JP2008064603A - Acceleration sensor and acceleration detector - Google Patents

Acceleration sensor and acceleration detector Download PDF

Info

Publication number
JP2008064603A
JP2008064603A JP2006242852A JP2006242852A JP2008064603A JP 2008064603 A JP2008064603 A JP 2008064603A JP 2006242852 A JP2006242852 A JP 2006242852A JP 2006242852 A JP2006242852 A JP 2006242852A JP 2008064603 A JP2008064603 A JP 2008064603A
Authority
JP
Japan
Prior art keywords
electrode
acceleration
substrate
movable electrode
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006242852A
Other languages
Japanese (ja)
Other versions
JP5034043B2 (en
Inventor
Tomoyoshi Tsuchiya
智由 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006242852A priority Critical patent/JP5034043B2/en
Publication of JP2008064603A publication Critical patent/JP2008064603A/en
Application granted granted Critical
Publication of JP5034043B2 publication Critical patent/JP5034043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize an acceleration sensor, and achieve a triaxial acceleration detection. <P>SOLUTION: First and second main faces are disposed so as to be perpendicular to a substrate. The first main face is fixed to the substrate. The second main face is supported so as to be integrally and three-dimensionally displaced. The first and second main faces are provided each of which has a length larger in the direction of a substrate's main face than in the direction perpendicular to the substrate. At each capacitor, the first and second main faces are disposed so as to shift centroids of the first and second main face perpendicularly to the main face of the substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、いわゆるサーフェスマイクロマシニング技術で作製された静電容量型の加速度センサ、および当該加速度センサを備えた加速度検出装置に関する。   The present invention relates to a capacitance type acceleration sensor manufactured by a so-called surface micromachining technique, and an acceleration detection apparatus including the acceleration sensor.

近年、高機能な加速度検出装置として、3次元的に作用する加速度を検出可能な加速度センサを有する加速度検出装置が注目を集めている。それと共に当該加速度センサをさらに小型化しようとする傾向がある。加速度センサの作製には、小型化のためにMEMS(Micro Electro Mechanical System)技術が導入されている。   In recent years, an acceleration detection apparatus having an acceleration sensor capable of detecting an acceleration acting three-dimensionally has attracted attention as a highly functional acceleration detection apparatus. At the same time, there is a tendency to further downsize the acceleration sensor. In the production of an acceleration sensor, a MEMS (Micro Electro Mechanical System) technology is introduced for miniaturization.

MEMS技術を導入した加速度センサは、ピエゾ抵抗素子を用いたものと静電容量素子を用いたものとに大別でき、開発の歴史的沿革からピエゾ抵抗素子を用いたものが主流であったが、小型化の要求に対して構造上の限界があり、また消費電力低減等の観点から現在では静電容量素子を用いたものが台頭しつつある。
小型の加速度センサを作製するためのMEMS技術には、大きく分けてバルクマイクロマシニング技術とサーフェスマイクロマシニング技術とがある。バルクマイクロマシニング技術を用いて作製された加速度センサでは3軸方向の各加速度成分を検出可能なものが提案されているが(特許文献1を参照。)、バルクマイクロマシニング技術を用いると小型化が困難であるので、更なる小型化の観点からサーフェスマイクロマシニング技術を用いて3軸方向の各加速度成分を検出可能なものが模索されている。
Accelerometers incorporating MEMS technology can be broadly classified into those using piezoresistive elements and those using capacitive elements, and those using piezoresistive elements have been the mainstream from the history of development. However, there is a structural limit to the demand for miniaturization, and from the viewpoint of reducing power consumption, a device using a capacitive element is now emerging.
The MEMS technology for manufacturing a small acceleration sensor is roughly classified into a bulk micromachining technology and a surface micromachining technology. An acceleration sensor manufactured using a bulk micromachining technology has been proposed that can detect acceleration components in three axial directions (see Patent Document 1). However, the bulk micromachining technology can reduce the size. Since it is difficult, the thing which can detect each acceleration component of a triaxial direction using the surface micromachining technique from the viewpoint of the further size reduction is searched.

従来、サーフェスマイクロマシニング技術で作製された静電容量型の加速度センサでは、1軸方向の加速度成分を検出可能なもの(特許文献2を参照。)や基板主面方向の2軸の加速度成分を検出可能なもの(特許文献3を参照。)が提案されており、したがって、3次元的に作用する加速度を検出するには、単純にはこれらを3つあるいは2つ組み合わせればよいと考えられる。
特開2005−017216号公報 特開2003−337138号公報 特表2000−512023号公報
Conventionally, a capacitance type acceleration sensor manufactured by surface micromachining technology can detect an acceleration component in one axis direction (refer to Patent Document 2) or a two-axis acceleration component in a substrate main surface direction. What can be detected (see Patent Document 3) has been proposed. Therefore, in order to detect acceleration acting in a three-dimensional manner, it is considered that these three or two may be simply combined. .
Japanese Patent Laying-Open No. 2005-017216 JP 2003-337138 A Special Table 2000-512023

しかしながら、上記従来のサーフェスマイクロマシニング技術を用いた加速度センサを3つあるいは2つ組み合わせて3次元的に作用する加速度を検出しようとすると、1つの基板を他の基板と直交するように設けるか2つのセンサ構造を基板上に並べる、あるいは1つの非常に複雑な構造のセンサを製作する等の必要が生じて小型化の要求に応えられなくなるおそれがある。   However, if three or two acceleration sensors using the conventional surface micromachining technique are combined to detect acceleration acting in three dimensions, is one substrate provided so as to be orthogonal to another substrate? There may be a need to arrange two sensor structures on a substrate, or to produce a sensor with a very complicated structure, and it may not be possible to meet the demand for miniaturization.

本発明は、上記問題に鑑みて成されたものであり、小型化可能で3次元的に作用する加速度を検出可能な加速度センサおよび当該加速度センサを備えた加速度検出装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an acceleration sensor capable of detecting an acceleration that can be reduced in size and acting three-dimensionally, and an acceleration detection device including the acceleration sensor. To do.

上記目的を達成するため、本発明に係る加速度センサでは、基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、上記揺動体には第1揺動杆とこれに交差する第2揺動杆とを備えさせ、両揺動杆の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には少なくとも1個の可動電極を形成し、上記基板側には上記可動電極の夫々に対向する固定電極を形成して、少なくとも4個の電極対を形成し、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成されている一対の上記電極対を、第1揺動杆の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、第2揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成された一対の上記電極対を、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、さらに、上記揺動体のZ軸方向の可動に対し、第1揺動杆の電極対の対向面積の変化と第2揺動杆の電極対の対向面積の変化とが逆になるよう上記固定電極と可動電極の関係を設定した。   In order to achieve the above object, the acceleration sensor according to the present invention comprises a substrate and a swinging body swingable in the X, Y, and Z axis directions with respect to the substrate. And at least one movable electrode is formed on each of a total of four swing rod members extending in opposite directions around the intersection of both swing rods. The fixed electrode that faces each of the movable electrodes is formed on the substrate side to form at least four electrode pairs, and the movable members of the pair of rocking rod members constituting the first rocking rod are movable. A pair of the electrode pairs formed by the electrodes and the fixed electrodes opposed to the electrodes is contracted with respect to the longitudinal swing (X-axis direction) of the first swing rod so that the gap between the one electrode pair is reduced. The pair of the above-mentioned rocking members constituting the second rocking rod is set so that the gap between the other electrode pair is widened. A pair of the electrodes formed by the movable electrodes of the flange member and the fixed electrode opposed to the movable electrode is set to one electrode with respect to the swing in the longitudinal direction (Y-axis direction) of the second swing rod. The gap between the pair of electrodes is set so that the gap between the other electrode pair is widened, and the change in the facing area of the electrode pair of the first rocking rod and the second rocking movement are further performed when the rocking body moves in the Z-axis direction. The relationship between the fixed electrode and the movable electrode was set so that the change in the facing area of the electrode pair of the palpit was reversed.

上記のように本発明に係る加速度センサでは、基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、上記揺動体には第1揺動杆とこれに交差する第2揺動杆とを備えさせ、両揺動杆部の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には少なくとも1個の可動電極を形成し、上記基板側には上記可動電極の夫々に対向する固定電極を形成して、少なくとも4個の電極対を形成し、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成されている一対の上記電極対を、第1揺動杆部の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、第2揺動杆を構成する一対の上記揺動杆の夫々の可動電極と、これらに対向する上記固定電極とによって形成された一対の上記電極対を、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定した。   As described above, the acceleration sensor according to the present invention includes the substrate and the oscillating body that can oscillate in the X, Y, and Z axis directions with respect to the substrate, and the oscillating body includes the first oscillating rod and the first oscillating rod. A crossing second rocking rod, and extending in opposite directions around the intersection of the two rocking rods, and forming at least one movable electrode on each of a total of four rocking rod members, A fixed electrode facing each of the movable electrodes is formed on the substrate side to form at least four electrode pairs, and each of the movable electrodes of the pair of rocking rod members constituting the first rocking rod The pair of the electrode pairs formed by the fixed electrodes opposed to the first electrode pair is contracted with respect to the longitudinal swing (X-axis direction) of the first swinging hook portion, and the gap between the first electrode pair is reduced. The gap between the other pair of electrodes is set so that the gap between the other electrode pair is widened, and the pair of the above-mentioned rocking rods constituting the second rocking rod A pair of the electrode pairs formed by the movable electrode and the fixed electrode opposed to the movable electrode has a gap between one electrode pair with respect to the longitudinal oscillation (Y-axis direction) of the second oscillation rod. It set so that it might shrink and the gap of the other electrode pair might expand.

具体的には、本発明に係る加速度センサにおいて、2つの揺動杆の上記可動電極と上記基板上の上記固定電極とを、夫々複数枚設けておき、その配設順序を、2つの揺動杆の交差部から見たとき、いずれの揺動杆部材に沿う方向においても同一の順序にすると、上記機能を発揮させることができる。
したがって、本発明にかかる加速度センサでは、加速度が作用したときに第1揺動杆、第2揺動杆の夫々において一方の電極対の間隙の変化と他方の電極対の間隙の変化を対比したとき互いの符号が逆になり、加速度が作用して各電極対がキャパシタとして機能するときに一方のキャパシタの静電容量の変化量と他方のキャパシタの静電容量の変化量とを対比したときに上記X軸方向もしくはY軸方向の変位に起因する成分の符号が逆になる。
Specifically, in the acceleration sensor according to the present invention, a plurality of the movable electrodes of the two oscillating rods and a plurality of the fixed electrodes on the substrate are provided, and the arrangement order thereof is set to the two oscillating electrodes. When viewed from the crossing part of the scissors, the above functions can be exhibited if they are in the same order in the direction along any of the swing scissors members.
Therefore, in the acceleration sensor according to the present invention, when the acceleration is applied, the change in the gap between one electrode pair and the change in the gap between the other electrode pair are compared in each of the first swing rod and the second swing rod. When the signs of each other are reversed, and the amount of change in the capacitance of one capacitor is compared with the amount of change in the capacitance of the other capacitor when acceleration acts and each electrode pair functions as a capacitor In addition, the sign of the component due to the displacement in the X-axis direction or the Y-axis direction is reversed.

なおかつ、上記揺動体のZ軸方向の揺動に対し、第1揺動杆の電極対の対向面積の変化と第2揺動杆の電極対の対向面積の変化とが逆になるよう上記固定電極と可動電極の関係を設定した。
具体的には、本発明に係る加速度センサにおいて、上記第1揺動杆、第2揺動杆の夫々に形成された夫々の上記可動電極を、長尺状として上記基板と並行させ、これらに対向する上記固定電極を長尺状として上記基板と並行させておき、上記固定電極と上記可動電極とを夫々の軸が平行になるように対向させて、上記第1揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との上記Z軸方向での順序を、上記第2揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との上記Z軸方向での順序と、逆にすれば、上記機能を発揮させることができる。
In addition, with respect to the rocking motion of the rocking body in the Z-axis direction, the change in the facing area of the electrode pair of the first rocking rod and the change in the facing area of the electrode pair of the second rocking rod is reversed. The relationship between the electrode and the movable electrode was set.
Specifically, in the acceleration sensor according to the present invention, each movable electrode formed on each of the first swing rod and the second swing rod is formed in a long shape in parallel with the substrate. The opposed fixed electrodes are elongated and parallel to the substrate, and the fixed electrode and the movable electrode are opposed to each other so that their respective axes are parallel to each other. The order of the centroid of the opposing surface on the movable electrode side in the opposing surface and the centroid of the opposing surface on the fixed electrode side in the Z-axis direction is the same as that on the movable electrode side in the opposing surface of the electrode pair of the second swing rod. If the order of the centroid of the opposing surface and the centroid of the opposing surface on the fixed electrode side in the Z-axis direction is reversed, the above function can be exhibited.

したがって、本発明に係る加速度センサでは、上記第1揺動杆の電極対と上記第2揺動杆の電極対とを対比すると、電極対がキャパシタとして機能したときにキャパシタの静電容量の変化量において上記Z軸方向の変位に起因する成分の符号が逆になる。
そして、本発明にかかる加速度センサでは、上記構成を採用することによって、各キャパシタの静電容量の変化分に、上記X軸方向、Y軸方向、Z軸方向の変位に起因する成分を含ませることができ、したがって、各キャパシタの静電容量の測定値をもとに例えばガウスの消去法などの演算処理をすることにより3軸方向(上記X軸方向、Y軸方向、Z軸方向)夫々の変位に起因する成分を抽出することができる。これらX軸、Y軸、Z軸を直交座標系に一致させれば、抽出後の各変位成分の使い勝手が向上して好ましい。
Therefore, in the acceleration sensor according to the present invention, when the electrode pair of the first swing rod and the electrode pair of the second swing rod are compared, the capacitance change of the capacitor when the electrode pair functions as a capacitor. In the quantity, the sign of the component due to the displacement in the Z-axis direction is reversed.
In the acceleration sensor according to the present invention, by adopting the above configuration, a component resulting from the displacement in the X-axis direction, the Y-axis direction, and the Z-axis direction is included in the change in capacitance of each capacitor. Therefore, by performing arithmetic processing such as a Gaussian elimination method based on the measured capacitance value of each capacitor, the three-axis directions (the X-axis direction, the Y-axis direction, and the Z-axis direction), respectively. It is possible to extract a component due to the displacement of. It is preferable to make these X-axis, Y-axis, and Z-axis coincide with the orthogonal coordinate system because the usability of each displacement component after extraction is improved.

