JP2007298385A - Electrostatic capacity sensor - Google Patents

Electrostatic capacity sensor Download PDF

Info

Publication number
JP2007298385A
JP2007298385A JP2006126450A JP2006126450A JP2007298385A JP 2007298385 A JP2007298385 A JP 2007298385A JP 2006126450 A JP2006126450 A JP 2006126450A JP 2006126450 A JP2006126450 A JP 2006126450A JP 2007298385 A JP2007298385 A JP 2007298385A
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
detection
fixed
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006126450A
Other languages
Japanese (ja)
Other versions
JP4600345B2 (en
Inventor
Hidekazu Furukubo
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006126450A priority Critical patent/JP4600345B2/en
Publication of JP2007298385A publication Critical patent/JP2007298385A/en
Application granted granted Critical
Publication of JP4600345B2 publication Critical patent/JP4600345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve detection accuracy in an electrostatic capacitance type sensor where the capacitance of detection parts changes, according to relative displacements of fixed electrodes and a movable electrode in the thickness directions. <P>SOLUTION: A semiconductor layer 2 is provided with the fixed electrodes 6A and 6B and the movable electrode 5, supported movably at an anchor part 3 via a beam part 4. The fixed electrodes 6A and 6B and the movable electrode 5 are made to face each other at intervals from one another to constitute the detection parts 8A and 8B. The electrostatic capacitance type sensor 1 detects prescribed physical quantities by detecting the capacitance at the detection parts 8A and 8B. The detection parts 8A and 8B detect the capacitance, corresponding to changes in areas facing each other, associated with displacements of the movable electrode 5 and the fixed electrodes 6A and 6B in the thickness directions due to the movements of the movable electrode 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物理量を検出する静電容量式センサに関する。   The present invention relates to a capacitance sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.

従来、公知の半導体プロセスを用いて半導体基板を加工することで可動電極が弾性要素を介して固定部に可動支持される構造を形成し、作用した外力等に応じて可動電極が固定電極に対して動作可能となるようにして、これら電極間の静電容量の変化を検出することで加速度や角速度等の種々の物理量を検出できるようにした静電容量式センサが知られている(例えば特許文献1)。   Conventionally, a semiconductor substrate is processed using a known semiconductor process to form a structure in which the movable electrode is movably supported by the fixed portion via an elastic element. There is known a capacitance type sensor that can detect various physical quantities such as acceleration and angular velocity by detecting a change in capacitance between these electrodes. Reference 1).

特許文献1の静電容量式センサは、可動電極が固定電極に対してセンサの厚み方向に移動可能となるように構成されており、可動電極の表面に形成した層と固定電極とのずれに応じた静電容量の変化を検出するようになっている。
米国特許第6792804号明細書
The electrostatic capacitance sensor of Patent Document 1 is configured so that the movable electrode can move in the thickness direction of the sensor with respect to the fixed electrode, and the displacement between the layer formed on the surface of the movable electrode and the fixed electrode is reduced. A change in the electrostatic capacity is detected accordingly.
US Pat. No. 6,792,804

しかしながら、上記特許文献1の静電容量式センサは、可動電極の表面に形成した比較的薄い層と固定電極とを相互に対向させて検出部を構成しているため、検出部における相互対向面積が狭くなり、電気力線が膨らむ特性となって、検出精度が低くなってしまうという問題があった。   However, since the electrostatic capacitance sensor of the above-mentioned Patent Document 1 configures the detection unit by causing a relatively thin layer formed on the surface of the movable electrode and the fixed electrode to face each other, the mutual facing area in the detection unit However, there is a problem that the detection accuracy is lowered due to the characteristic that the lines of electric force swell and the electric field lines swell.

そこで、本発明は、固定電極と可動電極との厚み方向の相対的なずれに応じて検出部の静電容量が変化する静電容量式センサにおいて、検出精度を向上することを目的とする。   Therefore, an object of the present invention is to improve detection accuracy in a capacitive sensor in which the capacitance of a detection unit changes according to the relative displacement in the thickness direction between the fixed electrode and the movable electrode.

請求項1の発明にあっては、半導体層に形成された固定電極と、半導体層に形成され当該半導体層の固定部分にビームを介して可動支持される可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該検出部での静電容量を検出することで所定の物理量を検出する静電容量式センサであって、上記検出部は、可動電極の動作による当該可動電極と固定電極との厚み方向へずれに伴う相互対向面積の変化に応じた静電容量を検出することを特徴とする。   According to the first aspect of the present invention, a fixed electrode formed on the semiconductor layer and a movable electrode formed on the semiconductor layer and movablely supported by a fixed portion of the semiconductor layer via a beam are provided. A detection unit is configured such that an electrode and a movable electrode are arranged to face each other with a gap, and a capacitance type sensor that detects a predetermined physical quantity by detecting capacitance at the detection unit, wherein the detection The unit is characterized in that it detects a capacitance according to a change in an opposing area caused by a shift in a thickness direction between the movable electrode and the fixed electrode due to an operation of the movable electrode.

請求項2の発明にあっては、上記可動電極が初期位置にある状態で、上記可動電極と固定電極とを厚み方向にずらして配置したことを特徴とする。   The invention according to claim 2 is characterized in that the movable electrode and the fixed electrode are shifted in the thickness direction while the movable electrode is in an initial position.

請求項3の発明にあっては、上記検出部では、上記固定電極に設けた櫛歯部と、上記可動電極に設けた櫛歯部とが相互に噛み合うように構成したことを特徴とする。   According to a third aspect of the present invention, the detection unit is configured such that a comb tooth portion provided on the fixed electrode and a comb tooth portion provided on the movable electrode are engaged with each other.

請求項4の発明にあっては、上記検出部では、一つの上記固定電極に、相反する方向に突出する少なくとも二つの櫛歯部を設けるとともに、一つの上記可動電極に、当該固定電極の櫛歯部に噛み合う櫛歯部を設けたことを特徴とする。   According to a fourth aspect of the present invention, in the detection unit, at least two comb teeth protruding in opposite directions are provided on one fixed electrode, and a comb of the fixed electrode is provided on one movable electrode. A comb tooth portion that meshes with the tooth portion is provided.

請求項5の発明にあっては、上記固定電極および可動電極の櫛歯部を、上記検出部による主検知方向と直交する方向のうち可動電極に作用する慣性力が最大となる方向に略沿って突出させたことを特徴とする。   In the invention of claim 5, the comb-tooth portions of the fixed electrode and the movable electrode are substantially along the direction in which the inertial force acting on the movable electrode is maximized among the directions orthogonal to the main detection direction by the detection unit. It is characterized by protruding.

請求項6の発明にあっては、一つの上記可動電極に対して相異なる二つの上記固定電極を対向させることにより上記検出部を二つ設け、それら二つの検出部の差動出力として静電容量を検出するようにし、それら二つの検出部について、上記固定電極の櫛歯部の突出方向ならびに上記可動電極の櫛歯部の突出方向を同一としたことを特徴とする。   In the invention of claim 6, two detection parts are provided by making two different fixed electrodes face each other with respect to one movable electrode, and electrostatic detection is performed as a differential output of the two detection parts. Capacitance is detected, and the projecting direction of the comb-teeth portion of the fixed electrode and the projecting direction of the comb-teeth portion of the movable electrode are the same for the two detection units.

請求項7の発明にあっては、上記可動電極は、ビームを介して揺動可能に支持されることを特徴とする。   The invention according to claim 7 is characterized in that the movable electrode is swingably supported via a beam.

請求項8の発明にあっては、上記可動電極は、ビームを介して厚み方向に往復動可能に支持されることを特徴とする。   The invention according to claim 8 is characterized in that the movable electrode is supported so as to reciprocate in the thickness direction via a beam.

請求項9の発明にあっては、上記ビームを蛇行させたことを特徴とする。   The invention according to claim 9 is characterized in that the beam is meandered.

請求項10の発明にあっては、上記可動電極に別の固定電極を間隙をもって対向させて第二の検出部を設け、当該第二の検出部によって、上記可動電極と固定電極との間隙に応じた静電容量を検出することを特徴とする。   In a tenth aspect of the present invention, a second detection unit is provided with another fixed electrode opposed to the movable electrode with a gap, and the second detection unit provides a gap between the movable electrode and the fixed electrode. A corresponding electrostatic capacity is detected.

