JP3168946U - Ultrasonic flaw detector and penetration width acceptance / rejection determination system - Google Patents

Ultrasonic flaw detector and penetration width acceptance / rejection determination system Download PDF

Info

Publication number
JP3168946U
JP3168946U JP2011002239U JP2011002239U JP3168946U JP 3168946 U JP3168946 U JP 3168946U JP 2011002239 U JP2011002239 U JP 2011002239U JP 2011002239 U JP2011002239 U JP 2011002239U JP 3168946 U JP3168946 U JP 3168946U
Authority
JP
Japan
Prior art keywords
ultrasonic flaw
rib
wave
flaw detector
penetration width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2011002239U
Other languages
Japanese (ja)
Inventor
泰久 吉永
泰久 吉永
裕一 浅野
裕一 浅野
守 杉野
守 杉野
徹 本間
徹 本間
哲郎 能勢
哲郎 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2011002239U priority Critical patent/JP3168946U/en
Application granted granted Critical
Publication of JP3168946U publication Critical patent/JP3168946U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】溶接条件や測定者の技量に関わりなく、鋼床版とUリブの溶接部の溶込み幅を高精度で測定することが可能な超音波探傷装置及び溶込み幅合否判定システムを提供する。【解決手段】鋼床版15にUリブ16を隅肉溶接した際に形成される溶接部17の溶込み幅Dを測定するための超音波探傷装置10であって、送信用の表面SV波振動子と受信用の表面SV波振動子とが内蔵され、鋼床版15上に載置される二振動子表面SV波探触子11と、二振動子表面SV波探触子11に装着され、二振動子表面SV波探触子11の前端部から前方に突出してUリブ16に当接する当接部材12とを備えている。【選択図】図1An ultrasonic inspection apparatus and a penetration width acceptance / rejection determination system capable of measuring the penetration width of a weld between a steel slab and a U-rib with high accuracy irrespective of welding conditions and the skill of a measurer. I do. An ultrasonic flaw detector (10) for measuring a penetration width (D) of a welded portion (17) formed when a U-rib (16) is fillet-welded to a steel floor slab (15), wherein a surface SV wave for transmission is provided. A vibrator and a receiving surface SV wave vibrator are built in, and mounted on the dual vibrator surface SV wave probe 11 mounted on the steel slab 15 and mounted on the dual vibrator surface SV wave probe 11 And a contact member 12 projecting forward from the front end of the two-element transducer SV wave probe 11 and contacting the U-rib 16. [Selection diagram] Fig. 1

Description

本考案は、鋼製橋梁構造物等において、鋼床版にUリブを隅肉溶接した際に形成される溶接部の溶込み幅を測定するための超音波探傷装置及び溶込み幅合否判定システムに関する。 The present invention relates to an ultrasonic flaw detector and a penetration width pass / fail judgment system for measuring the penetration width of a weld formed when a U-rib is fillet welded to a steel deck in a steel bridge structure or the like. About.

近年、既設の鋼製橋梁構造物において、鋼床版15にUリブ16(トラフリブ)を隅肉溶接した際に形成される溶接部17に、疲労亀裂が発生して問題となっている(図5参照)。この疲労亀裂は、Uリブ16の裏面角部と溶接部17との間に存在する未溶着部を起点として発生している。そのため、道路橋示方書には、Uリブ16の板厚方向の溶込み深さ(溶込み幅)を板厚の75%以上確保することが規定されている。しかし、従来の超音波探傷試験では溶込み幅の確認が難しいことから、溶接施工試験において所定の溶込み幅(Uリブの板厚の75%以上)が確認された溶接条件で実際の溶接を行うことで、所定の溶込み幅が確保されていると見なしている。 In recent years, in an existing steel bridge structure, fatigue cracks have occurred in the welded portion 17 formed when the U-rib 16 (traffic rib) is welded to the steel floor slab 15 and has become a problem (see FIG. 5). This fatigue crack is generated starting from an unwelded portion existing between the back corner of the U rib 16 and the welded portion 17. Therefore, the road bridge specifications specify that the penetration depth (penetration width) of the U rib 16 in the thickness direction is secured to 75% or more of the thickness. However, since it is difficult to confirm the penetration width in the conventional ultrasonic flaw detection test, actual welding is performed under the welding conditions in which a predetermined penetration width (75% or more of the thickness of the U rib) is confirmed in the welding construction test. It is considered that a predetermined penetration width is secured by performing.