ここで、当該加速度センサでは、すべての電極対において加速度が作用していない場合での各キャパシタの静電容量、すなわち初期容量Coを等しくしておけば後述する各キャパシタの静電容量の数式を適宜組み合わせて差分をとることにより初期容量の項を消去でき、上記揺動杆の夫々の一対の電極対ごとに加速度の作用を受けた状態での各一対の電極対の電極間隙の和を、加速度を受けていない状態での上記一対の電極対の電極間隙の和に等しくすれば後述する各キャパシタの静電容量の数式において△Xの項、△Yの項の絶対値を等しくすることができ、かつ全ての電極対において上記Z軸方向での上記対向主平面同士の図心間距離を等しくしておけば、後述する各キャパシタの静電容量の数式において△Zの項の絶対値を等しくすることができる。そして、上記可動電極と上記固定電極とを共に上記基板主面に平行な長尺状に形成してその延出方向を各揺動杆の長手方向と直交するように形成すると、各電極はX軸方向あるいはY軸方向と直交しているので、上記可動電極と上記固定電極との相対位置がそれぞれの電極の延出方向に変位してもキャパシタの静電容量の変化量にほとんど無視できるぐらいに影響しなくなる。したがって、キャパシタの静電容量の変化量には上記X軸方向もしくはY軸方向に垂直でかつ基板主面と平行な方向の成分はほとんど含まれない。   Here, in the acceleration sensor, the capacitance of each capacitor when acceleration is not acting on all the electrode pairs, that is, if the initial capacitance Co is made equal, the equation of the capacitance of each capacitor described later is obtained. The term of the initial capacitance can be eliminated by taking the difference by appropriately combining, and the sum of the electrode gaps of each pair of electrode pairs under the action of acceleration for each pair of electrodes of the swing rod, If it is made equal to the sum of the electrode gaps of the pair of electrodes in a state where no acceleration is applied, the absolute values of the terms ΔX and ΔY can be made equal in the capacitance equation of each capacitor described later. If the distance between the centroids of the opposing principal planes in the Z-axis direction is made equal in all the electrode pairs, the absolute value of the term ΔZ can be calculated in the capacitance formula of each capacitor described later. Equalize Door can be. When both the movable electrode and the fixed electrode are formed in a long shape parallel to the main surface of the substrate and the extending direction thereof is orthogonal to the longitudinal direction of each swing rod, each electrode is X Since it is orthogonal to the axial direction or the Y-axis direction, even if the relative position of the movable electrode and the fixed electrode is displaced in the extending direction of each electrode, the amount of change in the capacitance of the capacitor is almost negligible. No longer affect. Therefore, the amount of change in the capacitance of the capacitor includes almost no component in the direction perpendicular to the X-axis direction or the Y-axis direction and parallel to the main surface of the substrate.

すると、当該加速度センサでは、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成されている一対の上記電極対の夫々及び、第2揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成された一対の上記電極対の夫々は、以下の式(1)ないし(4)の関係を満たす。
(1) C1=Co+P△X+R△Z
(2) C2=Co−P△X+R△Z
(3) C3=Co+Q△Y−R△Z
(4) C4=Co−Q△Y−R△Z
ここで、C1は、第1揺動杆部側の一対の電極対のうち一方の電極対の静電容量、C2は、第1揺動杆部側の一対の電極対のうち他方の電極対の静電容量、C3は、第2揺動杆部側の一対の電極対のうち一方の電極対の静電容量、C4は、第2揺動杆部側の一対の電極対のうち他方の電極対の静電容量を表す。
Then, in the acceleration sensor, each of the pair of electrode pairs formed by the movable electrodes of the pair of swinging rod members constituting the first swinging rod and the fixed electrode facing the movable electrodes, Each of the pair of electrode pairs formed by the movable electrodes of the pair of rocking rod members constituting the second rocking rod and the fixed electrodes opposed to them is expressed by the following formula (1). Or the relationship of (4) is satisfied.
(1) C1 = Co + PΔX + RΔZ
(2) C2 = Co−PΔX + RΔZ
(3) C3 = Co + QΔY-RΔZ
(4) C4 = Co-QΔY-RΔZ
Here, C1 is the capacitance of one of the pair of electrodes on the first swinging hook side, and C2 is the other electrode pair of the pair of electrodes on the first swinging hook side. , C3 is the capacitance of one of the pair of electrodes on the second swinging hook side, and C4 is the other of the pair of electrodes on the second swinging hook side. Represents the capacitance of the electrode pair.

式(1)−式(2)の演算を実行すれば、△Xの項を抽出でき、式(3)−式(4)の演算を実行すれば△Yの項を抽出でき、{式(1)+式(2)}−{式(3)+式(4)}の演算を実行すれば△Zの項を抽出できる。
したがって、上記式(1)ないし(4)から△X、△Y、△Zの各項を抽出するためにたとえば後述する実施の形態で用いる図5に示すように各キャパシタC1〜C4を並列接続した回路を構築して、以下の式(5)から(7)を上記演算処理部に実行させると、上記演算処理部が差動演算を実行することとなり、上記式に含まれる各軸方向の変位成分に対応する出力値を出力することができ、各軸方向の加速度を検出することができる。
(5) (Co+P△X+R△Z)・(−Vr)+(Co−P△X+R△Z)・(+Vr)=Cf・Vx
(6) (Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(+Vr)=Cf・Vy
(7) (Co+P△X+R△Z)・(+Vr)+(Co−P△X+R△Z)・(+Vr)+(Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(−Vr)=Cf・Vz
但し、Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
P,Q,R:係数
△X,△Y,△Z:各軸方向の変位
+Vr,−Vr:当該加速度検出装置に対する入力電圧
Vx,Vy,Vz:当該加速度検出装置からの出力電圧
Cf:負帰還用キャパシタの静電容量
よって、本発明に係る加速度センサでは、上記演算処理部と接続すれば、当該加速度センサに加速度が加わったときに加速度を3次元的に検出可能な構成とすることができる。
If the operation of Expression (1) -Expression (2) is executed, the term of ΔX can be extracted, and if the operation of Expression (3) -Expression (4) is executed, the term of ΔY can be extracted. 1) + Expression (2)}-{Expression (3) + Expression (4)} is executed, the term of ΔZ can be extracted.
Therefore, in order to extract each term of ΔX, ΔY, ΔZ from the above formulas (1) to (4), the capacitors C1 to C4 are connected in parallel as shown in FIG. When the circuit is constructed and the following equations (5) to (7) are executed by the arithmetic processing unit, the arithmetic processing unit executes a differential operation, and each axis direction included in the above equation is executed. An output value corresponding to the displacement component can be output, and acceleration in each axis direction can be detected.
(5) (Co + PΔX + RΔZ) · (−Vr) + (Co−PΔX + RΔZ) · (+ Vr) = Cf · Vx
(6) (Co + QΔY−RΔZ) · (−Vr) + (Co−QΔY−RΔZ) · (+ Vr) = Cf · Vy
(7) (Co + PΔX + RΔZ), (+ Vr) + (Co−PΔX + RΔZ), (+ Vr) + (Co + QΔY−RΔZ), (−Vr) + (Co−QΔY −RΔZ) · (−Vr) = Cf · Vz
Co: Capacitance (initial capacity) of each variable capacitor when acceleration is not applied
P, Q, R: Coefficients ΔX, ΔY, ΔZ: Displacement in each axial direction + Vr, −Vr: Input voltage to the acceleration detection device Vx, Vy, Vz: Output voltage from the acceleration detection device Cf: Negative Therefore, if the acceleration sensor according to the present invention is connected to the arithmetic processing unit, the acceleration can be detected three-dimensionally when the acceleration is applied to the acceleration sensor. it can.

上記加速度センサのいずれもが、サーフェスマイクロマシニング技術で作製できるので、汎用のMEMSプロセスで作製でき、また、従来のバルクマシニング技術で作製された加速度センサに比べて製造工程を簡易にできる構造を備えている。
本発明に係る加速度センサは、サーフェスマイクロマシニング技術を用いて作成された従来のいわゆる1軸、あるいは2軸の加速度センサを2つあるいは3つ組み合わせた場合に比べて、また、従来のバルクマイクロマシニング技術で作製された加速度センサと比べて加速度を3次元的に検出しながら、加速度センサの構造を薄くして小型化を図ることができる。
Since any of the above acceleration sensors can be manufactured by surface micromachining technology, it can be manufactured by a general-purpose MEMS process, and has a structure that can simplify the manufacturing process compared to acceleration sensors manufactured by conventional bulk machining technology. ing.
The acceleration sensor according to the present invention is a conventional bulk micromachining as compared with the case where two or three conventional so-called uniaxial or biaxial acceleration sensors produced by using surface micromachining technology are combined. The acceleration sensor can be reduced in size by thinning the structure of the acceleration sensor while detecting the acceleration three-dimensionally as compared with the acceleration sensor manufactured by the technology.

加速度が作用していない状態において、上記第1揺動杆に形成された上記可動電極と上記基板上の上記固定電極とで構成される1対の電極対の静電容量、ならびに上記第2揺動杆に形成された上記可動電極と上記基板上の上記固定電極とで構成される1対の電極対の静電容量を夫々等しく設定すると、上記X軸方向、Y軸方向、ならびにZ軸方向の各方向成分の変位に対応した出力値を出力するとき、初期静電容量の差をキャンセルするための補償容量あるいはオフセット調整回路が必要なくなり、好ましい。   In a state where no acceleration is applied, the capacitance of a pair of electrodes composed of the movable electrode formed on the first swing rod and the fixed electrode on the substrate, and the second swing When the capacitances of a pair of electrode pairs composed of the movable electrode formed in a moving manner and the fixed electrode on the substrate are set equal to each other, the X-axis direction, the Y-axis direction, and the Z-axis direction When an output value corresponding to the displacement of each direction component is output, a compensation capacitor or offset adjustment circuit for canceling the difference in initial capacitance is not necessary, which is preferable.

具体的には、上記第1揺動杆、第2揺動杆のそれぞれをその両端部で上記ばね部材に支持させて、加速度が加わっていない状態において、各杆部材に設けられた上記可動電極とこれに対向する基板上の固定電極との対向間隙を等しくしておけば、上記のように静電容量を夫々等しく設定することができ、上記補償容量あるいはオフセット調整回路が必要なくなる。   Specifically, each of the first swing rod and the second swing rod is supported by the spring member at both ends thereof, and the movable electrode provided on each flange member in a state where no acceleration is applied. And the fixed gap on the substrate opposite to this, the capacitances can be set to be equal as described above, and the compensation capacitance or the offset adjustment circuit is not necessary.

また、各揺動杆部材に設けられた複数の可動電極とそれに対向する基板上の固定電極とを、上記交差部からの距離に比例して電極長が長くなるように構成すれば、それによって対向面積を大きく確保できて感度を高くすることができる。
そして、このように上記可動電極、固定電極を配すると、これら可動電極、固定電極を上記揺動杆の軸を基準に線対称になるように配することもできるので、上記揺動杆の夫々が上記可動電極の長手方向に揺動しても当該方向への変位に対する感度を消すことができ、既述したような差動演算において差動演算処理の対象となる項を一つ減らすことができ、演算処理の負担を抑制できて、好ましい。また、上記ばね部材の少なくとも1つに可動電極の外部引き出し電路を兼ねさせているので、上記固定電極の外部引き出し電路を、上記固定電極の両端部のうち上記可動電極に臨まない方の端部から引き出せば、上記基板面上において可動電極の外部引き出し電路と固定電極の外部引き出し電路とを離すことができ、平面配線が容易になって、当該加速度センサの構造の薄型化を図ることができ、好ましい。
Further, if the plurality of movable electrodes provided on each swing rod member and the fixed electrode on the substrate opposed thereto are configured so that the electrode length is increased in proportion to the distance from the intersection, A large opposing area can be secured and sensitivity can be increased.
When the movable electrode and the fixed electrode are arranged in this way, the movable electrode and the fixed electrode can be arranged so as to be line-symmetric with respect to the axis of the rocking rod. Even if the movable electrode swings in the longitudinal direction of the movable electrode, the sensitivity to displacement in the direction can be eliminated, and the number of terms that are subject to differential calculation processing can be reduced by one in the differential calculation as described above. This is preferable because it can suppress the burden of arithmetic processing. Further, since at least one of the spring members also serves as an external extraction circuit for the movable electrode, the external extraction circuit for the fixed electrode is connected to the end of the fixed electrode that does not face the movable electrode. Can be separated from the external extraction circuit of the movable electrode and the external extraction circuit of the fixed electrode on the substrate surface, the planar wiring becomes easy, and the structure of the acceleration sensor can be thinned. ,preferable.

(実施の形態1)
本発明の実施の形態1に係る3軸加速度検出装置について、適宜、図面を用いて説明する。
<検出装置の概略構成>
図1(a)は、本実施の形態に係る3軸加速度検出装置の概略断面図であり、同図(b)は、当該検出装置内の要部平面図である。
(Embodiment 1)
A three-axis acceleration detection apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings as appropriate.
<Schematic configuration of detection device>
FIG. 1A is a schematic cross-sectional view of the triaxial acceleration detection device according to the present embodiment, and FIG. 1B is a plan view of the main part in the detection device.

図1(a)に示すように、本実施の形態に係る3軸加速度検出装置10では、エポキシ樹脂等の絶縁性を有する樹脂で形成された絶縁モールド体11に加速度センサ部12と、当該センサ部12から出力された出力値を演算処理する演算処理部13とが内包された状態となっている。
具体的には、当該モールド体11の内底に載置されたダイパッド14の主面に導電部材15を介して当該センサ部12と当該演算処理部13とがダイボンドされている。演算処理部13には例えばASIC等の半導体素子が採用されている。当該検出装置10では、当該センサ部12、シーケンス制御用回路36を含む演算処理部13ならびに不図示の電源とで検出回路(図5(b)参照)が構築されている。
As shown in FIG. 1A, in the three-axis acceleration detecting device 10 according to the present embodiment, an acceleration sensor unit 12 and the sensor are formed on an insulating mold body 11 formed of an insulating resin such as an epoxy resin. The calculation processing unit 13 for calculating the output value output from the unit 12 is included.
Specifically, the sensor unit 12 and the arithmetic processing unit 13 are die-bonded to the main surface of the die pad 14 placed on the inner bottom of the mold body 11 via a conductive member 15. For example, a semiconductor element such as an ASIC is employed for the arithmetic processing unit 13. In the detection device 10, a detection circuit (see FIG. 5B) is constructed by the sensor unit 12, the arithmetic processing unit 13 including the sequence control circuit 36, and a power source (not shown).

