JP2007155384A - Flaw inspection device and flaw inspection method - Google Patents

Flaw inspection device and flaw inspection method Download PDF

Info

Publication number
JP2007155384A
JP2007155384A JP2005347735A JP2005347735A JP2007155384A JP 2007155384 A JP2007155384 A JP 2007155384A JP 2005347735 A JP2005347735 A JP 2005347735A JP 2005347735 A JP2005347735 A JP 2005347735A JP 2007155384 A JP2007155384 A JP 2007155384A
Authority
JP
Japan
Prior art keywords
optical fiber
light
wall surface
light receiving
receiving optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347735A
Other languages
Japanese (ja)
Inventor
Ushio Suzuki
潮 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Opto Co Ltd
Original Assignee
Fuji Opto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Opto Co Ltd filed Critical Fuji Opto Co Ltd
Priority to JP2005347735A priority Critical patent/JP2007155384A/en
Publication of JP2007155384A publication Critical patent/JP2007155384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection device capable of inspecting the flaw of an inner peripheral wall surface in a shorter time, and a flaw inspection method. <P>SOLUTION: The detection pipe inserted in an almost columnar space along with the axial direction of the columnar space and a control device are provided. The incident surface of a light detecting optical fiber is arranged to the leading end of the detection pipe so as to be opposed to the inner peripheral wall surface of the columnar space. The emitting surface of a floodlight projection optical fiber is arranged so as to be adjacent to the incident surface of the light detecting optical fiber in the same direction as the light detecting optical fiber. The control device is constituted so as to relatively rotate the detection pipe, which inputs light to the incident surface of the floodlight projection optical fiber and is inserted along the axial direction of the columnar space, along the circumference of the inner peripheral wall surface of the columnar space or to relatively reciprocate along the axial direction of the columnar space so as to keep the distance up to the opposed of the columnar space from the incident surface of the light detecting optical fiber and the emitting surface of the floodlight optical fiber constant to judge the flaw of the inner peripheral wall surface of the columnar space on the basis of the detection light outputted from the emitting surface of the light detecting optical fiber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリンダ、パイプや加工穴等の内周壁面の欠陥を検出する欠陥検査装置及び欠陥検査方法に関する。   The present invention relates to a defect inspection apparatus and a defect inspection method for detecting defects on an inner peripheral wall surface such as a cylinder, a pipe, or a machining hole.

従来、車両のエンジンのシリンダ等、内径が比較的大きな内周壁面の表面の鋳巣や加工傷等の検査を行う場合、一般的には小型CCDカメラ等を挿入して画像処理装置を用いて検査を行っている。
例えば特許文献1に記載した従来技術では、エンジンシリンダ等の被検査円筒物体の内面に残っている残留液を洗浄する洗浄部と、洗浄した内面の2次元画像を検出する光学系と、検出した2次元画像に基づいて欠陥の情報を取得する画像処理部と、取得した欠陥の情報を出力する出力部とを備えた欠陥検査装置が提案されている。
また特許文献2に記載した従来技術では、検査するワークのボアに撮像手段を挿入して内壁面を撮像し、画像処理を行って特徴パラメータを抽出し、抽出したパラメータ値を基準値と比較して欠陥の有無を判定し、特徴パラメータとしては、撮像された欠陥候補の実際の最大寸法とするボア内壁面欠陥検査装置が提案されている。
Conventionally, when inspecting a cast hole or a processing flaw on the surface of an inner peripheral wall having a relatively large inner diameter such as a cylinder of a vehicle engine, an image processing apparatus is generally used by inserting a small CCD camera or the like. We are inspecting.
For example, in the prior art described in Patent Document 1, a cleaning unit that cleans residual liquid remaining on the inner surface of a cylindrical object to be inspected such as an engine cylinder, and an optical system that detects a two-dimensional image of the cleaned inner surface are detected. There has been proposed a defect inspection apparatus including an image processing unit that acquires defect information based on a two-dimensional image and an output unit that outputs the acquired defect information.
In the prior art described in Patent Document 2, an imaging means is inserted into the bore of the workpiece to be inspected to image the inner wall surface, image processing is performed to extract a feature parameter, and the extracted parameter value is compared with a reference value. There has been proposed a bore inner wall surface defect inspection apparatus that determines the presence or absence of a defect and sets the actual maximum dimension of the imaged defect candidate as a feature parameter.

また、上記のような内周壁面を検査する装置としては、他にも、磁力線を用いる磁気探傷装置や、レーザー光を用いるレーザー光探傷装置等がある。
例えば特許文献3に記載した従来技術では、磁化器と磁気センサからなる磁気探傷器と、金属帯(ワーク)が走行するロールに磁気センサを近接させて配置し、ロール1回転を周期として磁気センサからの信号をデジタル信号に変換した出力データを区分けし、区分データと、次の周期の区分データとの差分データから金属帯の欠陥の有無を検出する、金属帯磁気探傷装置が提案されている。
特開2005−121450号公報 特開平9−311107号公報 特開平9−229906号公報
In addition, examples of the apparatus for inspecting the inner peripheral wall surface as described above include a magnetic flaw detection apparatus using magnetic field lines, a laser light flaw detection apparatus using laser light, and the like.
For example, in the prior art described in Patent Document 3, a magnetic flaw detector composed of a magnetizer and a magnetic sensor, and a magnetic sensor placed close to a roll on which a metal strip (workpiece) travels, and the rotation of one roll is a period of the magnetic sensor. A metal band magnetic flaw detector that classifies output data obtained by converting a signal from a digital signal into signals and detects the presence or absence of a metal band defect from the difference data between the section data and the next period section data has been proposed. .
JP-A-2005-121450 JP-A-9-311107 JP-A-9-229906

