手段に対して空気を吹き付ける送風手段(222、223)とを備えてもよい。光路変更手段に空気が吹き付けられることで部材保持部を一方向に回転させる回転軸線に関する回転力を生じるように、光路変更手段が構成されている場合には、そのような光路変更手段を回転力発生手段として機能させてもよい。また、回転力発生手段として、前記部材保持部に取り付けられたインペラー(221)が設けられていてもよい。この場合には、インペラーの形状を適宜設計することで、回転力の効率を自由に調整することが可能である。   The rotation drive means according to the present invention may be in any form, but as one aspect thereof, the rotation drive means uses a blown air to rotate the member holding portion around the axis. You may provide the rotational force generation means (221) to generate, and the ventilation means (222, 223) which blows air with respect to the said rotational force generation means. When the optical path changing means is configured to generate a rotational force related to the rotation axis that rotates the member holding portion in one direction by blowing air to the optical path changing means, the optical path changing means is set to the rotational force. You may make it function as a generating means. Moreover, the impeller (221) attached to the said member holding part may be provided as a rotational force generation means. In this case, the efficiency of the rotational force can be freely adjusted by appropriately designing the shape of the impeller.

本発明に係る送風手段もどのような態様で実現してもよいが、その一態様としては、前記検査ロッドの前記基部は中空状に構成されており、前記送風手段は、空気を加圧する加圧手段(223)と、前記基部の内部に設けられて前記加圧手段にて加圧された空気を前記回転力発生手段に導く送風通路(222)と、を備えてもよい。この場合、加圧された空気を導く送風通路が基部の内部に設けられるので、送風通路を検査ロッドの周囲に配置する態様と比べて、構成がコンパクトになり送風通路が検査の妨げにならないという利点がある。   The air blowing means according to the present invention may be realized in any form, but as one aspect thereof, the base portion of the inspection rod is configured in a hollow shape, and the air blowing means is an air pressurizing unit. You may provide a pressure means (223) and the ventilation path (222) which is provided inside the said base and guides the air pressurized by the said pressurization means to the said rotational force generation means. In this case, since the air passage that guides the pressurized air is provided inside the base portion, the structure is compact and the air passage does not interfere with the inspection as compared with the aspect in which the air passage is arranged around the inspection rod. There are advantages.

本発明の一態様においては、前記検査ロッドが前記被検査物に対して前記軸線方向に沿って相対移動するように前記被検査物又は前記支持手段を直線移動させる移動手段(25)と、前記部材保持部の回転位置を検出する回転位置検出手段(31)と、前記部材保持部の回転速度と前記被検査物に対する前記検査ロッドの相対速度との比が一定となるように、前記回転位置検出手段の検出結果に基づいて前記移動手段の動作を制御する移動制御手段(3)と、を更に備えてもよい。この場合、部材保持部の回転速度が変動しても、その変動に応じて、被検査物に対する検査ロッドの相対速度(送り速度)が制御されるので部材保持部の回転速度と送り速度との比が一定に保たれる。そのため、部材保持部が加速中又は減速中であっても要求された検査精度で表面検査を実施することができる。そのため、部材保持部の回転速度の変動が許容範囲内に収まるまで検査ロッドの移動を止めておく必要がないので、その分だけ一つの被検査物の検査に要する検査時間を短縮できる。   In one aspect of the present invention, the moving means (25) for linearly moving the inspection object or the support means so that the inspection rod moves relative to the inspection object along the axial direction; The rotational position detecting means (31) for detecting the rotational position of the member holding part, and the rotational position so that the ratio between the rotational speed of the member holding part and the relative speed of the inspection rod with respect to the inspection object is constant. You may further provide the movement control means (3) which controls operation | movement of the said movement means based on the detection result of a detection means. In this case, even if the rotational speed of the member holding portion varies, the relative speed (feeding speed) of the inspection rod with respect to the object to be inspected is controlled according to the variation. The ratio is kept constant. Therefore, even if the member holding part is accelerating or decelerating, the surface inspection can be performed with the required inspection accuracy. For this reason, it is not necessary to stop the movement of the inspection rod until the fluctuation of the rotation speed of the member holding portion falls within the allowable range, so that the inspection time required for inspection of one inspection object can be shortened accordingly.