そして、図1(b)に示すように、モールド体11を貫通してモールド体11の内外を電気的に接続可能にするリード16と演算処理部13のボンディングパッド部17とがワイヤボンディングされ、当該ボンディングパッド部17とは別のボンディングパッド部18とセンサ部12のボンディングパッド部19とがワイヤボンディングされている。
センサ部12では、センサ構造体20の主面を覆うように被覆板21が載置されている。被覆板21は例えばガラス材を主成分として形成されたものである。被覆板21にはスルーホール22が穿設されており、当該スルーホール22を塞ぐように図示しない配線層が設けられ、当該配線層がボンディングパッド部19と一体となっている。したがって、当該配線層を介してセンサ構造体20の電位取り出し部26(図2参照)が演算処理部13と電気的に接続され、以下に説明するセンサ構造体20からの信号が演算処理部13に出力される。
Then, as shown in FIG. 1 (b), the lead 16 penetrating the mold body 11 and electrically connecting the inside and outside of the mold body 11 and the bonding pad portion 17 of the arithmetic processing unit 13 are wire-bonded, A bonding pad portion 18 different from the bonding pad portion 17 and a bonding pad portion 19 of the sensor portion 12 are wire-bonded.
In the sensor unit 12, a cover plate 21 is placed so as to cover the main surface of the sensor structure 20. The covering plate 21 is formed with, for example, a glass material as a main component. A through hole 22 is formed in the cover plate 21. A wiring layer (not shown) is provided so as to close the through hole 22, and the wiring layer is integrated with the bonding pad portion 19. Therefore, the potential extraction unit 26 (see FIG. 2) of the sensor structure 20 is electrically connected to the arithmetic processing unit 13 through the wiring layer, and a signal from the sensor structure 20 described below is input to the arithmetic processing unit 13. Is output.

<センサ構造体20の概略構成>
図2は、本実施の形態に係るセンサ構造体20の概略平面図である。
図2に示すように、本実施の形態では、基板23の主面に固定電極ユニット24が複数個固定され、可動電極ユニット25が基板23に加速度が加わったときにその加速度の方向にかつ加速度の大きさに比例して3次元的に揺動できるようにばね部33で支持されている。各固定電極ユニット24には、固定電極指29が基板23の主面に沿って一定方向に櫛歯状に列設されている。また、可動電極ユニット25には、上記固定電極指29に並行するように櫛歯状の可動電極指31が列設されている。図示した範囲内においては、固定電極ユニット24が4つ設けられ、そのうち一方の対は固定電極指29がX軸方向に、他方の対は固定電極指29がY軸方向に沿って設けられている。また、可動電極ユニット25が1つ基板23主面に設けられており、これら各固定電極ユニット24、可動電極ユニット25は互いに電気的に絶縁されている。すなわち、例えばSOI(Silicon On Insulator)基板を用いてセンサ構造体20が作製されていれば、各固定電極ユニット24と可動電極ユニット25とは基板23の主面方向において間隙を空けて設けられているので、固定電極ユニット24同士ならびに固定電極ユニット24と可動電極ユニット25との間を電気的に絶縁することができる。もちろん固定電極ユニット24が互いに絶縁物で繋がれて一体的に設けられていても良い。
<Schematic configuration of sensor structure 20>
FIG. 2 is a schematic plan view of the sensor structure 20 according to the present embodiment.
As shown in FIG. 2, in the present embodiment, a plurality of fixed electrode units 24 are fixed to the main surface of the substrate 23, and when the movable electrode unit 25 is accelerated on the substrate 23, the acceleration is in the direction of the acceleration. It is supported by a spring portion 33 so that it can swing three-dimensionally in proportion to the size of. In each fixed electrode unit 24, fixed electrode fingers 29 are arranged in a comb shape in a fixed direction along the main surface of the substrate 23. The movable electrode unit 25 is provided with comb-like movable electrode fingers 31 arranged in parallel with the fixed electrode fingers 29. Within the illustrated range, four fixed electrode units 24 are provided, of which one of the pairs is provided with the fixed electrode fingers 29 along the X-axis direction, and the other pair is provided with the fixed electrode fingers 29 along the Y-axis direction. Yes. One movable electrode unit 25 is provided on the main surface of the substrate 23, and the fixed electrode unit 24 and the movable electrode unit 25 are electrically insulated from each other. That is, for example, if the sensor structure 20 is manufactured using an SOI (Silicon On Insulator) substrate, each fixed electrode unit 24 and the movable electrode unit 25 are provided with a gap in the main surface direction of the substrate 23. Therefore, the fixed electrode units 24 and the fixed electrode unit 24 and the movable electrode unit 25 can be electrically insulated. Of course, the fixed electrode unit 24 may be integrally provided by being connected to each other by an insulator.

そして、固定電極ユニット24、可動電極ユニット25それぞれの電位取り出し部26が基板23主面に1列に並ぶように配置されている。
センサ構造体20では、固定電極ユニット24、可動電極ユニット25を囲うように枠体27が基板23の主面のうち基板23の周部に配されており、枠体27を接地電位(GND)に設定するための電位取り出し部26が上記の電位取り出し部26の列の中に含まれるように配されている。
The potential extracting portions 26 of the fixed electrode unit 24 and the movable electrode unit 25 are arranged in a line on the main surface of the substrate 23.
In the sensor structure 20, a frame body 27 is disposed on the periphery of the substrate 23 on the main surface of the substrate 23 so as to surround the fixed electrode unit 24 and the movable electrode unit 25, and the frame body 27 is grounded (GND). Is arranged so as to be included in the row of the potential extraction units 26.

図3は本実施の形態におけるセンサ構造体20の要部斜視図であり、図2で示したA部とB部とを示したものである。図4は、本実施の形態におけるセンサ構造体20の要部斜視図であり、図2で示したC部とD部とを示したものである。A部ないしD部の全てについては、図3,4のいずれにおいても図2で示した配設位置を維持した状態で示している。以下、図2および図3,4を用いて説明する。   FIG. 3 is a perspective view of a main part of the sensor structure 20 in the present embodiment, and shows the A part and the B part shown in FIG. FIG. 4 is a perspective view of a main part of the sensor structure 20 in the present embodiment, and shows the C part and the D part shown in FIG. All of the A part to the D part are shown in a state in which the arrangement positions shown in FIG. 2 are maintained in any of FIGS. Hereinafter, description will be made with reference to FIGS. 2 and 3 and 4.

<固定電極ユニット24の概略構成>
固定電極ユニット24のそれぞれは、壁部28と固定電極指29とを備えている(図3,4参照)。
当該壁部28は、基板23主面を均等に4分割するように、略二等辺三角形状のあるいは略二等辺三角形と矩形とを組み合わせたような輪郭を有する。ただし、当該壁部28は二等辺の交差点に該当する部分において開口されている。当該壁部28は、当該開口部を互いにつき合わせた状態で配されている。本実施の形態では、当該壁部28の輪郭は略二等辺三角形状であるが、これに限定されず、正三角形状であっても良い。
<Schematic configuration of fixed electrode unit 24>
Each of the fixed electrode units 24 includes a wall portion 28 and a fixed electrode finger 29 (see FIGS. 3 and 4).
The wall portion 28 has a contour that is substantially isosceles triangular or a combination of a substantially isosceles triangle and a rectangle so that the main surface of the substrate 23 is equally divided into four. However, the said wall part 28 is opened in the part applicable to the intersection of an isosceles side. The wall portion 28 is arranged in a state where the openings are brought into contact with each other. In the present embodiment, the contour of the wall portion 28 has a substantially isosceles triangle shape, but is not limited thereto, and may be an equilateral triangle shape.

固定電極ユニット24の固定電極指29は、略二等辺三角形状の壁部28のうち二等辺部分の内側側壁から伸びた状態で、かつ当該二等辺三角形の底辺と平行になるように複数配されている。一の固定電極ユニット24での固定電極指29の本数は複数に限定されず、1本でも良い。当該壁部28から延出された固定電極指29が複数本設けられていると、当該センサ構造体20の感度が向上して好ましい。   A plurality of fixed electrode fingers 29 of the fixed electrode unit 24 are arranged so as to extend from the inner side wall of the isosceles portion of the substantially isosceles triangular wall portion 28 and to be parallel to the base of the isosceles triangle. ing. The number of fixed electrode fingers 29 in one fixed electrode unit 24 is not limited to a plurality, and may be one. It is preferable to provide a plurality of fixed electrode fingers 29 extending from the wall portion 28 because the sensitivity of the sensor structure 20 is improved.

図3,4の部分拡大図に示すように、固定電極ユニット24の固定電極指29は、基板23に対して浮いた状態であるが、当該固定電極指29を支持する固定電極ユニット24の壁部28は動かないように基板23に固定されており、したがって当該固定電極指29は基板23に対して原則的に動かないように支持されている。
また、図3,4に示すように、本実施の形態では基板23の主面に垂直な方向において、固定電極ユニット24の固定電極指29の長さが、上記A部および上記B部で同じであり、なおかつ上記C部および上記D部で同じであるのに対して、上記A部もしくは上記B部と上記C部もしくは上記D部とを比べたとき、異なっている。具体的には、基板23の主面に垂直な方向では、上記A部および上記B部における固定電極ユニット24の固定電極指29の長さが、上記C部および上記D部における固定電極ユニット24の固定電極指29の長さに比べて大きい。
3 and 4, the fixed electrode finger 29 of the fixed electrode unit 24 is in a state of floating with respect to the substrate 23, but the wall of the fixed electrode unit 24 that supports the fixed electrode finger 29. The portion 28 is fixed to the substrate 23 so as not to move, and therefore, the fixed electrode finger 29 is supported so as not to move in principle with respect to the substrate 23.
As shown in FIGS. 3 and 4, in this embodiment, the length of the fixed electrode finger 29 of the fixed electrode unit 24 is the same in the portion A and the portion B in the direction perpendicular to the main surface of the substrate 23. And the same for the C part and the D part, but when the A part or the B part is compared with the C part or the D part, they are different. Specifically, in the direction perpendicular to the main surface of the substrate 23, the length of the fixed electrode fingers 29 of the fixed electrode unit 24 in the A part and the B part is equal to the fixed electrode unit 24 in the C part and the D part. This is larger than the length of the fixed electrode finger 29.

<可動電極ユニット25の概略構成>
可動電極ユニット25は質量(マス)部30と可動電極指31とを備えている(図3,4参照)。
当該質量部30は、図示した範囲内において基板23主面の図心から直線状の杆が直交したように、別限すれば、杆部材を四方に伸ばしたように十字状に配されている(図2参照)。当該質量部30の当該杆部材の夫々が固定電極ユニット24の壁部28の上記開口部分から当該壁部28に囲われた基板23主面上の領域内に進入するように配されている。
<Schematic configuration of movable electrode unit 25>
The movable electrode unit 25 includes a mass section 30 and movable electrode fingers 31 (see FIGS. 3 and 4).
The mass portion 30 is arranged in a cross shape so that the ridge member is extended in all directions so that the linear ridge is orthogonal to the centroid of the main surface of the substrate 23 within the range shown in the figure ( (See FIG. 2). Each of the flange members of the mass portion 30 is arranged so as to enter the region on the main surface of the substrate 23 surrounded by the wall portion 28 from the opening portion of the wall portion 28 of the fixed electrode unit 24.

可動電極ユニット25の可動電極指31は、当該質量部30の各杆部材から固定電極ユニット24の壁部28のうち上記二等辺部分に向けて伸びた状態に、固定電極ユニット24の固定電極指29同士の間に進入するように、かつ固定電極ユニット24の固定電極指29と並行するように複数配されている。可動電極ユニット25の可動電極指31の本数はこれに限定されず、1本でも良い。当該質量部30から延出された可動電極指31が複数本設けられていると、センサ構造体20の感度が向上して好ましい。   The movable electrode fingers 31 of the movable electrode unit 25 are fixed to the fixed electrode fingers of the fixed electrode unit 24 in a state of extending from the flange members of the mass portion 30 toward the isosceles portion of the wall portion 28 of the fixed electrode unit 24. A plurality are arranged so as to enter between 29 and parallel to the fixed electrode fingers 29 of the fixed electrode unit 24. The number of movable electrode fingers 31 of the movable electrode unit 25 is not limited to this, and may be one. It is preferable that a plurality of movable electrode fingers 31 extending from the mass part 30 is provided because the sensitivity of the sensor structure 20 is improved.

上記構成を採用することによって、図3,4の部分拡大図に示すように、可動電極ユニット25の可動電極指31と固定電極ユニット24の固定電極指29とは原則的に並行した配置となる。
可動電極ユニット25とばね部33を介して接続されているアンカー部32は、基板23の主面のうち固定電極ユニット24の壁部28に囲われた領域で基板23の主面に固定されている(図2参照)。そして可動電極ユニット25の質量部30と当該アンカー部32とをばね部33が繋いでいる。
By adopting the above configuration, the movable electrode finger 31 of the movable electrode unit 25 and the fixed electrode finger 29 of the fixed electrode unit 24 are arranged in parallel in principle as shown in the partial enlarged views of FIGS. .
The anchor portion 32 connected to the movable electrode unit 25 via the spring portion 33 is fixed to the main surface of the substrate 23 in a region surrounded by the wall portion 28 of the fixed electrode unit 24 in the main surface of the substrate 23. (See FIG. 2). The mass portion 30 of the movable electrode unit 25 and the anchor portion 32 are connected to the spring portion 33.

図3,4に示すように、可動電極ユニット25では、原則的に質量部30が基板23から離れて浮いた状態となっている。そして図3,4の部分拡大図に示すように、当該質量部30と一体的に形成されている可動電極指31も原則的に基板23から浮いており、かつ図示していないがばね部33も原則的に基板23から浮いている。
当該構成を採用することによって、当該センサ構造体20に対して3軸方向の各軸方向成分もしくはこれら各軸方向成分のいずれかの方向成分同士を合計した加速度が加わったとき、当該質量部30から延出された複数の可動電極指31は、当該アンカー部32および当該ばね部33を介して基板23に対して3次元的に変位可能に支持されている。
As shown in FIGS. 3 and 4, in the movable electrode unit 25, the mass part 30 is basically in a state of floating away from the substrate 23. 3 and 4, the movable electrode finger 31 formed integrally with the mass portion 30 is also lifted from the substrate 23 in principle, and although not shown, the spring portion 33 is not shown. Is also floating from the substrate 23 in principle.
By adopting this configuration, when the acceleration that is the sum of the three axial components or the direction components of these axial components is applied to the sensor structure 20, the mass unit 30. The plurality of movable electrode fingers 31 extended from the support are supported so as to be displaceable three-dimensionally with respect to the substrate 23 via the anchor portion 32 and the spring portion 33.

<対向電極の構成>
図2に示すように、センサ構造体20のうちA部ないしD部の全てにおいて固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とは、それぞれの主面がX軸方向またはY軸方向に対向するように配されている。そして、不図示の電源から固定電極ユニット24の固定電極指29に電圧が印加され、可動電極ユニット25の可動電極指31が接地電位(GND)に維持されると、当該対向主面がキャパシタの機能を発揮する。
<Configuration of counter electrode>
As shown in FIG. 2, the fixed electrode finger 29 of the fixed electrode unit 24 and the movable electrode finger 31 of the movable electrode unit 25 in all of the A part to the D part of the sensor structure 20 have respective principal surfaces on the X axis. It arrange | positions so that it may oppose in a direction or a Y-axis direction. When a voltage is applied from a power source (not shown) to the fixed electrode finger 29 of the fixed electrode unit 24 and the movable electrode finger 31 of the movable electrode unit 25 is maintained at the ground potential (GND), the opposing main surface is the capacitor. Demonstrate the function.