特許文献1及び特許文献2に記載した画像処理を用いる従来技術では、CCDカメラまたはミラーをシリンダ内部で回転させるが、撮像するために照明用の光が必要であり、CCDカメラ(またはミラー)と同様に照明もシリンダ内で回転させる必要があり、操作が困難であった。また、撮像画像から欠陥を検出するには、複雑な画像処理が必要であり、検査に要する時間が長く、検出精度を上げると更に長い時間が必要となっていた。また、エンジンシリンダの内径は比較的大きいのでCCDカメラと照明をシリンダ内部に挿入することはできるが、車両の各種のバルブのシリンダ、ブレーキシリンダ、燃料噴射ノズル等の場合は穴径が小さく、CCDカメラと撮像用の光をシリンダ内に挿入することが非常に困難である。
また特許文献3に記載した磁気探傷装置を用いる従来技術では、磁化器と磁気センサとを円筒の内壁側と外壁側に配置して磁気の変化を検出するため、円筒の肉厚が変化するエンジンシリンダ等では欠陥の検出が非常に困難である。
またレーザー光探傷装置を用いる従来技術では、レーザー光が当たるスポットの径が非常に小さいため、検査に要する時間が長くなる。
本発明は、このような点に鑑みて創案されたものであり、より短時間で内周壁面の欠陥の検査が可能な欠陥検査装置及び欠陥検査方法を提供することを課題とする。
In the conventional technique using the image processing described in Patent Document 1 and Patent Document 2, a CCD camera or a mirror is rotated inside a cylinder. However, illumination light is necessary for imaging, and the CCD camera (or mirror) Similarly, it is necessary to rotate the illumination in the cylinder, and the operation is difficult. Moreover, in order to detect a defect from a captured image, complicated image processing is required, and the time required for inspection is long, and a longer time is required when the detection accuracy is increased. Also, since the internal diameter of the engine cylinder is relatively large, a CCD camera and illumination can be inserted into the cylinder, but in the case of various valve cylinders, brake cylinders, fuel injection nozzles, etc. of the vehicle, the hole diameter is small. It is very difficult to insert the camera and imaging light into the cylinder.
Further, in the prior art using the magnetic flaw detection apparatus described in Patent Document 3, the magnetizer and the magnetic sensor are arranged on the inner wall side and the outer wall side of the cylinder to detect the change in magnetism, so that the engine whose cylinder thickness changes It is very difficult to detect defects with a cylinder or the like.
Further, in the conventional technique using a laser beam flaw detector, the diameter of a spot hit by a laser beam is very small, so that the time required for inspection becomes long.
The present invention has been made in view of such a point, and an object thereof is to provide a defect inspection apparatus and a defect inspection method capable of inspecting a defect on an inner peripheral wall surface in a shorter time.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの欠陥検査装置である。
請求項1に記載の欠陥検査装置は、略円柱状空間の軸方向に沿って当該円柱状空間内に挿入される検出パイプと、前記検出パイプからの検出信号に基づいて前記円柱状空間の内周壁面の欠陥を判定する制御装置とを備える。
前記検出パイプには、投光用光ファイバと受光用光ファイバとが設けられており、前記検出パイプの先端に、前記受光用光ファイバの入射面を、前記円柱状空間の内周壁面に対向するように配置する。
そして前記投光用光ファイバの出射面を、前記受光用光ファイバの入射面と隣接するように且つ同一方向となるように配置する。
そして前記制御装置は、前記投光用光ファイバの入射面に光を入力し、前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの入射面及び前記投光用光ファイバの出射面の各々から対向する前記円柱状空間の内周壁面までの距離を一定に保つように、前記円柱状空間の内周壁面の円周方向に沿って相対的に回転または前記軸方向に沿って相対的に往復させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する。
As means for solving the above-mentioned problems, a first invention of the present invention is a defect inspection apparatus as described in claim 1.
The defect inspection apparatus according to claim 1, wherein the detection pipe inserted into the cylindrical space along the axial direction of the substantially cylindrical space, and the inside of the cylindrical space based on the detection signal from the detection pipe And a control device for determining a defect in the peripheral wall surface.
The detection pipe is provided with a light projecting optical fiber and a light receiving optical fiber. At the tip of the detection pipe, the incident surface of the light receiving optical fiber is opposed to the inner peripheral wall surface of the cylindrical space. Arrange to do.
The emission surface of the light projecting optical fiber is arranged adjacent to the incident surface of the light receiving optical fiber and in the same direction.
The control device inputs light to the incident surface of the light projecting optical fiber, and connects the detection pipe inserted along the axial direction of the cylindrical space to the incident surface of the light receiving optical fiber and the light projecting device. Or relatively rotating along the circumferential direction of the inner circumferential wall surface of the cylindrical space so as to keep a constant distance from each of the exit surfaces of the optical fibers for use to the inner circumferential wall surface of the cylindrical space facing each other, or A defect in the inner peripheral wall surface of the cylindrical space is determined based on detection light output from the emission surface of the light receiving optical fiber by reciprocating relatively along the axial direction.

また、本発明の第2発明は、請求項2に記載されたとおりの欠陥検査装置である。
請求項2に記載の欠陥検査装置は、請求項1に記載の欠陥検査装置であって、前記検出パイプには、複数の投光用光ファイバと複数の受光用光ファイバが設けられており、前記検出パイプの先端に、前記複数の受光用光ファイバの入射面を、前記円柱状空間の軸に平行な方向に沿って列状に且つ前記円柱状空間の内周壁面に対向するように同一方向に配置する。
そして前記複数の投光用光ファイバの出射面を、前記列状に配置した受光用光ファイバの入射面の隣に並列するように且つ前記受光用光ファイバの入射面と同一方向となるように配置する。
そして前記制御装置は、前記投光用光ファイバの入射面に光を入力し、前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの各入射面及び前記投光用光ファイバの各出射面の各々から対向する前記円柱状空間の内周壁面までの距離を各々一定に保つように、前記円柱状空間の内周壁面の円周方向に沿って相対的に回転させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する。
The second invention of the present invention is a defect inspection apparatus as set forth in claim 2.
The defect inspection apparatus according to claim 2 is the defect inspection apparatus according to claim 1, wherein the detection pipe is provided with a plurality of light projecting optical fibers and a plurality of light receiving optical fibers. At the tip of the detection pipe, the incident surfaces of the plurality of light receiving optical fibers are arranged in a row along the direction parallel to the axis of the cylindrical space so as to face the inner peripheral wall surface of the cylindrical space. Arrange in the direction.
The emission surfaces of the plurality of light projecting optical fibers are arranged in parallel with the light incident optical fiber incident surfaces arranged in the row and in the same direction as the light receiving optical fiber incident surfaces. Deploy.
The control device inputs light to the incident surface of the light projecting optical fiber, and connects the detection pipe inserted along the axial direction of the cylindrical space to each incident surface of the light receiving optical fiber and the projecting light. Relatively along the circumferential direction of the inner peripheral wall surface of the cylindrical space so that the distance from each of the outgoing surfaces of the optical fiber for light to the inner peripheral wall surface of the cylindrical space facing each other is kept constant. It is rotated, and the defect on the inner peripheral wall surface of the cylindrical space is determined based on the detection light output from the emission surface of the light receiving optical fiber.

また、本発明の第3発明は、請求項3に記載されたとおりの欠陥検査装置である。
請求項3に記載の欠陥検査装置は、請求項1に記載の欠陥検査装置であって、前記検出パイプには、複数の投光用光ファイバと複数の受光用光ファイバが設けられており、前記検出パイプの先端に、前記複数の受光用光ファイバの入射面を、前記円柱状空間の軸に垂直な方向に沿って列状に且つ前記円柱状空間の内周壁面に対向するように同一方向に配置する。
そして前記複数の投光用光ファイバの出射面を、前記列状に配置した受光用光ファイバの入射面の隣に並列するように且つ前記受光用光ファイバの入射面と同一方向となるように配置する。
そして前記制御装置は、前記投光用光ファイバの入射面に光を入力し、前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの各入射面及び前記投光用光ファイバの各出射面の各々から対向する前記円柱状空間の内周壁面までの距離を各々一定に保つように、前記軸方向に沿って相対的に往復させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する。
A third aspect of the present invention is a defect inspection apparatus as set forth in the third aspect.
The defect inspection apparatus according to claim 3 is the defect inspection apparatus according to claim 1, wherein the detection pipe is provided with a plurality of light projecting optical fibers and a plurality of light receiving optical fibers. At the tip of the detection pipe, the incident surfaces of the plurality of light receiving optical fibers are arranged in a row along a direction perpendicular to the axis of the cylindrical space so as to face the inner peripheral wall surface of the cylindrical space. Place in the direction.
The emission surfaces of the plurality of light projecting optical fibers are arranged in parallel with the light incident optical fiber incident surfaces arranged in the row and in the same direction as the light receiving optical fiber incident surfaces. Deploy.
The control device inputs light to the incident surface of the light projecting optical fiber, and connects the detection pipe inserted along the axial direction of the cylindrical space to each incident surface of the light receiving optical fiber and the projecting light. Reciprocally reciprocating along the axial direction so as to keep the distance from each of the emission surfaces of the optical fiber to the inner peripheral wall of the cylindrical space facing each other, A defect on the inner peripheral wall surface of the cylindrical space is determined based on the detection light output from the emission surface.

