JP2007303947A - Ice thickness measuring method and device therefor - Google Patents

Ice thickness measuring method and device therefor Download PDF

Info

Publication number
JP2007303947A
JP2007303947A JP2006132105A JP2006132105A JP2007303947A JP 2007303947 A JP2007303947 A JP 2007303947A JP 2006132105 A JP2006132105 A JP 2006132105A JP 2006132105 A JP2006132105 A JP 2006132105A JP 2007303947 A JP2007303947 A JP 2007303947A
Authority
JP
Japan
Prior art keywords
ice
distance
thickness
plate
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006132105A
Other languages
Japanese (ja)
Inventor
Yutaka Yamauchi
豊 山内
Shigeya Mizuno
滋也 水野
Toyokichi Kimura
豊吉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2006132105A priority Critical patent/JP2007303947A/en
Publication of JP2007303947A publication Critical patent/JP2007303947A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice thickness measuring method and a device therefor capable of measuring the ice thickness without breaking an ice board, and without disturbing the state wherein crushed ice pieces are deposited. <P>SOLUTION: The distance to the water surface 11 in a water tank is determined by an ultrasonic distance sensor 40, and the ultrasonic distance sensor 40 is moved approximately horizontally, and the distance to the bottom surface of the ice board 12 or a rubble ice 13 formed on the water surface in the water tank is determined by the ultrasonic distance sensor 40. The ice thickness of the ice board 12 or the rubble ice 13 is determined based on a value determined by subtracting the distance to the bottom surface of the ice board 12 or the rubble ice 13 from the distance to the water surface 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

水槽の水面上に製氷された氷の氷厚計測方法及びその装置に関し、特に、氷に触れることなく氷厚を計測する氷厚計測方法及びその装置に関する。   More particularly, the present invention relates to an ice thickness measurement method and apparatus for measuring the ice thickness without touching the ice.

従来の氷厚計測方法は、例えば、「…氷が全て溶けた時の蓄氷槽の底面から水面までの製氷前距離を予め測定しておくとともに、製氷後における前記蓄氷槽の底面から氷境界面までの製氷後距離を測定し、前記製氷前距離から前記製氷後距離を減算し、蓄氷槽内の水減少量を算出し、この水減少量を蓄氷量とする…」ようなものが提案されている(例えば、特許文献1参照)。   The conventional ice thickness measuring method is, for example, “... pre-ice-making distance from the bottom surface of the ice storage tank to the water surface when all the ice melts is measured in advance, and the ice from the bottom surface of the ice storage tank after ice making is measured. Measure the post-ice-making distance to the boundary surface, subtract the post-ice-making distance from the pre-ice making distance, calculate the amount of water reduction in the ice storage tank, and use this amount of water reduction as the amount of ice storage. The thing is proposed (for example, refer patent document 1).

また、例えば、氷海中を航行する船舶の性能を調べるため、水槽の水面上に製氷された氷を模型船や構造物模型等(以下、模型船等という)により砕氷させる氷海水槽試験(以下、試験ともいう)での氷厚計測においては、試験前に、水槽の水面上に製氷された氷板から切り出したサンプル氷をノギス等の尺によって直接氷厚を測定する方法、若しくは試験後に模型船等によって砕氷された氷片を、同様に直接氷厚を測定する方法が用いられている。また、砕氷片が積み重なった氷(以下、ラブル氷という)の測定においては、氷片の集積状態を崩さないように測定するため、ラブル氷を上面から下面まで貫通可能で、貫通後に可動するストッパーでラブル氷の底面を認知できる尺を使用し、ラブル氷の厚さを測定する方法が用いられている。   In addition, for example, in order to investigate the performance of a ship navigating in the ice sea, an ice seawater tank test (hereinafter referred to as a model ship, etc.) that crushes ice produced on the surface of the aquarium with a model ship or a structural model (hereinafter referred to as a model ship). In the ice thickness measurement in the test), the sample ice cut out from the ice plate made on the surface of the aquarium can be directly measured with a caliper or the like before the test, or the model ship after the test. Similarly, a method of directly measuring the ice thickness of ice pieces crushed by the same method is used. In addition, in the measurement of ice with a stack of crushed ice pieces (hereinafter referred to as “rubble ice”), a stopper that can penetrate the ruble ice from the upper surface to the lower surface and move after it penetrates is measured so as not to destroy the accumulated state of the ice pieces. Using a scale that can recognize the bottom surface of the ice cubes, the method of measuring the thickness of the ice cubes is used.

特開平8−5109公報(請求項1、図1)JP-A-8-5109 (Claim 1, FIG. 1)

水槽に製氷された氷板は、場所によって氷厚にはばらつきがあり、氷海水槽試験を行う氷板の範囲全体に亘って氷厚を計測することが望まれている。また、ラブル氷の場合には、氷板と比較し厚さにばらつきが大きく、多数の箇所でラブル氷の厚さを計測することが望まれている。   The ice plate made in the water tank varies in ice thickness depending on the location, and it is desired to measure the ice thickness over the entire range of the ice plate for the ice seawater tank test. Further, in the case of rumble ice, there is a large variation in thickness compared to an ice plate, and it is desired to measure the thickness of the rumble ice at a number of locations.