本発明によれば、固定電極と可動電極との厚み方向の相対的なずれに応じて検出部の静電容量が変化する静電容量式センサにおいて、半導体層に形成した固定電極と可動電極とを間隙をもって相互に対向させて検出部を構成したため、固定電極と可動電極とが相互に対向する部分の厚みを十分に確保することができ、検出精度を向上することができる。   According to the present invention, in the capacitive sensor in which the capacitance of the detection unit changes according to the relative displacement in the thickness direction between the fixed electrode and the movable electrode, the fixed electrode and the movable electrode formed on the semiconductor layer Since the detection part is configured to face each other with a gap, a sufficient thickness can be secured at the part where the fixed electrode and the movable electrode face each other, and the detection accuracy can be improved.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)図1は、本実施形態にかかる静電容量式センサの半導体層の平面図、図2は、静電容量式センサの一部の断面図、図3は、静電容量式センサの検出部を示す図であって、(a)は検出部の一部を拡大して示す平面図、(b)は(a)のA−A断面図、図4は、静電容量式センサの第二の検出部を示す平面図である。   (First Embodiment) FIG. 1 is a plan view of a semiconductor layer of a capacitive sensor according to this embodiment, FIG. 2 is a partial sectional view of the capacitive sensor, and FIG. It is a figure which shows the detection part of a type | mold sensor, Comprising: (a) is a top view which expands and shows a part of detection part, (b) is AA sectional drawing of (a), FIG. It is a top view which shows the 2nd detection part of a type | formula sensor.

本実施形態にかかる静電容量式センサ1(以下、単にセンサ1と記す)は、図2に示すように、半導体基板を処理してなる半導体層2の表裏両側に、ガラス基板等の絶縁層20,21を陽極接合等によって接合して構成されている。これら半導体層2と絶縁層20,21との接合面(図2では半導体層2と絶縁層21との接合面のみ)には、比較的浅い凹部22が形成されており、半導体層2各部の絶縁性や可動電極5の動作性の確保が図られている。   As shown in FIG. 2, an electrostatic capacitance type sensor 1 (hereinafter simply referred to as sensor 1) according to the present embodiment has an insulating layer such as a glass substrate on both sides of a semiconductor layer 2 obtained by processing a semiconductor substrate. 20 and 21 are joined by anodic bonding or the like. A relatively shallow recess 22 is formed on the bonding surface between the semiconductor layer 2 and the insulating layers 20 and 21 (only the bonding surface between the semiconductor layer 2 and the insulating layer 21 in FIG. 2). The insulation and the operability of the movable electrode 5 are ensured.

また、図2に示すように、絶縁層20の表面20a上には導体層23が成膜されており、半導体層2の各部の電位を取得するための電極として用いられる。本実施形態では、絶縁層20にサンドブラスト加工等によって貫通孔24を形成して半導体層2の表面(絶縁層20側の表面)の一部を露出させておき、絶縁層20の表面上から貫通孔24の内周面上および半導体層2の表面上にかけて電気的に接続された一連の導体層23を成膜するようにして、当該導体層23から半導体層2内の各部の電位を検出できるようにしてある。なお、絶縁層20の表面上は、樹脂層(図示せず)によって被覆(モールド成形)するのが好適である。   Further, as shown in FIG. 2, a conductor layer 23 is formed on the surface 20 a of the insulating layer 20 and is used as an electrode for acquiring the potential of each part of the semiconductor layer 2. In the present embodiment, a through hole 24 is formed in the insulating layer 20 by sandblasting or the like to expose a part of the surface of the semiconductor layer 2 (the surface on the insulating layer 20 side) and penetrate from the surface of the insulating layer 20. By forming a series of conductor layers 23 that are electrically connected over the inner peripheral surface of the hole 24 and the surface of the semiconductor layer 2, the potential of each part in the semiconductor layer 2 can be detected from the conductor layer 23. It is like that. The surface of the insulating layer 20 is preferably covered (molded) with a resin layer (not shown).

そして、図1〜図4等に示すように、半導体基板に公知の半導体プロセスによって間隙10を形成することにより、半導体層2に、アンカ部3,13や、ビーム部4,14、可動電極5,15、固定電極6A,6B,16、フレーム部7等が形成される。   Then, as shown in FIGS. 1 to 4 and the like, by forming the gap 10 in the semiconductor substrate by a known semiconductor process, the anchor portions 3 and 13, the beam portions 4 and 14, and the movable electrode 5 are formed on the semiconductor layer 2. , 15, fixed electrodes 6 </ b> A, 6 </ b> B, 16, a frame portion 7, and the like.

半導体層2は、図1に示すように、全体として平面視で略長方形状に形成されており、フレーム部7が、その半導体層2の四つの周縁(四辺)に沿って略一定幅で枠状に設けられている。   As shown in FIG. 1, the semiconductor layer 2 is formed in a substantially rectangular shape as a whole in plan view, and the frame portion 7 has a frame with a substantially constant width along the four peripheral edges (four sides) of the semiconductor layer 2. It is provided in the shape.

間隙10は、例えば、垂直エッチング加工(例えば、ICP(Inductively Coupled Plasma;誘導結合プラズマ)加工等の反応性イオンエッチング)によって形成し、間隙10両側の壁面を半導体層2の表面と垂直にして、それら壁面同士を相互に略平行に対向させるのが好適である。   The gap 10 is formed by, for example, vertical etching (for example, reactive ion etching such as ICP (Inductively Coupled Plasma) processing), and wall surfaces on both sides of the gap 10 are perpendicular to the surface of the semiconductor layer 2. It is preferable that the wall surfaces face each other substantially in parallel.

フレーム部7の内側には、フレーム部7の一辺(本実施形態では図1の左側の短辺)の両端となる隅部に寄せて、矩形断面(本実施形態では略長方形断面)を有する柱状のアンカ部3,3が一対設けられており、これらアンカ部3,3から相互に近接する方向、すなわちフレーム部7の一辺に略沿う方向に、一対のビーム部4,4が延設され、当該フレーム部7の一辺の略中央部で可動電極5(の張出部5e)に接続されている。   A columnar shape having a rectangular cross-section (substantially rectangular cross-section in the present embodiment) is provided inside the frame portion 7 so as to approach corners that are both ends of one side of the frame portion 7 (the short side on the left side in FIG. 1 in the present embodiment). The anchor portions 3 and 3 are provided in a pair, and a pair of beam portions 4 and 4 extend in a direction close to each other from the anchor portions 3 and 3, that is, in a direction substantially along one side of the frame portion 7. It is connected to the movable electrode 5 (the overhanging portion 5e) at a substantially central portion of one side of the frame portion 7.

ビーム部4は、センサ1の厚み方向に厚く、当該厚み方向と直交する方向(センサ1の表面に沿う方向)に薄い一定の矩形(略長方形)断面を有する梁として構成される。全体的な大きさにもよるが、一例としては、半導体層2の厚み方向の高さは10マイクロメートル以上(500マイクロメートル以下)、半導体層2の表面に沿う方向の幅は数マイクロメートル(3〜10マイクロメートル程度)とすることができる。   The beam portion 4 is configured as a beam that is thick in the thickness direction of the sensor 1 and has a thin rectangular (substantially rectangular) cross section that is thin in a direction orthogonal to the thickness direction (a direction along the surface of the sensor 1). Although depending on the overall size, as an example, the height in the thickness direction of the semiconductor layer 2 is 10 micrometers or more (500 micrometers or less), and the width along the surface of the semiconductor layer 2 is several micrometers ( About 3 to 10 micrometers).

可動電極5は、中央に比較的大きな矩形状の開口部5aを有する矩形枠状に形成されており、間隙10をあけてフレーム部7の内側に当該フレーム部7の内縁に沿って配置されている。なお、可動電極5の開口部5a内には、センサ1の表面に沿う一方向(図1では左右方向)の可動電極15の動きを検出する第二の検出部9を構築するための構造(アンカ部13、ビーム部14、可動電極15、および固定電極16)が配置されているが、かかる構造については後述する。   The movable electrode 5 is formed in a rectangular frame shape having a relatively large rectangular opening 5a in the center, and is disposed along the inner edge of the frame portion 7 inside the frame portion 7 with a gap 10 therebetween. Yes. In addition, in the opening part 5a of the movable electrode 5, the structure for constructing | assembling the 2nd detection part 9 which detects the motion of the movable electrode 15 of the one direction (FIG. 1 left-right direction) along the surface of the sensor 1 ( An anchor portion 13, a beam portion 14, a movable electrode 15, and a fixed electrode 16) are disposed. Such a structure will be described later.