なお、以上の説明では本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記したが、それにより本発明が図示の形態に限定されるものではない。   In addition, in the above description, in order to make an understanding of this invention easy, the reference sign of the accompanying drawing was attached in parenthesis, but this invention is not limited to the form of illustration by it.

以上に説明したように、本発明によれば、部材保持部のみを回転させることができるので、部材保持部の回転速度を高速化しても検査精度を悪化させることはない。しかも、部材保持部は空気の流れによって回転駆動されるので、その空気の流れを利用して被検査対象の内周面に付着した異物などを検査開始前に吹き飛ばすことも容易にできるので、異物を欠陥として誤検出することを防止できる。   As described above, according to the present invention, since only the member holding portion can be rotated, the inspection accuracy is not deteriorated even if the rotation speed of the member holding portion is increased. In addition, since the member holding portion is driven to rotate by the air flow, it is possible to easily blow off foreign matter adhering to the inner peripheral surface of the inspected object using the air flow before starting the inspection. Can be prevented from being erroneously detected as a defect.

図1は、本発明の一形態に係る表面検査装置の概略構成を示している。表面検査装置1は、内燃機関のシリンダライナやシリンダボア等の被検査物100の穴100aの内周面の表面検査に適した装置であり、そのような検査を実行する検査機構2と、その検査機構2の動作を制御する制御部3と、検査機構2が得た情報を処理する情報処理部4とを備える。検査機構2は制御部3からの指令に基づいて静止した被検査物100の穴100aの内周面に検査光を投光し、その反射光の受光量(強度)を検査領域相当分取得する。検査機構2が取得した反射光の強度は情報処理部4に送られ、情報処理部4はその強度に基づいた二次元画像を所定の処理により生成し、その二次元画像に基づいて鋳巣等の欠陥の有無を判定して検査結果を出力する。情報処理部4が行う判定は欠陥に対応する暗部が二次元画像に存在するか否かを判定することにより行われるが、その処理の詳細は本発明の要旨と関連性が薄いので説明を省略する。   FIG. 1 shows a schematic configuration of a surface inspection apparatus according to an embodiment of the present invention. The surface inspection apparatus 1 is an apparatus suitable for surface inspection of the inner peripheral surface of the hole 100a of the object 100 to be inspected, such as a cylinder liner or a cylinder bore of an internal combustion engine. A control unit 3 that controls the operation of the mechanism 2 and an information processing unit 4 that processes information obtained by the inspection mechanism 2 are provided. The inspection mechanism 2 projects inspection light onto the inner peripheral surface of the hole 100a of the stationary inspection object 100 based on a command from the control unit 3, and acquires the amount of received reflected light (intensity) corresponding to the inspection area. . The intensity of the reflected light acquired by the inspection mechanism 2 is sent to the information processing unit 4, and the information processing unit 4 generates a two-dimensional image based on the intensity by a predetermined process, and based on the two-dimensional image, a cast hole or the like The presence or absence of defects is determined and the inspection result is output. The determination performed by the information processing unit 4 is performed by determining whether or not the dark part corresponding to the defect exists in the two-dimensional image, but the details of the process are not related to the gist of the present invention, and thus the description thereof is omitted. To do.

検査機構2は、被検査物100の穴100aに挿入されて、その穴100aの内周面に関する情報を取得する検査ロッド21と、この検査ロッド21を支持する支持テーブル22とを有している。支持テーブル22は検査ロッド21の長手方向に沿って延びる一対の案内部23に案内されながら直線移動できる状態でベース24に取り付けられており、そのベース24には支持テーブル22とともに検査ロッド21を直線移動させる直線移動機構25が設けられている。   The inspection mechanism 2 includes an inspection rod 21 that is inserted into the hole 100a of the object 100 to be inspected and acquires information about the inner peripheral surface of the hole 100a, and a support table 22 that supports the inspection rod 21. . The support table 22 is attached to the base 24 so as to be linearly moved while being guided by a pair of guide portions 23 extending along the longitudinal direction of the inspection rod 21, and the inspection rod 21 is linearly attached to the base 24 together with the support table 22. A linear moving mechanism 25 for moving is provided.