しかしながら、従来の氷厚計測方法は、氷が全て溶けた時の蓄氷槽の底面から水面までの製氷前距離を予め測定しておくとともに、製氷後における前記蓄氷槽の底面から氷境界面までの製氷後距離を測定するため、蓄氷槽の蓄氷量を測定することは可能であるが、氷海水槽試験を行う水槽に製氷された氷板又はラブル氷の氷厚測定に適用した場合、多数の箇所で氷厚を計測することができないという問題点があった。   However, the conventional ice thickness measurement method measures in advance the ice making distance from the bottom surface of the ice storage tank to the water surface when all of the ice melts, and the ice boundary surface from the bottom surface of the ice storage tank after ice making. In order to measure the distance after ice making, it is possible to measure the amount of ice stored in the ice storage tank, but when applied to the measurement of the ice thickness of ice plates or ice rubble made in the water tank for the ice seawater tank test There was a problem that the ice thickness could not be measured in many places.

また、氷厚をノギス等によって測定する氷厚計測方法は、多数のサンプル氷を切り取ると試験そのものに影響を及ぼすため、サンプルを取る場所は限られており、また、試験後に模型船等によって砕氷された砕氷片をノギス等によって測定する場合、模型船等が通過した領域全体に亘って、氷厚を計測するためには多大な時間と労力を要するため、多数の箇所で氷厚を計測することができないという問題点があった。   In addition, the ice thickness measurement method that measures the ice thickness with calipers or the like affects the test itself if a large number of sample ice is cut out, so the place where the sample is taken is limited. When measuring the crushed ice pieces with calipers etc., it takes a lot of time and labor to measure the ice thickness over the entire area where the model ship passed, so measure the ice thickness at many places There was a problem that it was not possible.

更に、模型船等がラブル氷を通過すると、模型船等の周囲の広い範囲に亘ってラブル氷を構成する氷片が動くため、試験前にラブル氷の氷片の堆積状態を乱すことなくラブル氷の厚さを測定する必要があるが、尺を通過させるとき、堆積状態を乱し、厚さを精度良く測定することができないという問題点があった。   In addition, when the model ship passes through the ice, the ice pieces that make up the ice move over a wide area around the model ship. Although it is necessary to measure the thickness of the ice, there is a problem that when passing through the scale, the accumulation state is disturbed and the thickness cannot be measured with high accuracy.

本発明は、上述のような課題を解決するためになされたもので、氷板を破壊することなく、或いは砕氷片が堆積した状況を乱すことなく、氷厚を計測することのできる氷厚計測方法及びその装置を得るものである。   The present invention has been made to solve the above-described problems, and is capable of measuring the ice thickness without destroying the ice plate or disturbing the situation in which the crushed ice pieces are accumulated. A method and apparatus are obtained.

本発明に係る氷厚計測方法は、水槽の水面上に形成された氷板又は砕氷の氷厚を測定する氷厚計測方法であって、距離計測手段により、水槽の水面までの距離を求め、距離計測手段により、水槽の水面上に形成された氷板又は砕氷の底面までの距離を求め、水面までの距離から、氷板又は砕氷の底面までの距離を減算した値に基づき、氷板又は砕氷の氷厚を求めるものである。   The ice thickness measurement method according to the present invention is an ice thickness measurement method for measuring the ice thickness of an ice plate or crushed ice formed on the water surface of the water tank, and the distance measurement means obtains the distance to the water surface of the water tank, The distance measurement means determines the distance to the bottom of the ice plate or crushed ice formed on the water surface of the water tank, and based on the value obtained by subtracting the distance to the bottom of the ice plate or crushed ice from the distance to the water surface, The ice thickness of the crushed ice is obtained.

また、距離計測手段を略水平に移動させながら、氷板又は砕氷の底面までの距離を求めるものである。   Further, the distance measuring means is moved substantially horizontally, and the distance to the bottom surface of the ice plate or crushed ice is obtained.

本発明に係る氷厚計測装置は、水槽の水中を略水平に移動する水中台車と、水中台車に設置され、水槽の水面までの距離及び水槽の水面上に形成された氷板若しくは砕氷の底面までの距離を測定する距離計測手段とを備え、水面までの距離から、氷板又は砕氷の底面までの距離を減算した値に基づき、氷板又は砕氷の氷厚を求めるものである。   The ice thickness measuring apparatus according to the present invention is an underwater cart that moves substantially horizontally in the water of the aquarium, and the bottom of the ice plate or ice break that is installed on the underwater cart, the distance to the water surface of the aquarium, and the water surface of the aquarium Distance measuring means for measuring the distance to the water surface, and the ice thickness of the ice plate or crushed ice is obtained based on a value obtained by subtracting the distance to the bottom surface of the ice plate or crushed ice from the distance to the water surface.

また、距離計測手段は、水面又は氷板若しくは砕氷の底面に向けて超音波を発信するとともにその反射波を受信して距離を計測する超音波距離センサである。   The distance measuring means is an ultrasonic distance sensor that transmits an ultrasonic wave toward a water surface, an ice plate, or a bottom surface of crushed ice and receives a reflected wave to measure a distance.

また、水中台車を所望の位置に移動させる水中台車移動手段を備えたものである。   Moreover, an underwater cart moving means for moving the underwater cart to a desired position is provided.

また、水槽の底部に略水平に設置された水中レールを備え、水中台車は水中レール上を走行するものである。   In addition, an underwater rail installed substantially horizontally at the bottom of the aquarium is provided, and the underwater cart travels on the underwater rail.

また、距離計測手段を、水中台車の走行方向に対して直交する方向に複数個並設したものである。   Further, a plurality of distance measuring means are arranged in parallel in a direction orthogonal to the traveling direction of the underwater cart.