可動電極ユニット25の可動電極指31は、基板23に対して3次元的に変位可能に支持された質量部30から延出された構成であるので、基板23に固定された固定電極ユニット24の固定電極指29との間において、センサ構造体20に加速度が加わったとき、互いに対向する主面が可変キャパシタ(バリアブル・コンデンサ)の機能を発揮することができる。
〔Z軸方向における対向電極の特徴〕
図3の部分拡大図に示すように、基板23主面に垂直なZ軸方向において、センサ構造体20においてA部およびB部では、可動電極指31と固定電極指29とが、それらの対向主面の図心同士が互いにずれるように配されている。C部およびD部でも同様に対向主面の図心同士が互いにずれるように電極指29,31が配されている。
Since the movable electrode finger 31 of the movable electrode unit 25 is configured to extend from the mass unit 30 supported so as to be three-dimensionally displaceable with respect to the substrate 23, the fixed electrode unit 24 fixed to the substrate 23 When acceleration is applied to the sensor structure 20 between the fixed electrode fingers 29, the principal surfaces facing each other can exhibit the function of a variable capacitor (variable capacitor).
[Features of counter electrode in Z-axis direction]
As shown in the partial enlarged view of FIG. 3, in the Z-axis direction perpendicular to the main surface of the substrate 23, the movable electrode finger 31 and the fixed electrode finger 29 are opposed to each other at the A part and the B part in the sensor structure 20. The centroids of the main surfaces are arranged so as to be shifted from each other. Similarly, the electrode fingers 29 and 31 are arranged so that the centroids of the opposing main surfaces are shifted from each other in the C portion and the D portion.

そして、当該A部、B部とC部、D部とを対比したとき、Z軸方向における可動電極指31の当該対向主面の図心mcと固定電極指29の当該対向電極の図心fcとのずれを反転させている。
すなわち、センサ構造体20のA部およびB部では、可動電極指31の当該対向主面の図心mcが固定電極指29の当該対向主面の図心fcよりも基板23主面に近づくように固定電極指29,可動電極指31が配されており(図6参照)、C部およびD部では、可動電極指31の当該対向主面の図心mcが固定電極指29の当該対向主面の図心fcよりも基板23主面から離れるように固定電極指29,可動電極指31が配されている(図7参照)。
When the A part, the B part, the C part, and the D part are compared, the centroid mc of the opposed main surface of the movable electrode finger 31 in the Z-axis direction and the centroid of the opposed electrode of the fixed electrode finger 29 fc The deviation is reversed.
That is, in the A part and the B part of the sensor structure 20, the centroid mc of the opposing main surface of the movable electrode finger 31 is closer to the main surface of the substrate 23 than the centroid fc of the opposing main surface of the fixed electrode finger 29. The fixed electrode finger 29 and the movable electrode finger 31 are arranged on the center (see FIG. 6), and the centroid mc of the opposed main surface of the movable electrode finger 31 is the opposed main finger of the fixed electrode finger 29 in the C part and the D part. A fixed electrode finger 29 and a movable electrode finger 31 are arranged so as to be farther from the main surface of the substrate 23 than the centroid fc of the surface (see FIG. 7).

本実施の形態に係るセンサ構造体20では、加速度が作用して可動電極ユニット25の可動電極指31がZ軸方向の変位成分を有するとき、A部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とが同符号で、C部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とが同符号である。   In the sensor structure 20 according to the present embodiment, when acceleration is applied and the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the Z-axis direction, The component caused by the displacement in the Z-axis direction and the component caused by the displacement in the Z-axis direction among the change in the capacitance of the variable capacitor in the B portion have the same sign, and the change in the capacitance of the variable capacitor in the C portion Among them, the component due to the displacement in the Z-axis direction and the component due to the displacement in the Z-axis direction among the change in capacitance of the variable capacitor at the D portion have the same sign.

そして、既述のように、当該A部、B部とC部、D部とを対比したとき、Z軸方向における可動電極指31の当該対向主面の図心mcと固定電極指29の当該対向電極の図心fcとのずれを反転させているので、A部およびB部での静電容量の変化のうちZ軸方向の変位に起因する成分とC部およびD部での静電容量の変化のうちZ軸方向の変位に起因する成分とが逆符号となる。   As described above, when the A part, the B part, the C part, and the D part are compared, the centroid mc of the opposing main surface of the movable electrode finger 31 in the Z-axis direction and the fixed electrode finger 29 Since the deviation of the counter electrode from the centroid fc is reversed, the component resulting from the displacement in the Z-axis direction and the capacitance at the C and D portions among the change in capacitance at the A and B portions. Of these changes, the component resulting from the displacement in the Z-axis direction has the opposite sign.

すなわち、センサ構造体20では、A部およびB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に増加するとき、C部およびD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に減少し、逆にA部およびB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に減少するとき、C部およびD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に増加するような構造となっている。   That is, in the sensor structure 20, when both the portions caused by the displacement in the Z-axis direction increase in the capacitance change of the variable capacitors in the A portion and the B portion, the static capacitance of the variable capacitors in the C portion and the D portion is increased. Of the change in capacitance, the portion due to the displacement in the Z-axis direction decreases, and conversely, the portion due to the displacement in the Z-axis direction among the change in capacitance of the variable capacitor in the A portion and the B portion decreases. At this time, the portion due to the displacement in the Z-axis direction among the capacitance changes of the variable capacitors in the C part and the D part increases.

具体的には、センサ構造体20のうちA部およびB部では、Z軸方向において、可動電極ユニット25の可動電極指31の長さが固定電極ユニット24の固定電極指29長さに比べて小さくなっている。そして、図4の部分拡大図に示すように、基板23主面に垂直な方向では、センサ構造体20のうちC部およびD部において、可動電極ユニット25の可動電極指31の長さが固定電極ユニット24の固定電極指29の長さに比べて大きくなっている。   Specifically, in part A and part B of sensor structure 20, the length of movable electrode finger 31 of movable electrode unit 25 is longer than the length of fixed electrode finger 29 of fixed electrode unit 24 in the Z-axis direction. It is getting smaller. 4, the length of the movable electrode finger 31 of the movable electrode unit 25 is fixed in the C part and the D part of the sensor structure 20 in the direction perpendicular to the main surface of the substrate 23. It is larger than the length of the fixed electrode finger 29 of the electrode unit 24.

そして、センサ構造体20のうちA部ないしD部の全てにおいて、固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とは基板23主面からの離間距離が同じになるように配されている。
当該構成に限定されず、当該電極指29と当該電極指31とを対比したときに基板23の主面からの離間距離が異なっていても良い。当該離間距離が同じであると、当該離間距離が異なる場合に比べて、SOI(Silicon On Insurator)基板を用いてセンサ構造体20を作製することが容易となって好ましい。
〔X軸方向、Y軸方向における対向電極の特徴〕
図3の部分拡大図に示すように、センサ構造体20のうちA部では、基板23の主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置しておらず、具体的には、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、短い。
In all of the A part to the D part of the sensor structure 20, the fixed electrode finger 29 of the fixed electrode unit 24 and the movable electrode finger 31 of the movable electrode unit 25 have the same distance from the main surface of the substrate 23. Is arranged.
It is not limited to the said structure, When the said electrode finger 29 and the said electrode finger 31 are contrasted, the separation distance from the main surface of the board | substrate 23 may differ. When the separation distance is the same, it is preferable because the sensor structure 20 can be easily manufactured using an SOI (Silicon On Insulator) substrate as compared with the case where the separation distances are different.
[Characteristics of counter electrode in X-axis direction and Y-axis direction]
As shown in the partial enlarged view of FIG. 3, in the A part of the sensor structure 20, the movable electrode disposed so as to be sandwiched between the fixed electrode fingers 29 of the fixed electrode unit 24 in the direction along the main surface of the substrate 23. The movable electrode fingers 31 of the unit 25 are not equidistant from the fixed electrode fingers 29 of the adjacent fixed electrode units 24. Specifically, the movable electrode fingers 31 of the movable electrode unit 25 and the movable electrode fingers The gap distance between the fixed electrode unit 24 of the fixed electrode unit 24 positioned in the negative direction of the X axis with respect to 31 and the positive electrode of the X axis with respect to the movable electrode finger 31 of the movable electrode unit 25 and the movable electrode finger 31 is It is shorter than the gap distance between the fixed electrode unit 24 positioned in the direction of the fixed electrode finger 29 and the fixed electrode finger 29.

同様に、センサ構造体20のうちB部では、基板23の主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置しておらず、具体的には、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、長い。   Similarly, in part B of the sensor structure 20, the movable electrode finger 31 of the movable electrode unit 25 arranged so as to be sandwiched between the fixed electrode fingers 29 of the fixed electrode unit 24 in the direction along the main surface of the substrate 23. It is not located at the same distance from the fixed electrode fingers 29 of the adjacent fixed electrode units 24. Specifically, the movable electrode finger 31 of the movable electrode unit 25 and the movable electrode finger 31 are negative in the X axis. The fixed electrode unit 24 is located in the positive direction of the X axis with respect to the movable electrode finger 31 of the movable electrode unit 25 and the gap distance between the fixed electrode unit 24 and the fixed electrode finger 29 of the movable electrode unit 25. It is longer than the distance between the 24 fixed electrode fingers 29.

すなわち、センサ構造体20のうちA部とB部とを対比したとき、それぞれの部分の固定電極指29,可動電極指31の配設位置が、可動電極ユニット25の十字状の質量部30の直交点を通り、かつ基板23の主面に直交する仮想平面を中心に鏡面対称となっている。
可動電極ユニット25の可動電極指31と固定電極ユニット24の固定電極指29とが既述した位置で配設されたことによって、本実施の形態に係るセンサ構造体20では、加速度が加わって可動電極ユニット25の可動電極指31がX軸方向の変位成分を有するとき、A部とB部とを対比した場合に、可変キャパシタの静電容量の変化のうちX軸方向の変位に起因する成分が互いに逆符号となるような構造となっており、かつC部とD部とを対比した場合においても、加速度が加わって可動電極ユニット25の可動電極指31がY軸方向の変位成分を有するとき、同様の関係を有するような構造となっている。
That is, when the A portion and the B portion of the sensor structure 20 are compared, the positions of the fixed electrode fingers 29 and the movable electrode fingers 31 in the respective portions are determined by the cross-shaped mass portion 30 of the movable electrode unit 25. The mirror surface is symmetrical with respect to a virtual plane passing through the orthogonal point and orthogonal to the main surface of the substrate 23.
Since the movable electrode finger 31 of the movable electrode unit 25 and the fixed electrode finger 29 of the fixed electrode unit 24 are arranged at the positions described above, the sensor structure 20 according to the present embodiment is movable with acceleration. When the movable electrode finger 31 of the electrode unit 25 has a displacement component in the X-axis direction, the component resulting from the displacement in the X-axis direction among the change in capacitance of the variable capacitor when comparing the A portion and the B portion. Even when the C part and the D part are compared, acceleration is applied and the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the Y-axis direction. Sometimes, the structure has a similar relationship.

具体的には、センサ構造体20のうちA部とB部とを対比した場合に、A部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が増加するとき、B部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が減少し、逆に、A部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が減少するとき、B部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が増加するような構造となっている。   Specifically, when the A part and the B part in the sensor structure 20 are compared, when the component due to the displacement in the X-axis direction increases in the capacitance change of the variable capacitor in the A part, The component caused by the displacement in the X-axis direction among the change in capacitance of the variable capacitor in the B portion decreases, and conversely, the change in capacitance caused by the variable capacitor in the A portion results from the displacement in the X-axis direction. When the component decreases, the component resulting from the displacement in the X-axis direction among the capacitance change of the variable capacitor in the B portion increases.

また、図4の部分拡大図に示すように、センサ構造体20のうちC部およびD部でも、基板23主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置していない。
具体的には、基板23主面に沿う方向において、センサ構造体20のうちC部では、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該電極指31に対してY軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、短い。
Further, as shown in the partially enlarged view of FIG. 4, the C portion and the D portion of the sensor structure 20 are also arranged so as to be sandwiched between the fixed electrode fingers 29 of the fixed electrode unit 24 in the direction along the main surface of the substrate 23. The movable electrode fingers 31 of the movable electrode unit 25 thus formed are not located at the same distance from the fixed electrode fingers 29 of the adjacent fixed electrode units 24.
Specifically, in the direction along the main surface of the substrate 23, the portion C of the sensor structure 20 is positioned in the negative direction of the Y axis with respect to the movable electrode finger 31 of the movable electrode unit 25 and the movable electrode finger 31. The fixed electrode finger of the fixed electrode unit 24 that is positioned in the positive direction of the Y axis with respect to the movable electrode finger 31 of the movable electrode unit 25 and the gap between the fixed electrode unit 24 and the fixed electrode finger 29 It is shorter than the gap distance with 29.

そして、基板23主面に沿う方向において、センサ構造体20のうちD部では、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、長い。   Then, in the direction along the main surface of the substrate 23, in the portion D of the sensor structure 20, the movable electrode finger 31 of the movable electrode unit 25 and the fixed electrode positioned in the negative Y-axis direction with respect to the movable electrode finger 31. The gap distance between the unit 24 and the fixed electrode finger 29 is such that the movable electrode finger 31 of the movable electrode unit 25 and the fixed electrode finger 29 of the fixed electrode unit 24 positioned in the positive direction of the Y axis with respect to the movable electrode finger 31 Longer than the gap distance.

すなわち、センサ構造体20のうちC部とD部とを対比したとき、それぞれの部分の固定電極指29,可動電極指31の配設位置が、可動電極ユニット25の十字状の質量部30の直交点を通り、かつ基板23の主面と直交する仮想平面を中心に鏡面対称となっている。
そして、センサ構造体20のうちC部とD部とを対比した場合に、C部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が増加するとき、D部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が減少し、逆に、C部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が減少するとき、D部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が増加するような構造となっている。
That is, when the C part and the D part of the sensor structure 20 are compared, the arrangement positions of the fixed electrode fingers 29 and the movable electrode fingers 31 in the respective parts are the positions of the cross-shaped mass part 30 of the movable electrode unit 25. The mirror surface is symmetrical with respect to a virtual plane passing through the orthogonal point and orthogonal to the main surface of the substrate 23.
When the C part and the D part in the sensor structure 20 are compared, when the component due to the displacement in the Y-axis direction among the capacitance change of the variable capacitor in the C part increases, the D part The component due to the displacement in the Y-axis direction of the capacitance change of the variable capacitor decreases, and conversely, the component due to the displacement in the Y-axis direction among the capacitance change of the variable capacitor at the C portion decreases. In this case, the component due to the displacement in the Y-axis direction increases in the capacitance change of the variable capacitor in the D portion.