直線移動機構25は、電動機26の回転運動を直線運動に変換する変換機構27を備えており、支持テーブル22はその変換機構27を介して電動機26にて駆動される。変換機構27は、電動機26の回転軸28に設けられたボールねじ28aと、支持テーブル22に連結されたアーム29に設けられたナット29aとが、図示しないボールを介在させて組合わされて構成される。これにより、直線移動機構25の電動機26の動作を制御することで、検査ロッド21をその長手方向に延びる軸線CLに沿って任意に進退させることができる。なお、直線移動機構25として電動機26と変換機構27とを設ける代りにリニアモータ等で直線移動機構25を実施してもよい。   The linear movement mechanism 25 includes a conversion mechanism 27 that converts the rotational motion of the electric motor 26 into a linear motion, and the support table 22 is driven by the electric motor 26 via the conversion mechanism 27. The conversion mechanism 27 is configured by combining a ball screw 28a provided on the rotation shaft 28 of the electric motor 26 and a nut 29a provided on an arm 29 connected to the support table 22 with a ball (not shown) interposed therebetween. The Thereby, by controlling the operation of the electric motor 26 of the linear movement mechanism 25, the inspection rod 21 can be arbitrarily advanced and retracted along the axis CL extending in the longitudinal direction. Instead of providing the electric motor 26 and the conversion mechanism 27 as the linear movement mechanism 25, the linear movement mechanism 25 may be implemented by a linear motor or the like.

検査ロッド21は、図2にも示したように、支持テーブル22に取り付けられた中空円筒状の基部211と、その基部211の一方の開口部を塞ぐようにして検査ロッド21の先端部に位置するキャップ状の回転ヘッド212とが組合わされて構成される。基部211の内部空間には検査光の投光とその反射光の受光とを行う投受光装置213が設けられている。投受光装置213は、中央に位置する投光ファイバ214aとその投光ファイバ214aの周囲に配置された複数の受光ファイバ214bとが束ねられた光ファイバ群214を有している。その光ファイバ群214は基部211の内部空間に挿入されたファイバ保持筒215にて保持される。投光ファイバ214aと受光ファイバ214bとは、それらの一方の端面が軸線CL方向に向くようにして揃えられている。図1に示すように、投光ファイバ214aの他方の端部には検査光の光源としてのレーザダイオード215が、受光ファイバ214bの他方の端部には、受光量に対応した信号を出力するフォトディテクタ216がそれぞれ接続される。フォトディテクタ216の信号は情報処理部4へ送られる。   As shown in FIG. 2, the inspection rod 21 is positioned at the distal end portion of the inspection rod 21 so as to close the hollow cylindrical base portion 211 attached to the support table 22 and one opening of the base portion 211. The cap-shaped rotary head 212 is combined with each other. In the internal space of the base 211, a light projecting / receiving device 213 for projecting the inspection light and receiving the reflected light is provided. The light projecting / receiving device 213 includes an optical fiber group 214 in which a light projecting fiber 214a located at the center and a plurality of light receiving fibers 214b arranged around the light projecting fiber 214a are bundled. The optical fiber group 214 is held by a fiber holding cylinder 215 inserted in the internal space of the base 211. The light projecting fiber 214a and the light receiving fiber 214b are aligned so that one end face thereof faces the direction of the axis CL. As shown in FIG. 1, a laser diode 215 as a light source for inspection light is provided at the other end of the light projecting fiber 214a, and a photodetector that outputs a signal corresponding to the amount of received light at the other end of the light receiving fiber 214b. 216 are connected to each other. The signal from the photodetector 216 is sent to the information processing unit 4.

図2に示すように、回転ヘッド212は軸線CL回りに回転可能な状態でベアリング217を介して基部211に取り付けられている。回転ヘッド212の側壁には検査光R1を被検査物100の穴100aの内周面に投光し、かつその内周面で反射した検査光の反射光を受け入れることができる検査窓212aが設けられている。回転ヘッド212の内部空間には、軸線CLに対して略45°の角度をなすようにして保持部材218を介在させて回転ヘッド212にて保持された反射鏡219が設けられている。反射鏡219は投光ファイバ214aからの検査光R1を検査窓212aに導くことができるようにその進行方向を変更し、かつ検査窓212aを介して受け入れられた反射光R2を受光ファイバ214b導くことができるようにその進行方向を変更することができる。受光ファイバ214bと反射鏡219との間には、反射光R2を集光する集光レンズ220が設けられている。   As shown in FIG. 2, the rotary head 212 is attached to the base 211 via a bearing 217 so as to be rotatable about the axis CL. An inspection window 212a is provided on the side wall of the rotary head 212 so that the inspection light R1 can be projected onto the inner peripheral surface of the hole 100a of the inspection object 100 and the reflected light of the inspection light reflected by the inner peripheral surface can be received. It has been. In the internal space of the rotary head 212, a reflecting mirror 219 held by the rotary head 212 with a holding member 218 interposed is provided so as to form an angle of about 45 ° with respect to the axis CL. The reflecting mirror 219 changes the traveling direction so that the inspection light R1 from the light projecting fiber 214a can be guided to the inspection window 212a, and guides the reflected light R2 received through the inspection window 212a. The direction of travel can be changed so that A condensing lens 220 that condenses the reflected light R2 is provided between the light receiving fiber 214b and the reflecting mirror 219.