また、距離計測手段は、鉛直方向に移動可能に設置されるものである。   The distance measuring means is installed to be movable in the vertical direction.

本発明は、距離計測手段により、水槽の水面までの距離と、水槽の水面上に形成された氷板又は砕氷の底面までの距離とを求め、水面までの距離から、氷板又は砕氷の底面までの距離を減算した値に基づき、氷板又は砕氷の氷厚を求めることにより、氷板を破壊することなく、或いは砕氷片が堆積した状況を乱すことなく、氷厚を計測することができる。   The present invention obtains the distance to the water surface of the water tank and the distance to the bottom surface of the ice plate or crushed ice formed on the water surface of the water tank by the distance measuring means, and the bottom surface of the ice plate or crushed ice from the distance to the water surface. The ice thickness can be measured without destroying the ice plate or disturbing the situation where the ice pieces have accumulated by obtaining the ice thickness of the ice plate or crushed ice based on the value obtained by subtracting the distance to .

実施の形態1.
図1は実施の形態1に係る氷厚測定装置の構成を示す図、図2は実施の形態1に係る超音波センサの配置を示す図である。図において、氷海水槽10は、例えば、模型船等を水槽の長さ方向に航行させ、水槽の水面11上に製氷された氷板12又はラブル氷13を砕氷させることにより、氷海中を航行する船舶の性能を調べるための氷海水槽試験を行う水槽である。試験時には、氷海水槽10内は所望の水位の水槽水14で満たされ、水面11上には、一部試験に供しない水面部15を除き、ほぼ平坦な氷板12又は砕氷片が積み重なったラブル氷13が製氷される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of an ice thickness measuring apparatus according to the first embodiment, and FIG. 2 is a diagram showing an arrangement of ultrasonic sensors according to the first embodiment. In the figure, an ice seawater tank 10 navigates in an ice sea by, for example, navigating a model ship or the like in the length direction of the aquarium, and breaking ice plates 12 or rumble ice 13 formed on the water surface 11 of the aquarium. It is a water tank that conducts ice seawater tank tests to examine the performance of ships. At the time of the test, the ice seawater tank 10 is filled with aquarium water 14 of a desired level, and on the water surface 11, except for the water surface part 15 which is not subjected to some tests, a substantially flat ice plate 12 or ice pieces are stacked. Ice 13 is made.

この氷板12又はラブル氷13の氷厚を測定する氷厚測定装置は、氷海水槽10の底面に略水平に設置された水中レール20と、その水中レール20の上を氷海水槽10の長さ方向に走行する水中台車30と、水中台車30上に、側距方向を鉛直上向きにして超音波を発信すると共にその反射波を受信して距離を計測する距離計測手段である超音波距離センサ40と、水中台車30に接続され、水中台車30を所望の位置に移動させる水中台車移動手段であるワイヤー50とによって構成される。また、超音波距離センサ40は、水中台車30の走行方向に対して直交する方向である氷海水槽10の幅方向に複数個並設されている。   The ice thickness measuring device for measuring the ice thickness of the ice plate 12 or the rumble ice 13 is an underwater rail 20 installed substantially horizontally on the bottom surface of the ice seawater tank 10 and the length of the ice seawater tank 10 above the underwater rail 20. An ultrasonic distance sensor 40 that is a distance measuring means that transmits an ultrasonic wave on the underwater carriage 30 with the side distance direction vertically upward and receives the reflected wave to measure the distance. And a wire 50 that is connected to the underwater carriage 30 and is an underwater carriage moving means for moving the underwater carriage 30 to a desired position. A plurality of ultrasonic distance sensors 40 are arranged side by side in the width direction of the ice seawater tank 10, which is a direction orthogonal to the traveling direction of the underwater cart 30.

また、超音波距離センサ40は、氷海水槽10外に配置する表示部(図示せず)を有しており、計測した距離の情報を表示する。尚、複数の超音波距離センサ40の表示部を共通とし、各超音波距離センサ40と接続切換えにより計測情報を表示させても良い。   Moreover, the ultrasonic distance sensor 40 has a display part (not shown) arrange | positioned outside the ice seawater tank 10, and displays the information of the measured distance. In addition, the display part of the some ultrasonic distance sensor 40 may be made common, and measurement information may be displayed by each ultrasonic distance sensor 40 and connection switching.

また、図2に示すように、超音波距離センサ40の氷海水槽10幅方向の設置範囲は、模型船等の幅より広くし、超音波距離センサ40の個数は幅方向に10個以上配列することが望ましい。また、水中台車30の位置を目視により把握するため、水中台車30に、上向きにビーム光など照射する光源(図示せず)を設置しても良い。
このような構成により氷厚を測定する動作の詳細について図3及び図4により説明する。
Further, as shown in FIG. 2, the installation range of the ultrasonic distance sensor 40 in the width direction of the ice seawater tank 10 is wider than the width of a model ship or the like, and the number of ultrasonic distance sensors 40 is arranged in the width direction of 10 or more. It is desirable. Moreover, in order to grasp | ascertain the position of the underwater cart 30 by visual observation, you may install in the underwater cart 30 the light source (not shown) which irradiates beam light etc. upwards.
The details of the operation of measuring the ice thickness with such a configuration will be described with reference to FIGS.