<回路としての構成>
図5(a)は、本実施の形態に係るセンサ構造体20を電気等価回路で示した概略模式図であり、図5(b)は、本実施の形態に係る検出回路34を電気等価回路で示した概略模式図であり、図5(c)は、検出回路34への電圧印加のon/offのタイミングチャートを示した概略模式図である。
<Configuration as a circuit>
FIG. 5A is a schematic diagram showing the sensor structure 20 according to the present embodiment in an electric equivalent circuit, and FIG. 5B shows the detection circuit 34 according to the present embodiment as an electric equivalent circuit. FIG. 5C is a schematic diagram showing an on / off timing chart of voltage application to the detection circuit 34.

なお、図5(b)においては、破線で囲った部分が本実施の形態にかかるセンサ構造体20に相当し、キャパシタC1ないしC4は、それぞれA部ないしD部の各部分の電極指29,31のそれぞれの主面が対向して構築された可変キャパシタに対応する。
図5(a)に示すように、本実施の形態にかかるセンサ構造体20を電気等価回路として見たときに、可変キャパシタC1ないしC4のそれぞれでは、可動電極ユニット25の可動電極指31の各主面が同電位の平板電極となり、固定電極ユニット24の固定電極指29の主面が当該可動電極指31の主面とは異なる電位の平板電極となりかつ当該固定電極指29同士でも異なる電位に設定可能な平板電極となるように、センサ構造体20が構築されている。
In FIG. 5B, the portion surrounded by the broken line corresponds to the sensor structure 20 according to the present embodiment, and the capacitors C1 to C4 are respectively connected to the electrode fingers 29, Each main surface of 31 corresponds to a variable capacitor constructed facing each other.
As shown in FIG. 5A, when the sensor structure 20 according to the present embodiment is viewed as an electrical equivalent circuit, each of the variable capacitor C1 to C4 has each of the movable electrode fingers 31 of the movable electrode unit 25. The main surface is a flat plate electrode having the same potential, the main surface of the fixed electrode finger 29 of the fixed electrode unit 24 is a flat plate electrode having a potential different from that of the main surface of the movable electrode finger 31, and the fixed electrode fingers 29 have different potentials. The sensor structure 20 is constructed so as to be a settable plate electrode.

上記構造を有するセンサ構造体20が、図5(b)に示した検出回路34の一部となり、不図示の電源から図5(c)で示したタイミングチャートに基づいて当該検出回路34に対して電圧を印加して検出回路34を駆動させると、各軸方向の変位成分を電圧として出力することができる。
<検出装置の動作>
図6、7は本実施の形態に係る可変キャパシタの概略断面図である。図6は上記A部およびB部での可変キャパシタの断面を、図7は上記C部およびD部での可変キャパシタの断面を概略的に示したものである。ちょうど図6は図3と対応し、図7は図4と対応している。
The sensor structure 20 having the above structure becomes a part of the detection circuit 34 shown in FIG. 5 (b), and is supplied from the power source (not shown) to the detection circuit 34 based on the timing chart shown in FIG. 5 (c). When the detection circuit 34 is driven by applying a voltage, the displacement component in each axial direction can be output as a voltage.
<Operation of detection device>
6 and 7 are schematic cross-sectional views of the variable capacitor according to the present embodiment. FIG. 6 schematically shows a cross section of the variable capacitor at the A portion and the B portion, and FIG. 7 schematically shows a cross section of the variable capacitor at the C portion and the D portion. 6 corresponds to FIG. 3 and FIG. 7 corresponds to FIG.

〔可変キャパシタC1ないしC4について〕
可変キャパシタC1,C2では、図3で示したように対向電極を構成する可動電極ユニット25の可動電極指31が一体的にかつ3次元的に変位するように設けられているので、センサ構造体20に加速度が加わったとき、図6の破線で示すように全ての当該可動電極指31が同じ方向に変位する。具体的には、X軸方向の変位成分とZ軸方向の変位成分とを含む方向に当該可動電極指31全てが同じ方向に変位する。
[Variable capacitors C1 to C4]
In the variable capacitors C1 and C2, the movable electrode fingers 31 of the movable electrode unit 25 constituting the counter electrode are provided so as to be integrally and three-dimensionally displaced as shown in FIG. When acceleration is applied to 20, all the movable electrode fingers 31 are displaced in the same direction as shown by the broken line in FIG. Specifically, all the movable electrode fingers 31 are displaced in the same direction in a direction including a displacement component in the X-axis direction and a displacement component in the Z-axis direction.

可変キャパシタC3,C4でも同様に、図4で示したように対向電極を構成する可動電極ユニット25の可動電極指31が一体的にかつ3次元的に変位するように設けられているので、センサ構造体20に加速度が加わったとき、図7の破線で示すように全ての当該可動電極指31が同じ方向に変位する。具体的には、Y軸方向の変位成分とZ軸方向の変位成分とを含む方向に当該可動電極指31全てが同じ方向に変位する。   Similarly, the variable capacitors C3 and C4 are provided so that the movable electrode fingers 31 of the movable electrode unit 25 constituting the counter electrode are integrally and three-dimensionally displaced as shown in FIG. When acceleration is applied to the structure 20, all the movable electrode fingers 31 are displaced in the same direction as indicated by broken lines in FIG. 7. Specifically, all the movable electrode fingers 31 are displaced in the same direction in a direction including a displacement component in the Y-axis direction and a displacement component in the Z-axis direction.

可変キャパシタC1,C2のそれぞれを構築している可動電極ユニット25の可動電極指31がいずれかの軸方向に変位成分を有する場合、可変キャパシタC1,C2の初期容量をCo、可変キャパシタC1,C2の容量の変化量を△C1,△C2、真空の誘電率をεo、固定電極指29と可動電極指31との間にある絶縁物の比誘電率をεr、固定電極指29,可動電極指31のうち可変キャパシタC1,C2を構築する部分での基板23主面方向の長さをl、固定電極指29,可動電極指31のうち可変キャパシタC1,C2を構築する部分での基板23に垂直な長さ方向の長さをh、可動電極ユニット25の電極指31のX軸方向の変位量、Z軸方向の変位量をそれぞれ△X,△Zとするとき、理論上、静電容量Cは、   When the movable electrode finger 31 of the movable electrode unit 25 constituting each of the variable capacitors C1 and C2 has a displacement component in any axial direction, the initial capacitance of the variable capacitors C1 and C2 is Co, and the variable capacitors C1 and C2 ΔC1, ΔC2, the dielectric constant of vacuum, εo, the dielectric constant of the insulator between the fixed electrode finger 29 and the movable electrode finger 31, εr, the fixed electrode finger 29, the movable electrode finger 31, the length in the main surface direction of the substrate 23 at the portion where the variable capacitors C1, C2 are constructed is l, and the substrate 23 at the portion where the variable capacitors C1, C2 are constructed among the fixed electrode fingers 29 and the movable electrode fingers 31. Theoretically, when the length in the vertical length direction is h, the displacement amount of the electrode finger 31 of the movable electrode unit 25 in the X-axis direction, and the displacement amount in the Z-axis direction are ΔX and ΔZ, respectively, the capacitance is theoretically. C is

Figure 2008064603
と表され、したがって、静電容量の変化量は、
Figure 2008064603
Therefore, the amount of change in capacitance is

Figure 2008064603
と、表せるので、変位後の可変キャパシタC1,C2の静電容量C1,C2について以下の関係式が成立する。
すなわち、可動電極ユニット25の可動電極指31がZ軸の正方向の変位成分を有するとき、
Figure 2008064603
Therefore, the following relational expression is established for the capacitances C1 and C2 of the variable capacitors C1 and C2 after displacement.
That is, when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the positive direction of the Z axis,

Figure 2008064603
Figure 2008064603

Figure 2008064603
また、可動電極ユニット25の可動電極指31がZ軸の負の方向の変位成分を有するとき、
Figure 2008064603
When the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the negative direction of the Z axis,

Figure 2008064603
Figure 2008064603

Figure 2008064603
式3、式4においてZ軸変位成分が表れていないが、理論上、可動電極ユニット25の可動電極指31がZ軸の正の方向に変位成分を有するときには、可変キャパシタC1,C2それぞれにおける対向電極面積が変化しないためである。
Figure 2008064603
Although the Z-axis displacement component does not appear in Equations 3 and 4, theoretically, when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the positive direction of the Z-axis, it is opposed to each of the variable capacitors C1 and C2. This is because the electrode area does not change.

しかしながら、実際には、端部効果によって、可動電極ユニット25の可動電極指31がZ軸の正の方向に変位成分を有するときにも、Z軸の正方向への変位に起因して可変キャパシタC1,C2の静電容量C1,C2が変化する。具体的には、Z軸の正の方向において一定の範囲内では、静電容量の変化量のうちZ軸方向変位に起因する変化成分は増加する。   However, in reality, due to the end effect, even when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the positive direction of the Z axis, the variable capacitor is caused by the displacement in the positive direction of the Z axis. The capacitances C1 and C2 of C1 and C2 change. Specifically, within a certain range in the positive direction of the Z-axis, the change component resulting from the displacement in the Z-axis direction among the amount of change in capacitance increases.

当該端部効果と上記式3、式4、式5、式6とに鑑みれば、上記可動電極指31が変位したとき、可変キャパシタC1,C2については以下の関係式を導き出すことができる。   In view of the end effect and the above expressions 3, 4, 5, and 6, when the movable electrode finger 31 is displaced, the following relational expressions can be derived for the variable capacitors C1 and C2.

Figure 2008064603
Figure 2008064603

Figure 2008064603
上記いずれの式にもY軸方向の変位に起因する成分が含まれていない(△Yの項がない)のは、各固定電極指29,可動電極指31において互いに他の固定電極指29,可動電極指31と対向する面での基板23の主面方向の長さlが当該面での基板23に垂直な方向の長さhと比べて大きいため、静電容量変化のうちY軸方向の変位に起因する成分が無視できるほどに小さいからである。
Figure 2008064603
None of the above formulas includes a component due to the displacement in the Y-axis direction (there is no term of ΔY) that each fixed electrode finger 29 and the movable electrode finger 31 have other fixed electrode fingers 29, Since the length l in the main surface direction of the substrate 23 on the surface facing the movable electrode finger 31 is larger than the length h in the direction perpendicular to the substrate 23 on the surface, the Y-axis direction among the capacitance changes. This is because the component due to the displacement of is so small that it can be ignored.

また、可変キャパシタC3,C4のそれぞれを構築している可動電極ユニット25の可動電極指31がいずれかの軸方向に変位成分を有する場合、可変キャパシタC3,C4の初期容量をCo、可変キャパシタC3,C4の容量の変化量を△C3,△C4、真空の誘電率をεo、固定電極指29と可動電極指31との間にある絶縁物の比誘電率をεr、固定電極指29,稼動電極指31のうち可変キャパシタC3,C4を構築する部分での基板23主面方向の長さをl、固定電極指29,可動電極指31のうち可変キャパシタC3,C4を構築する部分での基板23に垂直な長さ方向の長さをh、可動電極ユニット25の電極指31のY軸方向の変位量、Z軸方向の変位量をそれぞれ△Y,△Zとするとき、変位後の可変キャパシタC3,C4の静電容量C3,C4について理論上、以下の関係式が成立する。   When the movable electrode finger 31 of the movable electrode unit 25 constituting each of the variable capacitors C3 and C4 has a displacement component in any axial direction, the initial capacitance of the variable capacitors C3 and C4 is Co, and the variable capacitor C3 , C4 capacitance change amount ΔC3, ΔC4, vacuum dielectric constant εo, dielectric constant dielectric between the fixed electrode finger 29 and movable electrode finger 31 εr, fixed electrode finger 29, operation The length of the electrode finger 31 in the direction of the principal surface of the substrate 23 at the portion where the variable capacitors C3 and C4 are constructed is l, and the substrate at the portion of the fixed electrode finger 29 and the movable electrode finger 31 where the variable capacitors C3 and C4 are constructed. When the length in the length direction perpendicular to 23 is h, the displacement amount of the electrode finger 31 of the movable electrode unit 25 in the Y-axis direction, and the displacement amount in the Z-axis direction are ΔY and ΔZ, respectively, the variable after the displacement Capacitors C3 and C4 The following relational expressions are theoretically established for the capacitances C3 and C4.

すなわち、可動電極ユニット25の可動電極指31がZ軸の正方向の変位成分を有するとき、   That is, when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the positive direction of the Z axis,

Figure 2008064603
Figure 2008064603

Figure 2008064603
また、可動電極ユニット25の可動電極指31がZ軸の負の方向の変位成分を有するとき、
Figure 2008064603
When the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the negative direction of the Z axis,

Figure 2008064603
Figure 2008064603

Figure 2008064603
式11、式12においてZ軸変位成分が表れていないが、理論上、可動電極ユニット25の可動電極指31がZ軸の負の方向に変位成分を有するときには、可変キャパシタC3,C4それぞれにおける対向電極面積が変化しないためである。
Figure 2008064603
Although the Z-axis displacement component does not appear in Equations 11 and 12, theoretically, when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the negative direction of the Z-axis, it is opposed to each of the variable capacitors C3 and C4. This is because the electrode area does not change.

しかしながら、実際には、端部効果によって、可動電極ユニット25の可動電極指31がZ軸の負の方向に変位成分を有するときにも、Z軸の負方向への変位に起因して可変キャパシタC3,C4の静電容量C3,C4が変化する。具体的には、Z軸の負の方向において一定の範囲内では、静電容量の変化量のうちZ軸方向変位に起因する変化成分は増加する。   However, in reality, even when the movable electrode finger 31 of the movable electrode unit 25 has a displacement component in the negative direction of the Z axis due to the end effect, the variable capacitor is caused by the displacement in the negative direction of the Z axis. The capacitances C3 and C4 of C3 and C4 change. Specifically, within a certain range in the negative direction of the Z-axis, the change component resulting from the displacement in the Z-axis direction among the amount of change in capacitance increases.

当該端部効果と上記式9、式10、式11、式12とに鑑みれば、上記電極指31が変位したとき、可変キャパシタC3,C4については以下の関係式を導き出すことができる。   In view of the end effect and the above expressions 9, 10, 11, and 12, when the electrode finger 31 is displaced, the following relational expressions can be derived for the variable capacitors C3 and C4.

Figure 2008064603
Figure 2008064603

Figure 2008064603
上記いずれの式にもX軸方向の変位に起因する成分が含まれていない(△Xの項がない)のは、各固定電極指29,可動電極指31において互いに他の固定電極指29,可動電極指31と対向する面での基板23の主面方向の長さlが当該面での基板23に垂直な方向の長さhと比べて大きいため、静電容量変化のうちX軸方向の変位に起因する成分が無視できるほどに小さいからである。
Figure 2008064603
None of the above formulas includes a component due to the displacement in the X-axis direction (the term of ΔX is not present) because each of the fixed electrode fingers 29 and the movable electrode fingers 31 has another fixed electrode finger 29, Since the length l in the main surface direction of the substrate 23 on the surface facing the movable electrode finger 31 is larger than the length h in the direction perpendicular to the substrate 23 on the surface, the X-axis direction of the capacitance change This is because the component due to the displacement of is so small that it can be ignored.