検査機構2は、図3にも示すように回転ヘッド212を軸線CL回りに回転させる回転力を発生させるインペラー221を備えている。インペラー221は反射鏡219の周囲を取り囲むように回転ヘッド212の天井部に取り付けられている。回転ヘッド212の側壁には、外部に開口する複数の空気噴出口212bがインペラー221の周方向に沿って設けられている。基部211の内周面とファイバ保持筒215の外周面との間にはインペラー221に向かって開口する送風通路222が形成されている。図1にも示すように、その送風通路222にはエアポンプ223で加圧された空気を導入するための供給通路224が接続されている。エアポンプ223にはエアフィルタ225で濾過された空気が供給される。エアポンプ223が作動すると、図2の矢印で示すようにインペラー221に対して送風通路222を介して空気が吹き付けられ、その空気は空気噴出口212bから排出される。これにより、回転ヘッド212は軸線CL回りに回転駆動される。   As shown in FIG. 3, the inspection mechanism 2 includes an impeller 221 that generates a rotational force that rotates the rotary head 212 around the axis CL. The impeller 221 is attached to the ceiling of the rotary head 212 so as to surround the reflector 219. On the side wall of the rotary head 212, a plurality of air jets 212 b that open to the outside are provided along the circumferential direction of the impeller 221. A ventilation passage 222 that opens toward the impeller 221 is formed between the inner peripheral surface of the base 211 and the outer peripheral surface of the fiber holding cylinder 215. As shown in FIG. 1, a supply passage 224 for introducing air pressurized by an air pump 223 is connected to the air passage 222. Air filtered by the air filter 225 is supplied to the air pump 223. When the air pump 223 is activated, air is blown to the impeller 221 through the air passage 222 as shown by the arrow in FIG. 2, and the air is discharged from the air jet 212b. Thereby, the rotary head 212 is rotationally driven around the axis line CL.

図2に示すように、検査機構2は回転ヘッド212の回転位置に応じたパルス信号を出力するエンコーダ31を備えている。エンコーダ31は、回転ヘッド212の下面に取り付けられて一体に回転し、かつ周方向に沿って所定間隔で並ぶ複数の検知孔(不図示)が形成された円板31aと、その円板31の検知孔の位置に応じたパルスを生成するピックアップ31bとを備える。エンコーダ31からのパルス信号は制御部3に送られる。制御部3は所定の検査開始信号を受信すると、エアポンプ223を作動させて回転ヘッド212を回転させる。そして、エアポンプ223を作動させた状態で、エンコーダ31からのパルス信号に基づいて電動機26の動作を制御している。   As shown in FIG. 2, the inspection mechanism 2 includes an encoder 31 that outputs a pulse signal corresponding to the rotational position of the rotary head 212. The encoder 31 is attached to the lower surface of the rotary head 212, rotates integrally, and has a disc 31a in which a plurality of detection holes (not shown) arranged at predetermined intervals along the circumferential direction are formed. And a pickup 31b that generates a pulse corresponding to the position of the detection hole. A pulse signal from the encoder 31 is sent to the control unit 3. When the control unit 3 receives a predetermined inspection start signal, the control unit 3 operates the air pump 223 to rotate the rotary head 212. The operation of the electric motor 26 is controlled based on the pulse signal from the encoder 31 with the air pump 223 activated.