可動電極5は、ビーム部4,4とほぼ平行に伸びる基端側フレーム部5bを有しており、その長手方向略中央部からフレーム部7側に張り出す張出部5eを有している。ビーム部4,4はこの張出部5eに接続されている。   The movable electrode 5 has a base end side frame portion 5b extending substantially parallel to the beam portions 4 and 4, and has an overhang portion 5e protruding from the substantially central portion in the longitudinal direction to the frame portion 7 side. . The beam portions 4 and 4 are connected to the overhang portion 5e.

基端側フレーム部5bの長手方向両端部からは、当該基端側フレーム部5bと略直交する方向に(すなわちフレーム部7に辺と略平行な方向に)アーム部5c,5cが延設され、アーム部5c,5cの先端側同士を接続するように先端側フレーム部5dが設けられている。この先端側フレーム部5dは、フレーム部7のビーム部4,4が配置される側と反対側の辺に沿って伸びており、またアーム部5c,5cとは略直交している。   Arm portions 5c, 5c extend from both longitudinal ends of the base end side frame portion 5b in a direction substantially orthogonal to the base end side frame portion 5b (that is, in a direction substantially parallel to the side of the frame portion 7). The distal end side frame portion 5d is provided so as to connect the distal ends of the arm portions 5c and 5c. The front end side frame portion 5d extends along the side opposite to the side where the beam portions 4 and 4 of the frame portion 7 are disposed, and is substantially orthogonal to the arm portions 5c and 5c.

可動電極5は、その表裏に形成された凹部22によって絶縁層20,21と分離されるとともに、半導体層2に形成された間隙10によって半導体層2内の他の部分とも分離されている。すなわち、本実施形態にかかるセンサ1は、可動電極5が、半導体層2の固定部分としてのアンカ部3に、ビーム部4,4を介して可動支持された構造を備えている。かかる構造では、アンカ部3、ビーム部4,4、および可動電極5は、半導体層2の一部として一体に構成されており、それらアンカ部3、ビーム部4,4、および可動電極5の電位はほぼ等電位とみなすことができる。   The movable electrode 5 is separated from the insulating layers 20 and 21 by the concave portions 22 formed on the front and back surfaces thereof, and is separated from other portions in the semiconductor layer 2 by the gap 10 formed in the semiconductor layer 2. That is, the sensor 1 according to the present embodiment has a structure in which the movable electrode 5 is movably supported by the anchor portion 3 as a fixed portion of the semiconductor layer 2 via the beam portions 4 and 4. In such a structure, the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 are integrally configured as a part of the semiconductor layer 2, and the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 The potential can be regarded as almost equipotential.

ビーム部4,4は、フレーム部7に対して可動電極5を弾性的に可動支持するバネ要素として機能する。本実施形態では、ビーム部4,4は、センサ1の厚み方向に長い断面(ビーム部4の延伸軸に垂直な断面)を有しているため、当該厚み方向には撓みにくく、また、可動電極5がビーム部4,4の幅方向一方側に片寄って(本実施形態では一方側のみに)配置されているため、センサ1に厚み方向の加速度が作用すると、可動電極5に作用する慣性力によってビーム部4,4がねじられ、可動電極5はビーム部4,4を中心として揺動することになる。すなわち、本実施形態では、ビーム部4,4はねじりビーム(トーションビーム)として機能することになる。   The beam portions 4 and 4 function as spring elements that elastically moveably support the movable electrode 5 with respect to the frame portion 7. In the present embodiment, the beam portions 4 and 4 have a long cross section in the thickness direction of the sensor 1 (a cross section perpendicular to the extending axis of the beam portion 4). Since the electrode 5 is arranged so as to be shifted to one side in the width direction of the beam portions 4 and 4 (only on one side in this embodiment), the inertia acting on the movable electrode 5 when acceleration in the thickness direction acts on the sensor 1. The beam portions 4 and 4 are twisted by the force, and the movable electrode 5 swings around the beam portions 4 and 4. That is, in the present embodiment, the beam portions 4 and 4 function as a torsion beam (torsion beam).

かかる構成では、可動電極5の揺動によって、当該可動電極5と固定電極6A,6Bとが厚み方向にずれることになるが、本実施形態では、検出部8A,8Bにおいて、この厚み方向のずれに伴う可動電極5(先端側フレーム部5d)と固定電極6A,6Bとの相互対向面積の変化に応じた静電容量を検出するようになっている。この場合、検出部8A,8Bの主検知方向はセンサ1の厚み方向(図1および図3の(a)において紙面と垂直な方向)となる。   In such a configuration, the movable electrode 5 and the fixed electrodes 6A and 6B are displaced in the thickness direction due to the swing of the movable electrode 5, but in the present embodiment, in the detection units 8A and 8B, the displacement in the thickness direction is detected. The electrostatic capacity according to the change of the mutual opposing area of the movable electrode 5 (front end side frame portion 5d) and the fixed electrodes 6A and 6B is detected. In this case, the main detection direction of the detection units 8A and 8B is the thickness direction of the sensor 1 (the direction perpendicular to the paper surface in FIGS. 1 and 3A).

具体的には、可動電極5の先端側フレーム部5dの内側および外側に沿うようにそれぞれ細長い固定電極6A,6Bを設けるとともに、可動電極5の櫛歯部5fと、固定電極6A,6Bの櫛歯部6bとを噛み合わせて検出部8A,8Bが構成されている。   Specifically, elongated fixed electrodes 6A and 6B are provided along the inner side and the outer side of the distal end side frame portion 5d of the movable electrode 5, respectively, and the comb teeth portion 5f of the movable electrode 5 and the combs of the fixed electrodes 6A and 6B are provided. The detecting portions 8A and 8B are configured by meshing with the tooth portion 6b.

各検出部8A,8Bでは、櫛歯部5f,6b間の間隙10aの大きさは一定の値に設定されており、図3の(b)に示すように、先端側フレーム部5dのセンサ1の厚み方向に上下動に伴って変化する可動電極5と固定電極6A,6Bとの相互対向面積Aa,Abに応じた静電容量が検出されるようになっている。   In each of the detection portions 8A and 8B, the size of the gap 10a between the comb teeth portions 5f and 6b is set to a constant value, and as shown in FIG. 3 (b), the sensor 1 of the front end side frame portion 5d. Capacitance corresponding to the mutually facing areas Aa and Ab between the movable electrode 5 and the fixed electrodes 6A and 6B that change with the vertical movement in the thickness direction is detected.

具体的には、検出部8Aについては、可動電極5が図3の(b)で上方向に移動すると、可動電極5と固定電極6Aとの相互対向面積Aaが増大する分、静電容量は増大し、一方、可動電極5が下方向に移動すると、可動電極5と固定電極6Aとの相互対向面積Aaが減少する分、静電容量は減少することになる。   Specifically, with respect to the detection unit 8A, when the movable electrode 5 moves upward in FIG. 3B, the capacitance Aa increases as the mutual facing area Aa between the movable electrode 5 and the fixed electrode 6A increases. On the other hand, when the movable electrode 5 moves downward, the capacitance decreases as the area Aa between the movable electrode 5 and the fixed electrode 6A decreases.

また、検出部8Bについては、可動電極5が上方向に移動すると、可動電極5と固定電極6Bとの相互対向面積Abが減少する分、静電容量は減少し、一方、可動電極5が下方向に移動すると、可動電極5と固定電極6Bとの相互対向面積Abが増大する分、静電容量は増大することになる。   In addition, with respect to the detection unit 8B, when the movable electrode 5 moves upward, the capacitance decreases as the mutual facing area Ab between the movable electrode 5 and the fixed electrode 6B decreases, while the movable electrode 5 moves downward. When moving in the direction, the capacitance increases as the opposing area Ab between the movable electrode 5 and the fixed electrode 6B increases.

そして、固定電極6A,6Bの電位および可動電極5の電位は、各電極に対応して形成された導体層23(図2参照)を介してそれぞれ別個に取り出され、それら各電極間の電位差から各検出部8A,8Bの静電容量が取得され、それら検出部8A,8Bの静電容量の差動出力が、センサ1による検出値として用いられるようになっている。すなわち、これら検出部8A,8Bの静電容量の値から、可動電極5の姿勢を把握することが可能となり、加速度や角加速度など、種々の物理量を把握することができる。   Then, the potentials of the fixed electrodes 6A and 6B and the potential of the movable electrode 5 are taken out separately via the conductor layer 23 (see FIG. 2) formed corresponding to each electrode, and from the potential difference between these electrodes. Capacitances of the detection units 8A and 8B are acquired, and differential outputs of the capacitances of the detection units 8A and 8B are used as detection values by the sensor 1. That is, it is possible to grasp the attitude of the movable electrode 5 from the capacitance values of the detection units 8A and 8B, and it is possible to grasp various physical quantities such as acceleration and angular acceleration.