図3は実施の形態1に係る水面までの距離計測を示す図、図4は実施の形態1に係る氷板底面までの距離計測を示す図である。まず、図3に示すように、水中台車30は、氷厚測定を行う者(以下、測定者という)のワイヤー50を用いた手動操作により、水面上に氷板12又はラブル氷13のない位置に移動される。各超音波距離センサ40は、当該超音波距離センサ40から水面11までの距離をそれぞれ計測し、表示部に測定した距離の情報を表示する。測定者は各超音波距離センサ40の測定値をそれぞれ取得する。次に、図4に示すように、水中台車30は、測定者の手動操作により、氷海水槽10の長さ方向に設置された水中レール20上を走行する。各超音波距離センサ40は、当該超音波距離センサ40から水面上に製氷された氷板12又はラブル氷13底面までの距離をそれぞれ計測し、表示部に測定した距離の情報を表示する。測定者は各超音波距離センサ40の測定値をそれぞれ取得する。測定者は、氷厚測定を行う所望の位置に水中台車30を移動させ、上記氷板12又はラブル氷13の底面までの距離を取得する。   3 is a diagram illustrating distance measurement to the water surface according to the first embodiment, and FIG. 4 is a diagram illustrating distance measurement to the ice plate bottom according to the first embodiment. First, as shown in FIG. 3, the underwater cart 30 is located at a position where the ice plate 12 or the rumble ice 13 is not on the water surface by manual operation using a wire 50 of a person who performs ice thickness measurement (hereinafter referred to as a measurer). Moved to. Each ultrasonic distance sensor 40 measures the distance from the ultrasonic distance sensor 40 to the water surface 11 and displays the measured distance information on the display unit. The measurer acquires the measurement values of each ultrasonic distance sensor 40. Next, as shown in FIG. 4, the underwater cart 30 travels on the underwater rail 20 installed in the length direction of the ice seawater tank 10 by the operator's manual operation. Each ultrasonic distance sensor 40 measures the distance from the ultrasonic distance sensor 40 to the bottom surface of the ice plate 12 or the iceable ice 13 made on the water surface, and displays the measured distance information on the display unit. The measurer acquires the measurement values of each ultrasonic distance sensor 40. The measurer moves the underwater cart 30 to a desired position where the ice thickness is measured, and acquires the distance to the bottom surface of the ice plate 12 or the rumble ice 13.

氷厚測定を行う所望の位置での測定値を取得した後、測定者は、取得した水面までの距離から氷板12又はラブル氷13底面までの距離を減算した値に基づき各測定位置での氷厚を算出する。尚、氷厚の算出は、水面上の氷の厚さを考慮し、氷の比重に関する補正を行い氷厚を求めても良く、その他必要な補正をした算出を行っても良い。   After acquiring the measurement value at the desired position where the ice thickness measurement is performed, the measurer obtains the value at each measurement position based on the value obtained by subtracting the distance to the bottom surface of the ice plate 12 or the ice rubble 13 from the acquired distance to the water surface. Calculate ice thickness. In calculating the ice thickness, the ice thickness may be obtained by correcting the specific gravity of the ice in consideration of the thickness of the ice on the water surface, or may be calculated with other necessary corrections.

図5は実施の形態1に係るラブル氷の氷厚計測例を示す図である。図5においては、超音波距離センサ40を幅方向に10個配列し、氷海水槽10の長さ方向に2m間隔で8箇所測定したラブル氷13の水面下厚さの分布例であり、各測定点における氷厚を計測することができ、また、図に示すようにラブル氷13の底面の形状を把握することができる。   FIG. 5 is a diagram showing an example of measuring the ice thickness of the rubble ice according to the first embodiment. FIG. 5 shows an example of the distribution of the thickness below the surface of the rubble ice 13 in which 10 ultrasonic distance sensors 40 are arranged in the width direction and measured at 8 points in the length direction of the ice seawater tank 10 at intervals of 2 m. The ice thickness at the point can be measured, and the shape of the bottom surface of the rubble ice 13 can be grasped as shown in the figure.

以上のように、氷海水槽10の底面を水槽の長さ方向に走行する水中台車30上に配列された複数の超音波距離センサ40によって、水面11までの距離と氷板12若しくはラブル氷13の底面までの距離をこれらに触れることなく測定し、その差分によって氷厚を計測することにより、氷板12を破壊することなく、或いは砕氷片が堆積した状況を乱すことなく氷厚を計測することのできる。また、サンプル採取に伴う時間や労力を軽減し、氷板12若しくはラブル氷13の状態に影響を及ぼさないことにより、氷厚を精度良く測定することができる。また、試験を行う氷板12若しくはラブル氷13の範囲全体に亘って氷厚を計測することができる。   As described above, the plurality of ultrasonic distance sensors 40 arranged on the underwater cart 30 that travels along the bottom surface of the ice seawater tank 10 in the length direction of the water tank, the distance to the water surface 11 and the ice plate 12 or the rumble ice 13 Measuring the distance to the bottom without touching them, and measuring the ice thickness based on the difference between them, measuring the ice thickness without destroying the ice plate 12 or disturbing the situation in which the ice pieces have accumulated. I can do it. Also, the ice thickness can be measured with high accuracy by reducing the time and labor involved in sample collection and not affecting the state of the ice plate 12 or the rubble ice 13. In addition, the ice thickness can be measured over the entire range of the ice plate 12 or the rubble ice 13 to be tested.