上記式7と式8とを対比したときに注目すべき点は、X軸方向変位に起因する変化成分すなわち△Xの項の符号が逆となっていて、かつ△Zの項の符号が同じになっている点である。
そして、上記式13と式14とを対比したときに注目すべき点は、Y軸方向変位に起因する変化成分すなわち△Yの項の符号が逆となっていて、かつ△Zの項の符号が同じになっている点である。
What should be noted when comparing the above Expression 7 and Expression 8 is that the sign of the change component caused by the displacement in the X-axis direction, that is, the term of ΔX is reversed and the sign of the term of ΔZ is the same. This is the point.
The points to be noted when comparing the above Expression 13 and Expression 14 are that the change component caused by the displacement in the Y-axis direction, that is, the sign of the term ΔY is reversed and the sign of the term ΔZ Is the same.

なおかつ、上記式7および式8に対して上記式13および式14を対比したときに注目すべき点は、Z軸方向変位に起因する変化成分すなわち△Zの項の符号が逆になっている点である。
△X,△Y,△Zそれぞれの項においてこのような符号の関係が成立するのは、既述した電極構造に起因する。
In addition, when the above formulas 13 and 14 are compared with the above formulas 7 and 8, the change component caused by the Z-axis direction displacement, that is, the sign of the term ΔZ is reversed. Is a point.
The reason why such a sign relationship is established in each of the terms ΔX, ΔY, and ΔZ is due to the electrode structure described above.

以下、具体的に当該検出回路34の動作を説明する。
〔X軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p1において、検出回路34のスイッチング素子s1b,s2aをonにし、かつ他のスイッチング素子をoffにすると、可変キャパシタC1のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加され、かつ可変キャパシタC2のうち固定電極ユニット24の可動電極指29に対して電源から+Vrの電圧が印加される。
Hereinafter, the operation of the detection circuit 34 will be specifically described.
[Detection operation of acceleration component in X axis direction]
As shown in FIG. 5C, when the switching elements s1b and s2a of the detection circuit 34 are turned on and the other switching elements are turned off in the period p1, the fixed electrode finger of the fixed electrode unit 24 of the variable capacitor C1 is turned off. A voltage −Vr is applied from the power supply to the power supply 29, and a voltage + Vr is applied from the power supply to the movable electrode finger 29 of the fixed electrode unit 24 in the variable capacitor C2.

このとき、可変キャパシタC1,C2と負帰還用キャパシタCfとの間において、可変キャパシタC1の静電容量をC1、可変キャパシタC2の静電容量をC2、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。   At this time, between the variable capacitors C1 and C2 and the negative feedback capacitor Cf, the capacitance of the variable capacitor C1 is C1, the capacitance of the variable capacitor C2 is C2, and the capacitance of the negative feedback capacitor Cf is Cf. The following relational expression holds.

Figure 2008064603
式15と上記の式7、式8とから、以下の関係式を導き出せる。
Figure 2008064603
From Equation 15 and Equations 7 and 8 above, the following relational expression can be derived.

Figure 2008064603
式16を整理すると、電源から各可変キャパシタC1,C2の固定電極指29に印加される電圧が逆極性であることから式16の左辺において初期容量Coおよび△Zの項が消えて、以下の関係式が導出される。
Figure 2008064603
By rearranging Expression 16, since the voltage applied from the power source to the fixed electrode fingers 29 of the variable capacitors C1 and C2 has a reverse polarity, the terms of the initial capacitance Co and ΔZ disappear on the left side of Expression 16, and A relational expression is derived.

Figure 2008064603
式17から分かるように、出力電圧Vxは、△Xの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のX軸方向の変位成分にのみ依存する。
この出力電圧Vxがオペアンプ(OPA)35から出力され、期間p1においてスイッチSxがonされるとキャパシタCxに出力電圧Vxが蓄積され、出力電圧Vxを検出できる。
Figure 2008064603
As can be seen from Expression 17, the output voltage Vx is expressed only by the term of ΔX, that is, depends only on the displacement component in the X-axis direction of the movable electrode finger 31 of the movable electrode unit 25.
When the output voltage Vx is output from the operational amplifier (OPA) 35 and the switch Sx is turned on in the period p1, the output voltage Vx is accumulated in the capacitor Cx, and the output voltage Vx can be detected.

期間p1経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の固定電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC1,C2で維持されていた電位差が消去される。
したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のX軸方向の変位成分のみを検出することができる。
When the switch S5 is turned on after the lapse of the period p1, the negative feedback capacitor Cf is short-circuited, so that charges are injected into the movable electrode finger 31 of the movable electrode unit 25 and at the same time, the fixed electrode unit 24 is connected through a line (not shown). The charge on the fixed electrode finger 29 side is also moved, and the potential difference maintained in the variable capacitors C1 and C2 due to the input voltage Vr is erased.
Therefore, only the displacement component in the X-axis direction of the movable electrode finger 31 of the movable electrode unit 25 can be detected by the electrode structure and the arithmetic processing.

〔Y軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p2において、検出回路34のスイッチング素子s3b,s4aをonにし、かつ他のスイッチング素子をoffにすると、可変キャパシタC3のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加され、かつ可変キャパシタC4のうち固定電極ユニット24の固定電極指29に対して電源から+Vrの電圧が印加される。
[Detection operation of acceleration component in Y-axis direction]
As shown in FIG. 5C, when the switching elements s3b and s4a of the detection circuit 34 are turned on and the other switching elements are turned off in the period p2, the fixed electrode finger of the fixed electrode unit 24 of the variable capacitor C3 is turned off. A voltage −Vr from the power source is applied to 29, and a voltage + Vr from the power source is applied to the fixed electrode finger 29 of the fixed electrode unit 24 in the variable capacitor C4.

このとき、可変キャパシタC3,C4と負帰還用キャパシタCfとの間において、可変キャパシタC3の静電容量をC3、可変キャパシタC4の静電容量をC4、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。   At this time, between the variable capacitors C3 and C4 and the negative feedback capacitor Cf, the capacitance of the variable capacitor C3 is C3, the capacitance of the variable capacitor C4 is C4, and the capacitance of the negative feedback capacitor Cf is Cf. The following relational expression holds.

Figure 2008064603
式18と上記の式13、式14とから、以下の関係式を導き出せる。
Figure 2008064603
From the equation 18 and the above equations 13 and 14, the following relational expression can be derived.

Figure 2008064603
式19を整理すると、電源から各可変キャパシタC3,C4の固定電極指29に印加される電圧が逆極性であることから式19の左辺において初期容量Coおよび△Zの項が消えて、以下の関係式が導出される。
Figure 2008064603
By rearranging Equation 19, since the voltage applied from the power source to the fixed electrode fingers 29 of the variable capacitors C3 and C4 has a reverse polarity, the terms of the initial capacitance Co and ΔZ disappear on the left side of Equation 19, and A relational expression is derived.

Figure 2008064603
式20から分かるように、出力電圧Vyは、△Yの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のY軸方向の変位成分にのみ依存する。
この出力電圧Vyがオペアンプ(OPA)35から出力され、期間p2においてスイッチSyがonされるとキャパシタCyに出力電圧Vyが蓄積され、出力電圧Vyを検出できる。
Figure 2008064603
As can be seen from Equation 20, the output voltage Vy is expressed only by the term ΔY, that is, depends only on the displacement component of the movable electrode finger 31 of the movable electrode unit 25 in the Y-axis direction.
When this output voltage Vy is output from the operational amplifier (OPA) 35 and the switch Sy is turned on in the period p2, the output voltage Vy is accumulated in the capacitor Cy, and the output voltage Vy can be detected.

期間p2経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC3,C4で維持されていた電位差が消去される。
したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のY軸方向の変位成分のみを検出することができる。
When the switch S5 is turned on after the period p2 elapses, the negative feedback capacitor Cf is short-circuited, so that charges are injected into the movable electrode finger 31 of the movable electrode unit 25 and at the same time, the fixed electrode unit 24 The electric charge on the electrode finger 29 side is also moved, and the potential difference maintained in the variable capacitors C3 and C4 due to the input voltage Vr is erased.
Therefore, only the displacement component in the Y-axis direction of the movable electrode finger 31 of the movable electrode unit 25 can be detected by the electrode structure and the arithmetic processing.

〔Z軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p3において、検出回路34のスイッチング素子s1a,s2a,s3b,s4bをonにし、かつ他のスイッチング素子をoffにすると、各可変キャパシタC1,C2のうち固定電極ユニット24の固定電極指29に対して電源から+Vrの電圧が印加され、かつ各可変キャパシタC3,C4のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加される。
[Detection operation of acceleration component in the Z-axis direction]
As shown in FIG. 5C, when the switching elements s1a, s2a, s3b, and s4b of the detection circuit 34 are turned on and the other switching elements are turned off in the period p3, each of the variable capacitors C1 and C2 is fixed. A voltage of + Vr is applied from the power source to the fixed electrode finger 29 of the electrode unit 24, and a voltage of −Vr is applied from the power source to the fixed electrode finger 29 of the fixed electrode unit 24 among the variable capacitors C3 and C4. The

このとき、可変キャパシタC1,C2,C3,C4と負帰還用キャパシタCfとの間において、可変キャパシタC1の静電容量をC1、可変キャパシタC2の静電容量をC2、可変キャパシタC3の静電容量をC3、可変キャパシタC4の静電容量をC4、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。   At this time, between the variable capacitors C1, C2, C3, and C4 and the negative feedback capacitor Cf, the capacitance of the variable capacitor C1 is C1, the capacitance of the variable capacitor C2 is C2, and the capacitance of the variable capacitor C3. Is C3, the capacitance of the variable capacitor C4 is C4, and the capacitance of the negative feedback capacitor Cf is Cf, the following relational expression is established.

Figure 2008064603
式21と上記の式7、式8、式13、式14とから、以下の関係式が導き出せる。
Figure 2008064603
The following relational expressions can be derived from Expression 21 and Expressions 7, 8, 13, and 14 described above.

Figure 2008064603
式22を整理すると、可変キャパシタC1と可変キャパシタC2とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ同極性であり、かつX軸方向の変位に起因する静電容量の変化成分、すなわち△Xの項が異符号であるので、△Xの項が消える。そして、可変キャパシタC3と可変キャパシタC4とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ同極性であり、かつY軸方向の変位に起因する静電容量の変化成分、すなわち△Yの項が異符号であるので、△Yの項が消える。
Figure 2008064603
To summarize Equation 22, when the variable capacitor C1 and the variable capacitor C2 are compared, the voltage applied from the power source to the fixed electrode finger 29 has the same absolute value and the same polarity, and the displacement in the X-axis direction. The component of change in capacitance caused by, that is, the term of ΔX has a different sign, so the term of ΔX disappears. When the variable capacitor C3 and the variable capacitor C4 are compared, the voltage applied from the power source to the fixed electrode finger 29 has the same absolute value and the same polarity, and the static voltage caused by the displacement in the Y-axis direction. Since the change component of the capacitance, that is, the term of ΔY has a different sign, the term of ΔY disappears.

そして、可変キャパシタC1および可変キャパシタC2と、可変キャパシタC3および可変キャパシタC4とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ異極性であり、なおかつ初期容量Coが同符号であるので、初期容量Coの項が消える。また、当該対比において、可変キャパシタC1の△Zの項と可変キャパシタC2の△Zの項とが同符号で、可変キャパシタC3の△Zの項と可変キャパシタC4の△Zの項とが同符号であるので、上記の印加電圧の極性関係と組み合わされると、以下の関係式が導出される。   When the variable capacitor C1 and the variable capacitor C2 are compared with the variable capacitor C3 and the variable capacitor C4, the voltage applied from the power source to the fixed electrode finger 29 has the same absolute value and different polarity, and Since the initial capacity Co has the same sign, the term of the initial capacity Co disappears. In the comparison, the ΔZ term of the variable capacitor C1 and the ΔZ term of the variable capacitor C2 have the same sign, and the ΔZ term of the variable capacitor C3 and the ΔZ term of the variable capacitor C4 have the same sign. Therefore, when combined with the polarity relationship of the applied voltage, the following relational expression is derived.

Figure 2008064603
式23から分かるように、出力電圧Vzは、△Zの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のZ軸方向の変位成分にのみ依存する。
この出力電圧Vzがオペアンプ(OPA)35から出力され、期間p3においてスイッチSzがonされるとキャパシタCzに出力電圧Vzが蓄積され、出力電圧Vzを検出できる。
Figure 2008064603
As can be seen from Equation 23, the output voltage Vz is expressed only by the term ΔZ, that is, depends only on the displacement component in the Z-axis direction of the movable electrode finger 31 of the movable electrode unit 25.
When the output voltage Vz is output from the operational amplifier (OPA) 35 and the switch Sz is turned on in the period p3, the output voltage Vz is accumulated in the capacitor Cz, and the output voltage Vz can be detected.

期間p3経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の固定電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC1,C2,C3,C4で維持されていた電位差が消去される。   When the switch S5 is turned on after the period p3 elapses, the negative feedback capacitor Cf is short-circuited, so that charges are injected into the movable electrode finger 31 of the movable electrode unit 25 and at the same time, the fixed electrode unit 24 The electric charge on the fixed electrode finger 29 side is also moved, and the potential difference maintained in the variable capacitors C1, C2, C3, C4 due to the input voltage Vr is erased.

したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のZ軸方向の変位成分のみを検出することができる。
《実施の形態1に係る加速度検出装置の効果》
本実施の形態では、当該センサ構造体20が固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とが上記構成を有することにより、A部とB部とを対比するとき、可変キャパシタC1とC2とがX軸方向において逆符号の静電容量変化を起こすように配され、かつC部とD部とを対比したとき、可変キャパシタC3とC4とがY軸方向において逆符号の静電容量変化を起こすように配されている。
Therefore, only the displacement component in the Z-axis direction of the movable electrode finger 31 of the movable electrode unit 25 can be detected by the electrode structure and the arithmetic processing.
<< Effect of Acceleration Detection Device According to Embodiment 1 >>
In the present embodiment, when the sensor structure 20 compares the A part and the B part by having the above-described configuration of the fixed electrode finger 29 of the fixed electrode unit 24 and the movable electrode finger 31 of the movable electrode unit 25, The variable capacitors C1 and C2 are arranged so as to cause a capacitance change of opposite sign in the X-axis direction, and when the C part and the D part are compared, the variable capacitors C3 and C4 are reversed in the Y-axis direction. It arrange | positions so that the electrostatic capacitance change of a code | symbol may be caused.