回転ヘッド212の回転速度と、直線移動機構25による検査ロッド21の軸線方向CLへの移動速度(送り速度)とを別々に制御する形態の場合、回転ヘッド212の回転速度の変動が許容範囲内に収まった状態で検査ロッド21を移動させなければ、要求された検査精度を確保することができない。また、この場合には、回転速度の変動が許容範囲内に収まった状態で検査ロッド21を所定の送り速度で移動させても、厳密に言えばその変動が検査結果に反映される。   In the case where the rotational speed of the rotary head 212 and the movement speed (feed speed) of the inspection rod 21 in the axial direction CL by the linear movement mechanism 25 are controlled separately, the fluctuation of the rotational speed of the rotary head 212 is within an allowable range. If the inspection rod 21 is not moved in a state where it is within the range, the required inspection accuracy cannot be ensured. Further, in this case, even if the inspection rod 21 is moved at a predetermined feed speed in a state where the fluctuation of the rotational speed is within the allowable range, strictly speaking, the fluctuation is reflected in the inspection result.

これに対し、表面検査装置1の場合には、回転ヘッド212の回転速度が変動しても、その変動に応じて送り速度が制御されるので回転速度と送り速度との比が一定に保たれる。そのため、例えば回転ヘッド212が加速中又は減速中であっても要求された検査精度で表面検査を実施することができる。つまり、回転速度の変動が許容範囲内に収まるまで検査ロッド21の移動を止めておく必要がないので、その分だけ一つの被検査物100の検査に要する検査時間を短縮できる。また、回転ヘッド212の回転速度の変動が許容範囲内に収まっている場合でも、その変動が検査結果に影響しないので検査結果の精度が向上する。表面検査装置1は回転ヘッド212を空気の流れを利用して回転駆動するため、空気の流量を操作して回転速度を正確に制御することが不可能ではないが比較的困難である。しかし、このような制御を実行することにより、回転ヘッド212の回転速度を正確に制御しなくても、つまり回転ヘッド212が回転してさえいれば検査を実行することができ、しかも要求された検査精度を十分に確保することができる。従って、制御部3が実行する制御は表面検査装置1に適している。   On the other hand, in the case of the surface inspection apparatus 1, even if the rotation speed of the rotary head 212 fluctuates, the feed speed is controlled according to the fluctuation, so the ratio between the rotation speed and the feed speed is kept constant. It is. For this reason, for example, even when the rotary head 212 is accelerating or decelerating, the surface inspection can be performed with the required inspection accuracy. That is, since it is not necessary to stop the movement of the inspection rod 21 until the fluctuation of the rotational speed falls within the allowable range, the inspection time required for the inspection of one inspection object 100 can be shortened accordingly. Further, even when the fluctuation of the rotation speed of the rotary head 212 is within the allowable range, the fluctuation does not affect the inspection result, so that the accuracy of the inspection result is improved. Since the surface inspection apparatus 1 rotationally drives the rotary head 212 using the air flow, it is not impossible, but it is relatively difficult to accurately control the rotation speed by manipulating the air flow rate. However, by executing such control, the inspection can be executed even if the rotational speed of the rotary head 212 is not accurately controlled, that is, as long as the rotary head 212 is rotated. Inspection accuracy can be sufficiently secured. Therefore, the control executed by the control unit 3 is suitable for the surface inspection apparatus 1.

以上の形態においては、反射鏡219が本発明に係る光路変更部材に、支持テーブル22が本発明に係る支持手段に、回転ヘッド212が本発明に係る部材保持部に、インペラー221が本発明に係る回転力発生手段に、エアポンプ223が本発明に係る加圧手段に、エンコーダ31が本発明に係る回転位置検出手段に、制御部3が本発明に係る移動制御手段に、直線移動機構25が本発明の移動手段にそれぞれ相当する。送風通路222、供給通路224及びエアポンプ223にて本発明に係る送風手段が構成され、これらとインペラー221とにより本発明に係る回転駆動手段が構成される。   In the above embodiment, the reflecting mirror 219 is the optical path changing member according to the present invention, the support table 22 is the supporting means according to the present invention, the rotary head 212 is the member holding portion according to the present invention, and the impeller 221 is the present invention. In the rotational force generating means, the air pump 223 is the pressurizing means according to the present invention, the encoder 31 is the rotational position detecting means according to the present invention, the control unit 3 is the movement control means according to the present invention, and the linear moving mechanism 25 is Each corresponds to the moving means of the present invention. The blowing passage 222, the supply passage 224, and the air pump 223 constitute the blowing means according to the present invention, and these and the impeller 221 constitute the rotational driving means according to the present invention.