また、本発明の第4発明は、請求項4に記載されたとおりの欠陥検査方法である。
請求項4に記載の欠陥検査方法は、壁面の欠陥を検出するための光を前記壁面に向けて出射する投光用光ファイバと、前記壁面から反射された前記光を入射する受光用光ファイバとを用いる。
前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを隣接させて同一方向に且つ前記壁面に対向させて配置する。
そして前記投光用光ファイバの入射面に光を入力し、前記投光用光ファイバの出射面から前記壁面までの距離、及び前記受光用光ファイバの入射面から前記壁面までの距離の各々の距離を各々一定に保つように、前記投光用光ファイバの出射面及び前記受光用光ファイバの入射面を前記壁面に沿って相対的に移動させ、前記受光用光ファイバの入射面に入射された光の強度の変化に基づいて前記壁面の欠陥を判定する欠陥検査方法である。
The fourth invention of the present invention is a defect inspection method as set forth in claim 4.
5. The defect inspection method according to claim 4, wherein a light projecting optical fiber that emits light for detecting a defect on a wall surface toward the wall surface, and a light receiving optical fiber that receives the light reflected from the wall surface. And are used.
The exit surface of the light projecting optical fiber and the entrance surface of the light receiving optical fiber are disposed adjacent to each other in the same direction and facing the wall surface.
Then, light is input to the incident surface of the light projecting optical fiber, the distance from the light emitting surface of the light projecting optical fiber to the wall surface, and the distance from the light incident optical fiber to the wall surface of the light receiving optical fiber. The exit surface of the light projecting optical fiber and the incident surface of the light receiving optical fiber are relatively moved along the wall surface so as to keep the distance constant, and the light incident on the light incident surface of the light receiving optical fiber. This is a defect inspection method for determining a defect on the wall surface based on a change in the intensity of light.

請求項1に記載の欠陥検査装置を用いれば、検出パイプには投光用光ファイバと受光用光ファイバを設けるだけでよいので、検出パイプの径を非常に小さくすることが可能であり、より小さな穴に挿入することが可能である。このため、CCDカメラ等が挿入できないようなより小さな穴の内壁面の欠陥の判定を行うことが可能である。
また、内周壁面の円周方向に沿って相対的に回転、または軸方向に沿って相対的に往復させることで内周壁面の欠陥を判定することができるので、より短時間に欠陥の判定を行うことが可能である。
If the defect inspection apparatus according to claim 1 is used, it is only necessary to provide a light projecting optical fiber and a light receiving optical fiber in the detection pipe, so that the diameter of the detection pipe can be made extremely small. It is possible to insert into a small hole. Therefore, it is possible to determine a defect on the inner wall surface of a smaller hole that cannot be inserted with a CCD camera or the like.
In addition, it is possible to determine the defect of the inner peripheral wall surface by rotating relatively along the circumferential direction of the inner peripheral wall surface or relatively reciprocating along the axial direction. Can be done.

また、請求項2に記載の欠陥検査装置によれば、複数の受光用光ファイバの入射面を軸に平行な方向に沿って1列に配置し(投光用光ファイバの出射面も複数を配置する)、内周壁面の円周方向に沿って相対的に回転させて、1回の回転でより大きな面積の欠陥を判定することが可能であり、更に短時間に欠陥の判定を行うことができる。   According to the defect inspection apparatus of the second aspect, the incident surfaces of the plurality of light receiving optical fibers are arranged in a line along a direction parallel to the axis (a plurality of emission surfaces of the light projecting optical fibers are also arranged). It is possible to determine a defect with a larger area in a single rotation by relatively rotating along the circumferential direction of the inner peripheral wall surface, and determining the defect in a shorter time. Can do.

また、請求項3に記載の欠陥検査装置によれば、複数の受光用光ファイバの入射面を軸に垂直な方向に沿って1列に配置し(投光用光ファイバの出射面も複数を配置する)、内周壁面の軸方向に沿って相対的に往復させて、1回のスライド(往路または復路)でより大きな面積の欠陥を判定することが可能であり、更に短時間に欠陥の判定を行うことができる。   According to the defect inspection apparatus of the third aspect, the incident surfaces of the plurality of light receiving optical fibers are arranged in a line along a direction perpendicular to the axis (a plurality of emission surfaces of the light projecting optical fibers are also arranged). It is possible to determine a defect of a larger area by one slide (outward path or return path) by relatively reciprocating along the axial direction of the inner peripheral wall surface, and in a short time Judgment can be made.

また、請求項4に記載の欠陥検査方法によれば、投光用光ファイバと受光用光ファイバを用いるだけでよいので、より小さな穴に挿入することが可能である。このため、CCDカメラ等が挿入できないようなより小さな穴の内壁面の欠陥の判定を行うことが可能である。
また、壁面に沿って相対的に移動(例えば円周方向に回転、または軸方向に沿って往復)させて検出光の強度の変化に基づいて欠陥を判定することで、より短時間で、且つ容易に内壁面の欠陥を判定することができる。
According to the defect inspection method of the fourth aspect of the present invention, it is only necessary to use the light projecting optical fiber and the light receiving optical fiber, so that it can be inserted into a smaller hole. Therefore, it is possible to determine a defect on the inner wall surface of a smaller hole that cannot be inserted with a CCD camera or the like.
In addition, by moving relatively along the wall surface (for example, rotating in the circumferential direction or reciprocating along the axial direction) and determining the defect based on the change in the intensity of the detection light, the time can be shortened, and It is possible to easily determine defects on the inner wall surface.

以下に本発明を実施するための最良の形態を図面を用いて説明する。本発明の欠陥検査装置1は、シリンダ、パイプや加工穴等の種々の内壁面の欠陥(鋳巣、加工傷等)の検出に適用することが可能であり、以下ではシリンダSの内壁面の欠陥検出に適用した場合の例で説明する。
●[検出パイプの構造(図1(A))と欠陥検査装置1の全体構造(図1(B))]
図1(A)は、本発明の欠陥検査装置1の検出パイプ10の一実施の形態の外観図の例を示しており、図1(B)は本発明の欠陥検査装置1の全体構造の例を示している。
図1(A)に示すように、検出パイプ10は、検出部13、挿入部11、支持部12、フレキシブルチューブ14、取付部15等にて構成されている。
検出部13には、投光用光ファイバ13aの出射面、受光用光ファイバ13bの入射面が所定方向に配置されている(図2(A)、図3(A)参照)。検出部13は挿入部11の先端に設けられており、挿入部11は、検査対象となる略円柱状空間の軸方向に沿って挿入される。また挿入部11内には、投光用光ファイバ13a及び受光用光ファイバ13bの束が収容されており、投光用光ファイバ13a及び受光用光ファイバ13bの束は、フレキシブルチューブ14にて外部に引き出されている。
The best mode for carrying out the present invention will be described below with reference to the drawings. The defect inspection apparatus 1 according to the present invention can be applied to detection of defects (for example, cast holes and machining flaws) on various inner wall surfaces such as cylinders, pipes and machining holes. An example of application to defect detection will be described.
● [Detection pipe structure (FIG. 1A) and overall structure of defect inspection apparatus 1 (FIG. 1B)]
FIG. 1A shows an example of an external view of an embodiment of the detection pipe 10 of the defect inspection apparatus 1 of the present invention, and FIG. 1B shows the overall structure of the defect inspection apparatus 1 of the present invention. An example is shown.
As shown in FIG. 1A, the detection pipe 10 includes a detection unit 13, an insertion unit 11, a support unit 12, a flexible tube 14, an attachment unit 15, and the like.
In the detection unit 13, the emission surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b are arranged in a predetermined direction (see FIGS. 2A and 3A). The detection unit 13 is provided at the distal end of the insertion unit 11, and the insertion unit 11 is inserted along the axial direction of a substantially cylindrical space to be inspected. The insertion section 11 accommodates a bundle of light projecting optical fibers 13a and light receiving optical fibers 13b. The bundle of light projecting optical fibers 13a and light receiving optical fibers 13b is externally connected by a flexible tube 14. Has been drawn to.