尚、本実施形態においては、水中台車30を、水中台車30に接続されたワイヤー50を用いて手動により移動させたが、本発明はこれに限らず、電動機などを用いて移動させても良い。   In the present embodiment, the underwater cart 30 is manually moved using the wire 50 connected to the underwater cart 30, but the present invention is not limited thereto, and may be moved using an electric motor or the like. .

また、本実施形態においては、測定者の手動操作により所望の位置に水中台車30を移動させ、逐次氷厚の測定を行ったが、本発明はこれに限らず、水中台車30の移動距離又は位置を検出し、検出した位置の情報と測定した氷板12又はラブル氷13までの距離情報とに基づき、連続的に氷板12又はラブル氷13の氷厚を求めても良い。   In the present embodiment, the underwater carriage 30 is moved to a desired position by manual measurement by the measurer, and the ice thickness is sequentially measured. However, the present invention is not limited thereto, and the movement distance of the underwater carriage 30 or The position may be detected, and the ice thickness of the ice plate 12 or the rubble ice 13 may be obtained continuously based on the detected position information and the measured distance information to the ice plate 12 or the rubble ice 13.

実施の形態2.
本実施の形態2では、上記実施の形態1の構成に加え、超音波距離センサ40に接続される演算処理部(図示せず)と、水中台車30の移動距離を検出する距離計(図示せず)を備えた構成とする。
Embodiment 2. FIG.
In the second embodiment, in addition to the configuration of the first embodiment, an arithmetic processing unit (not shown) connected to the ultrasonic distance sensor 40 and a distance meter (not shown) for detecting the moving distance of the underwater cart 30. 2).

このような構成による本実施形態における動作を次に説明する。
上記実施の形態1と同様に、水中台車30は、水面上に氷板12又はラブル氷13のない位置に移動される。各超音波距離センサ40は、当該超音波距離センサ40から水面11までの距離をそれぞれ計測し、測定した距離の情報を演算処理部に入力する。演算処理部は入力された距離の情報をそれぞれ記憶する。
Next, the operation of the present embodiment having such a configuration will be described.
As in the first embodiment, the underwater cart 30 is moved to a position where there is no ice plate 12 or rumble ice 13 on the water surface. Each ultrasonic distance sensor 40 measures the distance from the ultrasonic distance sensor 40 to the water surface 11 and inputs information on the measured distance to the arithmetic processing unit. The arithmetic processing unit stores the input distance information.

次に、水中台車30は、測定者の手動操作又は電動機等により、氷海水槽10の長さ方向に設置された水中レール20上を走行する。各超音波距離センサ40は、当該超音波距離センサ40から水面上に製氷された氷板12又はラブル氷13底面までの距離をそれぞれ計測し、測定した距離の情報を演算処理部に入力する。演算処理部は入力された距離の情報をそれぞれ記憶する。このとき、距離計は、水中台車30の移動距離を検出し、検出した移動距離の情報を演算処理部に入力する。尚、超音波距離センサ40の距離計測は任意の走行距離毎に行っても良い。   Next, the underwater carriage 30 travels on the underwater rail 20 installed in the length direction of the ice seawater tank 10 by the operator's manual operation or an electric motor. Each ultrasonic distance sensor 40 measures the distance from the ultrasonic distance sensor 40 to the bottom surface of the ice plate 12 or the iceable ice 13 made on the water surface, and inputs the measured distance information to the arithmetic processing unit. The arithmetic processing unit stores the input distance information. At this time, the distance meter detects the movement distance of the underwater cart 30 and inputs information on the detected movement distance to the arithmetic processing unit. In addition, you may perform the distance measurement of the ultrasonic distance sensor 40 for every arbitrary travel distance.

演算処理部は、水中台車30が所定の距離走行後、記憶した水面11までの距離から氷板12又はラブル氷13底面までの距離を減算した値に基づき各測定位置での氷厚を算出する。尚、氷厚の算出は、水面上の氷の厚さを考慮し、氷の比重に関する補正を行い氷厚を求めても良く、その他必要な補正をした算出を行っても良い。   The arithmetic processing unit calculates the ice thickness at each measurement position based on a value obtained by subtracting the distance from the stored distance to the water surface 11 to the bottom surface of the ice plate 12 or the iceable ice 13 after the underwater cart 30 has traveled a predetermined distance. . In calculating the ice thickness, the ice thickness may be obtained by correcting the specific gravity of the ice in consideration of the thickness of the ice on the water surface, or may be calculated with other necessary corrections.

以上のように、水中台車30の移動距離を検出する距離計と、超音波距離センサ40の測定値の情報が入力され氷厚を算出する演算処理部とを設けることにより、試験を行う氷板12若しくはラブル氷13の範囲全体に亘って氷厚を計測する場合の、多大な時間と労力を削減することができる。   As described above, the ice plate to be tested is provided by providing the distance meter that detects the moving distance of the underwater cart 30 and the arithmetic processing unit that inputs the information of the measurement value of the ultrasonic distance sensor 40 and calculates the ice thickness. It is possible to reduce a great amount of time and labor when measuring the ice thickness over the entire range of the twelve or the rubble ice 13.