一方、鋼床版とUリブの溶接部の溶込み幅は、当該部位の疲労強度を大きく左右するため、製品品質の保証等の観点から、実際の溶込み幅を確認することが極めて重要である。
従来、溶接部の溶込み幅の測定には、斜角探触子を用いて、未溶着部先端(溶着部と未溶着部の境界)からのエコーを検出する端部エコー法が用いられている。しかしながら、この方法では、未溶着部先端からの端部エコーを検出できない場合があることに加え、検出したエコーの評価に高度な技量が要求されるため、測定精度が技術者の技量に依存する傾向が強かった。
On the other hand, the penetration width of the welded portion between the steel slab and U-rib greatly affects the fatigue strength of the relevant part, so it is extremely important to confirm the actual penetration width from the viewpoint of product quality assurance and the like. is there.
Conventionally, for measuring the penetration width of a welded portion, an edge echo method is used to detect an echo from the tip of an unwelded portion (boundary between the welded portion and the unwelded portion) using an oblique probe. Yes. However, in this method, the end echo from the tip of the unwelded portion may not be detected, and a high level of skill is required to evaluate the detected echo, so the measurement accuracy depends on the skill of the technician. The trend was strong.

そこで、特許文献1では、屈折角が78〜88°の範囲内に設定された、SV波を発信する探触子64を、主板61(鋼床版)のビード63(溶接部)側の表面上に配置し、探触子64の先端を、ビード63の始端63aの位置(或いは始端63aから3mm以内の位置)に合わせた状態で超音波を送信し、回折現象によってビード63内を拡がりながら進行する回折波の反射エコーを含む受信信号を取得して、未溶着部65の寸法を推測する超音波探傷検査方法が開示されている(図6参照)。そして、この方法によれば、従来の一般的な斜角探傷法では対応できないような条件であっても、問題なく実施することができるとされている。 Therefore, in Patent Document 1, a probe 64 that transmits an SV wave having a refraction angle set within a range of 78 to 88 ° is used as a surface on the bead 63 (welded portion) side of the main plate 61 (steel deck). An ultrasonic wave is transmitted in a state where the tip of the probe 64 is positioned on the position of the start end 63a of the bead 63 (or a position within 3 mm from the start end 63a), and the inside of the bead 63 is expanded by a diffraction phenomenon. An ultrasonic flaw detection method for obtaining a received signal including a reflected echo of a traveling diffracted wave and estimating the size of an unwelded portion 65 is disclosed (see FIG. 6). And according to this method, it is said that it can be carried out without problems even under conditions that cannot be handled by the conventional general oblique flaw detection method.

特開2010−151501号公報JP 2010-151501 A

特許文献1に記載されている超音波探傷検査方法では、立板62(Uリブ)の裏面角部62aを反射源とする反射エコーAと、未溶着部先端65aを反射源とする反射エコーBとを特定し、探触子64の超音波入射点Pから立板62の裏面角部62aまでの距離Y1と、超音波入射点Pから未溶着部先端65aまでの距離Y2との差から未溶着部65の幅を求める。 In the ultrasonic flaw detection method described in Patent Document 1, the reflection echo A using the back corner 62a of the upright plate 62 (U-rib) as a reflection source and the reflection echo B using the unwelded tip 65a as a reflection source. From the difference between the distance Y1 from the ultrasonic incident point P of the probe 64 to the back corner 62a of the standing plate 62 and the distance Y2 from the ultrasonic incident point P to the unwelded portion tip 65a, The width of the welded portion 65 is obtained.

しかし、上記方法の場合、Uリブが薄くなると、反射エコーAと反射エコーBとを特定するのが難しくなるという問題がある。例えば、溶込み幅を板厚の75%以上とすると、6mm厚のUリブの場合、未溶着部の幅は1.5mm以下となり、反射エコーAと反射エコーBの判別が非常に難しくなる。
また、ルートギャップが過大であったり、裏抜けがある場合や、溶込み不良が存在する場合など、Uリブの裏面角部からのエコーが得られない場合がある。
However, in the case of the above method, there is a problem that it becomes difficult to specify the reflection echo A and the reflection echo B when the U rib is thinned. For example, if the penetration width is 75% or more of the plate thickness, in the case of a 6 mm thick U-rib, the width of the unwelded portion is 1.5 mm or less, and it is very difficult to distinguish between the reflected echo A and the reflected echo B.
Further, there are cases where echoes from the back corners of the U-rib cannot be obtained, for example, when the route gap is excessive, there is a back-through, or there is a penetration failure.

本考案はかかる事情に鑑みてなされたもので、溶接条件や測定者の技量に関わりなく、鋼床版とUリブの溶接部の溶込み幅を高精度で測定することが可能な超音波探傷装置及び溶込み幅合否判定システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and ultrasonic flaw detection capable of measuring the penetration width of the welded portion of the steel slab and the U-rib with high accuracy regardless of welding conditions and the skill of the measurer. An object is to provide an apparatus and a penetration width acceptance / rejection determination system.