ここで、本実施形態では、可動電極5の一移動方向(図3の(b)の上方向および下方向のうちいずれか一方)について、各検出部8A,8Bの静電容量が単調増加するかあるいは単調減少するようになっているが、かかる出力特性は、可動電極5(先端側フレーム部5d)が初期位置にある状態で、可動電極5と固定電極6A,6Bとを厚み方向にずらして配置することで実現されている。仮に、可動電極5が初期位置にあるときに、可動電極5と固定電極6A,6Bとが、相互にずれることなく同じ厚みで正対するように構成されていると、可動電極5が上方向に移動する場合、および下方向に移動する場合のいずれについても、相互対向面積が減少することになってしまい、静電容量の値(の変化)からは可動電極5の移動方向を把握できないという問題が生じてしまう。   Here, in the present embodiment, the capacitances of the detection units 8A and 8B monotonously increase in one moving direction of the movable electrode 5 (one of the upward direction and the downward direction in FIG. 3B). However, the output characteristic is such that the movable electrode 5 and the fixed electrodes 6A and 6B are shifted in the thickness direction in a state where the movable electrode 5 (front end side frame portion 5d) is in the initial position. It is realized by arranging. If the movable electrode 5 is in the initial position and the movable electrode 5 and the fixed electrodes 6A and 6B are configured to face each other with the same thickness without being displaced from each other, the movable electrode 5 is directed upward. In both cases of moving and moving downward, the mutual facing area is reduced, and the moving direction of the movable electrode 5 cannot be grasped from the value (change) of the capacitance. Will occur.

また、本実施形態では、櫛歯部5f,6bを、検出部8A,8Bによる主検知方向(すなわちセンサ1の厚み方向)と直交する方向のうち可動電極5に作用する慣性力が最大となる方向に略沿って突出させる(延伸させる)のが好適である。こうすることで、主検知方向と異なる方向に作用した慣性力によって間隙10aの大きさが変化し、検出部8A,8Bの検出誤差が生じるのを抑制することができる。   Moreover, in this embodiment, the inertia force which acts on the movable electrode 5 becomes the maximum among the directions orthogonal to the main detection direction (namely, thickness direction of the sensor 1) by the detection parts 8A and 8B. It is preferable to project (extend) substantially along the direction. By doing so, it is possible to suppress the detection error of the detection units 8A and 8B from occurring due to the size of the gap 10a being changed by the inertial force acting in a direction different from the main detection direction.

そして、本実施形態では、上述したように、可動電極5の開口部5a内にアンカ部13,13、ビーム部14,14、可動電極15、および固定電極16,16を設けるとともに、可動電極15の一部と固定電極16,16の一部とを間隙10b(図4)をもって相互に対向させて第二の検出部9,9が形成され、当該第二の検出部9,9によって、検出部8A,8Bとは別の方向について、可動電極15の変位や加速度を検出することができるように構成されている。   In this embodiment, as described above, the anchor portions 13 and 13, the beam portions 14 and 14, the movable electrode 15, and the fixed electrodes 16 and 16 are provided in the opening 5 a of the movable electrode 5, and the movable electrode 15 is provided. And a part of the fixed electrodes 16 and 16 are opposed to each other with a gap 10b (FIG. 4) to form the second detection portions 9 and 9, and the second detection portions 9 and 9 detect the second detection portions 9 and 9. It is configured so that the displacement and acceleration of the movable electrode 15 can be detected in a direction different from the portions 8A and 8B.

具体的には、図4に示すように、可動電極15は、その中央部15aからフレーム部7の一辺の中央部分に向けてその辺と略垂直な方向に帯状に細長く伸びる櫛歯部15bを備えており、これら複数の櫛歯部15bは、相互に平行に一定のピッチで設けられている。   Specifically, as shown in FIG. 4, the movable electrode 15 includes a comb tooth portion 15 b that is elongated in a strip shape in a direction substantially perpendicular to the side from the center portion 15 a toward the center portion of one side of the frame portion 7. The plurality of comb teeth portions 15b are provided in parallel to each other at a constant pitch.

一方、固定電極16は、開口部5aの隅部に近接して設けられる隅部16aと、この隅部16aからフレーム部7の一辺に沿って帯状に細長く伸びる縁部16bとを備えており、この縁部16bに、可動電極15の中央部15a側に向けて伸びる櫛歯部16cが設けられている。本実施形態では、複数の櫛歯部16cが、相互に平行に一定のピッチ(可動電極15の櫛歯部15bと同一のピッチ)で設けられており、可動電極15の複数の櫛歯部15bと間隙10bをもって噛み合うようにしてある。   On the other hand, the fixed electrode 16 includes a corner portion 16a provided close to the corner portion of the opening 5a, and an edge portion 16b extending in a strip shape from the corner portion 16a along one side of the frame portion 7, A comb tooth portion 16c extending toward the central portion 15a side of the movable electrode 15 is provided on the edge portion 16b. In the present embodiment, the plurality of comb teeth 16c are provided in parallel with each other at a constant pitch (the same pitch as the comb teeth 15b of the movable electrode 15), and the plurality of comb teeth 15b of the movable electrode 15 are provided. With a gap 10b.

この第二の検出部9では、櫛歯部15b,16c間の間隙10は、櫛歯部15bに対して一方側で狭く(間隙10b)、他方側で広く(間隙10c)設定してあり、狭い側の間隙10bを検知ギャップとして、この間隙10bを介して相互に対向する櫛歯部15b,16c間の、当該間隙10bの大きさに応じて変化する静電容量を検出するようになっている。   In the second detector 9, the gap 10 between the comb teeth 15b and 16c is set narrower on one side (gap 10b) and wider on the other side (gap 10c) than the comb teeth 15b. With the gap 10b on the narrow side as a detection gap, the capacitance that changes in accordance with the size of the gap 10b between the comb teeth 15b and 16c facing each other through the gap 10b is detected. Yes.

可動電極15は、開口部5a内に設けられたアンカ部13,13に、ビーム部14,14を介して可動支持されており、ビーム部14,14を、センサ1の厚み方向に長く幅方向(センサ1の表面方向)に短い矩形断面形状とすることで、可動電極15がセンサ1の厚み方向に撓みにくくし、また、適宜に蛇行させることで、可動電極15をセンサ1の表面に沿う一方向(図1の左右方向)に可動させるように構成している。   The movable electrode 15 is movably supported by anchor portions 13 and 13 provided in the opening 5 a via beam portions 14 and 14, and the beam portions 14 and 14 are long in the thickness direction of the sensor 1 and in the width direction. By making the rectangular cross-sectional shape short in the (surface direction of the sensor 1), the movable electrode 15 is difficult to bend in the thickness direction of the sensor 1, and appropriately moving to meander the movable electrode 15 along the surface of the sensor 1. It is configured to be movable in one direction (left and right direction in FIG. 1).

以上の本実施形態によれば、検出部8A,8Bにより、可動電極5の動作による当該可動電極5と固定電極6A,6Bとの厚み方向へのずれに伴う相互対向面積Aa,Abの変化に応じた静電容量を検出するようにしたので、静電容量が可動電極5と固定電極6A,6Bとの相対的なずれ量、すなわち可動電極5の変位(揺動角度)についての1次関数となる。よって、間隙の大きさを変化させ当該間隙の大きさの2乗に反比例して静電容量が変化する場合に比べて、検出精度を向上させることができる。しかも、半導体層2に形成した可動電極5と固定電極6A,6Bとを相互に対向させて検出部8A,8Bを構築したため、相互対向面積をより広く確保することができ、かつ電気力線の曲がりを少なくできるため、検出精度を高めることができる。   According to the present embodiment described above, the detection portions 8A and 8B cause changes in the opposing areas Aa and Ab due to the displacement of the movable electrode 5 and the fixed electrodes 6A and 6B in the thickness direction due to the operation of the movable electrode 5. Since the corresponding electrostatic capacity is detected, the linear function of the relative displacement between the movable electrode 5 and the fixed electrodes 6A and 6B, that is, the displacement (swinging angle) of the movable electrode 5 is detected. It becomes. Therefore, detection accuracy can be improved as compared with the case where the capacitance changes in inverse proportion to the square of the size of the gap by changing the size of the gap. In addition, since the movable electrodes 5 formed on the semiconductor layer 2 and the fixed electrodes 6A and 6B are opposed to each other to construct the detection units 8A and 8B, a wider area can be secured, and the lines of electric force can be secured. Since bending can be reduced, detection accuracy can be increased.