但し、本発明は上述した形態に限定されず、本発明の要旨の範囲内で種々の形態にて実施できる。上記の形態では、検査ロッド21が取り付けられた支持テーブル22を直線移動機構25にて移動させて静止した被検査物100の検査を実行しているが、これとは逆に検査ロッド21を静止させて被検査物100を移動させることにより、被検査物100の検査を実行するようにしてもよい。被検査物100を移動させる機構は、直線移動機構25と同様の周知の移動手段を用いればよい。   However, this invention is not limited to the form mentioned above, It can implement with a various form within the range of the summary of this invention. In the above embodiment, the stationary inspection object 100 is inspected by moving the support table 22 to which the inspection rod 21 is attached by the linear movement mechanism 25. On the contrary, the inspection rod 21 is stationary. Then, the inspection object 100 may be inspected by moving the inspection object 100. A known moving means similar to the linear moving mechanism 25 may be used as the mechanism for moving the inspection object 100.

上記の形態では、基部211の外側に回転ヘッド212が取り付けられることにより検査ロッド21が構成されているが、基部211の内側に回転ヘッド212を取り付ける形態で検査ロッド21を構成してもよい。もっとも、基部211の外径が同一であることを前提とした場合には、回転ヘッド212を基部211の外側に取り付けた方が反射鏡219を大きくすることができるので、受光範囲を広くすることができる利点がある。また、光路変更部材は、反射鏡219に限られずこれと同様の機能を発揮できる部材、例えばプリズム、凹面反射鏡等の周知の構成で実施することもできる。   In the above embodiment, the inspection rod 21 is configured by attaching the rotary head 212 to the outside of the base 211. However, the inspection rod 21 may be configured to attach the rotary head 212 to the inside of the base 211. However, if it is assumed that the outer diameter of the base portion 211 is the same, the reflecting mirror 219 can be made larger if the rotary head 212 is attached to the outside of the base portion 211, so that the light receiving range is widened. There is an advantage that can be. Further, the optical path changing member is not limited to the reflecting mirror 219 and can be implemented by a known configuration such as a member capable of exhibiting the same function, such as a prism or a concave reflecting mirror.

回転力発生手段は、上述した形態に限定されず、例えば、図4に示すように、反射鏡219のエッジから斜め方向に延びるフラップ219aを形成することにより反射鏡219を回転力発生手段として機能させてもよい。図4の場合、反射鏡219に空気Aが吹き付けられることにより、軸線CLに関する回転力が生じ、回転ヘッド211を一方向に回転させることができる。   The rotational force generating means is not limited to the above-described form. For example, as shown in FIG. 4, the reflecting mirror 219 functions as the rotational force generating means by forming a flap 219 a extending obliquely from the edge of the reflecting mirror 219. You may let them. In the case of FIG. 4, when the air A is blown onto the reflecting mirror 219, a rotational force related to the axis line CL is generated, and the rotary head 211 can be rotated in one direction.

また、上述の形態では、送風通路222を基部211の内部に設けるとともに、インペラー221を回転ヘッド212の内部に設けたが、本発明はこれに限定されず、インペラー221を回転ヘッド212の外部(例えば下端部や側部)に設けるとともに、そのインペラー212に空気が吹き付けられるように、送風通路222を基部211の外部に設けて実施してもよい。   In the above embodiment, the air passage 222 is provided in the base 211 and the impeller 221 is provided in the rotary head 212. However, the present invention is not limited to this, and the impeller 221 is disposed outside the rotary head 212 ( For example, the air passage 222 may be provided outside the base portion 211 so that air is blown to the impeller 212.

制御部3が実行する制御は、上述の形態に限定されず、回転ヘッド212の回転速度を空気流量の調整で許容範囲内の変動に収まるように制御した上で、直線移動機構25の動作を制御するようにしても構わない。この場合には、例えば、供給通路224に電磁駆動式の流量調整弁を設け、この調整弁の動作を制御することにより、エアポンプ223のみで流量を制御する形態よりも正確な制御を実現することができる。   The control executed by the control unit 3 is not limited to the above-described form, and the operation of the linear moving mechanism 25 is performed after controlling the rotational speed of the rotary head 212 to be within the allowable range by adjusting the air flow rate. You may make it control. In this case, for example, by providing an electromagnetically driven flow rate adjustment valve in the supply passage 224 and controlling the operation of this adjustment valve, it is possible to realize more accurate control than a mode in which the flow rate is controlled only by the air pump 223. Can do.