上記目的を達成するため、第1の考案は、鋼床版にUリブを隅肉溶接した際に形成される溶接部の溶込み幅を測定するための超音波探傷装置であって、
送信用の表面SV波振動子と受信用の表面SV波振動子とが内蔵され、前記鋼床版上に載置される二振動子表面SV波探触子と、前記二振動子表面SV波探触子に装着され、該二振動子表面SV波探触子の前端部から前方に突出して前記Uリブに当接する当接部材とを備えることを特徴としている。
In order to achieve the above object, a first device is an ultrasonic flaw detector for measuring a penetration width of a weld formed when a U rib is fillet welded to a steel deck,
A surface SV wave transducer for transmission and a surface SV wave transducer for reception are built in, a dual transducer surface SV wave probe placed on the steel floor slab, and the dual transducer surface SV wave And a contact member that protrudes forward from a front end portion of the dual transducer surface SV wave probe and contacts the U-rib.

ここで、「表面SV波」は、対象物の表面を伝播し、該表面と直交する面内で振動するせん断波(横波)のことである。また、本明細書では、二振動子表面SV波探触子を基点として表面SV波が発信される方向を「前」側、その逆方向を「後」側とし、Uリブについては、外部に露出している面を「表」面、その裏側を「裏」面とする。 Here, the “surface SV wave” is a shear wave (transverse wave) that propagates on the surface of the object and vibrates in a plane orthogonal to the surface. Also, in this specification, the direction in which the surface SV wave is transmitted with the dual transducer surface SV wave probe as the base point is the “front” side, and the opposite direction is the “rear” side. The exposed surface is the “front” surface, and the back side is the “back” surface.

第1の考案では、二振動子表面SV波探触子により計測された、該二振動子表面SV波探触子の前端から未溶着部先端(溶着部と未溶着部の境界)までの距離Wと、角度ゲージ等を用いて計測された、鋼床版に対するUリブの傾斜角度θとを用いて、溶接部の溶込み幅を算出するため、Uリブの裏面角部からのエコーを特定する必要がない。そのため、溶接条件や測定者の技量に関わりなく、鋼床版とUリブの溶接部の溶込み幅を高精度で測定することができる。加えて、当接部材により、二振動子表面SV波探触子の前端からUリブまでの距離Yが常に一定に保たれるので、距離Wに関する測定誤差が発生することがない。 In the first device, the distance from the front end of the dual transducer surface SV wave probe to the tip of the unwelded portion (boundary between the welded portion and the unwelded portion) measured by the dual transducer surface SV wave probe. The echo from the back corner of the U rib is specified to calculate the penetration width of the weld using W and the inclination angle θ of the U rib with respect to the steel deck, measured using an angle gauge. There is no need to do. Therefore, the penetration width of the welded portion between the steel deck and the U rib can be measured with high accuracy regardless of welding conditions and the skill of the measurer. In addition, since the distance Y from the front end of the dual transducer surface SV wave probe to the U-rib is always kept constant by the contact member, a measurement error related to the distance W does not occur.

また、第1の考案に係る超音波探傷装置では、前記二振動子表面SV波探触子に装着され、該二振動子表面SV波探触子と前記Uリブとの間の距離を計測する変位計を備えていてもよい。 In the ultrasonic flaw detector according to the first aspect of the invention, the ultrasonic transducer is mounted on the dual transducer surface SV wave probe and measures the distance between the dual transducer surface SV wave probe and the U-rib. A displacement meter may be provided.

当該構成では、二振動子表面SV波探触子に装着した変位計の出力を用いて、鋼床版に対するUリブの傾斜角度θを算出することができるので、計測が容易になると共に、角度ゲージ等を使う場合に比べて高い精度を確保することができる。 In this configuration, the inclination angle θ of the U rib with respect to the steel deck can be calculated using the output of the displacement meter attached to the dual transducer surface SV wave probe. High accuracy can be ensured compared to the case of using a gauge or the like.

また、第2の考案は、鋼床版にUリブを隅肉溶接した際に形成される溶接部の溶込み幅の合否を判定するシステムであって、
第1の考案に係る超音波探傷装置と、前記超音波探傷装置の出力信号に基づいて前記溶接部の溶込み幅の合否を判定する超音波探傷器とを備え、
前記超音波探傷器が、前記出力信号に基づいて前記溶接部の溶込み幅を算出する演算部と、前記演算部で算出された溶込み幅が規定値以上かどうか判定する判定部とを有することを特徴としている。
In addition, the second device is a system for determining whether or not the penetration width of the welded portion formed when the U rib is fillet welded to the steel deck,
An ultrasonic flaw detector according to a first device, and an ultrasonic flaw detector that determines pass / fail of the penetration width of the weld based on an output signal of the ultrasonic flaw detector,
The ultrasonic flaw detector includes a calculation unit that calculates a penetration width of the welded portion based on the output signal, and a determination unit that determines whether or not the penetration width calculated by the calculation unit is equal to or greater than a predetermined value. It is characterized by that.