なおかつ、A部およびB部とC部およびD部とを対比するとき、可変キャパシタC1,C2と可変キャパシタC3,C4とがZ軸方向において逆符号の静電容量変化を起こすように配されている。
したがって、当該センサ構造体20を上記演算処理部に組み込み、上記タイミングに従って当該センサ構造体20に加速度が加わったときの出力値を演算処理すれば、3軸方向の加速度を検出することができる加速度検出装置を実現することができる。
In addition, when comparing the A part and the B part with the C part and the D part, the variable capacitors C1 and C2 and the variable capacitors C3 and C4 are arranged so as to cause a capacitance change of opposite sign in the Z-axis direction. Yes.
Therefore, if the sensor structure 20 is incorporated in the arithmetic processing unit and the output value when the acceleration is applied to the sensor structure 20 according to the timing, the acceleration that can detect the acceleration in the three-axis direction can be detected. A detection device can be realized.

すなわち、当該センサ構造体20では、従来の1軸検出可能なセンサ構造体を3つ組み合わせた場合や、従来の1軸の加速度を検出可能なセンサ構造体と2軸の加速度を検出可能なセンサ構造体とを組み合わせた場合、あるいは、バルクマイクロマシニング技術で作製された加速度センサと比べて、実装面積の増大を招くこと無く3軸の加速度を検出することができ、3軸の加速度の検出を可能にしながら小型化を実現することができる。   That is, in the sensor structure 20, when three conventional sensor structures capable of detecting one axis are combined, a conventional sensor structure capable of detecting one axis acceleration and a sensor capable of detecting two axes acceleration. When combined with a structure or compared with an acceleration sensor manufactured by bulk micromachining technology, it is possible to detect triaxial acceleration without increasing the mounting area, and to detect triaxial acceleration. Miniaturization can be realized while being possible.

当該センサ構造体20を加速度検出装置に組み込めば、当該検出装置の小型化を図ることができる。
そして、本実施の形態における加速度センサは、サーフェスマイクロマシニング技術で作製できるので、汎用のMEMSプロセスで作製でき、従来のバルクマイクロマシニング技術で作製された3軸加速度センサと比べて製造工程が簡易な構造を備えている。
If the sensor structure 20 is incorporated in an acceleration detection device, the detection device can be reduced in size.
And since the acceleration sensor in this Embodiment can be manufactured with a surface micromachining technique, it can be manufactured with a general purpose MEMS process, and a manufacturing process is simple compared with the triaxial acceleration sensor manufactured with the conventional bulk micromachining technique. It has a structure.

本実施の形態に係る加速度センサでは、ばね部33によって可動電極ユニット25が所定の基準位置で支持され、加速度が作用していない状態での上記A部ないしD部において、キャパシタとして機能する電極対の初期容量Coが同一になっているので、差動検出によって上記演算を実行する際に参照容量を用いなくても初期容量Coを消去でき、従来のいわゆるバルク型の3軸加速度センサと比べて、センサ構造体20の更なる小型化を図ることができる。   In the acceleration sensor according to the present embodiment, the movable electrode unit 25 is supported at a predetermined reference position by the spring portion 33, and the electrode pair functioning as a capacitor in the A portion to D portion in a state where no acceleration is applied. Since the initial capacitance Co is the same, the initial capacitance Co can be eliminated without using a reference capacitance when performing the above-described calculation by differential detection, compared to a conventional so-called bulk type triaxial acceleration sensor. Further downsizing of the sensor structure 20 can be achieved.

本実施の形態では、図2で示したように壁部28が基板23の主面上において二等辺状に配され、そこから固定電極指29が直交する杆状の質量部30に向けて櫛歯状に延伸され、質量部30からは可動電極指31が壁部28に向けて櫛歯状に延伸されているので、これら可動電極指31、固定電極指29の夫々を基板23の限られた面積内にたくさん配設することができ、上記A領域ないしD領域の夫々で形成されるキャパシタの対向面積を大きく確保でき、A領域ないしD領域の夫々で可動電極指31と固定電極指29のそれぞれが1本ずつの場合に比べて感度を向上させることができて好ましい。   In the present embodiment, as shown in FIG. 2, the wall portion 28 is arranged in an isosceles shape on the main surface of the substrate 23, and the fixed electrode finger 29 is combed from there toward the bowl-shaped mass portion 30 orthogonal to the comb. Since the movable electrode fingers 31 are extended in a comb shape from the mass portion 30 toward the wall portion 28, the movable electrode fingers 31 and the fixed electrode fingers 29 are limited to the substrate 23. A large area can be provided within the area, the opposing area of the capacitor formed in each of the A region and D region can be secured large, and the movable electrode finger 31 and the fixed electrode finger 29 can be secured in each of the A region and D region. It is preferable that the sensitivity can be improved as compared with the case where each of them is one.

そして、上記櫛歯状の可動電極指31、固定電極指29の夫々が十字状の質量部30の軸を基準に線対称に配された状態であるので、これら電極指の延伸方向に可動電極ユニット25が揺動しても当該方向に対しての感度を消すことができるので、既述の演算処理において、演算負担を軽減できて好ましい。
また、図2に示すように、固定電極指29への通電経路は、二等辺状の壁部28を通じてその端、より具体的には十字状の質量部30を構成する上記杆の夫々を線対称の軸とする正方形を想定したときにその仮想の正方形の角部から基板23の主面に形成された電位取り出し部26へと繋がり、可動電極指31への通電経路は、上記仮想正方形の各辺の中間に位置するばね部33に通電経路を兼用させて、質量部30とそのばね部33を通りアンカー部32を通って固定電極指29側の電位取出し部26とは異なる電位取出し部26へと繋がっているので、当該センサ構造体20での配線を平面状に容易に形成することができ、センサ構造体20の薄型化を図ることができる。
<その他>
本実施の形態では、上記第1の主面と上記第2の主面とが基板23主面方向における直交座標系の各軸方向(X軸方向およびY軸方向)と直角になるように配されていたが、これに限定されず、これらX軸方向、Y軸方向と直角でなくても良い。
Since each of the comb-like movable electrode finger 31 and the fixed electrode finger 29 is arranged in line symmetry with respect to the axis of the cross-shaped mass portion 30, the movable electrode is extended in the extending direction of these electrode fingers. Even if the unit 25 swings, the sensitivity in the direction can be erased, which is preferable because the calculation burden can be reduced in the calculation processing described above.
In addition, as shown in FIG. 2, the energization path to the fixed electrode finger 29 is routed through the isosceles wall portion 28 at its end, more specifically, each of the ridges constituting the cross-shaped mass portion 30. Assuming a square as a symmetric axis, the corner of the virtual square is connected to the potential extraction unit 26 formed on the main surface of the substrate 23, and the energization path to the movable electrode finger 31 is the same as that of the virtual square. The spring portion 33 positioned in the middle of each side also serves as an energization path, passes through the mass portion 30 and the spring portion 33, passes through the anchor portion 32, and is different from the potential extraction portion 26 on the fixed electrode finger 29 side. 26, the wiring in the sensor structure 20 can be easily formed in a planar shape, and the sensor structure 20 can be thinned.
<Others>
In the present embodiment, the first main surface and the second main surface are arranged so as to be perpendicular to each axial direction (X-axis direction and Y-axis direction) of the orthogonal coordinate system in the substrate 23 main surface direction. However, the present invention is not limited to this, and may not be perpendicular to the X-axis direction and the Y-axis direction.

直角でない配置とすることによって、上記第1の主面と第2の主面とで形成されるキャパシタの数を減らすことができる。
なぜなら、既述のように、3軸の加速度を受けたときの各キャパシタの静電容量には、各キャパシタの対向主面と垂直な方向の変位成分と、基板23に垂直な方向の変位成分との2つの成分が含まれているので、3つのキャパシタを用意しておけば適切な演算処理を実行することにより当該各方向の変位成分を抽出でき、基板23主面での実装面積を削減することができる。
By disposing at a right angle, the number of capacitors formed by the first main surface and the second main surface can be reduced.
This is because, as described above, the capacitance of each capacitor when subjected to triaxial acceleration includes a displacement component in a direction perpendicular to the opposing main surface of each capacitor and a displacement component in a direction perpendicular to the substrate 23. Therefore, if three capacitors are prepared, displacement components in each direction can be extracted by executing appropriate arithmetic processing, and the mounting area on the main surface of the board 23 can be reduced. can do.

しかしながら、上記第1の主面と上記第2の主面とが上記X軸方向および上記Y軸方向と直角になるように配されていれば、上記演算処理部の演算処理によって直交座標軸方向での変位を検出でき、上記演算処理部での演算処理上の負担を軽減することができる点で、好ましい。
すなわち、上記実施の形態で用いた簡易な構成の演算処理部によっては、3つのキャパシタからなるセンサ構造体を採用すると、演算処理ができないのに対し、本実施の形態に係る4つのキャパシタからなるセンサ構造体20を用いれば、演算処理ができる。
However, if the first main surface and the second main surface are arranged so as to be perpendicular to the X-axis direction and the Y-axis direction, the arithmetic processing unit performs arithmetic processing in the orthogonal coordinate axis direction. This is preferable in that it can detect the displacement and reduce the burden on the arithmetic processing in the arithmetic processing unit.
That is, depending on the arithmetic processing unit having a simple configuration used in the above embodiment, if a sensor structure including three capacitors is employed, arithmetic processing cannot be performed, whereas the four arithmetic capacitors according to the present embodiment are included. If the sensor structure 20 is used, arithmetic processing can be performed.

本実施の形態では、質量部30が十字状であって、具体的には可動電極指31が質量部30を構成する上記杆部材から当該杆部材の軸に線対称となるように配されていたが、これに限定されず、質量部30は当該杆状でなくてもよく、可動電極指31も質量部30の杆の軸に線対称に配されていなくても良い。
しかしながら、質量部30が直交する杆状の外形を有していれば、幾何的に安定するので、感度の安定性を向上させることができて好ましく、さらに可動電極指31が当該杆部材の軸に線対称に配されていれば、さらに幾何的に安定して感度の安定性を向上させることができる。
In the present embodiment, the mass part 30 has a cross shape, and specifically, the movable electrode finger 31 is arranged so as to be line symmetric from the collar member constituting the mass part 30 to the axis of the collar member. However, the present invention is not limited to this, and the mass part 30 may not be in the shape of the bowl, and the movable electrode finger 31 may not be arranged symmetrically with respect to the axis of the bowl of the mass part 30.
However, it is preferable that the mass portion 30 has a cross-shaped outer shape orthogonal to each other, since it is geometrically stable. Therefore, it is preferable that the stability of sensitivity can be improved, and the movable electrode finger 31 further has a shaft of the flange member. If they are arranged symmetrically to each other, the stability of the sensitivity can be further improved in terms of geometric stability.

本実施の形態では、上記A部ないしD部が図示した範囲内においてセンサ構造体20を均等に占領した状態となっているが、これに限らず、上記A部ないしD部がセンサ構造体20を均等に占領していなくても良い。しかしながら、A部ないしD部がセンサ構造体20を均等に占領した状態となっていると、いわゆる初期容量をA部ないしD部で等しくでき、従来のいわゆるバルク型の3軸加速度検出装置と比べて参照容量が必要なくなるので好ましい。   In the present embodiment, the A part and the D part occupy the sensor structure 20 evenly within the range shown in the figure, but the present invention is not limited to this, and the A part and the D part include the sensor structure 20. May not be evenly occupied. However, if the A part or the D part occupies the sensor structure 20 evenly, the so-called initial capacity can be made equal in the A part or the D part, and compared with the conventional so-called bulk type triaxial acceleration detecting device. This is preferable because a reference capacity is not necessary.

本実施の形態では、固定電極指29,可動電極指31の各々が互いに相手を囲繞するような配置となっているので、固定電極指29,可動電極指31同士の対向主面の各々が基板23の主面方向に動いたときの端部効果も無視できるが、本実施の形態以外の構成を採用する場合、すなわち、固定電極指29と可動電極指31との間において一方の電極指が他方の電極指を囲繞しない構成を採用するとき、基板23の主面方向においては、固定電極指29,可動電極指31同士の対向主面のうち可動電極指31側の主面の合計の長さが固定電極指29側の主面の合計の長さに比べて大きくなるように設定され、かつ固定電極指29の端と可動電極指31の端との距離が互いに等しくなるように設定すれば、固定電極指29,可動電極指31同士の対向主面の各々が基板23の主面方向に動いたときの静電容量変化分において当該変位成分を除去できる。   In the present embodiment, each of the fixed electrode finger 29 and the movable electrode finger 31 is disposed so as to surround the other, so that each of the opposing main surfaces of the fixed electrode finger 29 and the movable electrode finger 31 is a substrate. Although the end effect when moving in the direction of the principal surface of 23 is negligible, when a configuration other than the present embodiment is adopted, that is, one electrode finger is placed between the fixed electrode finger 29 and the movable electrode finger 31. When adopting a configuration that does not surround the other electrode finger, in the main surface direction of the substrate 23, the total length of the main surfaces on the movable electrode finger 31 side of the main surfaces facing each other between the fixed electrode fingers 29 and the movable electrode fingers 31. Is set to be larger than the total length of the main surfaces on the fixed electrode finger 29 side, and the distance between the end of the fixed electrode finger 29 and the end of the movable electrode finger 31 is set to be equal to each other. For example, the fixed electrode finger 29 and the movable electrode finger 31 Each of the opposed main surfaces can be removed the displacement components in the change in electrostatic capacitance when moved in the main surface direction of the substrate 23.

また、本実施の形態では、センサ構造体20において、固定電極指29,可動電極指31で構成される可変キャパシタが基板23の主面に沿って四方に配された構成となっていたが、これに限定されず、基板23の主面に沿って可変キャパシタが四方以上に配されても良い。   Further, in the present embodiment, in the sensor structure 20, the variable capacitor constituted by the fixed electrode finger 29 and the movable electrode finger 31 is arranged in four directions along the main surface of the substrate 23. The present invention is not limited to this, and variable capacitors may be arranged in four or more directions along the main surface of the substrate 23.

本発明は、携帯情報端末やデジタルカメラ、外付HDDなど、今後ますます小型化されるであろう機器に広く適用でき、その産業上の利用可能性は非常に広く、且つ大きい。   The present invention can be widely applied to devices that will be further miniaturized in the future, such as portable information terminals, digital cameras, and external HDDs, and its industrial applicability is very wide and large.