支持部12には取付部15(取付ネジ等)が固定されている。図1(B)に示すように、取付部15は工具Tに固定され、工具Tは、シリンダSの内部で検出パイプ10をシリンダSの軸ZSに沿って相対的に往復移動、またはシリンダSの内周壁面の円周方向に沿って相対的に回転移動させる。従って、検出パイプ10を移動させてもよいし、シリンダSを移動させてもよい。
挿入部11の長手方向の長さLHは、検査対象の円柱状空間の内周壁面の長さに応じて設定され、挿入部11の径φは、検査対象の円柱状空間の内周壁面の径に応じて設定される。投光用光ファイバ13a、受光用光ファイバ13bの径は例えば0.2[mm]〜0.5[mm]程度であり、複数本を束にしても数[mm]程度であり、挿入部11の径φは充分に数[mm]程度に収まる。従って、CCDカメラ等の挿入が困難な、数[mm]程度の比較的径が小さな穴であっても、挿入部11を挿入することができる。
なお、検出部13のZ軸方向の長さLZは適宜設定される。
An attachment portion 15 (attachment screw or the like) is fixed to the support portion 12. As shown in FIG. 1B, the mounting portion 15 is fixed to the tool T, and the tool T moves the detection pipe 10 relatively reciprocally along the axis ZS of the cylinder S inside the cylinder S, or the cylinder S Is relatively rotated along the circumferential direction of the inner peripheral wall surface. Therefore, the detection pipe 10 may be moved, or the cylinder S may be moved.
The length LH in the longitudinal direction of the insertion portion 11 is set according to the length of the inner peripheral wall surface of the cylindrical space to be inspected, and the diameter φ of the insertion portion 11 is set to the inner peripheral wall surface of the cylindrical space to be inspected. It is set according to the diameter. The diameters of the light projecting optical fiber 13a and the light receiving optical fiber 13b are, for example, about 0.2 [mm] to 0.5 [mm]. The diameter φ of 11 is sufficiently within a few [mm]. Therefore, the insertion portion 11 can be inserted even with a hole having a relatively small diameter of about several mm, which is difficult to insert a CCD camera or the like.
The length LZ of the detection unit 13 in the Z-axis direction is set as appropriate.

図1(B)に示すように、本発明の欠陥検査装置1は、検出パイプ10と制御装置30とで構成される。制御装置30は、例えばパーソナルコンピュータ23(以下、パソコン23と記載する)、信号処理手段21、駆動手段22等で構成されている。
信号処理手段21は、検出パイプ10とフレキシブルチューブ14にて接続されており、パソコン23からの制御信号に基づいて検出部13の投光用光ファイバ13aの出射面から照射する光を供給し、検出部13の受光用光ファイバ13bの入射面に入射された検出光を受光し、信号処理した検出信号をパソコン23に伝送する。そしてパソコン23は、信号処理手段21から入力された検出信号に基づいて欠陥の有無を判定する。
駆動手段22は、パソコン23からの制御信号に基づいて工具Tを回転またはスライド(往復)させる。なお、シリンダSを回転またはスライドさせてもよい。
As shown in FIG. 1B, the defect inspection apparatus 1 according to the present invention includes a detection pipe 10 and a control device 30. The control device 30 includes, for example, a personal computer 23 (hereinafter referred to as a personal computer 23), a signal processing unit 21, a driving unit 22, and the like.
The signal processing means 21 is connected to the detection pipe 10 and the flexible tube 14, and supplies light irradiated from the emission surface of the light projecting optical fiber 13 a of the detection unit 13 based on a control signal from the personal computer 23. The detection light incident on the incident surface of the light receiving optical fiber 13 b of the detection unit 13 is received, and the detected detection signal is transmitted to the personal computer 23. The personal computer 23 determines the presence / absence of a defect based on the detection signal input from the signal processing means 21.
The driving means 22 rotates or slides (reciprocates) the tool T based on a control signal from the personal computer 23. Note that the cylinder S may be rotated or slid.

●[第1の実施の形態(図2、図4)]
次に図2(A)〜(C)、及び図4を用いて第1の実施の形態について説明する。
検出パイプ10の挿入部11には、複数の受光用光ファイバ13bと複数の投光用光ファイバ13aが収容されている。
図2(A)に示すように、第1の実施の形態では、検出部13に配置された受光用光ファイバ13bの入射面が、シリンダSの軸ZSに平行な方向に沿って列状に配置されている。また受光用光ファイバ13bの入射面は、円柱状空間の内周壁面に対向するように向けられており、各入射面は同一方向に向けられている。
また投光用光ファイバ13aの出射面は、列状に配置した受光用光ファイバ13bの入射面の隣に並列するように配置されており、各出射面は受光用光ファイバ13bの入射面と同一方向に向けられている。なお、図2(A)に示す例では、受光用光ファイバ13bの入射面を1列、投光用光ファイバ13aの出射面を2列としているが、この列の数に限定されるものではない。
[First Embodiment (FIGS. 2 and 4)]
Next, the first embodiment will be described with reference to FIGS. 2A to 2C and FIG.
The insertion portion 11 of the detection pipe 10 accommodates a plurality of light receiving optical fibers 13b and a plurality of light projecting optical fibers 13a.
As shown in FIG. 2A, in the first embodiment, the incident surfaces of the light receiving optical fibers 13b arranged in the detector 13 are arranged in a line along a direction parallel to the axis ZS of the cylinder S. Is arranged. The incident surface of the light receiving optical fiber 13b is directed so as to face the inner peripheral wall surface of the cylindrical space, and the respective incident surfaces are directed in the same direction.
Further, the emission surface of the light projecting optical fiber 13a is arranged in parallel with the incident surface of the light receiving optical fiber 13b arranged in a row, and each light emitting surface is connected to the incident surface of the light receiving optical fiber 13b. They are oriented in the same direction. In the example shown in FIG. 2A, the incident surface of the light receiving optical fiber 13b has one row and the exit surface of the light projecting optical fiber 13a has two rows. However, the number is not limited to this number. Absent.