また、本実施形態によれば、可動電極5が初期位置にある状態で、可動電極5と固定電極6A,6Bとを厚み方向にずらして配置したため、可動電極5の一移動方向について、各検出部8A,8Bの静電容量が単調増加するかあるいは単調減少するように設定することができ、以て、静電容量の変化(増減)から可動電極5の移動方向を把握することができる。   Further, according to the present embodiment, since the movable electrode 5 and the fixed electrodes 6A and 6B are shifted in the thickness direction in a state where the movable electrode 5 is in the initial position, each detection direction is detected in one moving direction of the movable electrode 5. The capacitances of the portions 8A and 8B can be set so as to monotonously increase or monotonously decrease, so that the moving direction of the movable electrode 5 can be grasped from the change (increase / decrease) in the capacitance.

また、本実施形態では、検出部8A,8Bにおいて、固定電極6A,6Bに設けた櫛歯部6bと、可動電極5に設けた櫛歯部5fとが相互に噛み合うように構成したため、可動電極5と固定電極6A,6Bとで相互に対向する部分の面積を効果的に増大させて、検出精度を高めることができる。   In the present embodiment, in the detection units 8A and 8B, the comb teeth 6b provided on the fixed electrodes 6A and 6B and the comb teeth 5f provided on the movable electrode 5 are configured to mesh with each other. 5 and the fixed electrodes 6A and 6B can effectively increase the areas of the portions facing each other, thereby increasing the detection accuracy.

また、本実施形態では、櫛歯部5f,6bを、検出部8A,8Bによる主検知方向(すなわちセンサ1の厚み方向)と直交する方向のうち可動電極5に作用する慣性力が最大となる方向に略沿って突出させるように構成したため、可動電極5に作用した慣性力によって間隙10aの大きさが変化するのを抑制し、ひいては検出誤差が生じるのを抑制することができる。   Moreover, in this embodiment, the inertia force which acts on the movable electrode 5 becomes the maximum among the directions orthogonal to the main detection direction (namely, thickness direction of the sensor 1) by the detection parts 8A and 8B. Since it is configured to protrude substantially along the direction, it is possible to suppress a change in the size of the gap 10a due to the inertial force acting on the movable electrode 5, and thus to suppress occurrence of a detection error.

また、本実施形態では、半導体層2の固定部分としてのアンカ部3によって、ビーム部4を介して可動電極5を揺動可能に支持することで、検出部8A,8Bにおいて、可動電極5と固定電極6A,6Bとがセンサ1の厚み方向にずれる構成を比較的簡素な構成として得ることができる。   In the present embodiment, the movable electrode 5 is supported by the anchor portion 3 as a fixed portion of the semiconductor layer 2 through the beam portion 4 so that the movable electrode 5 can swing. A configuration in which the fixed electrodes 6A and 6B are displaced in the thickness direction of the sensor 1 can be obtained as a relatively simple configuration.

また、本実施形態では、検出部8A,8Bによる主検知方向とは別の方向における可動電極15の変位や加速度を検出する第二の検出部9,9を設けたため、複数の方向について加速度等を検出すべく各方向に別個にセンサを設ける場合に比べて小型化を図ることができる。   In the present embodiment, since the second detection units 9 and 9 that detect the displacement and acceleration of the movable electrode 15 in a direction different from the main detection direction by the detection units 8A and 8B are provided, acceleration and the like in a plurality of directions. Compared with the case where a sensor is separately provided in each direction to detect the above, downsizing can be achieved.

特に、本実施形態では、可動電極5のうちねじり中心(ビーム部4の中心軸)から離間した部分に検出部8A,8Bを形成し、当該検出部8A,8Bとねじり中心との間に、上記第二の検出部9,9を設けたため、検出部8A,8Bをねじり中心から遠い位置に配置して可動電極5の揺動による検出部8A,8Bの揺動半径方向(図1では左右方向)の変位を小さくして検出精度(特に直線性)を向上することができる上、検出部8A,8Bをねじり中心から離間配置したことによって当該検出部8A,8Bとねじり中心との間に生じるデッドスペースを、第二の検出部9,9を設けるスペースとして有効に利用することができる分、センサ1をより小型に構成することができる。   In particular, in the present embodiment, the detection units 8A and 8B are formed in a portion of the movable electrode 5 that is separated from the torsion center (the central axis of the beam unit 4), and between the detection units 8A and 8B and the torsion center, Since the second detection units 9 and 9 are provided, the detection units 8A and 8B are arranged at positions far from the torsion center, and the detection units 8A and 8B are oscillated in the oscillating radial direction (left and right in FIG. 1). (Direction) can be reduced to improve detection accuracy (particularly linearity), and the detectors 8A and 8B are spaced apart from the torsion center, so that the detection units 8A and 8B are located between the torsion center. Since the generated dead space can be effectively used as a space for providing the second detection units 9 and 9, the sensor 1 can be configured more compactly.

(第2実施形態)図5は、本実施形態にかかる静電容量式センサの半導体層の平面図である。なお、本実施形態にかかるセンサ1Aは、上記第1実施形態にかかるセンサ1と同じ構成要素を備えている。よって、以下では、同じ構成要素には共通の符号を付与し、重複する説明を省略する。   (Second Embodiment) FIG. 5 is a plan view of a semiconductor layer of a capacitive sensor according to this embodiment. The sensor 1A according to the present embodiment includes the same components as the sensor 1 according to the first embodiment. Therefore, below, the same code | symbol is provided to the same component and the overlapping description is abbreviate | omitted.

本実施形態にかかるセンサ1Aも、検出部8A1,8Bにより、可動電極5Aの動作による当該可動電極5Aと固定電極6A1,6Bとの厚み方向へのずれに伴う相互対向面積の変化に応じた静電容量を検出するように構成されている。よって、上記第1実施形態と同様の効果を得ることができる。   In the sensor 1A according to the present embodiment, the detectors 8A1 and 8B also detect static electricity according to the change in the mutual facing area due to the displacement of the movable electrode 5A and the fixed electrodes 6A1 and 6B in the thickness direction by the operation of the movable electrode 5A. It is configured to detect the capacitance. Therefore, the same effect as the first embodiment can be obtained.

ただし、本実施形態では、二つの検出部8A1,8Bについて、各櫛歯部の突出方向(延伸方向)を同じ方向としている。具体的には、図5に示すように、固定電極6A1,6Bの両方とも櫛歯部を図5の右側から左側に向けて突出させるとともに、可動電極5Aの櫛歯部を図5の左側から右側に向けて突出させて、相互に噛み合わせている。かかる構成では、櫛歯部の突出方向(図5の左右方向)における可動電極5Aの不本意な動作によって生じる当該方向における相互対向面積の増減が、二つの検出部8A1,8Bについて同じになる。したがって、これら検出部8A1,8Bの差動出力において、当該相互対向面積の増減に伴う誤差を相殺することができ、以て、検出精度を高めることができる。   However, in this embodiment, the protrusion direction (extension direction) of each comb-tooth part is made into the same direction about two detection part 8A1, 8B. Specifically, as shown in FIG. 5, both the fixed electrodes 6A1 and 6B project the comb-tooth portion from the right side to the left side in FIG. 5, and the comb-tooth portion of the movable electrode 5A from the left side in FIG. It protrudes toward the right side and meshes with each other. In such a configuration, the increase and decrease of the mutual facing area in the direction caused by the unintentional operation of the movable electrode 5A in the protruding direction of the comb tooth portion (left and right direction in FIG. 5) is the same for the two detection units 8A1 and 8B. Therefore, in the differential outputs of the detectors 8A1 and 8B, an error due to the increase / decrease in the mutual facing area can be canceled, and thus the detection accuracy can be improved.

(第3実施形態)図6は、本実施形態にかかる静電容量式センサの半導体層の平面図である。なお、本実施形態にかかるセンサ1Bは、上記第1実施形態にかかるセンサ1と同じ構成要素を備えている。よって、以下では、同じ構成要素には共通の符号を付与し、重複する説明を省略する。   (Third Embodiment) FIG. 6 is a plan view of a semiconductor layer of a capacitive sensor according to this embodiment. The sensor 1B according to the present embodiment includes the same components as the sensor 1 according to the first embodiment. Therefore, below, the same code | symbol is provided to the same component and the overlapping description is abbreviate | omitted.