第1の考案に係る超音波探傷装置では、Uリブの裏面角部からのエコーを特定する必要がないので、溶接条件や測定者の技量に関わりなく、鋼床版とUリブの溶接部の溶込み幅を高精度で測定することができる。 In the ultrasonic flaw detector according to the first device, since it is not necessary to specify the echo from the back corner of the U rib, the welded portion of the steel slab and the U rib is welded regardless of welding conditions and the skill of the measurer. The penetration width can be measured with high accuracy.

また、第2の考案に係る溶込み幅合否判定システムでは、超音波探傷装置の出力信号に基づいて、超音波探傷器が溶接部の溶込み幅を算出して規定値以上かどうか判定するので、溶込み幅の合否をリアルタイムで確認することができる。 Further, in the penetration width acceptance / rejection determination system according to the second device, since the ultrasonic flaw detector calculates the penetration width of the welded portion based on the output signal of the ultrasonic flaw detector, it is determined whether or not it is equal to or greater than the specified value. The pass / fail of the penetration width can be confirmed in real time.

本考案の一実施の形態に係る超音波探傷装置の模式図である。1 is a schematic diagram of an ultrasonic flaw detector according to an embodiment of the present invention. 二振動子表面SV波探触子の内部を示し、(A)は側面図、(B)は頂面図である。The inside of a dual transducer surface SV wave probe is shown, (A) is a side view and (B) is a top view. 同超音波探傷装置による探傷試験結果を示すグラフである。It is a graph which shows the flaw detection test result by the same ultrasonic flaw detector. 本考案の一実施の形態に係る溶込み幅合否判定システムのブロック図である。It is a block diagram of a penetration width acceptance / rejection determination system according to an embodiment of the present invention. 鋼製橋梁の部分詳細図である。It is a partial detailed view of a steel bridge. 従来の超音波探傷検査方法を説明するための模式図である。It is a schematic diagram for demonstrating the conventional ultrasonic flaw detection inspection method.

続いて、添付した図面を参照しつつ、本考案を具体化した実施の形態につき説明し、本考案の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

[超音波探傷装置]
本考案の一実施の形態に係る超音波探傷装置10を図1に示す。超音波探傷装置10は、鋼床版15上に載置される二振動子表面SV波探触子11と、二振動子表面SV波探触子11の前端部から前方に突出する当接部材12と、二振動子表面SV波探触子11の上に固定された変位計13とから概略構成されている。
[Ultrasonic flaw detector]
An ultrasonic flaw detector 10 according to an embodiment of the present invention is shown in FIG. The ultrasonic flaw detector 10 includes a two-vibrator surface SV wave probe 11 placed on a steel floor slab 15 and a contact member that protrudes forward from the front end portion of the dual-vibrator surface SV wave probe 11. 12 and a displacement meter 13 fixed on the dual transducer surface SV wave probe 11.

二振動子表面SV波探触子11は、図2(A)、(B)に示すように、受信用の表面SV波振動子20と送信用の表面SV波振動子21とを備えている。受信用の表面SV波振動子20と送信用の表面SV波振動子21は、それぞれ異なる楔22に設置されている。各楔22はアクリル樹脂やポリイミド樹脂等からなり、直方体の後端部を斜めに切断した形状とされている。受信用の表面SV波振動子20と送信用の表面SV波振動子21は、各楔22の後端部に形成された斜面22a上に設置され、斜面22aと直交する方向に表面SV波が受発信される。なお、楔22の底面に対する斜面22aの鉛直面内傾斜角度αは60〜70度程度とされている。また、受信用の表面SV波振動子20と送信用の表面SV波振動子21の音軸Sが交差するように、楔22の前端面に対する斜面22aの水平面内傾斜角度βは2〜6度程度とされ、内方に向けて傾斜している。 As shown in FIGS. 2A and 2B, the dual transducer surface SV wave probe 11 includes a reception surface SV wave transducer 20 and a transmission surface SV wave transducer 21. . The reception surface SV wave vibrator 20 and the transmission surface SV wave vibrator 21 are installed on different wedges 22, respectively. Each wedge 22 is made of acrylic resin, polyimide resin, or the like, and has a shape in which a rear end portion of a rectangular parallelepiped is cut obliquely. The surface SV wave transducer 20 for reception and the surface SV wave transducer 21 for transmission are installed on a slope 22a formed at the rear end of each wedge 22, and surface SV waves are generated in a direction perpendicular to the slope 22a. Received and sent. The vertical in-plane inclination angle α of the inclined surface 22a with respect to the bottom surface of the wedge 22 is set to about 60 to 70 degrees. Further, the inclination angle β in the horizontal plane of the inclined surface 22a with respect to the front end surface of the wedge 22 is 2 to 6 degrees so that the sound axes S of the surface SV wave transducer 20 for reception and the surface SV wave transducer 21 for transmission intersect. It is graded and is inclined inward.