次に図2(B)及び図4を用いて、シリンダSの内周壁面の欠陥の検出を行う手順について説明する。
シリンダSの内周壁面の欠陥の検出を行う場合、まずシリンダSの軸ZSに沿ってシリンダS内に挿入部11を挿入する。挿入した位置では、投光用光ファイバ13aの各出射面、及び受光用光ファイバ13bの各入射面の各々から、対向するシリンダSの内周壁面との距離GAを所定距離(例えば1.5[mm]〜3.5[mm]の範囲内の適切な値)となるように設定する(図2(B)参照)。
図4に示すように、制御装置30は、光源31、信号変換手段32、信号増幅手段33、フィルタ手段34、判定手段35等を備えている(なお駆動手段22は図示省略)。
制御装置30は、光源31を用いて、投光用光ファイバ13aの入射面に光を入射する。例えば光源31にはLEDを用い、可視赤色光を投光用光ファイバ13aの入射面に入射する。
Next, a procedure for detecting a defect on the inner peripheral wall surface of the cylinder S will be described with reference to FIGS.
When detecting a defect on the inner peripheral wall surface of the cylinder S, the insertion portion 11 is first inserted into the cylinder S along the axis ZS of the cylinder S. At the inserted position, the distance GA between each of the emission surfaces of the light projecting optical fiber 13a and each of the incident surfaces of the light receiving optical fiber 13b and the inner peripheral wall surface of the opposing cylinder S is set to a predetermined distance (for example, 1.5). (Mm) to an appropriate value within the range of 3.5 [mm] (see FIG. 2B).
As shown in FIG. 4, the control device 30 includes a light source 31, a signal conversion unit 32, a signal amplification unit 33, a filter unit 34, a determination unit 35, and the like (note that the drive unit 22 is not shown).
The control device 30 uses the light source 31 to cause light to enter the incident surface of the light projecting optical fiber 13a. For example, an LED is used as the light source 31, and visible red light is incident on the incident surface of the light projecting optical fiber 13a.

更に制御装置30は、駆動手段22を用いて距離GAを一定に保つように、シリンダSの内周壁面の円周方向に沿って挿入部11を回転させる(図2(B)参照)。なお、挿入部11からはフレキシブルチューブ14が引き出されているため、時計方向に1回転させた次は反時計方向に1回転させる等、回転方向を交互とすることが好ましい。
そして制御装置30は、挿入部11を回転させながら受光用光ファイバ13bの出射面から出力される検出光に基づいて、シリンダSの内周壁面の欠陥を検出する。
Furthermore, the control device 30 rotates the insertion portion 11 along the circumferential direction of the inner peripheral wall surface of the cylinder S so as to keep the distance GA constant by using the driving means 22 (see FIG. 2B). In addition, since the flexible tube 14 is pulled out from the insertion part 11, it is preferable to make the rotation direction alternate, for example, to make one rotation in the counterclockwise direction after making one rotation in the clockwise direction.
And the control apparatus 30 detects the defect of the internal peripheral wall surface of the cylinder S based on the detection light output from the output surface of the optical fiber 13b for light reception, rotating the insertion part 11. FIG.

図4に示すように、受光用光ファイバ13bの出射面から出力される検出光は、信号変換手段32に入力され、電気信号に変換される。そして変換された電気信号は、信号増幅手段33に入力されて増幅され、フィルタ手段34(ローパスフィルタ等)にて高周波ノイズ成分を除去し、判定手段35にて欠陥信号を検出した場合に欠陥ありと判定する。
内周壁面に欠陥が無い場合は、図4中の一点鎖線の円に示すように、投光用光ファイバ13aの出射面13aoutから出射されて内壁面Mから反射される光の一部が受光用光ファイバ13bの入射面13binに入射され、その光の強度はほぼ一定となる。しかし、欠陥(鋳巣や加工傷等)が有る場合、欠陥部分の内壁面Mで乱反射が発生するため、入射面13binに入射される光の強度が低減する。
判定手段35は、所定の閾値(図4中のVth)が設けられており、当該閾値以下の信号(図4中のsg1)を欠陥と判定する。
As shown in FIG. 4, the detection light output from the exit surface of the light receiving optical fiber 13b is input to the signal conversion means 32 and converted into an electrical signal. The converted electrical signal is input to the signal amplifying means 33 and amplified, and when the high-frequency noise component is removed by the filter means 34 (low-pass filter or the like) and a defect signal is detected by the judging means 35, there is a defect. Is determined.
When there is no defect on the inner peripheral wall surface, a part of the light that is emitted from the emission surface 13aout of the light projecting optical fiber 13a and reflected from the inner wall surface M is received as shown by the one-dot chain circle in FIG. The light is incident on the incident surface 13bin of the optical fiber 13b, and the intensity of the light becomes substantially constant. However, when there is a defect (such as a cast hole or a processing flaw), irregular reflection occurs on the inner wall surface M of the defective portion, so that the intensity of light incident on the incident surface 13bin is reduced.
The determination means 35 is provided with a predetermined threshold (Vth in FIG. 4), and determines a signal (sg1 in FIG. 4) equal to or lower than the threshold as a defect.

例えば車両のエンジンシリンダのような比較的内径が大きなシリンダの場合、挿入部11の径φを比較的大きくできるため、投光用光ファイバ13a及び受光用光ファイバ13bの本数を多くでき、検出部13に配置する出射面及び入射面の数を多くすることができる(図2(A)中の検出部13の長さLZを長くできる)。
このため、シリンダ内周壁面の円周方向に沿って検出部13を1回転させるだけでシリンダ内周壁面の全周を検出することが可能であり、検査時間の大幅な削減、及び目視に頼らない安定した自動検査が可能となる。
なお、シリンダ内周壁面の長手方向の長さが検出部13の長さLZよりも長い場合、まず検出部13を1回転させて検出部13の長さLZの幅の内周壁面の検査を行い、検出部13を未検出部分まで長手方向にスライドさせ、逆方向に1回転させる、という検査をシリンダ内周壁面の長手方向の長さに達するまで繰り返す。
なお、図2(C)の例に示すように検出部13を複数個設ければ、検査時間の更なる短縮が可能である(図2(C)の例では、360°回転させる必要がなく、180°の回転でよい)。
For example, in the case of a cylinder having a relatively large inner diameter, such as an engine cylinder of a vehicle, the diameter φ of the insertion portion 11 can be made relatively large. Therefore, the number of light projecting optical fibers 13a and light receiving optical fibers 13b can be increased, and the detection portion 13 can increase the number of exit surfaces and entrance surfaces (the length LZ of the detector 13 in FIG. 2A can be increased).
For this reason, it is possible to detect the entire circumference of the cylinder inner peripheral wall surface only by rotating the detection unit 13 once along the circumferential direction of the cylinder inner peripheral wall surface. No stable automatic inspection is possible.
When the length of the cylinder inner peripheral wall surface in the longitudinal direction is longer than the length LZ of the detection unit 13, first, the detection unit 13 is rotated once to inspect the inner peripheral wall surface with the width of the detection unit 13 length LZ. This is repeated until the length of the inner circumferential wall surface of the cylinder reaches the length in the longitudinal direction.
Note that if a plurality of detection units 13 are provided as shown in the example of FIG. 2C, the inspection time can be further shortened (in the example of FIG. 2C, there is no need to rotate 360 °). , 180 ° rotation is sufficient).

●[第2の実施の形態(図3、図4)]
次に図3(A)〜(C)、及び図4を用いて第2の実施の形態について説明する。
第2の実施の形態は、第1の実施の形態に対して検出部13における複数の受光用光ファイバ13bの入射面と、複数の投光用光ファイバ13aの出射面の配置方向が異なる点と、シリンダS内に挿入部11を挿入した後の挿入部11の移動方向が異なる。以下、第1の実施の形態からの相違点について説明する。
[Second Embodiment (FIGS. 3 and 4)]
Next, a second embodiment will be described with reference to FIGS. 3 (A) to 3 (C) and FIG.
The second embodiment is different from the first embodiment in the arrangement direction of the incident surfaces of the plurality of light receiving optical fibers 13b and the emission surfaces of the plurality of light projecting optical fibers 13a in the detection unit 13. And the moving direction of the insertion part 11 after inserting the insertion part 11 in the cylinder S is different. Hereinafter, differences from the first embodiment will be described.