本発明の一形態に係る表面検査装置の概略構成を示した図。The figure which showed schematic structure of the surface inspection apparatus which concerns on one form of this invention. 図1の表面検査装置を部分的に拡大した拡大断面模式図。The expanded cross-sectional schematic diagram which expanded the surface inspection apparatus of FIG. 1 partially. 図1の回転ヘッドの内部を軸線方向の図1の下側から上側に向かって示した模式図。The schematic diagram which showed the inside of the rotation head of FIG. 1 toward the upper side of FIG. 1 of the axial direction. 反射鏡を回転力発生手段として機能させる形態を示した模式図。The schematic diagram which showed the form which functions a reflecting mirror as a rotational force generation means.

符号の説明Explanation of symbols

1 表面検査装置
3 制御部(移動制御手段)
21 検査ロッド
22 支持テーブル(支持手段)
31 エンコーダ(回転位置検出手段)
100 被検査物
100a 穴
211 基部
212 回転ヘッド(部材保持部)
219 反射鏡(光路変更部材)
221 インペラー(回転力発生手段)
222 送風通路
223 エアポンプ(加圧手段)
CL 軸線
1 Surface inspection device 3 Control unit (movement control means)
21 Inspection rod 22 Support table (support means)
31 Encoder (Rotation position detection means)
100 Inspection object 100a Hole 211 Base 212 Rotating head (member holding part)
219 Reflector (light path changing member)
221 impeller (rotation force generating means)
222 Air passage 223 Air pump (pressurizing means)
CL axis

Claims (5)

穴が形成された被検査物の前記穴に挿入可能な検査ロッドと、前記検査ロッドに設けられて、前記穴の内周面に検査光が投光されるように検査光の進行方向を変更するとともに、前記穴の内周面に投光された検査光の反射光の進行方向を変更する光路変更部材と、前記検査ロッドを支持する支持手段と、を備えた表面検査装置において、
前記検査ロッドは、前記支持手段に取り付けられた基部と、前記光路変更部材を保持しつつ前記検査ロッドの長手方向に延びる軸線回りに回転可能な状態で前記基部に取り付けられた部材保持部とを有し、
空気の流れを利用して前記部材保持部を前記軸線回りに回転させる回転駆動手段を更に備えることを特徴とする表面検査装置。
An inspection rod that can be inserted into the hole of the inspection object in which a hole is formed, and the traveling direction of the inspection light is changed so that the inspection light is projected onto the inner peripheral surface of the hole. In addition, in the surface inspection apparatus comprising: an optical path changing member that changes a traveling direction of reflected light of the inspection light projected on the inner peripheral surface of the hole; and a support unit that supports the inspection rod.
The inspection rod includes a base portion attached to the support means, and a member holding portion attached to the base portion while being rotatable about an axis extending in the longitudinal direction of the inspection rod while holding the optical path changing member. Have
The surface inspection apparatus further comprising a rotation driving means for rotating the member holding portion around the axis by using a flow of air.
前記回転駆動手段は、吹き付けられた空気を利用して前記部材保持部を前記軸線回りに回転させる回転力を発生させる回転力発生手段と、前記回転力発生手段に対して空気を吹き付ける送風手段とを備えることを特徴とする請求項1に記載の表面検査装置。   The rotational drive means includes rotational force generating means for generating rotational force for rotating the member holding portion around the axis using the blown air, and blowing means for blowing air to the rotational force generating means. The surface inspection apparatus according to claim 1, further comprising: 前記回転力発生手段として、前記部材保持部に取り付けられたインペラーが設けられていることを特徴とする請求項2に記載の表面検査装置。   The surface inspection apparatus according to claim 2, wherein an impeller attached to the member holding portion is provided as the rotational force generating means. 前記検査ロッドの前記基部は中空状に構成されており、
前記送風手段は、空気を加圧する加圧手段と、前記基部の内部に設けられて前記加圧手段にて加圧された空気を前記回転力発生手段に導く送風通路と、を備えることを特徴とする請求項2又は3に記載の表面検査装置。
The base of the inspection rod is configured to be hollow,
The blowing unit includes a pressurizing unit that pressurizes air, and a ventilation passage that is provided inside the base and guides the air pressurized by the pressurizing unit to the rotational force generating unit. The surface inspection apparatus according to claim 2 or 3.
前記検査ロッドが前記被検査物に対して前記軸線方向に沿って相対移動するように前記被検査物又は前記支持手段を直線移動させる移動手段と、前記部材保持部の回転位置を検出する回転位置検出手段と、前記部材保持部の回転速度と前記被検査物に対する前記検査ロッドの相対速度との比が一定となるように、前記回転位置検出手段の検出結果に基づいて前記移動手段の動作を制御する移動制御手段と、を更に備えることを特徴とする請求項1〜4のいずれか一項に記載の表面検査装置。   A moving means for linearly moving the object to be inspected or the supporting means so that the inspection rod moves relative to the object to be inspected along the axial direction, and a rotational position for detecting a rotational position of the member holding portion. Based on the detection result of the rotation position detection means, the operation of the movement means is performed so that the ratio between the rotation speed of the detection means and the relative speed of the inspection rod with respect to the inspection object is constant. The surface inspection apparatus according to any one of claims 1 to 4, further comprising a movement control means for controlling.
JP2006143191A 2006-05-23 2006-05-23 Surface inspection device Pending JP2007315805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143191A JP2007315805A (en) 2006-05-23 2006-05-23 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143191A JP2007315805A (en) 2006-05-23 2006-05-23 Surface inspection device