本実施形態にかかるセンサ1Bも、検出部8A2,8B2により、可動電極5Bの動作による当該可動電極5Bと固定電極6A2,6B2との厚み方向へずれに伴う相互対向面積の変化に応じた静電容量を検出するように構成している。よって、上記第1実施形態と同様の効果を得ることができる。   The sensor 1B according to the present embodiment also uses the detection units 8A2 and 8B2 to detect electrostatic charges corresponding to a change in the opposing area due to a shift in the thickness direction between the movable electrode 5B and the fixed electrodes 6A2 and 6B2 due to the operation of the movable electrode 5B. It is configured to detect the capacity. Therefore, the same effect as the first embodiment can be obtained.

ただし、本実施形態にかかるセンサ1Bは、検出部8A2において、一つの固定電極6A2に、相反する方向(図6の上方向と下方向)に突出する(延伸する)櫛歯部6b2を設けるとともに、可動電極5Bには、これら櫛歯部6b2に噛み合う櫛歯部5f2を設けている。また、検出部8B2においても、一つの固定電極6B2に、相反する方向(図6の上方向と下方向)に突出する(延伸する)櫛歯部6b2を設けるとともに、これら櫛歯部6b2に噛み合う櫛歯部5f2を設けている。よって、かかる構成では、各検出部8A2,8B2において、一つの可動電極5Bに、相反する方向に突出する櫛歯部5f2,5f2が設けられることになる。   However, in the sensor 1B according to the present embodiment, in the detection unit 8A2, the single fixed electrode 6A2 is provided with comb teeth 6b2 protruding (extending) in opposite directions (upward and downward in FIG. 6). The movable electrode 5B is provided with a comb tooth portion 5f2 that meshes with the comb tooth portion 6b2. Also in the detection unit 8B2, the single fixed electrode 6B2 is provided with comb teeth 6b2 protruding (extending) in opposite directions (upward and downward in FIG. 6) and meshed with these comb teeth 6b2. A comb tooth portion 5f2 is provided. Therefore, in such a configuration, in each of the detection units 8A2 and 8B2, one movable electrode 5B is provided with comb-tooth portions 5f2 and 5f2 that protrude in opposite directions.

かかる構成では、可動電極5Bが図6の上方向にずれた場合、図6上側の櫛歯部6b2,5f2が噛み合う部分では相互対向面積が増大するのに対し、図6下側の櫛歯部6b2,5f2が噛み合う部分では相互対向面積が減少することになる。一方、可動電極5Bが図6の下方向にずれた場合、図6上側の櫛歯部6b2,5f2が噛み合う部分では相互対向面積が減少するのに対し、図6下側の櫛歯部6b2,5f2が噛み合う部分では相互対向面積が増大することになる。よって、本実施形態によれば、可動電極5Bが図6の上側にずれた場合および図6の下側にずれた場合の双方について、検出部8A2,8B2毎に相互対向面積の増減が相殺され、当該相互対向面積の増減に伴う誤差を相殺することができ、以て、検出精度を高めることができる。   In such a configuration, when the movable electrode 5B is displaced upward in FIG. 6, the mutual opposing area increases in the portion where the upper comb teeth 6b2 and 5f2 in FIG. 6 are engaged, whereas the lower comb teeth in FIG. In the portion where 6b2 and 5f2 mesh with each other, the mutual facing area decreases. On the other hand, when the movable electrode 5B is displaced downward in FIG. 6, the area facing each other decreases in the portion where the upper comb teeth 6b2 and 5f2 in FIG. 6 are engaged, whereas the lower comb teeth 6b2 in FIG. In the portion where 5f2 meshes with each other, the mutual facing area increases. Therefore, according to the present embodiment, the increase or decrease in the mutual facing area is canceled for each of the detection units 8A2 and 8B2 both when the movable electrode 5B is displaced upward in FIG. 6 and when it is displaced downward in FIG. Thus, it is possible to cancel out an error associated with the increase / decrease of the mutual facing area, thereby improving the detection accuracy.

さらに、本実施形態では、フレーム部7により、蛇行構造を有する4本のビーム部4Bを介して略矩形板状の可動電極5Bの四隅を支持して、可動電極5Bがセンサ1Bの厚み方向に往復動可能となるようにしている。かかる構成により、厚み方向と直交する方向の移動量が小さくなり、当該直交方向への移動による検出誤差を小さくできるため、より検出精度を高めることができる。   Furthermore, in the present embodiment, the frame portion 7 supports the four corners of the substantially rectangular plate-like movable electrode 5B via the four beam portions 4B having a meandering structure, and the movable electrode 5B extends in the thickness direction of the sensor 1B. Reciprocation is possible. With this configuration, the amount of movement in the direction orthogonal to the thickness direction is reduced, and detection errors due to movement in the orthogonal direction can be reduced, so that the detection accuracy can be further increased.

また、このように、可動電極5Bを厚み方向に往復動させる場合には、当該可動電極5Bが傾動しないように、複数のビーム部によって可動電極5Bの重心に対して対称となる両端側を支持し、さらに好ましくは、三点以上を支持するようにするのが好適である。この点、本実施形態のように、可動電極5Bを、図6の上下方向および左右方向について線対称形状とし、その四隅を支持するようにすれば、可動電極5Bの不本意な傾動をより確実に抑制することができる。また、本実施形態のようにビーム部4Bを蛇行させることで、撓み量を確保しやすくなるという利点がある。   Further, when the movable electrode 5B is reciprocated in the thickness direction as described above, both ends that are symmetrical with respect to the center of gravity of the movable electrode 5B are supported by a plurality of beam portions so that the movable electrode 5B does not tilt. It is more preferable to support three or more points. In this respect, if the movable electrode 5B has a line-symmetric shape in the vertical and horizontal directions in FIG. 6 and supports the four corners as in this embodiment, the unintentional tilting of the movable electrode 5B can be more reliably performed. Can be suppressed. Moreover, there exists an advantage that it becomes easy to ensure the amount of bending by meandering the beam part 4B like this embodiment.

(第4実施形態)図7は、本実施形態にかかる静電容量式センサの半導体層の平面図である。なお、本実施形態にかかるセンサ1Cは、上記第1実施形態にかかるセンサ1と同じ構成要素を備えている。よって、以下では、同じ構成要素には共通の符号を付与し、重複する説明を省略する。   (Fourth Embodiment) FIG. 7 is a plan view of a semiconductor layer of a capacitive sensor according to this embodiment. The sensor 1C according to the present embodiment includes the same components as the sensor 1 according to the first embodiment. Therefore, below, the same code | symbol is provided to the same component and the overlapping description is abbreviate | omitted.

本実施形態にかかるセンサ1Cは、可動電極5Cを、センサ1Cの厚み方向の往復動作と表面に沿う少なくとも一方向の往復動作とが可能となるように構成し、厚み方向の動作を検出する検出部8A3,8B3と表面方向の動作を検出する第二の検出部9C,9Cとの双方で、可動電極5Cの共用化を図ったものである。   The sensor 1C according to the present embodiment is configured so that the movable electrode 5C can perform a reciprocating operation in the thickness direction of the sensor 1C and a reciprocating operation in at least one direction along the surface, and detects the operation in the thickness direction. The movable electrode 5C is shared by both the portions 8A3 and 8B3 and the second detection portions 9C and 9C that detect the movement in the surface direction.

具体的には、フレーム部7の相互に対向する二辺(図7では上下の二辺)の各々に近い位置に、略矩形柱状のアンカ部3C,3Cを設け、このアンカ部3C,3Cによって、蛇行する四本のビーム部4Cを介して可動電極5Cを相互に離間した四箇所で支持することで、可動電極5Cの傾動を抑制しながら当該可動電極5Cがセンサ1Cの厚み方向および図7の上下方向に往復動可能となるように構成している。   Specifically, substantially rectangular columnar anchor portions 3C, 3C are provided at positions close to each of two opposite sides (upper and lower sides in FIG. 7) of the frame portion 7, and the anchor portions 3C, 3C The movable electrode 5C is supported at four positions spaced apart from each other via the four meandering beam portions 4C, so that the movable electrode 5C is controlled in the thickness direction of the sensor 1C while suppressing the tilt of the movable electrode 5C. It is configured to be able to reciprocate in the vertical direction.