実施の形態3.
本実施の形態3では、ラブル氷13の氷厚測定において、ラブル氷13の砕氷片の大きさに応じて超音波距離センサ40を適切な位置に配置する。本実施形態において、超音波距離センサ40は、水中台車30に鉛直方向に移動可能に設置する。例えば、取付け高さを調整可能な取付け部材(図示せず)を用いる。尚、その他の構成は上記実施の形態1と同様である。次に、超音波距離センサ40の測定範囲と距離との関係について説明する。
Embodiment 3 FIG.
In the third embodiment, in measuring the ice thickness of the ruble ice 13, the ultrasonic distance sensor 40 is arranged at an appropriate position in accordance with the size of the ice piece of the ruble ice 13. In the present embodiment, the ultrasonic distance sensor 40 is installed on the underwater cart 30 so as to be movable in the vertical direction. For example, an attachment member (not shown) capable of adjusting the attachment height is used. Other configurations are the same as those in the first embodiment. Next, the relationship between the measurement range of the ultrasonic distance sensor 40 and the distance will be described.

図6は実施の形態3に係るラブル氷による氷厚計測の検証例を示す図である。超音波距離センサ40は、超音波を発信すると共にその反射波を受信して距離を計測する。超音波は、その発射部から水中を伝搬するにしたがって、その指向性が広がっていくため、反射面までの距離が離れるにつれて、測定解像度は広くなる。ラブル氷13は砕氷片が堆積した氷群であり、その底面は、図6(b)に示すように、砕氷片が集合して不規則かつ空隙のある底面を形成している。このような底面を指向性の狭い超音波により測定すると砕氷片が堆積した内部に超音波が浸入し乱反射により正確な距離が測定することができない。また、指向性の広い超音波を用いると、ラブル氷底面の形状の変化を測定することができない。   FIG. 6 is a diagram showing an example of verification of ice thickness measurement using rumble ice according to the third embodiment. The ultrasonic distance sensor 40 transmits ultrasonic waves and receives the reflected waves to measure the distance. Since the directivity of the ultrasonic wave spreads as it propagates from the launching part into the water, the measurement resolution becomes wider as the distance to the reflecting surface increases. The rubble ice 13 is an ice group on which crushed ice pieces are deposited, and the bottom surface of the rubble ice 13 gathers to form an irregular and void bottom surface as shown in FIG. 6 (b). When such a bottom surface is measured by ultrasonic waves with narrow directivity, the ultrasonic waves penetrate into the inside where the crushed ice pieces are deposited, and an accurate distance cannot be measured due to irregular reflection. In addition, if ultrasonic waves having a wide directivity are used, it is impossible to measure the change in the shape of the bottom surface of the iceable ice.

ラブル氷13底面の形状の変化を測定するには、ラブル氷13の底面をほぼ包絡線状に測定することが必要となり、このような測定を行うためには、測定範囲がラブル氷13の大きさと同じか若干大きくする必要がある。この測定範囲は、超音波距離センサ40の固有の超音波波長と、超音波距離センサ40から反射面、即ち、ラブル氷13底面までの距離との関係に依存する。従って、水中台車30に設けた取付け高さを調整可能な取付け部材(図示せず)を用いて超音波距離センサ40を鉛直方向に移動させ測定範囲を適切な大きさとなるように調節する。例えば、ラブル氷を構成する個々の氷片の大きさが4cmである場合に対し、測定面直径が5cmとなるように、超音波距離センサ40を鉛直方向に移動させる。   In order to measure the change in the shape of the bottom surface of the ice cube 13, it is necessary to measure the bottom surface of the ice cube 13 almost in an envelope shape. Must be the same or slightly larger. This measurement range depends on the relationship between the unique ultrasonic wavelength of the ultrasonic distance sensor 40 and the distance from the ultrasonic distance sensor 40 to the reflection surface, that is, the bottom surface of the ice cube 13. Accordingly, the ultrasonic distance sensor 40 is moved in the vertical direction using an attachment member (not shown) capable of adjusting the attachment height provided on the underwater cart 30 to adjust the measurement range to an appropriate size. For example, the ultrasonic distance sensor 40 is moved in the vertical direction so that the diameter of the measurement surface is 5 cm when the size of each ice piece constituting the rumble ice is 4 cm.

図7は実施の形態3に係るラブル氷による氷厚計測の検証結果例を示す図である。図7は、砕氷片が集合して不規則かつ空隙のある底面を有するラブル氷13においても、測定が可能であることを確認するために実施した要素試験の結果である。尚、図7において、横軸はラブル氷13の氷厚を尺などにより実測した値であり、縦軸は超音波距離センサ40を用いて算出したラブル氷13の氷厚の値である。上述したように、超音波距離センサ40による対象物の測定範囲は、距離と共に広がる性質があり、この距離を調整して対象物の測定範囲を砕氷片の大きさ程度に調整することにより、局所的な凹凸の影響を除くことができる。実測の氷厚と超音波距離センサ40によって測定した氷厚は、ラブル氷13において良く一致していることがわかる。   FIG. 7 is a diagram showing an example of a verification result of ice thickness measurement by the rubble ice according to the third embodiment. FIG. 7 shows the result of an element test conducted to confirm that measurement is possible even on the ice cubes 13 having a bottom surface with irregular and voids where the pieces of ice are gathered. In FIG. 7, the horizontal axis is a value obtained by actually measuring the ice thickness of the ruble ice 13 with a scale or the like, and the vertical axis is the ice thickness value of the ruble ice 13 calculated using the ultrasonic distance sensor 40. As described above, the measurement range of the object by the ultrasonic distance sensor 40 has a property of expanding with the distance. By adjusting this distance and adjusting the measurement range of the object to the size of the ice breaker, The effect of unevenness can be eliminated. It can be seen that the actual ice thickness and the ice thickness measured by the ultrasonic distance sensor 40 agree well with each other in the ice cubes 13.