(a)は、実施の形態1に係る3軸加速度検出装置の概略断面図であり、同図(b)は、当該検出装置内の要部平面図である。(A) is a schematic sectional drawing of the triaxial acceleration detection apparatus which concerns on Embodiment 1, The figure (b) is a principal part top view in the said detection apparatus. 実施の形態1に係るセンサ構造体の概略平面図である。1 is a schematic plan view of a sensor structure according to Embodiment 1. FIG. 実施の形態1に係るセンサ構造体の要部斜視断面図である。3 is a perspective cross-sectional view of a main part of the sensor structure according to Embodiment 1. FIG. 実施の形態1に係るセンサ構造体の要部斜視断面図である。3 is a perspective cross-sectional view of a main part of the sensor structure according to Embodiment 1. FIG. (a)は、実施の形態1に係るセンサ構造体を電気等価回路で示した概略模式図であり、(b)は、実施の形態1に係る検出回路を電気等価回路で示した概略模式図であり、(c)は、実施の形態1にかかる検出回路への電圧印加のon/offのタイミングチャートを示した概略模式図である。(A) is the schematic schematic diagram which showed the sensor structure based on Embodiment 1 with the electrical equivalent circuit, (b) is the schematic schematic diagram which showed the detection circuit based on Embodiment 1 with the electrical equivalent circuit FIG. 4C is a schematic diagram illustrating a timing chart of on / off of voltage application to the detection circuit according to the first embodiment. 実施の形態1に係る可変キャパシタの概略断面図である。1 is a schematic cross-sectional view of a variable capacitor according to a first embodiment. 実施の形態1に係る可変キャパシタの概略断面図である。1 is a schematic cross-sectional view of a variable capacitor according to a first embodiment.

符号の説明Explanation of symbols

10 加速度検出装置
11 絶縁モールド体
12 センサ部
13 演算処理部
14 ダイパッド
15 導電部材
16 リード
17,18,19 ボンディングパッド部
20 センサ構造体
21 被覆板
22 スルーホール
23 基板
24 固定電極ユニット
25 可動電極ユニット
26 電位取り出し部
27 枠体
28 壁部
29 固定電極指
30 質量(マス)部
31 可動電極指
32 アンカー部
33 ばね部
34 検出回路
35 オペアンプ
36 シーケンス制御用回路
37 検出回路部
DESCRIPTION OF SYMBOLS 10 Acceleration detection apparatus 11 Insulation mold body 12 Sensor part 13 Arithmetic processing part 14 Die pad 15 Conductive member 16 Lead 17, 18, 19 Bonding pad part 20 Sensor structure 21 Covering plate 22 Through hole 23 Substrate 24 Fixed electrode unit 25 Movable electrode unit 26 Potential Extraction Unit 27 Frame 28 Wall 29 Fixed Electrode Finger 30 Mass (Mass) Unit 31 Movable Electrode Finger 32 Anchor Unit 33 Spring Unit 34 Detection Circuit 35 Operational Amplifier 36 Sequence Control Circuit 37 Detection Circuit Unit

Claims (8)

基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、
前記揺動体は第1揺動杆とこれに交差する第2揺動杆とを備え、
両揺動杆の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には少なくとも1個の可動電極が形成され、前記基板側には前記可動電極の夫々に対向する固定電極が形成されて、少なくとも4個の電極対が形成され、
第1揺動杆を構成する一対の前記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成されている一対の前記電極対は、第1揺動杆の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定され、
第2揺動杆を構成する一対の前記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成された一対の前記電極対は、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定され、
さらに、前記揺動体のZ軸方向の揺動に対し、第1揺動杆の電極対の対向面積の変化と第2揺動杆の電極対の対向面積の変化とが逆になるよう前記固定電極と可動電極の関係が設定されていることを特徴とする加速度センサ。
A substrate and a swinging body swingable in the X, Y, and Z axis directions with respect to the substrate;
The rocking body includes a first rocking rod and a second rocking rod crossing the first rocking rod.
At least one movable electrode is formed on each of the four rocking rod members extending in opposite directions around the intersection of the two rocking rods, and fixed on the substrate side facing each of the movable electrodes. Electrodes are formed to form at least four electrode pairs;
A pair of the electrode pairs formed by the movable electrodes of the pair of rocking rod members constituting the first rocking rod and the fixed electrodes opposed thereto are in the longitudinal direction of the first rocking rod. With respect to the oscillation in the (X-axis direction), the gap between one electrode pair is reduced, and the gap between the other electrode pair is increased.
A pair of the electrode pairs formed by the movable electrodes of the pair of rocking rod members constituting the second rocking rod and the fixed electrodes opposed to the movable electrodes are in the longitudinal direction of the second rocking rod ( Y axis direction) is set such that the gap between one electrode pair is reduced and the gap between the other electrode pair is increased,
Further, with respect to the rocking movement of the rocking body in the Z-axis direction, the change in the facing area of the electrode pair of the first rocking rod and the change in the facing area of the electrode pair of the second rocking rod are reversed. An acceleration sensor characterized in that a relationship between an electrode and a movable electrode is set.
加速度が作用していない状態において、前記第1揺動杆に形成された前記可動電極と前記基板上の前記固定電極とで構成される1対の電極対の静電容量、ならびに前記第2揺動杆に形成された前記可動電極と前記基板上の前記固定電極とで構成される1対の電極対の静電容量が夫々等しく設定されていることを特徴とする請求項1に記載の加速度センサ。   In a state where no acceleration is applied, the capacitance of a pair of electrodes composed of the movable electrode formed on the first swing rod and the fixed electrode on the substrate, and the second swing 2. The acceleration according to claim 1, wherein the capacitances of a pair of electrodes formed by the movable electrode formed in a moving manner and the fixed electrode on the substrate are set to be equal to each other. Sensor. 2つの揺動杆の前記可動電極と前記基板上の前記固定電極とは、夫々複数枚設けられており、その配設順序は、2つの揺動杆の交差部から見たとき、いずれの揺動杆部材に沿う方向においても同一の順序であることを特徴とする請求項1または2に記載の加速度センサ。   A plurality of the movable electrodes of the two oscillating rods and the fixed electrode on the substrate are respectively provided, and the arrangement order thereof is any of the oscillating plates when viewed from the intersection of the two oscillating rods. 3. The acceleration sensor according to claim 1, wherein the acceleration sensor is in the same order in a direction along the swinging member. 前記第1揺動杆、第2揺動杆の夫々に形成された夫々の前記可動電極が、長尺状であって前記基板と並行し、これらに対向する前記固定電極が長尺状であって前記基板と並行しており、前記固定電極と前記可動電極とは夫々の軸が平行になるように対向しており、
前記第1揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との前記Z軸方向での順序が、前記第2揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との前記Z軸方向での順序と、逆になっていることを特徴とする請求項1から3のいずれかに記載の加速度センサ。
Each of the movable electrodes formed on each of the first swing rod and the second swing rod is long and parallel to the substrate, and the fixed electrode facing them is long. Parallel to the substrate, the fixed electrode and the movable electrode are opposed so that their respective axes are parallel,
The order of the centroid of the opposed surface on the movable electrode side and the centroid of the opposed surface on the fixed electrode side in the opposed surface of the electrode pair of the first rocking rod in the Z-axis direction is The order in the Z-axis direction of the centroid of the opposing surface on the movable electrode side and the centroid of the opposing surface on the fixed electrode side in the opposing surface of the electrode pair is reversed. 4. The acceleration sensor according to any one of 3.
第1揺動杆と第2揺動杆とは、各杆の両端部が、基板に設けたばね部材で支持されていることにより、揺動自在な構成とされていることを特徴とする請求項1に記載の加速度センサ。   The first swing rod and the second swing rod are configured to be swingable by supporting both ends of each rod with spring members provided on the substrate. 2. The acceleration sensor according to 1. 各揺動杆部材に設けられた複数の可動電極とそれに対向する基板上の固定電極は、前記交差部からの距離に比例して電極長が長くなるように構成されていることを特徴とする請求項4に記載の加速度センサ。   The plurality of movable electrodes provided on each swing rod member and the fixed electrode on the substrate opposed thereto are configured such that the electrode length is increased in proportion to the distance from the intersection. The acceleration sensor according to claim 4. 加速度作用時において、前記第1揺動杆部の電極対が、以下の式(1)または(2)の関係を満たす静電容量変化を起こすキャパシタとして夫々形成され、前記第2揺動杆部の電極対が以下の式(3)または(4)の関係を満たす静電容量変化を起こすキャパシタとして夫々形成されていることを特徴とする請求項1から6のいずれかに記載の加速度センサ。
(1) C1=Co+P△X+R△Z
(2) C2=Co−P△X+R△Z
(3) C3=Co+Q△Y−R△Z
(4) C4=Co−Q△Y−R△Z
但し、C1,C2,C3,C4:加速度が作用したときの各可変キャパシタの静電容量
Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
P,Q,R:係数
△X,△Y,△Z:各軸方向の変位
During acceleration action, the electrode pair of the first swinging hook part is formed as a capacitor that causes a change in capacitance that satisfies the relationship of the following expression (1) or (2), and the second swinging hook part: The acceleration sensor according to any one of claims 1 to 6, wherein each of the electrode pairs is formed as a capacitor that causes a change in capacitance satisfying a relationship of the following expression (3) or (4).
(1) C1 = Co + PΔX + RΔZ
(2) C2 = Co−PΔX + RΔZ
(3) C3 = Co + QΔY-RΔZ
(4) C4 = Co-QΔY-RΔZ
However, C1, C2, C3, C4: Capacitance of each variable capacitor when acceleration acts Co: Capacitance (initial capacity) of each variable capacitor when acceleration does not act
P, Q, R: Coefficients △ X, △ Y, △ Z: Displacement in each axis direction
請求項7に記載の加速度センサと、加速度の作用に応じて前記X,Y,Zの夫々の軸方向成分値を出力する演算処理部とを備えており、
前記演算処理部は加速度の作用に応じて以下の式(5)から(7)を実行することを特徴とする加速度検出装置。
(5) (Co+P△X+R△Z)・(−Vr)+(Co−P△X+R△Z)・(+Vr)=Cf・Vx
(6) (Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(+Vr)=Cf・Vy
(7) (Co+P△X+R△Z)・(+Vr)+(Co−P△X+R△Z)・(+Vr)+(Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(−Vr)=Cf・Vz
但し、Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
P,Q,R:係数
△X,△Y,△Z:各軸方向の変位
+Vr,−Vr:当該加速度検出装置に対する入力電圧
Vx,Vy,Vz:当該加速度検出装置からの出力電圧
Cf:負帰還用キャパシタの静電容量
The acceleration sensor according to claim 7, and an arithmetic processing unit that outputs the axial direction component values of the X, Y, and Z according to the action of acceleration,
The said arithmetic processing part performs the following formula | equation (5) to (7) according to the effect | action of acceleration, The acceleration detection apparatus characterized by the above-mentioned.
(5) (Co + PΔX + RΔZ) · (−Vr) + (Co−PΔX + RΔZ) · (+ Vr) = Cf · Vx
(6) (Co + QΔY−RΔZ) · (−Vr) + (Co−QΔY−RΔZ) · (+ Vr) = Cf · Vy
(7) (Co + PΔX + RΔZ), (+ Vr) + (Co−PΔX + RΔZ), (+ Vr) + (Co + QΔY−RΔZ), (−Vr) + (Co−QΔY −RΔZ) · (−Vr) = Cf · Vz
Co: Capacitance (initial capacity) of each variable capacitor when acceleration is not applied
P, Q, R: Coefficients ΔX, ΔY, ΔZ: Displacement in each axial direction + Vr, −Vr: Input voltage to the acceleration detection device Vx, Vy, Vz: Output voltage from the acceleration detection device Cf: Negative Capacitance of feedback capacitor
JP2006242852A 2006-09-07 2006-09-07 Acceleration sensor and acceleration detection device Active JP5034043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242852A JP5034043B2 (en) 2006-09-07 2006-09-07 Acceleration sensor and acceleration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242852A JP5034043B2 (en) 2006-09-07 2006-09-07 Acceleration sensor and acceleration detection device

Publications (2)

Publication Number Publication Date
JP2008064603A true JP2008064603A (en) 2008-03-21
JP5034043B2 JP5034043B2 (en) 2012-09-26

Family

ID=39287443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242852A Active JP5034043B2 (en) 2006-09-07 2006-09-07 Acceleration sensor and acceleration detection device

Country Status (1)

Country Link
JP (1) JP5034043B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106471B2 (en) 2008-11-10 2012-01-31 Denso Corporation Semiconductor dynamic quantity sensor and method of producing the same
CN114814293A (en) * 2022-06-29 2022-07-29 成都华托微纳智能传感科技有限公司 MEMS accelerometer with sawtooth-shaped comb tooth structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751726B2 (en) 2013-11-12 2015-07-22 東京エレクトロン株式会社 Pluripotent stem cell culture method and facility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131331A (en) * 2000-10-24 2002-05-09 Denso Corp Semiconductor dynamical quantity sensor
JP2003294782A (en) * 2002-03-29 2003-10-15 Aisin Seiki Co Ltd Acceleration sensor
JP2003337138A (en) * 2002-03-15 2003-11-28 Toyota Central Res & Dev Lab Inc Apparatus having movable electrode, movable mirror apparatus, vibrating gyroscope and method for manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131331A (en) * 2000-10-24 2002-05-09 Denso Corp Semiconductor dynamical quantity sensor
JP2003337138A (en) * 2002-03-15 2003-11-28 Toyota Central Res & Dev Lab Inc Apparatus having movable electrode, movable mirror apparatus, vibrating gyroscope and method for manufacturing them
JP2003294782A (en) * 2002-03-29 2003-10-15 Aisin Seiki Co Ltd Acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106471B2 (en) 2008-11-10 2012-01-31 Denso Corporation Semiconductor dynamic quantity sensor and method of producing the same
CN114814293A (en) * 2022-06-29 2022-07-29 成都华托微纳智能传感科技有限公司 MEMS accelerometer with sawtooth-shaped comb tooth structure

Also Published As

Publication number Publication date
JP5034043B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
US10209269B2 (en) Z-axis microelectromechanical detection structure with reduced drifts
CN106597014B (en) MEMS sensor device with reduced stress sensitivity
US7258011B2 (en) Multiple axis accelerometer
US9383383B2 (en) Physical quantity sensor, manufacturing method thereof, and electronic apparatus
US6928872B2 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
JP2012225920A (en) Micro-electromechanical system (mems) device
CN107271722B (en) Triaxial capacitive accelerometer
CN108020686B (en) MEMS triaxial accelerometer with improved configuration
CN107003333B9 (en) MEMS sensor and semiconductor package
US8707784B2 (en) Laminated structure provided with movable portion
CA3004760A1 (en) 3d mems magnetometer and associated methods
JP6398348B2 (en) Functional element, method for manufacturing functional element, electronic device, and moving body
JP6623634B2 (en) Physical quantity sensors, electronic devices and moving objects
JP5034043B2 (en) Acceleration sensor and acceleration detection device
JP2018136132A (en) Gyro sensor, electronic device, and mobile body
CN103378061B (en) Inertial sensor, the manufacture method of inertial sensor and electronic equipment
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
JP2001349732A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP2011196966A (en) Inertia sensor
JP2016176894A (en) Inertia sensor, electronic apparatus, and mobile body
JP5783201B2 (en) Capacitive physical quantity sensor
KR100607360B1 (en) Three-Dimension Semiconductor Gyroscope Sensing Structure
KR100593534B1 (en) 2-D Semiconductor Gyroscope Sensing Structure
JP2013217727A (en) Gyro sensor and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150