図3(A)に示すように、第2の実施の形態では、検出部13に配置された受光用光ファイバ13bの入射面が、シリンダSの軸ZSに垂直な方向に沿って列状に配置されている。また受光用光ファイバ13bの入射面は、円柱状空間の内周壁面に対向するように向けられており、各入射面は同一方向に向けられている。
また投光用光ファイバ13aの出射面は、列状に配置した受光用光ファイバ13bの入射面の隣に並列するように配置されており、各出射面は受光用光ファイバ13bの入射面と同一方向に向けられている。なお、図3(A)に示す例では、受光用光ファイバ13bの入射面を1列、投光用光ファイバ13aの出射面を2列としているが、この列の数に限定されるものではない。
As shown in FIG. 3A, in the second embodiment, the incident surfaces of the light receiving optical fibers 13b arranged in the detector 13 are arranged in a line along a direction perpendicular to the axis ZS of the cylinder S. Has been placed. The incident surface of the light receiving optical fiber 13b is directed so as to face the inner peripheral wall surface of the cylindrical space, and the respective incident surfaces are directed in the same direction.
Further, the emission surface of the light projecting optical fiber 13a is arranged in parallel with the incident surface of the light receiving optical fiber 13b arranged in a row, and each light emitting surface is connected to the incident surface of the light receiving optical fiber 13b. They are oriented in the same direction. In the example shown in FIG. 3A, the incident surface of the light receiving optical fiber 13b has one row and the exit surface of the light projecting optical fiber 13a has two rows. However, the number is not limited to this number. Absent.

次に図3(B)を用いて、シリンダSの内周壁面の欠陥の検出を行う手順について説明する。なお、図4に示す制御装置30の構成は第1の実施の形態と同じであるので説明を省略する。
シリンダSの内周壁面の欠陥の検出を行う場合、まずシリンダSの軸ZSに沿ってシリンダS内に挿入部11を挿入する。挿入した位置では、投光用光ファイバ13aの各出射面、及び受光用光ファイバ13bの各入射面の各々から、対向するシリンダSの内周壁面との距離GBを所定距離(例えば1.5[mm]〜3.5[mm]の範囲内の適切な値)となるように設定する(図3(B)参照)。
制御装置30は、光源31を用いて、投光用光ファイバ13aの入射面に光を入射する。
更に制御装置30は、駆動手段22を用いて距離GBを一定に保つように、シリンダSの内周壁面の軸方向(軸ZSの方向)に沿って挿入部11をスライド(往復)させる(図3(B)参照)。
そして制御装置30は、挿入部11をスライド(往復)させながら受光用光ファイバ13bの出射面から出力される検出光に基づいて、シリンダSの内周壁面の欠陥を検出する。
Next, a procedure for detecting a defect on the inner peripheral wall surface of the cylinder S will be described with reference to FIG. Since the configuration of the control device 30 shown in FIG. 4 is the same as that of the first embodiment, description thereof is omitted.
When detecting a defect on the inner peripheral wall surface of the cylinder S, the insertion portion 11 is first inserted into the cylinder S along the axis ZS of the cylinder S. At the inserted position, a distance GB between each of the emission surfaces of the light projecting optical fiber 13a and each of the incident surfaces of the light receiving optical fiber 13b and the inner peripheral wall surface of the opposing cylinder S is a predetermined distance (for example, 1.5). It is set to be an appropriate value within the range of [mm] to 3.5 [mm] (see FIG. 3B).
The control device 30 uses the light source 31 to cause light to enter the incident surface of the light projecting optical fiber 13a.
Further, the control device 30 slides (reciprocates) the insertion portion 11 along the axial direction (the direction of the axis ZS) of the inner peripheral wall surface of the cylinder S so as to keep the distance GB constant by using the driving means 22 (FIG. 3 (B)).
And the control apparatus 30 detects the defect of the internal peripheral wall surface of the cylinder S based on the detection light output from the output surface of the optical fiber 13b for light reception, sliding the insertion part 11 (reciprocating).

例えば車両(自動車、二輪車等)のミッションバルブシリンダ、ブレーキシリンダ、噴射ノズル穴等では、内径が小さく(例えば数[mm]程度)、挿入部11の径も小さくしなければならないため、投光用及び受光用の光ファイバの本数も少なくなり、検出可能な幅(図3(A)中の検出部13の幅LY)も狭くなる。
しかし、第2の実施の形態では、幅LYの検出幅でシリンダの長手方向にスライド(往路)させ、未検出の周部分まで回転させて長手方向にスライド(復路)させる、という検査を内周壁面の全周に達するまで繰り返す。
なお、図3(C)の例に示すように検出部13を複数個設ければ、検査時間の更なる短縮が可能である。
このように、検査時間の大幅な削減、及び目視に頼らない安定した自動検査が可能となる。
For example, in a mission valve cylinder, a brake cylinder, an injection nozzle hole, etc. of a vehicle (automobile, motorcycle, etc.), the inner diameter must be small (for example, about several [mm]) and the diameter of the insertion portion 11 must be small. In addition, the number of light receiving optical fibers is reduced, and the detectable width (the width LY of the detection unit 13 in FIG. 3A) is also reduced.
However, in the second embodiment, an inspection is performed such that the cylinder is slid in the longitudinal direction of the cylinder with the detection width of LY (forward path), is rotated to the undetected peripheral portion, and is slid in the longitudinal direction (return path). Repeat until reaching the entire circumference of the wall.
If a plurality of detection units 13 are provided as shown in the example of FIG. 3C, the inspection time can be further shortened.
In this way, it is possible to greatly reduce the inspection time and perform stable automatic inspection without relying on visual observation.

●[第3の実施の形態]
以上に説明した実施の形態では、検出部13に配置した投光用光ファイバ13aの出射面及び受光用光ファイバ13bの入射面を列状に配置したが、特に列状に配置しなくてもよい。また投光用光ファイバ13a及び受光用光ファイバ13bの本数も、単数でも複数でもよい。
要するに、投光用光ファイバ13aの出射面と受光用光ファイバ13bの入射面とを同一方向に向けて隣接させるとともに検査対象の内壁面に対向させて配置し、投光用光ファイバ13aの入射面に光を入射し、当該内壁面との距離を各々一定に保ちながら内壁面の全面を通るように移動させればよい。
移動方向も、軸方向にスライドさせても、円周方向に回転させても、内壁面との距離を各々一定に保っていれば任意の方向に移動させてよい。従って、検査対象が円柱状の内壁でなくてもよい。
そして受光用光ファイバ13bの出射面から出力された光の強度の変化に基づいて内壁面の欠陥を判定する。
なお、より短時間で検査を行うためには、移動方向に対して直行する方向に沿って複数の出射面及び入射面(投光用光ファイバ13aの出射面及び受光用光ファイバ13bの入射面)を配置することが好ましい。
● [Third embodiment]
In the embodiment described above, the emission surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b arranged in the detection unit 13 are arranged in a row. Good. The number of light projecting optical fibers 13a and light receiving optical fibers 13b may be singular or plural.
In short, the emitting surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b are arranged adjacent to each other in the same direction and face the inner wall surface of the inspection object, and the light projecting optical fiber 13a enters. Light may be incident on the surface and moved so as to pass through the entire inner wall surface while keeping the distance from the inner wall surface constant.
Even if the moving direction is slid in the axial direction or rotated in the circumferential direction, it may be moved in any direction as long as the distance from the inner wall surface is kept constant. Therefore, the inspection target may not be a cylindrical inner wall.
Then, the defect of the inner wall surface is determined based on the change in the intensity of the light output from the emission surface of the light receiving optical fiber 13b.
In order to perform the inspection in a shorter time, a plurality of emission surfaces and incident surfaces (the emission surface of the light projecting optical fiber 13a and the incident surface of the light receiving optical fiber 13b) along a direction perpendicular to the moving direction. ) Is preferably arranged.

本発明の欠陥検査装置1は、本実施の形態で説明した外観、構成、検査手順等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
The defect inspection apparatus 1 of the present invention is not limited to the appearance, configuration, inspection procedure and the like described in the present embodiment, and various modifications, additions, and deletions can be made without changing the gist of the present invention.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.

本発明の欠陥検査装置1は、車両のエンジンシリンダ、ブレーキシリンダ等、本実施の形態にて説明したシリンダに限定されず、種々のシリンダ、パイプや加工穴等の内周壁面の欠陥の検出に適用することが可能である。   The defect inspection apparatus 1 of the present invention is not limited to the cylinder described in the present embodiment, such as an engine cylinder and a brake cylinder of a vehicle, but is used to detect defects on the inner peripheral wall surface such as various cylinders, pipes, and machining holes. It is possible to apply.

本発明の欠陥検査装置1の構成、及び欠陥検査装置1を構成する検出パイプ10の構造の一実施の形態を説明する図である。It is a figure explaining one Embodiment of the structure of the defect inspection apparatus 1 of this invention, and the structure of the detection pipe 10 which comprises the defect inspection apparatus 1. FIG. 第1の実施の形態における検出部13の構造及び欠陥検査手順を説明する図である。It is a figure explaining the structure and defect inspection procedure of the detection part 13 in 1st Embodiment. 第2の実施の形態における検出部13の構造及び欠陥検査手順を説明する図である。It is a figure explaining the structure and defect inspection procedure of the detection part 13 in 2nd Embodiment. 制御装置30の構成、及び欠陥の判定方法の例を説明する図である。It is a figure explaining the example of the structure of the control apparatus 30, and the determination method of a defect.

符号の説明Explanation of symbols

1 欠陥検査装置
10 検出パイプ
11 挿入部
12 支持部
13 検出部
13a 投光用光ファイバ
13b 受光用光ファイバ
14 フレキシブルチューブ
15 取付部
21 信号処理手段
22 駆動手段
23 パーソナルコンピュータ
30 制御装置
31 光源
32 信号変換手段
33 信号増幅手段
34 フィルタ手段
35 判定手段
S シリンダ
ZS 軸

DESCRIPTION OF SYMBOLS 1 Defect inspection apparatus 10 Detection pipe 11 Insertion part 12 Support part 13 Detection part 13a Light-emitting optical fiber 13b Light-receiving optical fiber 14 Flexible tube 15 Mounting part 21 Signal processing means 22 Drive means 23 Personal computer 30 Control apparatus 31 Light source 32 Signal Conversion means 33 Signal amplification means 34 Filter means 35 Determination means S Cylinder ZS axis

Claims (4)

略円柱状空間の軸方向に沿って当該円柱状空間内に挿入される検出パイプと、前記検出パイプからの検出信号に基づいて前記円柱状空間の内周壁面の欠陥を判定する制御装置とを備え、
前記検出パイプには、投光用光ファイバと受光用光ファイバとが設けられており、
前記検出パイプの先端に、前記受光用光ファイバの入射面を、前記円柱状空間の内周壁面に対向するように配置し、
前記投光用光ファイバの出射面を、前記受光用光ファイバの入射面と隣接するように且つ同一方向となるように配置し、
前記制御装置は、
前記投光用光ファイバの入射面に光を入力し、
前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの入射面及び前記投光用光ファイバの出射面の各々から対向する前記円柱状空間の内周壁面までの距離を一定に保つように、前記円柱状空間の内周壁面の円周方向に沿って相対的に回転または前記軸方向に沿って相対的に往復させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する、
ことを特徴とする欠陥検査装置。
A detection pipe inserted into the cylindrical space along the axial direction of the substantially cylindrical space, and a control device for determining a defect on the inner peripheral wall surface of the cylindrical space based on a detection signal from the detection pipe. Prepared,
The detection pipe is provided with a light projecting optical fiber and a light receiving optical fiber,
At the tip of the detection pipe, the incident surface of the light receiving optical fiber is disposed so as to face the inner peripheral wall surface of the cylindrical space,
The emission surface of the light projecting optical fiber is arranged so as to be adjacent to the incident surface of the light receiving optical fiber and in the same direction,
The controller is
Light is input to the incident surface of the light projecting optical fiber,
The detection pipe inserted along the axial direction of the cylindrical space is connected to each of the incident surface of the light receiving optical fiber and the output surface of the light projecting optical fiber to the inner peripheral wall surface of the cylindrical space facing each other. In order to keep the distance constant, it is relatively rotated along the circumferential direction of the inner circumferential wall surface of the cylindrical space or relatively reciprocated along the axial direction, and output from the emission surface of the light receiving optical fiber. Determining a defect on the inner peripheral wall surface of the cylindrical space based on the detected light to be
A defect inspection apparatus characterized by that.
請求項1に記載の欠陥検査装置であって、
前記検出パイプには、複数の投光用光ファイバと複数の受光用光ファイバが設けられており、
前記検出パイプの先端に、前記複数の受光用光ファイバの入射面を、前記円柱状空間の軸に平行な方向に沿って列状に且つ前記円柱状空間の内周壁面に対向するように同一方向に配置し、
前記複数の投光用光ファイバの出射面を、前記列状に配置した受光用光ファイバの入射面の隣に並列するように且つ前記受光用光ファイバの入射面と同一方向となるように配置し、
前記制御装置は、
前記投光用光ファイバの入射面に光を入力し、
前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの各入射面及び前記投光用光ファイバの各出射面の各々から対向する前記円柱状空間の内周壁面までの距離を各々一定に保つように、前記円柱状空間の内周壁面の円周方向に沿って相対的に回転させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する、
ことを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
The detection pipe is provided with a plurality of light projecting optical fibers and a plurality of light receiving optical fibers,
At the tip of the detection pipe, the incident surfaces of the plurality of light receiving optical fibers are arranged in a row along the direction parallel to the axis of the cylindrical space so as to face the inner peripheral wall surface of the cylindrical space. Place in the direction,
The emission surfaces of the plurality of light projecting optical fibers are arranged so as to be in parallel with the incident surface of the light receiving optical fibers arranged in a row and in the same direction as the light receiving optical fiber. And
The controller is
Light is input to the incident surface of the light projecting optical fiber,
The detection pipe inserted along the axial direction of the columnar space has an inner peripheral wall surface of the columnar space facing each incident surface of the light receiving optical fiber and each light emitting surface of the light projecting optical fiber. In order to keep the distance to each constant, relatively rotate along the circumferential direction of the inner wall surface of the cylindrical space, based on the detection light output from the emission surface of the light receiving optical fiber Determining defects on the inner wall surface of the cylindrical space,
A defect inspection apparatus characterized by that.
請求項1に記載の欠陥検査装置であって、
前記検出パイプには、複数の投光用光ファイバと複数の受光用光ファイバが設けられており、
前記検出パイプの先端に、前記複数の受光用光ファイバの入射面を、前記円柱状空間の軸に垂直な方向に沿って列状に且つ前記円柱状空間の内周壁面に対向するように同一方向に配置し、
前記複数の投光用光ファイバの出射面を、前記列状に配置した受光用光ファイバの入射面の隣に並列するように且つ前記受光用光ファイバの入射面と同一方向となるように配置し、
前記制御装置は、
前記投光用光ファイバの入射面に光を入力し、
前記円柱状空間の軸方向に沿って挿入された検出パイプを、前記受光用光ファイバの各入射面及び前記投光用光ファイバの各出射面の各々から対向する前記円柱状空間の内周壁面までの距離を各々一定に保つように、前記軸方向に沿って相対的に往復させ、前記受光用光ファイバの出射面から出力される検出光に基づいて前記円柱状空間の内周壁面の欠陥を判定する、
ことを特徴とする欠陥検査装置。
The defect inspection apparatus according to claim 1,
The detection pipe is provided with a plurality of light projecting optical fibers and a plurality of light receiving optical fibers,
At the tip of the detection pipe, the incident surfaces of the plurality of light receiving optical fibers are arranged in a row along a direction perpendicular to the axis of the cylindrical space so as to face the inner peripheral wall surface of the cylindrical space. Place in the direction,
The emission surfaces of the plurality of light projecting optical fibers are arranged so as to be in parallel with the incident surface of the light receiving optical fibers arranged in a row and in the same direction as the light receiving optical fiber. And
The controller is
Light is input to the incident surface of the light projecting optical fiber,
The detection pipe inserted along the axial direction of the columnar space has an inner peripheral wall surface of the columnar space facing each incident surface of the light receiving optical fiber and each light emitting surface of the light projecting optical fiber. In order to keep the distance to each constant, the defect of the inner peripheral wall surface of the cylindrical space is reciprocated relatively along the axial direction and based on the detection light output from the emission surface of the light receiving optical fiber Determine
A defect inspection apparatus characterized by that.
壁面の欠陥を検出するための光を前記壁面に向けて出射する投光用光ファイバと、前記壁面から反射された前記光を入射する受光用光ファイバとを用い、
前記投光用光ファイバの出射面と前記受光用光ファイバの入射面とを隣接させて同一方向に且つ前記壁面に対向させて配置し、
前記投光用光ファイバの入射面に光を入力し、前記投光用光ファイバの出射面から前記壁面までの距離、及び前記受光用光ファイバの入射面から前記壁面までの距離の各々の距離を各々一定に保つように、前記投光用光ファイバの出射面及び前記受光用光ファイバの入射面を前記壁面に沿って相対的に移動させ、前記受光用光ファイバの入射面に入射された光の強度の変化に基づいて前記壁面の欠陥を判定する、
ことを特徴とする欠陥検査方法。

Using a light projecting optical fiber that emits light for detecting defects on the wall surface toward the wall surface, and a light receiving optical fiber that receives the light reflected from the wall surface,
An emission surface of the light projecting optical fiber and an incident surface of the light receiving optical fiber are disposed adjacent to each other in the same direction and facing the wall surface,
Light is input to the incident surface of the light projecting optical fiber, the distance from the light emitting surface of the light projecting optical fiber to the wall surface, and the distance from the light incident optical fiber to the wall surface of the light receiving optical fiber. So that the light exiting optical fiber and the light receiving optical fiber incident surface are relatively moved along the wall surface and are incident on the light receiving optical fiber incident surface. Determining defects in the wall surface based on changes in light intensity;
A defect inspection method characterized by that.

JP2005347735A 2005-12-01 2005-12-01 Flaw inspection device and flaw inspection method Pending JP2007155384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347735A JP2007155384A (en) 2005-12-01 2005-12-01 Flaw inspection device and flaw inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347735A JP2007155384A (en) 2005-12-01 2005-12-01 Flaw inspection device and flaw inspection method

Publications (1)

Publication Number Publication Date
JP2007155384A true JP2007155384A (en) 2007-06-21

Family

ID=38239971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347735A Pending JP2007155384A (en) 2005-12-01 2005-12-01 Flaw inspection device and flaw inspection method

Country Status (1)

Country Link
JP (1) JP2007155384A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900690A (en) * 2010-07-26 2010-12-01 长春理工大学 Automatic detector of inner wall of main hole of automobile brake cylinder
JP2011075281A (en) * 2009-09-29 2011-04-14 Hitachi Constr Mach Co Ltd Method for inspecting spool hole of cylinder block
CN105866139A (en) * 2016-06-15 2016-08-17 郑州铁路职业技术学院 Detecting device special for inner surface mass of brake air duct between cars
CN112098417A (en) * 2020-09-07 2020-12-18 中国工程物理研究院激光聚变研究中心 Device and method for online monitoring of surface passivation state of asphalt polishing disc in annular polishing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075281A (en) * 2009-09-29 2011-04-14 Hitachi Constr Mach Co Ltd Method for inspecting spool hole of cylinder block
CN101900690A (en) * 2010-07-26 2010-12-01 长春理工大学 Automatic detector of inner wall of main hole of automobile brake cylinder
CN105866139A (en) * 2016-06-15 2016-08-17 郑州铁路职业技术学院 Detecting device special for inner surface mass of brake air duct between cars
CN112098417A (en) * 2020-09-07 2020-12-18 中国工程物理研究院激光聚变研究中心 Device and method for online monitoring of surface passivation state of asphalt polishing disc in annular polishing

Similar Documents

Publication Publication Date Title
US8334971B2 (en) Apparatus for imaging the inner surface of a cavity within a workpiece
US10161884B2 (en) Examining device and method for examining inner walls of a hollow body
US9983149B2 (en) Bore testing device
CN101952712A (en) Device and method for optically detecting surface defect of round wire rod
AU2003293209B2 (en) An apparatus and method for detecting surface defects on a workpiece such as a rolled/drawn metal bar
US20110080588A1 (en) Non-contact laser inspection system
JP4848942B2 (en) Method and apparatus for inspecting cracks in honeycomb structure
JP2007315803A (en) Surface inspection device
KR20140033132A (en) Technique for cylindrical part inner surface inspection
JP2012229978A (en) Device for photographing inner peripheral surface of hole
JP2005031665A (en) Apparatus for searching and detecting flaw in part by endoscopy
JP6265613B2 (en) Inner surface inspection device
JP2007155384A (en) Flaw inspection device and flaw inspection method
JP2006220610A (en) Defect detector
JP2007232577A (en) Flaw inspection method and flaw inspection device
JP6907862B2 (en) Internal surface inspection device for pipes
WO2004072628A1 (en) Defect inspection device and method therefor
JPH05149885A (en) In-pipe inspection device
JP4917364B2 (en) Inspection apparatus and inspection method
US8872512B2 (en) Bench and a method for magnetoscopically testing a turbine engine shaft
JP2007163261A (en) Defect inspection device and defect inspection method
JP2004205218A (en) Device and method of inspecting appearance of inside diameter part
JP2011169782A (en) Defect inspection device
JP5473856B2 (en) Inspection device
JP3454547B2 (en) Internal scanner device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104