以上のように、水中台車30に超音波距離センサ40を鉛直方向に移動可能に設置し、超音波距離センサ40とラブル氷底面との距離を調整して測定範囲を砕氷片の大きさ程度に調整することにより、ラブル氷13の氷厚を精度良く測定することができる。   As described above, the ultrasonic distance sensor 40 is installed on the underwater cart 30 so as to be movable in the vertical direction, the distance between the ultrasonic distance sensor 40 and the ruble ice bottom is adjusted, and the measurement range is set to the size of the ice breaker. By adjusting, the ice thickness of the rubble ice 13 can be accurately measured.

実施の形態1に係る氷厚測定装置の構成を示す図である。1 is a diagram showing a configuration of an ice thickness measuring apparatus according to Embodiment 1. FIG. 実施の形態1に係る超音波センサの配置を示す図である。2 is a diagram illustrating an arrangement of ultrasonic sensors according to Embodiment 1. FIG. 実施の形態1に係る水面までの距離計測を示す図である。It is a figure which shows distance measurement to the water surface which concerns on Embodiment 1. FIG. 実施の形態1に係る氷板底面までの距離計測を示す図である。It is a figure which shows distance measurement to the ice-plate bottom which concerns on Embodiment 1. FIG. 実施の形態1に係るラブル氷の氷厚計測例を示す図である。It is a figure which shows the ice thickness measurement example of the ruble ice which concerns on Embodiment 1. FIG. 実施の形態3に係るラブル氷による氷厚計測の検証例を示す図である。It is a figure which shows the verification example of the ice thickness measurement by the rumble ice which concerns on Embodiment 3. FIG. 実施の形態3に係るラブル氷による氷厚計測の検証結果例を示す図である。It is a figure which shows the example of a verification result of the ice thickness measurement by the rable ice which concerns on Embodiment 3. FIG.

符号の説明Explanation of symbols

10 氷海水槽、11 水面、12 氷板、13 ラブル氷、14 水槽水、15 水面部、20 水中レール、30 水中台車、40 超音波距離センサ、50 ワイヤー。
10 ice seawater tank, 11 water surface, 12 ice plate, 13 rubble ice, 14 water tank water, 15 water surface part, 20 underwater rail, 30 underwater cart, 40 ultrasonic distance sensor, 50 wires.

Claims (8)

水槽の水面上に形成された氷板又は砕氷の氷厚を測定する氷厚計測方法であって、
距離計測手段により、前記水槽の水面までの距離を求め、
前記距離計測手段により、前記水槽の水面上に形成された氷板又は砕氷の底面までの距離を求め、
前記水面までの距離から、前記氷板又は砕氷の底面までの距離を減算した値に基づき、前記氷板又は砕氷の氷厚を求めることを特徴とする氷厚計測方法。
An ice thickness measurement method for measuring the ice thickness of an ice plate or crushed ice formed on the surface of a water tank,
By the distance measuring means, obtain the distance to the water surface of the aquarium,
By the distance measuring means, obtain the distance to the bottom of the ice plate or crushed ice formed on the water surface of the water tank,
An ice thickness measurement method, wherein an ice thickness of the ice plate or crushed ice is obtained based on a value obtained by subtracting a distance to the bottom surface of the ice plate or crushed ice from a distance to the water surface.
前記距離計測手段を略水平に移動させながら、前記氷板又は砕氷の底面までの距離を求めることを特徴とする請求項1記載の氷厚計測方法。   2. The ice thickness measuring method according to claim 1, wherein a distance to a bottom surface of the ice plate or crushed ice is obtained while moving the distance measuring means substantially horizontally. 水槽の水中を略水平に移動する水中台車と、
前記水中台車に設置され、前記水槽の水面までの距離及び前記水槽の水面上に形成された氷板若しくは砕氷の底面までの距離を測定する距離計測手段とを備え、
前記水面までの距離から、前記氷板又は砕氷の底面までの距離を減算した値に基づき、前記氷板又は砕氷の氷厚を求めることを特徴とする氷厚計測装置。
An underwater cart that moves substantially horizontally in the water of the aquarium,
A distance measuring means that is installed in the underwater cart and measures the distance to the water surface of the aquarium and the distance to the ice plate formed on the water surface of the aquarium or the bottom surface of the crushed ice;
An ice thickness measuring device for obtaining an ice thickness of the ice plate or crushed ice based on a value obtained by subtracting a distance to the bottom surface of the ice plate or crushed ice from a distance to the water surface.
前記距離計測手段は、前記水面又は前記氷板若しくは砕氷の底面に向けて超音波を発信するとともにその反射波を受信して距離を計測する超音波距離センサであることを特徴とする請求項3記載の氷厚計測装置。   The distance measuring means is an ultrasonic distance sensor that transmits an ultrasonic wave toward the water surface or the bottom surface of the ice plate or crushed ice and receives the reflected wave to measure the distance. The ice thickness measuring device described. 前記水中台車を所望の位置に移動させる水中台車移動手段を備えたことを特徴とする請求項3又は4記載の氷厚計測装置。   The ice thickness measuring device according to claim 3 or 4, further comprising an underwater cart moving means for moving the underwater cart to a desired position. 前記水槽の底部に略水平に設置された水中レールを備え、
前記水中台車は前記水中レール上を走行することを特徴とする請求項3〜5の何れかに記載の氷厚計測装置。
Comprising an underwater rail installed substantially horizontally at the bottom of the aquarium,
The ice thickness measuring device according to claim 3, wherein the underwater cart travels on the underwater rail.
前記距離計測手段を、前記水中台車の走行方向に対して直交する方向に複数個並設したことを特徴とする請求項3〜6の何れかに記載の氷厚計測装置。   The ice thickness measuring device according to any one of claims 3 to 6, wherein a plurality of the distance measuring means are arranged in parallel in a direction orthogonal to a traveling direction of the underwater cart. 前記距離計測手段は、鉛直方向に移動可能に設置されることを特徴とする請求項3〜7の何れかに記載の氷厚計測装置。
The ice thickness measuring device according to claim 3, wherein the distance measuring unit is installed to be movable in a vertical direction.
JP2006132105A 2006-05-11 2006-05-11 Ice thickness measuring method and device therefor Withdrawn JP2007303947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132105A JP2007303947A (en) 2006-05-11 2006-05-11 Ice thickness measuring method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132105A JP2007303947A (en) 2006-05-11 2006-05-11 Ice thickness measuring method and device therefor