一般に使用されている一振動子探触子では、送信パルス近傍に不感帯が存在する。一方、二振動子探触子では、送信パルスが表示器上に現れないため、不感帯が殆ど無く、未溶着部からのエコーが見えやすくなる。また、二振動子探触子の場合、音軸Sが交差する交差点近傍は、超音波ビームの幅が狭くエネルギーが高くなるため、未溶着部からのエコーが検出しやすくなる。 In a commonly used single element probe, there is a dead zone in the vicinity of the transmission pulse. On the other hand, in the dual transducer probe, the transmission pulse does not appear on the display device, so there is almost no dead zone and the echo from the unwelded portion is easily visible. In the case of a dual transducer probe, near the intersection where the sound axes S intersect, the width of the ultrasonic beam is narrow and the energy is high, so that it is easy to detect an echo from an unwelded portion.

当接部材12は、二振動子表面SV波探触子11の前端からUリブ16までの距離Yを一定に保つための部材であり、アクリル樹脂等からなる板材が二振動子表面SV波探触子11の前端部から水平方向に延出している。なお、距離Yは20〜30mm程度でよい。 The contact member 12 is a member for keeping the distance Y from the front end of the dual transducer surface SV wave probe 11 to the U rib 16 constant, and a plate material made of acrylic resin or the like is a dual transducer surface SV wave probe. It extends in the horizontal direction from the front end of the touch element 11. The distance Y may be about 20 to 30 mm.

変位計13には、接触式変位計を使用する。本実施の形態では、有底円筒状の筐体13bと、筐体13b内に挿入され、筐体13bの軸方向に進退するロッド13aとを有する差動トランス式変位計を使用する。ロッド13aは超音波探傷装置10の前側かつ当接部材12の上方に位置し、二振動子表面SV波探触子11の前側からUリブ16までの距離A(A>Y)を計測する。 A contact-type displacement meter is used as the displacement meter 13. In the present embodiment, a differential transformer displacement meter having a bottomed cylindrical casing 13b and a rod 13a inserted into the casing 13b and moving back and forth in the axial direction of the casing 13b is used. The rod 13a is located on the front side of the ultrasonic flaw detector 10 and above the contact member 12, and measures the distance A (A> Y) from the front side of the dual transducer surface SV wave probe 11 to the U rib 16.

続いて、超音波探傷装置10を用いて、鋼床版15にUリブ16を隅肉溶接した際に形成される溶接部17の溶込み幅Dを測定する方法について、図1を用いて説明する。なお、Uリブ16の裏面角部と溶接部17の間には、未溶着部18が存在しているものとする。
(1)測定対象である溶接部17の後方において、超音波探傷装置10の前側を溶接部17に向けた状態で、鋼床版15上に超音波探傷装置10を載置する。
(2)溶接部17に向けて超音波探傷装置10を前進させ、超音波探傷装置10の当接部材12の先端部をUリブ16に当接させる。
(3)この状態で、二振動子表面SV波探触子11から溶接部17に向けて表面SV波を発信する。表面SV波の一部は、溶接部17の止端部(後端部)から溶接部17の内部を伝搬して、未溶着部先端19(未溶着部18の後端)で反射する反射エコーとなる。この反射エコーを受信することによって、二振動子表面SV波探触子11の前端から未溶着部先端19までの距離Wを計測する。また併せて、変位計13により、二振動子表面SV波探触子11の前端からUリブ16までの距離Aを計測する。
Next, a method for measuring the penetration width D of the welded portion 17 formed when the U-rib 16 is fillet welded to the steel deck 15 using the ultrasonic flaw detector 10 will be described with reference to FIG. To do. It is assumed that an unwelded portion 18 exists between the corners of the back surface of the U rib 16 and the welded portion 17.
(1) The ultrasonic flaw detector 10 is placed on the steel floor slab 15 with the front side of the ultrasonic flaw detector 10 facing the weld 17 at the rear of the weld portion 17 to be measured.
(2) The ultrasonic flaw detector 10 is advanced toward the welded portion 17, and the tip end portion of the abutting member 12 of the ultrasonic flaw detector 10 is brought into contact with the U rib 16.
(3) In this state, a surface SV wave is transmitted from the dual transducer surface SV wave probe 11 toward the welded portion 17. A part of the surface SV wave propagates from the toe end (rear end) of the welded portion 17 to the inside of the welded portion 17 and is reflected by the unwelded portion tip 19 (rear end of the unwelded portion 18). It becomes. By receiving this reflected echo, the distance W from the front end of the dual transducer surface SV wave probe 11 to the unwelded portion tip 19 is measured. In addition, the distance A from the front end of the dual transducer surface SV wave probe 11 to the U rib 16 is measured by the displacement meter 13.

鋼床版15に対するUリブ16の傾斜角度をθ、二振動子表面SV波探触子11の前端から当接部材12の先端までの長さをY、当接部材12の下面から超音波探傷装置10の底部までの距離をH、ロッド13aの中心軸から当接部材12の下面までの距離をBとする。また、Uリブ16の表面を延長した仮想線と鋼床版15との交点を16aとし、交点16aと未溶着部先端19との間の距離をD’とする。 The angle of inclination of the U rib 16 with respect to the steel deck 15 is θ, the length from the front end of the dual transducer surface SV wave probe 11 to the tip of the contact member 12 is Y, and the ultrasonic flaw detection is performed from the lower surface of the contact member 12 The distance to the bottom of the device 10 is H, and the distance from the central axis of the rod 13a to the lower surface of the contact member 12 is B. Further, the intersection of the virtual line extending the surface of the U-rib 16 and the steel deck 15 is 16a, and the distance between the intersection 16a and the unwelded portion tip 19 is D '.

このとき、溶接部17の溶込み幅Dは次式で表される。
D=D’・sinθ=D’・B/√{(A−Y)+B} …(1)
また、D’は次式で表される。
D’=W−b=W−(Y−a)=W−Y+a …(2)
ここで、bは、二振動子表面SV波探触子11の前端から交点16aまでの水平距離である。また、aは、当接部材12とUリブ16の当接点から交点16aまでの水平距離であり、次式で表すことができる。
a=H/tanθ=H(A−Y)/B …(3)
At this time, the penetration width D of the welded portion 17 is expressed by the following equation.
D = D ′ · sin θ = D ′ · B / √ {(A−Y) 2 + B 2 } (1)
D ′ is represented by the following equation.
D ′ = W−b = W− (Y−a) = W−Y + a (2)
Here, b is a horizontal distance from the front end of the dual transducer surface SV wave probe 11 to the intersection 16a. Moreover, a is a horizontal distance from the contact point of the contact member 12 and the U rib 16 to the intersection 16a, and can be expressed by the following equation.
a = H / tan θ = H (A−Y) / B (3)

(3)式を(2)式に代入すると、
D’=W−Y+H(A−Y)/B …(4)
となり、(4)式を(1)式に代入すると、
D={W−Y+H(A−Y)/B}B/√{(A−Y)+B} …(5)
となる。(5)式において、WとAは超音波探傷装置10によって計測され、Y、H、Bは既知である。従って、溶接部17の溶込み幅Dは、(5)式により算出することができる。
Substituting equation (3) into equation (2),
D ′ = W−Y + H (A−Y) / B (4)
When substituting equation (4) into equation (1),
D = {W−Y + H (A−Y) / B} B / √ {(A−Y) 2 + B 2 } (5)
It becomes. In the formula (5), W and A are measured by the ultrasonic flaw detector 10 and Y, H, and B are known. Therefore, the penetration width D of the welded portion 17 can be calculated by the equation (5).

[超音波探傷試験]
超音波探傷装置10の効果を検証するため、鋼床版にUリブを隅肉溶接したモックアップ試験体を製作し、超音波探傷試験を実施した。モックアップ試験体のUリブの板厚は6mmと8mmとし、各40箇所の溶接部について超音波探傷試験を実施した。なお、Uリブの材質はSM490YA、鋼床版の材質はSM490YBとした。
超音波探傷試験の結果を図3に示す。超音波探傷装置10によって算出された溶接部の溶込み幅を横軸に、実測値を縦軸にそれぞれ示す。全溶接部の約86%が±0.5mmの誤差範囲内にあり、Uリブの板厚にかかわらず、溶接部の溶込み幅を高精度で測定できることが確認された。
[Ultrasonic testing]
In order to verify the effect of the ultrasonic flaw detector 10, a mock-up test body in which a U-rib was welded to a steel slab was manufactured, and an ultrasonic flaw test was conducted. The plate thickness of the U-rib of the mock-up test specimen was 6 mm and 8 mm, and an ultrasonic flaw detection test was performed on each of 40 welds. The material of the U rib was SM490YA, and the material of the steel deck was SM490YB.
The results of the ultrasonic flaw detection test are shown in FIG. The welding width calculated by the ultrasonic flaw detector 10 is shown on the horizontal axis, and the measured values are shown on the vertical axis. About 86% of all the welds are within an error range of ± 0.5 mm, and it was confirmed that the penetration width of the welds can be measured with high accuracy regardless of the thickness of the U-rib.

[溶込み幅合否判定システム]
次に、鋼床版15にUリブ16を隅肉溶接した際に形成される溶接部17の溶込み幅Dの合否を判定するシステムについて説明する。
図4に、本考案の一実施の形態に係る溶込み幅合否判定システム30のブロック図を示す。溶込み幅合否判定システム30は、上述した超音波探傷装置10と、超音波探傷装置10の出力信号に基づいて溶接部17の溶込み幅の合否を判定する超音波探傷器31とを備えている(図4参照)。
[Penetration width pass / fail judgment system]
Next, a system for determining whether or not the penetration width D of the welded portion 17 formed when the U-rib 16 is fillet welded to the steel deck 15 will be described.
FIG. 4 shows a block diagram of a penetration width acceptance / rejection determination system 30 according to an embodiment of the present invention. The penetration width acceptance / rejection determination system 30 includes the ultrasonic flaw detector 10 described above and an ultrasonic flaw detector 31 that determines the acceptance / rejection of the penetration width of the welded portion 17 based on an output signal of the ultrasonic flaw detector 10. (See FIG. 4).

超音波探傷器31は、二振動子表面SV波探触子11(送信用の表面SV波振動子21)にパルスを発信する発信部33、及び二振動子表面SV波探触子11(受信用の表面SV波振動子20)の出力信号を受信する受信部32に加え、受信部32の出力信号に基づいて溶接部17の溶込み幅Dを(5)式により算出する演算部34と、演算部34で算出された溶込み幅Dが規定値(例えばUリブ16の板厚の75%以上)以上かどうか判定する判定部35とを有している。また、超音波探傷器31には、溶込み幅Dの算出時に必要となるY、H、Bの各値やUリブ16の板厚、さらには溶込み幅Dの規定値等の入力を行う入力部37と、判定結果を表示する表示部36とが備えられている。 The ultrasonic flaw detector 31 includes a transmitter 33 that transmits a pulse to the dual transducer surface SV wave probe 11 (transmission surface SV wave transducer 21), and a dual transducer surface SV wave probe 11 (reception). In addition to the receiving unit 32 that receives the output signal of the surface SV wave vibrator 20), the calculation unit 34 that calculates the penetration width D of the welded part 17 based on the output signal of the receiving unit 32 by the equation (5); And a determination unit 35 that determines whether or not the penetration width D calculated by the calculation unit 34 is equal to or greater than a specified value (for example, 75% or more of the plate thickness of the U rib 16). Further, the ultrasonic flaw detector 31 is inputted with values of Y, H, and B, the plate thickness of the U rib 16 necessary for calculating the penetration width D, and a prescribed value of the penetration width D. An input unit 37 and a display unit 36 for displaying the determination result are provided.

以上、本考案の実施の形態について説明してきたが、本考案は何ら上記した実施の形態に記載の構成に限定されるものではなく、実用新案登録請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、変位計として差動トランス式の変位計を使用しているが、レーザー変位計など他の変位計でも良い。 The embodiment of the present invention has been described above. However, the present invention is not limited to the configuration described in the above embodiment, and is within the scope of the matters described in the claims of the utility model registration. Other embodiments and modifications which can be considered in the above are also included. For example, in the above embodiment, a differential transformer type displacement meter is used as the displacement meter, but other displacement meters such as a laser displacement meter may be used.

10:超音波探傷装置、11:二振動子表面SV波探触子、12:当接部材、13:変位計、13a:ロッド、13b:筐体、15:鋼床版、16:Uリブ、16a:交点、17:溶接部、18:未溶着部、19:未溶着部先端、20:受信用の表面SV波振動子、21:送信用の表面SV波振動子、22:楔、22a:斜面、30:溶込み幅合否判定システム、31:超音波探傷器、32:受信部、33:発信部、34:演算部、35:判定部、36:表示部、37:入力部、S:音軸 10: Ultrasonic flaw detector, 11: Dual transducer surface SV wave probe, 12: Contact member, 13: Displacement meter, 13a: Rod, 13b: Housing, 15: Steel deck, 16: U rib, 16a: intersection point, 17: welded portion, 18: unwelded portion, 19: tip of unwelded portion, 20: surface SV wave vibrator for reception, 21: surface SV wave vibrator for transmission, 22: wedge, 22a: Slope, 30: penetration width acceptance / rejection determination system, 31: ultrasonic flaw detector, 32: reception unit, 33: transmission unit, 34: calculation unit, 35: determination unit, 36: display unit, 37: input unit, S: Sound axis

Claims (3)

鋼床版にUリブを隅肉溶接した際に形成される溶接部の溶込み幅を測定するための超音波探傷装置であって、
送信用の表面SV波振動子と受信用の表面SV波振動子とが内蔵され、前記鋼床版上に載置される二振動子表面SV波探触子と、前記二振動子表面SV波探触子に装着され、該二振動子表面SV波探触子の前端部から前方に突出して前記Uリブに当接する当接部材とを備えることを特徴とする超音波探傷装置。
An ultrasonic flaw detector for measuring a penetration width of a weld formed when a U-rib is welded to a steel slab,
A surface SV wave transducer for transmission and a surface SV wave transducer for reception are built in, a dual transducer surface SV wave probe placed on the steel floor slab, and the dual transducer surface SV wave An ultrasonic flaw detector comprising: an abutment member attached to a probe and protruding forward from a front end portion of the dual transducer surface SV wave probe and abutting on the U-rib.
請求項1記載の超音波探傷装置において、前記二振動子表面SV波探触子に装着され、該二振動子表面SV波探触子と前記Uリブとの間の距離を計測する変位計を備えることを特徴とする超音波探傷装置。 2. The ultrasonic flaw detector according to claim 1, wherein a displacement meter is attached to the dual transducer surface SV wave probe and measures the distance between the dual transducer surface SV wave probe and the U-rib. An ultrasonic flaw detection apparatus comprising: 鋼床版にUリブを隅肉溶接した際に形成される溶接部の溶込み幅の合否を判定するシステムであって、
請求項1又は2記載の超音波探傷装置と、前記超音波探傷装置の出力信号に基づいて前記溶接部の溶込み幅の合否を判定する超音波探傷器とを備え、
前記超音波探傷器が、前記出力信号に基づいて前記溶接部の溶込み幅を算出する演算部と、前記演算部で算出された溶込み幅が規定値以上かどうか判定する判定部とを有することを特徴とする溶込み幅合否判定システム。
It is a system for judging pass / fail of the penetration width of a weld formed when a U-rib is welded to a steel floor slab,
The ultrasonic flaw detector according to claim 1 or 2, and an ultrasonic flaw detector that determines pass / fail of the penetration width of the welded portion based on an output signal of the ultrasonic flaw detector,
The ultrasonic flaw detector includes a calculation unit that calculates a penetration width of the welded portion based on the output signal, and a determination unit that determines whether or not the penetration width calculated by the calculation unit is equal to or greater than a predetermined value. A penetration width acceptance / rejection determination system characterized by that.
JP2011002239U 2011-04-21 2011-04-21 Ultrasonic flaw detector and penetration width acceptance / rejection determination system Expired - Lifetime JP3168946U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002239U JP3168946U (en) 2011-04-21 2011-04-21 Ultrasonic flaw detector and penetration width acceptance / rejection determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002239U JP3168946U (en) 2011-04-21 2011-04-21 Ultrasonic flaw detector and penetration width acceptance / rejection determination system

Publications (1)

Publication Number Publication Date
JP3168946U true JP3168946U (en) 2011-07-07

Family

ID=54879870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002239U Expired - Lifetime JP3168946U (en) 2011-04-21 2011-04-21 Ultrasonic flaw detector and penetration width acceptance / rejection determination system

Country Status (1)

Country Link
JP (1) JP3168946U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184672A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 Ultrasonic phased array detection method for improving measurement accuracy of U-rib angle weld
CN114184673A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 A scanning ultrasonic phased array detection method for single-side non-penetration U-rib fillet weld

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114184672A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 Ultrasonic phased array detection method for improving measurement accuracy of U-rib angle weld
CN114184673A (en) * 2021-11-11 2022-03-15 无锡金诚工程技术服务有限公司 A scanning ultrasonic phased array detection method for single-side non-penetration U-rib fillet weld

Similar Documents

Publication Publication Date Title
CN103293224B (en) Ultrasonic phased array detection method of steel box beam U-rib angle welding seam
WO2016155403A1 (en) Ultrasonic detection and locating method and device based on tofd and phased array
CN105021142B (en) The measuring method and equipment therefor of a kind of laser lap weld width
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JPH0352908B2 (en)
CN104501750B (en) A kind of method of ultrasonic phase array measurement U rib weld penetrations
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP5829175B2 (en) Ultrasonic flaw detection method and apparatus by TOFD method
US9612226B2 (en) Method for measuring height of lack of penetration and ultrasonic flaw detector
JP3168946U (en) Ultrasonic flaw detector and penetration width acceptance / rejection determination system
KR101163551B1 (en) Sensistivity calibration referece block for phased-array ultrasonic inspection
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JP2008164396A (en) Flaw detection method and flaw detector used therefor
KR20150023434A (en) Steel material quality evaluation method and quality evaluation device
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP5061891B2 (en) Crack depth measurement method
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP6089805B2 (en) Measuring device, measuring method, program, and storage medium
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
JP5243229B2 (en) Ultrasonic flaw detection method and probe unit for ultrasonic flaw detector
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 3168946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term