さらに、可動電極5Cには、その中央から見て図7で上下左右となる四箇所に開口部を設け、各開口部内に適宜な間隙をもって四つの固定電極6A3,6B3,16C,16Cを配置している。   Furthermore, the movable electrode 5C is provided with openings at four positions, which are up, down, left and right in FIG. 7 when viewed from the center, and four fixed electrodes 6A3, 6B3, 16C, and 16C are arranged in each opening with appropriate gaps. ing.

フレーム部7の四辺のうち相互に対向する二辺(図7では左右の二辺)に沿う一対の固定電極6A3,6B3は、センサ1Cの厚み方向の可動電極5Cの動作を検出する検出部8A3,8B3の構成要素となっている。すなわち、固定電極6A3,6B3の棒状部分6b3の外側端面6cと、可動電極5Cの外枠部分5f3の内側端面5gとが間隙をもって相互に対向する部分が、センサ1Cの厚み方向の動作を検出する検出部8A3,8B3となっている。なお、このように、各検出部8A3,8B3において、平面視で固定電極6A3,6B3を可動電極5Cで取り囲むように構成することで、固定電極6A3,6B3と可動電極5Cとが図7の上下方向にずれた場合にも相互対向面積が変化せず、当該ずれによる検出誤差を抑制することができる。   A pair of fixed electrodes 6A3 and 6B3 along two opposite sides (two sides on the left and right in FIG. 7) of the four sides of the frame unit 7 are detection units 8A3 that detect the operation of the movable electrode 5C in the thickness direction of the sensor 1C. , 8B3. That is, the portion where the outer end surface 6c of the rod-like portion 6b3 of the fixed electrodes 6A3 and 6B3 and the inner end surface 5g of the outer frame portion 5f3 of the movable electrode 5C face each other with a gap detects the operation in the thickness direction of the sensor 1C. It becomes detection part 8A3, 8B3. In this manner, in each of the detection units 8A3 and 8B3, the fixed electrodes 6A3 and 6B3 are surrounded by the movable electrode 5C in a plan view, so that the fixed electrodes 6A3 and 6B3 and the movable electrode 5C can be Even in the case of deviation in the direction, the mutual facing area does not change, and detection errors due to the deviation can be suppressed.

そして、もう一対の固定電極16C,16Cは、センサ1Cの表面に沿う一方向(図7では上下方向)の可動電極5Cの動作を検出する第二の検出部9C,9Cの構成要素となっている。すなわち、固定電極16Cの外側端面16cと、可動電極5Cの外枠部分5hの内側端面5iとが間隙をもって相互に対向する部分が、図7の上下方向の動作を検出する検出部9Cとなっている。なお、これら第二の検出部9C,9Cについても、平面視で固定電極6A3,6B3を可動電極5Cで取り囲むように構成することで、固定電極6A3,6B3と可動電極5Cとが図7の左右方向にずれた場合にも相互対向面積が変化せず、当該ずれによる検出誤差を抑制することができる。   The other pair of fixed electrodes 16C and 16C are constituent elements of the second detectors 9C and 9C that detect the operation of the movable electrode 5C in one direction (vertical direction in FIG. 7) along the surface of the sensor 1C. Yes. That is, the portion where the outer end surface 16c of the fixed electrode 16C and the inner end surface 5i of the outer frame portion 5h of the movable electrode 5C face each other with a gap is the detection unit 9C that detects the vertical movement in FIG. Yes. Note that the second detection units 9C and 9C are also configured so that the fixed electrodes 6A3 and 6B3 are surrounded by the movable electrode 5C in a plan view, so that the fixed electrodes 6A3 and 6B3 and the movable electrode 5C are left and right in FIG. Even in the case of deviation in the direction, the mutual facing area does not change, and detection errors due to the deviation can be suppressed.

以上の本実施形態によれば、検出部8A3,8B3と第二の検出部9C,9Cとで可動電極5Cの共用化を図ることができるため、これらを別個に設けた場合に比べてセンサ1Cをより小型に構成することができる。   According to the above embodiment, since the movable electrodes 5C can be shared by the detection units 8A3 and 8B3 and the second detection units 9C and 9C, the sensor 1C can be used as compared with the case where these are provided separately. Can be made smaller.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications can be made.

本発明の第1実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning 1st Embodiment of this invention. 本発明の実施形態にかかる静電容量式センサの一部の断面図。1 is a cross-sectional view of a part of a capacitive sensor according to an embodiment of the present invention. 本発明の実施形態にかかる静電容量式センサの検出部を示す図であって、(a)は検出部の一部を拡大して示す平面図、(b)は(a)のA−A断面図。It is a figure which shows the detection part of the electrostatic capacitance type sensor concerning embodiment of this invention, Comprising: (a) is a top view which expands and shows a part of detection part, (b) is AA of (a). Sectional drawing. 本発明の第1実施形態にかかる静電容量式センサの第二の検出部を示す平面図。The top view which shows the 2nd detection part of the electrostatic capacitance type sensor concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,1A,1B,1C 静電容量式センサ
2 半導体層
3,3C アンカ部(固定部分)
4,4B,4C ビーム部(ビーム)
5,5A,5B,5C 可動電極
6A,6B,6A1,6A2,6B2,6A3,6B3 固定電極
8A,8B,8A1,8A2,8B2,8A3,8B3 検出部
9,9C 第二の検出部
5f,6b,5f2,6b2 櫛歯部

1, 1A, 1B, 1C Capacitive sensor 2 Semiconductor layer 3, 3C Anchor part (fixed part)
4,4B, 4C Beam part (beam)
5, 5A, 5B, 5C Movable electrode 6A, 6B, 6A1, 6A2, 6B2, 6A3, 6B3 Fixed electrode 8A, 8B, 8A1, 8A2, 8B2, 8A3, 8B3 Detector 9, 9C Second detector 5f, 6b , 5f2, 6b2 comb teeth

Claims (10)

半導体層に形成された固定電極と、半導体層に形成され当該半導体層の固定部分にビームを介して可動支持される可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該検出部での静電容量を検出することで所定の物理量を検出する静電容量式センサであって、
前記検出部は、可動電極の動作による当該可動電極と固定電極との厚み方向へずれに伴う相互対向面積の変化に応じた静電容量を検出することを特徴とする静電容量式センサ。
A fixed electrode formed in the semiconductor layer, and a movable electrode formed in the semiconductor layer and supported by a fixed portion of the semiconductor layer via a beam, and the fixed electrode and the movable electrode are mutually connected with a gap. A detection unit is configured to be opposed to each other, and is a capacitance type sensor that detects a predetermined physical quantity by detecting capacitance at the detection unit,
The detection unit detects a capacitance according to a change in an opposing area due to a shift in a thickness direction between the movable electrode and the fixed electrode due to an operation of the movable electrode.
前記可動電極が初期位置にある状態で、前記可動電極と固定電極とを厚み方向にずらして配置したことを特徴とする請求項1に記載の静電容量式センサ。   The capacitive sensor according to claim 1, wherein the movable electrode and the fixed electrode are shifted in a thickness direction in a state where the movable electrode is in an initial position. 前記検出部では、前記固定電極に設けた櫛歯部と、前記可動電極に設けた櫛歯部とが相互に噛み合うように構成したことを特徴とする請求項1または2に記載の静電容量式センサ。   The electrostatic capacitance according to claim 1, wherein the detection unit is configured such that a comb tooth portion provided on the fixed electrode and a comb tooth portion provided on the movable electrode are engaged with each other. Type sensor. 前記検出部では、一つの前記固定電極に、相反する方向に突出する少なくとも二つの櫛歯部を設けるとともに、一つの前記可動電極に、当該固定電極の櫛歯部に噛み合う櫛歯部を設けたことを特徴とする請求項3に記載の静電容量式センサ。   In the detection unit, one fixed electrode is provided with at least two comb teeth protruding in opposite directions, and one movable electrode is provided with a comb tooth engaging with the comb teeth of the fixed electrode. The capacitive sensor according to claim 3. 前記固定電極および可動電極の櫛歯部を、前記検出部による主検知方向と直交する方向のうち可動電極に作用する慣性力が最大となる方向に略沿って突出させたことを特徴とする請求項3または4に記載の静電容量式センサ。   The comb-tooth portion of the fixed electrode and the movable electrode is protruded substantially along a direction in which an inertial force acting on the movable electrode is maximized in a direction orthogonal to a main detection direction by the detection unit. Item 5. The capacitive sensor according to Item 3 or 4. 一つの前記可動電極に対して相異なる二つの前記固定電極を対向させることにより前記検出部を二つ設け、それら二つの検出部の差動出力として静電容量を検出するようにし、
それら二つの検出部について、前記固定電極の櫛歯部の突出方向ならびに前記可動電極の櫛歯部の突出方向を同一としたことを特徴とする請求項3〜5のうちいずれか一つに記載の静電容量式センサ。
Two detection units are provided by facing two different fixed electrodes to one movable electrode, and capacitance is detected as a differential output of the two detection units,
6. The protruding direction of the comb-tooth portion of the fixed electrode and the protruding direction of the comb-tooth portion of the movable electrode are the same for the two detection portions. Capacitive sensor.
前記可動電極は、ビームを介して揺動可能に支持されることを特徴とする請求項1〜6のうちいずれか一つに記載の静電容量式センサ。   The capacitive sensor according to claim 1, wherein the movable electrode is supported so as to be swingable via a beam. 前記可動電極は、ビームを介して厚み方向に往復動可能に支持されることを特徴とする請求項1〜7のうちいずれか一つに記載の静電容量式センサ。   The capacitive sensor according to claim 1, wherein the movable electrode is supported so as to be capable of reciprocating in a thickness direction via a beam. 前記ビームを蛇行させたことを特徴とする請求項1〜8のうちいずれか一つに記載の静電容量式センサ。   The capacitive sensor according to any one of claims 1 to 8, wherein the beam is meandered. 前記可動電極に別の固定電極を間隙をもって対向させて第二の検出部を設け、当該第二の検出部によって、前記可動電極と固定電極との間隙に応じた静電容量を検出することを特徴とする請求項1〜9のうちいずれか一つに記載の静電容量式センサ。