Publications (1)

Publication Number Publication Date
JP2007303947A true JP2007303947A (en) 2007-11-22

Family

ID=38837989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132105A Withdrawn JP2007303947A (en) 2006-05-11 2006-05-11 Ice thickness measuring method and device therefor

Country Status (1)

Country Link
JP (1) JP2007303947A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252684A (en) * 2011-04-29 2011-11-23 王骊 Method for navigating heavy-duty truck by measuring thickness of river bed ice layer through micro navigation vehicle
KR101118566B1 (en) 2010-06-17 2012-02-27 충남대학교산학협력단 Ultrasonic Device for Model Ice's Thickness Measuring
KR101118567B1 (en) * 2010-06-17 2012-02-27 충남대학교산학협력단 Method for Model Ice's Thickness Measuring
KR101179641B1 (en) 2011-04-21 2012-09-05 한국해양연구원 Ice sea trial measurement system and method
RU2548641C1 (en) * 2013-12-30 2015-04-20 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Method of ice cover thickness determination during models testing of ships and offshore engineering structures in ice test basin and device for its implementation
CN112284271A (en) * 2020-11-11 2021-01-29 黄河水利委员会黄河水利科学研究院 Device for measuring thickness of ice layer of river channel on line

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118566B1 (en) 2010-06-17 2012-02-27 충남대학교산학협력단 Ultrasonic Device for Model Ice's Thickness Measuring
KR101118567B1 (en) * 2010-06-17 2012-02-27 충남대학교산학협력단 Method for Model Ice's Thickness Measuring
KR101179641B1 (en) 2011-04-21 2012-09-05 한국해양연구원 Ice sea trial measurement system and method
CN102252684A (en) * 2011-04-29 2011-11-23 王骊 Method for navigating heavy-duty truck by measuring thickness of river bed ice layer through micro navigation vehicle
RU2548641C1 (en) * 2013-12-30 2015-04-20 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Method of ice cover thickness determination during models testing of ships and offshore engineering structures in ice test basin and device for its implementation
CN112284271A (en) * 2020-11-11 2021-01-29 黄河水利委员会黄河水利科学研究院 Device for measuring thickness of ice layer of river channel on line
CN112284271B (en) * 2020-11-11 2022-04-15 黄河水利委员会黄河水利科学研究院 Device for measuring thickness of ice layer of river channel on line

Similar Documents

Publication Publication Date Title
Onorato et al. Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin
JP2007303947A (en) Ice thickness measuring method and device therefor
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
CN102016566B (en) Ultrasonic flaw detection method and device
Kohl et al. Results of reconstructed and fused NDT-data measured in the laboratory and on-site at bridges
JP2010243375A (en) Extended crack detection method, apparatus, and program
JP5420378B2 (en) River flow measurement method and river flow measurement device
CN104422732A (en) Ultrasonic testing sensor and ultrasonic testing method
Schoefs et al. Quantitative evaluation of contactless impact echo for non-destructive assessment of void detection within tendon ducts
KR20110105963A (en) Apparatus for predicting defect location of cable and method thereof
US4855966A (en) Method and apparatus for monitoring bridge structures for scouring
Li et al. Application of ultrasonic surface wave techniques for concrete bridge deck condition assessment
RU2613624C1 (en) Method for nondestructive ultrasonic inspection of water conduits of hydraulic engineering facilities
JP2008304267A (en) Distribution analyzer of suspended matter concentration, and program
JP2008111272A (en) Monitoring method and device of banking on weak underwater ground
Algernon et al. Rebar detection with cover meter and ultrasonic pulse echo combined with automated scanning system
US11644380B2 (en) Integrated rapid infrastructure monitoring systems and methods of using same
Johnston et al. Comparison of impact forces measured by different instrumentation systems on the CCGS Terry Fox during the Bergy Bit Trials
JP2008070388A (en) Liquid level detection method by means of sound and its device
JP2005283265A (en) Measuring instrument and measuring method
KR102365354B1 (en) Measuring system of conforming of manhole by using rebound of selective wave
KR20150009546A (en) Method for measuring the fill level of a fluid
JP2014044123A (en) Contact interface detection device
JP3168946U (en) Ultrasonic flaw detector and penetration width acceptance / rejection determination system
CN105698690B (en) A kind of mark thickness tester

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804