Publications (1)

Publication Number Publication Date
JP2007315805A true JP2007315805A (en) 2007-12-06

Family

ID=38849807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143191A Pending JP2007315805A (en) 2006-05-23 2006-05-23 Surface inspection device

Country Status (1)

Country Link
JP (1) JP2007315805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224877A (en) * 2014-05-26 2015-12-14 日本電産トーソク株式会社 Inner surface inspection device
CN106525866A (en) * 2016-12-29 2017-03-22 重庆市江津区恩聪机械厂 Cylinder cover defect detection system and detection flow thereof
CN114253228A (en) * 2021-11-22 2022-03-29 中国科学院软件研究所 Industrial equipment object modeling method and device based on digital twinning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224877A (en) * 2014-05-26 2015-12-14 日本電産トーソク株式会社 Inner surface inspection device
CN106525866A (en) * 2016-12-29 2017-03-22 重庆市江津区恩聪机械厂 Cylinder cover defect detection system and detection flow thereof
CN114253228A (en) * 2021-11-22 2022-03-29 中国科学院软件研究所 Industrial equipment object modeling method and device based on digital twinning
CN114253228B (en) * 2021-11-22 2023-09-12 中国科学院软件研究所 Industrial equipment object modeling method and device based on digital twin

Similar Documents

Publication Publication Date Title
US7602487B2 (en) Surface inspection apparatus and surface inspection head apparatus
US20150014889A1 (en) Machining device, machining unit, and machining method
CN106029290B (en) Laser processing system
US9500474B2 (en) Illumination apparatus, illumination method, measuring apparatus, and measuring method
JP2007315805A (en) Surface inspection device
JP2017044476A (en) Article inspection device
JP2008304407A (en) Inner diameter measuring device
JP2007309696A (en) Surface inspection head device
JP2018151187A5 (en)
WO2012033022A1 (en) Surface inspection device
JP2009520955A5 (en)
JP7007576B2 (en) Laser processing equipment
WO2019083009A1 (en) Inspection system and inspection method
JP6159513B2 (en) Laser processing head
US20070002908A1 (en) Device for automatically selecting a beam mode in laser processing machine
JP2010139432A (en) Surface inspection device
JP5265290B2 (en) Surface inspection device
JP6839916B2 (en) Internal inspection system and its optical system
JP2007155384A (en) Flaw inspection device and flaw inspection method
JP2007315804A (en) Surface inspection device
KR101941580B1 (en) Apparatus for measuring surface profile
JP2007057695A5 (en)
EP1859891A1 (en) Device for automatically selecting a beam mode in laser processing machine
JP7131792B2 (en) inspection system
JP2011100073A5 (en)