A second detection unit is provided with another fixed electrode opposed to the movable electrode with a gap, and the second detection unit detects a capacitance according to the gap between the movable electrode and the fixed electrode. The capacitive sensor according to any one of claims 1 to 9, characterized in that

JP2006126450A 2006-04-28 2006-04-28 Capacitive sensor Expired - Fee Related JP4600345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126450A JP4600345B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126450A JP4600345B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Publications (2)

Publication Number Publication Date
JP2007298385A true JP2007298385A (en) 2007-11-15
JP4600345B2 JP4600345B2 (en) 2010-12-15

Family

ID=38767995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126450A Expired - Fee Related JP4600345B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Country Status (1)

Country Link
JP (1) JP4600345B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001947A1 (en) 2008-07-04 2010-01-07 アルプス電気株式会社 Capacitance detection type movable sensor
JP2010032367A (en) * 2008-07-29 2010-02-12 Japan Aviation Electronics Industry Ltd Capacitance-type acceleration sensor and capacitance-type accelerometer
JP2010038903A (en) * 2008-07-31 2010-02-18 Honeywell Internatl Inc System and method for detecting out-of-plane linear acceleration with closed loop linear drive accelerometer
JP2010112930A (en) * 2008-11-10 2010-05-20 Denso Corp Semiconductor dynamic quantity sensor and method of producing the same
JP2012507716A (en) * 2008-10-30 2012-03-29 フリースケール セミコンダクター インコーポレイテッド Transducer with separate sensing in mutually orthogonal directions
US8146426B2 (en) 2008-02-13 2012-04-03 Denso Corporation Physical sensor
JP2014062907A (en) * 2008-04-29 2014-04-10 Robert Bosch Gmbh Micromechanical element and acceleration detection method
JP2018515353A (en) * 2015-05-15 2018-06-14 株式会社村田製作所 Multi-level micro mechanical structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102826499B (en) * 2011-06-15 2015-02-04 美新半导体(无锡)有限公司 Elastic beam and MEMS (micro-electromechanical system) sensor comprising elastic beam

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239347A (en) * 1997-02-28 1998-09-11 Japan Aviation Electron Ind Ltd Motion sensor
JPH11515092A (en) * 1995-07-20 1999-12-21 コーネル・リサーチ・ファンデーション・インコーポレイテッド Ultra-miniature torsion cantilever for high-sensitivity force detection
JP2000049358A (en) * 1998-07-29 2000-02-18 Aisin Seiki Co Ltd Surface micromachine and its manufacture
JP2003014778A (en) * 2001-04-26 2003-01-15 Samsung Electronics Co Ltd Vertical displacement measuring/driving structure and its fabricating method
US6571628B1 (en) * 2000-10-16 2003-06-03 Institute Of Microelectronics Z-axis accelerometer
JP2003337138A (en) * 2002-03-15 2003-11-28 Toyota Central Res & Dev Lab Inc Apparatus having movable electrode, movable mirror apparatus, vibrating gyroscope and method for manufacturing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11515092A (en) * 1995-07-20 1999-12-21 コーネル・リサーチ・ファンデーション・インコーポレイテッド Ultra-miniature torsion cantilever for high-sensitivity force detection
JPH10239347A (en) * 1997-02-28 1998-09-11 Japan Aviation Electron Ind Ltd Motion sensor
JP2000049358A (en) * 1998-07-29 2000-02-18 Aisin Seiki Co Ltd Surface micromachine and its manufacture
US6571628B1 (en) * 2000-10-16 2003-06-03 Institute Of Microelectronics Z-axis accelerometer
JP2003014778A (en) * 2001-04-26 2003-01-15 Samsung Electronics Co Ltd Vertical displacement measuring/driving structure and its fabricating method
JP2003337138A (en) * 2002-03-15 2003-11-28 Toyota Central Res & Dev Lab Inc Apparatus having movable electrode, movable mirror apparatus, vibrating gyroscope and method for manufacturing them

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146426B2 (en) 2008-02-13 2012-04-03 Denso Corporation Physical sensor
JP2014062907A (en) * 2008-04-29 2014-04-10 Robert Bosch Gmbh Micromechanical element and acceleration detection method
WO2010001947A1 (en) 2008-07-04 2010-01-07 アルプス電気株式会社 Capacitance detection type movable sensor
JP2010032367A (en) * 2008-07-29 2010-02-12 Japan Aviation Electronics Industry Ltd Capacitance-type acceleration sensor and capacitance-type accelerometer
JP2010038903A (en) * 2008-07-31 2010-02-18 Honeywell Internatl Inc System and method for detecting out-of-plane linear acceleration with closed loop linear drive accelerometer
JP2012507716A (en) * 2008-10-30 2012-03-29 フリースケール セミコンダクター インコーポレイテッド Transducer with separate sensing in mutually orthogonal directions
JP2010112930A (en) * 2008-11-10 2010-05-20 Denso Corp Semiconductor dynamic quantity sensor and method of producing the same
JP4737276B2 (en) * 2008-11-10 2011-07-27 株式会社デンソー Semiconductor dynamic quantity sensor and manufacturing method thereof
JP2018515353A (en) * 2015-05-15 2018-06-14 株式会社村田製作所 Multi-level micro mechanical structure

Also Published As

Publication number Publication date
JP4600345B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4600345B2 (en) Capacitive sensor
EP2246706B1 (en) Physical quantity sensor
JP4595862B2 (en) Capacitive sensor
JP2007298405A (en) Electrostatic capacity type sensor
JP2006226770A (en) Mechanical quantity sensor
EP3240996B1 (en) Micromechanical gyroscope structure
JP2008170402A (en) Capacitance sensing type physical quantity sensor
JP4600344B2 (en) Capacitive sensor
JP5083635B2 (en) Acceleration sensor
JP2009244070A (en) Physical quantity sensor
JP2011247714A (en) Semiconductor physical quantity sensor
JP7365647B2 (en) angular velocity sensor
JP2010216842A (en) Dynamic quantity detection sensor
WO2009099123A1 (en) Physical quantity sensor and method of manufacturing same
JP3944509B2 (en) Tilt sensor
JP5285540B2 (en) Capacitive sensor
JP4775412B2 (en) Semiconductor physical quantity sensor
JP2008064603A (en) Acceleration sensor and acceleration detector
JP2005098891A (en) Electrostatic capacity type sensor
JP2014021188A (en) Rotary actuator
JP6167842B2 (en) Capacitive sensor
JP5747092B2 (en) Physical quantity sensor
US9764943B2 (en) MEMS structure
WO2012160845A1 (en) Mems sensor
JP2011049211A (en) Capacitive sensor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees