JP4600344B2 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
JP4600344B2
JP4600344B2 JP2006126437A JP2006126437A JP4600344B2 JP 4600344 B2 JP4600344 B2 JP 4600344B2 JP 2006126437 A JP2006126437 A JP 2006126437A JP 2006126437 A JP2006126437 A JP 2006126437A JP 4600344 B2 JP4600344 B2 JP 4600344B2
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
fixed
sensor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006126437A
Other languages
Japanese (ja)
Other versions
JP2007298383A (en
Inventor
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006126437A priority Critical patent/JP4600344B2/en
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to EP07742395A priority patent/EP2023152A4/en
Priority to US12/296,554 priority patent/US8176782B2/en
Priority to CN2007800154915A priority patent/CN101432627B/en
Priority to KR1020087027013A priority patent/KR101012248B1/en
Priority to PCT/JP2007/058960 priority patent/WO2007125961A1/en
Priority to CN2012101627849A priority patent/CN102654409A/en
Priority to TW099108899A priority patent/TWI417547B/en
Priority to TW096115114A priority patent/TW200804814A/en
Publication of JP2007298383A publication Critical patent/JP2007298383A/en
Application granted granted Critical
Publication of JP4600344B2 publication Critical patent/JP4600344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物理量を検出する静電容量式センサに関する。   The present invention relates to a capacitance sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.

従来より、公知の半導体プロセスを用いて半導体基板を加工することで可動電極が弾性要素を介して固定部に可動支持される構造を形成し、作用した外力等に応じて可動電極が固定電極に対して接離可能となるようにして、これら電極間の静電容量の変化を検出することで加速度や角速度等の種々の物理量を検出できるようにした静電容量式センサが知られている(例えば特許文献1)。   Conventionally, a semiconductor substrate is processed using a known semiconductor process to form a structure in which the movable electrode is movably supported by the fixed portion via an elastic element. A capacitance type sensor is known that is capable of detecting various physical quantities such as acceleration and angular velocity by detecting changes in capacitance between these electrodes so as to be able to contact and separate from each other ( For example, Patent Document 1).

特許文献1の静電容量式センサでは、弾性要素は、固定部から渦巻き状に伸びるビーム(梁)として形成されており、この弾性要素を介して固定部に可動支持された可動電極は、主として、センサ(半導体層)の表面に沿う方向に変位するように構成されている。
特開2000−28634号公報
In the electrostatic capacitance sensor of Patent Document 1, the elastic element is formed as a beam (beam) extending spirally from the fixed portion, and the movable electrode that is movably supported by the fixed portion via this elastic element is mainly used. The sensor (semiconductor layer) is configured to be displaced in a direction along the surface.
JP 2000-28634 A

しかしながら、上記特許文献1のように、可動電極がビームを介して固定部に可動支持される構造では、可動電極の最大変位量や重さ、弾性要素としてのビームの形状、センサに作用する最大加速度等によって、ビームに生じる応力が変化することになるが、特にセンサの小型化やバネ定数の設定に伴って細長いビームを設ける場合等においては、ビームに生じる応力が大きくなりやすく、可動電極の変位量や重さ等のスペックを所望の値に設定しにくくなる場合があった。   However, in the structure in which the movable electrode is movably supported by the fixed portion via the beam as in Patent Document 1, the maximum displacement amount and weight of the movable electrode, the shape of the beam as the elastic element, and the maximum acting on the sensor The stress generated in the beam changes due to acceleration or the like. However, particularly when a long and narrow beam is provided in accordance with the downsizing of the sensor or the setting of the spring constant, the stress generated in the beam tends to increase, and the movable electrode In some cases, it is difficult to set specifications such as a displacement amount and a weight to desired values.

そこで、本発明は、可動電極がビームを介して固定部に可動支持される静電容量式センサにおいて、ビームの応力を低減することを目的とする。   Accordingly, an object of the present invention is to reduce beam stress in a capacitive sensor in which a movable electrode is movably supported by a fixed part via a beam.

請求項1の発明にあっては、固定電極と、半導体層の固定部分にビームを介して可動支持された可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサにおいて、前記ビームの固定部分に接続される側の端部および可動電極に接続される側の端部のうち少なくともいずれか一方に、局所的な応力集中を緩和する応力緩和部を設け、前記応力緩和部は、平面視で三角形状の単位枠をトラス状に多重に重ねて前記単位枠よりも大きな三角形状の構造にしたことを特徴とする。 According to the first aspect of the present invention, a fixed electrode and a movable electrode that is movably supported by a beam at a fixed portion of the semiconductor layer are provided, and the fixed electrode and the movable electrode are arranged to face each other with a gap. In the electrostatic capacitance sensor that detects a predetermined physical quantity by detecting the electrostatic capacitance according to the size of the gap, the end on the side connected to the fixed portion of the beam And at least one of the end portions on the side connected to the movable electrode is provided with a stress relaxation portion for relaxing local stress concentration, and the stress relaxation portion has a truss-shaped unit frame in a plan view. In other words, the triangular frame structure is larger than the unit frame .

請求項2の発明にあっては、記応力緩和部を、記ビームの固定部分に接続される側の端部および可動電極に接続される側の端部の双方に設けたことを特徴とする。 Wherein the billing In the invention of claim 2, in which the pre-Symbol stress absorbing portion, provided at both ends of the front SL side connected to the end and the movable electrode on the side which is connected to the fixed portion of the beam And

請求項3の発明にあっては、記ビームは、可動電極の動作に伴ってねじられる矩形断面を有するねじりビームであることを特徴とする。 In the invention of claim 3, prior Symbol beam is characterized by a torsion having a rectangular cross section is twisted in accordance with the operation of the movable electrode beam.

請求項4の発明にあっては、記可動電極は、前記ねじりビームを介して揺動可能に支持され、記検出部は、揺動する可動電極の表面とそれに対向する固定電極の表面との間隙の大きさに応じた静電容量を検出することを特徴とする。 In the invention of claim 4, before Symbol movable electrode, said is swingably supported via a torsion beam, the front Symbol detector, the surface of the fixed electrode surface facing thereto of the movable electrode swings And detecting the electrostatic capacitance according to the size of the gap.

本発明によれば、ビームにおいて応力が大きくなりやすい部分、すなわち、ビームの固定部分に接続される側の端部および可動電極に接続される側の端部のうち少なくともいずれか一方に、応力を緩和する応力緩和部を設けたため、ビームに生じる応力を低減することができる。   According to the present invention, stress is applied to at least one of a portion where stress is likely to increase in the beam, that is, an end portion connected to the fixed portion of the beam and an end portion connected to the movable electrode. Since the stress relaxation portion for relaxing is provided, the stress generated in the beam can be reduced.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。図1は、本実施形態にかかる静電容量式センサの半導体層の平面図、図2は、図1のA−A線における静電容量式センサの断面図、図3は、図1のB−B線における静電容量式センサの断面図、図4は、ビーム部の断面図(図2のC−C断面図)、図5は、可動電極が揺動する様子を示す模式図であって、(a)は揺動していない状態、(b)は一方側が固定電極に近付いた状態、(c)は他方側が固定電極に近付いた状態を示す図、図6は、静電容量式センサの半導体層の一部としての電位取出部を示す拡大図であって、(a)は平面図、(b)は(a)のD−D断面図、(c)は組立前の状態を示す図、図7は、応力緩和部の各例を示す平面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a plan view of a semiconductor layer of the capacitive sensor according to the present embodiment, FIG. 2 is a cross-sectional view of the capacitive sensor taken along line AA in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the capacitive sensor at line -B, FIG. 4 is a cross-sectional view of the beam section (CC cross-sectional view of FIG. 2), and FIG. 5 is a schematic view showing how the movable electrode swings. (A) is a state where it is not swinging, (b) is a state where one side is close to the fixed electrode, (c) is a view showing a state where the other side is close to the fixed electrode, and FIG. It is an enlarged view which shows the electric potential extraction part as a part of semiconductor layer of a sensor, (a) is a top view, (b) is DD sectional drawing of (a), (c) is the state before an assembly. FIG. 7 and FIG. 7 are plan views showing examples of the stress relaxation part.

本実施形態にかかる静電容量式センサ1(以下、単にセンサ1と記す)は、図2に示すように、半導体基板を処理してなる半導体層2の表裏両側に、ガラス基板等の絶縁層20,21を陽極接合等によって接合して構成されている。これら半導体層2と絶縁層20,21との接合面には、比較的浅い凹部22が形成されており、半導体層2各部の絶縁性や可動電極5の動作性の確保が図られている。なお、本実施形態では、半導体層2と絶縁層20との接合面については、半導体層2側に凹部22を設ける一方、半導体層2と絶縁層21との接合面については、絶縁層21側に凹部22を設けている。   As shown in FIG. 2, an electrostatic capacitance type sensor 1 (hereinafter simply referred to as sensor 1) according to the present embodiment has an insulating layer such as a glass substrate on both sides of a semiconductor layer 2 obtained by processing a semiconductor substrate. 20 and 21 are joined by anodic bonding or the like. A relatively shallow recess 22 is formed on the bonding surface between the semiconductor layer 2 and the insulating layers 20 and 21, so that insulation of each part of the semiconductor layer 2 and operability of the movable electrode 5 are ensured. In the present embodiment, the bonding surface between the semiconductor layer 2 and the insulating layer 20 is provided with the recess 22 on the semiconductor layer 2 side, while the bonding surface between the semiconductor layer 2 and the insulating layer 21 is provided on the insulating layer 21 side. A recess 22 is provided on the surface.

また、絶縁層20の表面20a上には導体層23が成膜されており、半導体層2の各部の電位を取得するための電極として用いられる。本実施形態では、絶縁層20にサンドブラスト加工等によって貫通孔24を形成して半導体層2の表面(絶縁層20側の表面)の一部を露出させておき、絶縁層20の表面上から貫通孔24の内周面上および半導体層2の表面(図2ではアンカ部3の表面)上にかけて電気的に接続された一連の導体層23を成膜するようにして、当該導体層23から半導体層2内の各部の電位を検出できるようにしてある。なお、絶縁層20の表面上は、樹脂層(図示せず)によって被覆(モールド成形)するのが好適である。   A conductor layer 23 is formed on the surface 20 a of the insulating layer 20 and is used as an electrode for acquiring the potential of each part of the semiconductor layer 2. In the present embodiment, a through hole 24 is formed in the insulating layer 20 by sandblasting or the like to expose a part of the surface of the semiconductor layer 2 (the surface on the insulating layer 20 side) and penetrate from the surface of the insulating layer 20. A series of electrically connected conductor layers 23 are formed on the inner peripheral surface of the hole 24 and on the surface of the semiconductor layer 2 (the surface of the anchor portion 3 in FIG. 2). The potential of each part in the layer 2 can be detected. The surface of the insulating layer 20 is preferably covered (molded) with a resin layer (not shown).

そして、図1〜図3等に示すように、半導体基板に公知の半導体プロセスによって間隙10を形成することにより、半導体層2に、アンカ部3や、ビーム部4、可動電極5、フレーム部7、電位取出部8等が形成される。   Then, as shown in FIGS. 1 to 3 and the like, by forming a gap 10 in the semiconductor substrate by a known semiconductor process, the anchor portion 3, the beam portion 4, the movable electrode 5, and the frame portion 7 are formed on the semiconductor layer 2. Then, the potential extraction portion 8 and the like are formed.

半導体層2は、図1に示すように、全体として平面視で略長方形状に形成されており、フレーム部7が、その半導体層2の四つの周縁(四辺)に沿って略一定幅で枠状に設けられている。   As shown in FIG. 1, the semiconductor layer 2 is formed in a substantially rectangular shape as a whole in plan view, and the frame portion 7 has a frame with a substantially constant width along the four peripheral edges (four sides) of the semiconductor layer 2. It is provided in the shape.

間隙10は、例えば、垂直エッチング加工(例えば、ICP(Inductively Coupled Plasma;誘導結合プラズマ)加工等の反応性イオンエッチング)によって形成し、間隙10両側の壁面を半導体層2の表面と垂直にして、それら壁面同士を相互に略平行に対向させるのが好適である。   The gap 10 is formed by, for example, vertical etching (for example, reactive ion etching such as ICP (Inductively Coupled Plasma) processing), and wall surfaces on both sides of the gap 10 are perpendicular to the surface of the semiconductor layer 2. It is preferable that the wall surfaces face each other substantially in parallel.

フレーム部7の内側には、半導体層2の平面視略中央位置よりフレーム部7の一長辺側(図1の上側)に僅かにずれた位置に、矩形断面(本実施形態では略正方形断面)を有する柱状のアンカ部3が設けられており、このアンカ部3のフレーム部7の短辺に対向する一対の側壁からビーム部4,4がフレーム部7の長辺と略平行に延伸している。なお、本実施形態では、図2および図3に示すように、アンカ部3を絶縁層20のみに当接(接合)させているが、さらにもう一方の絶縁層21に当接(接合)させるようにしてもよい。   A rectangular cross section (in the present embodiment, a substantially square cross section) is located on the inner side of the frame section 7 at a position slightly shifted from the substantially central position in plan view of the semiconductor layer 2 to one long side of the frame section 7 (upper side in FIG. 1). ), And the beam portions 4 and 4 extend from the pair of side walls facing the short side of the frame portion 7 of the anchor portion 3 substantially parallel to the long side of the frame portion 7. ing. In this embodiment, as shown in FIGS. 2 and 3, the anchor portion 3 is brought into contact (bonded) only with the insulating layer 20, but is further brought into contact (bonded) with the other insulating layer 21. You may do it.

ビーム部4は、図4に示すような一定の矩形(略長方形)断面を有する梁として構成されている。全体的な大きさにもよるが、一例としては、半導体層2の厚み方向の高さhは10マイクロメートル以上(500マイクロメートル以下)、半導体層2の表面に沿う方向の幅wは数マイクロメートル(3〜10マイクロメートル程度)とすることができる。   The beam portion 4 is configured as a beam having a certain rectangular (substantially rectangular) cross section as shown in FIG. Although depending on the overall size, as an example, the height h in the thickness direction of the semiconductor layer 2 is 10 micrometers or more (500 micrometers or less), and the width w in the direction along the surface of the semiconductor layer 2 is several micrometers. It can be a meter (about 3 to 10 micrometers).

そして、このビーム部4は、一定の断面でフレーム部7の長辺に沿う方向に延伸し、アンカ部3側の端部4aに対して反対側となる端部4bが可動電極5に接続されている。   And this beam part 4 is extended in the direction in alignment with the long side of the frame part 7 with a fixed cross section, and the edge part 4b on the opposite side with respect to the edge part 4a by the side of the anchor part 3 is connected to the movable electrode 5. ing.

可動電極5は、フレーム部7の内周面7aに間隙10をもって対向する平面視略矩形状の外周面5dを備えるとともに、アンカ部3およびビーム部4,4の外側を間隙10をもって囲むように形成されている。すなわち、可動電極5は、図1に示すように、アンカ部3およびビーム部4,4に対して、フレーム部7の一長辺側(図1の下側)には、間隙10を空けて略矩形状の大板部5aを備える一方、フレーム部7の他の長辺側(図1の上側)には、間隙10を空けて略矩形状の小板部5bを備えており、これら大板部5aと小板部5bとが、フレーム部7の短辺に沿う一対の接続部5c,5cを介して相互に接続された形状となっている。そして、ビーム部4,4はそれぞれ対応する接続部5c,5cの略中央部に接続されている。なお、上記構成では、大板部5aの質量は小板部5bの質量よりも大きくなる。   The movable electrode 5 includes a substantially rectangular outer peripheral surface 5d facing the inner peripheral surface 7a of the frame portion 7 with a gap 10, and surrounds the outside of the anchor portion 3 and the beam portions 4 and 4 with a gap 10. Is formed. That is, as shown in FIG. 1, the movable electrode 5 has a gap 10 on one long side (lower side in FIG. 1) with respect to the anchor portion 3 and the beam portions 4 and 4. On the other long side (upper side in FIG. 1) of the frame portion 7 is provided with a substantially rectangular small plate portion 5b with a gap 10 between these large rectangular plate portions 5a. The plate portion 5 a and the small plate portion 5 b are connected to each other via a pair of connection portions 5 c and 5 c along the short side of the frame portion 7. And the beam parts 4 and 4 are respectively connected to the approximate center part of the corresponding connection parts 5c and 5c. In the above configuration, the mass of the large plate portion 5a is larger than the mass of the small plate portion 5b.

このように可動電極5がセンサ1の固定部としてのアンカ部3にビーム部4,4を介して可動支持された構造は、半導体層2に適宜に間隙10を形成するとともに半導体層2および絶縁層20,21のうち少なくともいずれか一方に適宜に凹部22を形成することで得ることができる。よって、アンカ部3、ビーム部4,4、および可動電極5は、半導体層2の一部として一体に構成されており、それらアンカ部3、ビーム部4,4、および可動電極5の電位はほぼ等電位とみなすことができる。   Thus, the structure in which the movable electrode 5 is movably supported by the anchor portion 3 as the fixed portion of the sensor 1 via the beam portions 4 and 4 appropriately forms the gap 10 in the semiconductor layer 2 and also insulates the semiconductor layer 2 and the insulation. It can be obtained by appropriately forming the recess 22 in at least one of the layers 20 and 21. Therefore, the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 are integrally configured as a part of the semiconductor layer 2, and the potentials of the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 are It can be regarded as almost equipotential.

ビーム部4,4は、フレーム部7に対して可動電極5を弾性的に可動支持するバネ要素として機能する。本実施形態では、図4に示すように、ビーム部4,4は、センサ1の厚み方向に長い断面(ビーム部4の延伸軸に垂直な断面)を有しているため、当該厚み方向には撓みにくく、また、可動電極5はビーム部4,4を挟んで相互に対向する大板部5aと小板部5bとを備えており、ビーム部4,4の両側での質量が異なっているため、センサ1に厚み方向の加速度が生じると、大板部5aおよび小板部5bに作用する慣性力の差によってビーム部4,4がねじられ、可動電極5はビーム部4,4を中心として揺動することになる。すなわち、本実施形態では、ビーム部4,4はねじりビーム(トーションビーム)として機能することになる。   The beam portions 4 and 4 function as spring elements that elastically moveably support the movable electrode 5 with respect to the frame portion 7. In the present embodiment, as shown in FIG. 4, the beam portions 4 and 4 have a long cross section in the thickness direction of the sensor 1 (a cross section perpendicular to the extending axis of the beam portion 4). The movable electrode 5 is provided with a large plate portion 5a and a small plate portion 5b that are opposed to each other with the beam portions 4 and 4 interposed therebetween, and the masses on both sides of the beam portions 4 and 4 are different. Therefore, when acceleration in the thickness direction occurs in the sensor 1, the beam portions 4 and 4 are twisted by the difference in inertial force acting on the large plate portion 5a and the small plate portion 5b, and the movable electrode 5 causes the beam portions 4 and 4 to move. It will swing around the center. That is, in the present embodiment, the beam portions 4 and 4 function as a torsion beam (torsion beam).

そして、本実施形態では、可動電極5の大板部5aおよび小板部5bのそれぞれに対向するように絶縁層20の下面20bに固定電極6A,6Bを設け、大板部5aと固定電極6Aとの間の静電容量、および小板部5bと固定電極6Bとの間の静電容量を検出することで、これら間隙の変化、ひいてはセンサ1の固定部に対する可動電極5の揺動姿勢の変化を検出することができるようになっている。   In this embodiment, the fixed electrodes 6A and 6B are provided on the lower surface 20b of the insulating layer 20 so as to face the large plate portion 5a and the small plate portion 5b of the movable electrode 5, respectively, and the large plate portion 5a and the fixed electrode 6A are provided. , And the capacitance between the small plate portion 5b and the fixed electrode 6B, the change in these gaps, and hence the swinging posture of the movable electrode 5 with respect to the fixed portion of the sensor 1 are detected. A change can be detected.

図5の(a)は、可動電極5が揺動することなく絶縁層20の下面20bに対して平行な姿勢にある状態を示している。この状態では、大板部5aと固定電極6Aとの間の間隙25aの大きさと、小板部5bと固定電極6Bとの間の間隙25bの大きさとが等しくなるため、大板部5aおよび固定電極6Aの相互対向面積と、小板部5bおよび固定電極6Bの相互対向面積とを等しくしてある場合には、大板部5aと固定電極6Aとの間の静電容量と、小板部5bと固定電極6Bとの間の静電容量とは等しくなる。   FIG. 5A shows a state in which the movable electrode 5 is in a posture parallel to the lower surface 20b of the insulating layer 20 without swinging. In this state, the size of the gap 25a between the large plate portion 5a and the fixed electrode 6A is equal to the size of the gap 25b between the small plate portion 5b and the fixed electrode 6B. When the mutual facing area of the electrode 6A is equal to the mutual facing area of the small plate portion 5b and the fixed electrode 6B, the capacitance between the large plate portion 5a and the fixed electrode 6A, and the small plate portion The electrostatic capacitance between 5b and the fixed electrode 6B becomes equal.

図5の(b)は、可動電極5が揺動して絶縁層20の下面20bに対して傾き、大板部5aが固定電極6Aから離間するとともに、小板部5bが固定電極6Bに近接した状態を示している。この状態では、図5の(a)の状態に比べて、間隙25aは大きくなり、間隙25bは小さくなるから、大板部5aと固定電極6Aとの間の静電容量は小さくなり、小板部5bと固定電極6Bとの間の静電容量は大きくなる。   5B, the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, the large plate portion 5a is separated from the fixed electrode 6A, and the small plate portion 5b is close to the fixed electrode 6B. Shows the state. In this state, the gap 25a becomes larger and the gap 25b becomes smaller than in the state of FIG. 5A, so that the capacitance between the large plate portion 5a and the fixed electrode 6A becomes small, and the small plate The electrostatic capacitance between the part 5b and the fixed electrode 6B increases.

図5の(c)は、可動電極5が揺動して絶縁層20の下面20bに対して傾き、大板部5aが固定電極6Aに近接するとともに、小板部5bが固定電極6Bから離間した状態を示している。この状態では、図5の(a)の状態に比べて、間隙25aは小さくなり、間隙25bは大きくなるから、大板部5aと固定電極6Aとの間の静電容量は小さくなり、小板部5bと固定電極6Bとの間の静電容量は大きくなる。   5C, the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, the large plate portion 5a is close to the fixed electrode 6A, and the small plate portion 5b is separated from the fixed electrode 6B. Shows the state. In this state, the gap 25a becomes smaller and the gap 25b becomes larger than in the state of FIG. 5A, so that the capacitance between the large plate portion 5a and the fixed electrode 6A becomes small, and the small plate The electrostatic capacitance between the part 5b and the fixed electrode 6B increases.

したがって、一例としては、大板部5aと固定電極6Aとの間の静電容量と、小板部5bと固定電極6Bとの間の静電容量との差動出力から、可動電極5の姿勢を把握することが可能となる。すなわち、これら静電容量の値から、加速度や角加速度など、種々の物理量を把握することができる。   Therefore, as an example, the attitude of the movable electrode 5 is determined based on the differential output of the capacitance between the large plate portion 5a and the fixed electrode 6A and the capacitance between the small plate portion 5b and the fixed electrode 6B. Can be grasped. That is, various physical quantities such as acceleration and angular acceleration can be grasped from these capacitance values.

静電容量は、可動電極5および固定電極6A,6Bの電位から取得することができる。本実施形態では、図1および図2に示すように、アンカ部3上の絶縁層20には貫通孔24が形成されており、可動電極5の電位は、この貫通孔24の内面に形成した導体層23を介して取り出される。   The capacitance can be acquired from the potentials of the movable electrode 5 and the fixed electrodes 6A and 6B. In this embodiment, as shown in FIGS. 1 and 2, a through hole 24 is formed in the insulating layer 20 on the anchor portion 3, and the potential of the movable electrode 5 is formed on the inner surface of the through hole 24. It is taken out through the conductor layer 23.

一方、固定電極6は、絶縁層20の下面20b上に略矩形状の導体層(例えばアルミニウム合金の層)として形成してある。固定電極6を成膜する工程では、固定電極6と一続きの導体層として、配線パターン11および端子部9も同時に成膜される。したがって、固定電極6の電位は、配線パターン11および端子部9、半導体層2に形成された電位取出部8、ならびに電位取出部8上の絶縁層20に形成された導体層23を介して取り出されるようになっている。   On the other hand, the fixed electrode 6 is formed on the lower surface 20b of the insulating layer 20 as a substantially rectangular conductor layer (for example, an aluminum alloy layer). In the step of forming the fixed electrode 6, the wiring pattern 11 and the terminal portion 9 are simultaneously formed as a continuous conductor layer with the fixed electrode 6. Therefore, the potential of the fixed electrode 6 is taken out through the wiring pattern 11 and the terminal portion 9, the potential extraction portion 8 formed in the semiconductor layer 2, and the conductor layer 23 formed in the insulating layer 20 on the potential extraction portion 8. It is supposed to be.

ここで、図6を参照して、電位取出部8の構成について説明する。電位取出部8は、半導体層2に形成した間隙10や半導体層2または絶縁層21に形成した凹部22によって、可動電極5やフレーム部7等の半導体層2の他の部分と絶縁され、略円柱状に形成されるパッド部8aと、パッド部8aからフレーム部7の短辺に沿って細長く伸びる台座部8bとを備えている。そして、この台座部8bの端子部9に対応する部分を切り欠くように平坦な底面8cを備える凹部26が形成されている。そして、この底面8c上には下敷層27(例えば、二酸化珪素(SiO)の層)が形成され、さらに、この下敷層27と隣接した位置にほぼ同じ高さの導体層28が形成されるとともに、下敷層27の上面から導体層28の上面にかけて、フレーム状の山部12aを連設してなる平面視で略梯子状の接点部12が形成される。このとき、導体層28および接点部12は、同一の導体材料(例えばアルミニウム合金等)による層として形成することができる。 Here, with reference to FIG. 6, the structure of the electric potential extraction part 8 is demonstrated. The potential extraction portion 8 is insulated from other portions of the semiconductor layer 2 such as the movable electrode 5 and the frame portion 7 by the gap 10 formed in the semiconductor layer 2 and the recess 22 formed in the semiconductor layer 2 or the insulating layer 21. A pad portion 8a formed in a columnar shape and a pedestal portion 8b extending from the pad portion 8a along the short side of the frame portion 7 are provided. And the recessed part 26 provided with the flat bottom face 8c is formed so that the part corresponding to the terminal part 9 of this base part 8b may be notched. An underlayer 27 (for example, a layer of silicon dioxide (SiO 2 )) is formed on the bottom surface 8c, and a conductor layer 28 having substantially the same height is formed at a position adjacent to the underlayer 27. At the same time, a substantially ladder-shaped contact portion 12 is formed from the upper surface of the underlying layer 27 to the upper surface of the conductor layer 28 in a plan view in which frame-shaped peaks 12a are continuously provided. At this time, the conductor layer 28 and the contact portion 12 can be formed as layers made of the same conductor material (for example, an aluminum alloy).

ここで、本実施形態では、図6の(c)に示すように、接点部12の山部12aを、半導体層2の上面2aより上に高さδhだけ突出するように高く形成し、これにより、半導体層2と絶縁層20との接合により、端子部9によって山部12aを押圧して塑性変形させて密着度を高め、山部12a(接点部12)と端子部9との間での接触および導通がより確実なものとなるようにしている。   Here, in the present embodiment, as shown in FIG. 6C, the crest portion 12a of the contact portion 12 is formed so as to protrude above the upper surface 2a of the semiconductor layer 2 by a height δh. Thus, by joining the semiconductor layer 2 and the insulating layer 20, the peak portion 12 a is pressed by the terminal portion 9 to be plastically deformed to increase the degree of adhesion, and between the peak portion 12 a (contact point portion 12) and the terminal portion 9. The contact and conduction are more reliable.

なお、図1に示すように、大板部5aおよび小板部5bの表面上の適宜位置にはストッパ13を設け、可動電極5と固定電極6A,6Bとが直接的に接触(衝突)して損傷するのを抑制するようになっているが、このストッパ13を下敷層27と同一材料として同じ工程で形成するようにすれば、これらを別途形成する場合に比べて製造の手間が減り、製造コストを低減することができる。   As shown in FIG. 1, a stopper 13 is provided at an appropriate position on the surface of the large plate portion 5a and the small plate portion 5b so that the movable electrode 5 and the fixed electrodes 6A and 6B are in direct contact (collision). However, if the stopper 13 is formed of the same material as the underlying layer 27 in the same process, the manufacturing labor is reduced as compared with the case where these are formed separately. Manufacturing cost can be reduced.

次に、図7を参照して、ビーム部4,4の長手方向端部に設けられる応力緩和部30,30A,30Bについて説明する。   Next, with reference to FIG. 7, the stress relaxation parts 30, 30A, 30B provided at the longitudinal ends of the beam parts 4, 4 will be described.

図7の(a)は、本実施形態にかかる応力緩和部30の平面図である。この例では、ビーム部4が可動電極5の接続部5cに接続される側の端部に、平面視で矩形の枠状構造31を設けてある。具体的には、平面視でビーム部4の延伸方向に沿う短辺部32と当該延伸方向と直交する方向に伸びる長辺部33とを含む細長い枠状構造31を接続部5cに連設し、この枠状構造31の長手方向中央部にビーム部4の端部を接続してある。なお、接続部5cの端部と長辺部33とは一体化する一方、枠状構造31の高さは、ビーム部4と同じにしてある。かかる構造により、ビーム部4が接続部5cに直接に接続される場合に比べて、可動電極5の動作に伴って撓む領域を増大させることができるため、隅部(根元部分)4b,5dにおける局所的な応力集中を緩和することができる。   FIG. 7A is a plan view of the stress relaxation portion 30 according to the present embodiment. In this example, a rectangular frame-like structure 31 is provided at the end on the side where the beam portion 4 is connected to the connection portion 5 c of the movable electrode 5 in plan view. Specifically, an elongated frame-like structure 31 including a short side portion 32 along the extending direction of the beam portion 4 and a long side portion 33 extending in a direction orthogonal to the extending direction in plan view is connected to the connecting portion 5c. The end portion of the beam portion 4 is connected to the center portion in the longitudinal direction of the frame-like structure 31. The end of the connecting portion 5 c and the long side portion 33 are integrated, while the height of the frame-like structure 31 is the same as that of the beam portion 4. With such a structure, compared with the case where the beam portion 4 is directly connected to the connection portion 5c, the region that bends along with the operation of the movable electrode 5 can be increased, and therefore the corner portions (root portions) 4b and 5d. It is possible to reduce local stress concentration.

かかる枠状構造31は、ビーム部4の延伸方向と垂直な方向に細長く形成してあるため、本実施形態のように、ビーム部4がその延伸軸を中心にねじられるねじりビームである場合には、長辺部33で撓み代を大きくとることができる分、特に有効となる。   Since the frame-like structure 31 is elongated in the direction perpendicular to the extending direction of the beam portion 4, when the beam portion 4 is a torsion beam that is twisted about its extending axis as in the present embodiment. Is particularly effective as long as the bending margin can be increased at the long side portion 33.

図7の(b)は、本実施形態の変形例にかかる応力緩和部30Aの平面図である。この例では、図7の(a)と同様の枠状構造31を、ビーム部4の延伸方向に複数段(この例では2段)並べて配置し、それら枠状構造31,31間を、ビーム部4の延長線上に設けた接続片部34によって接続してある。この例では、枠状構造31を多重に設けた分、図7の(a)の例に比べてより一層応力を緩和することができる。   FIG. 7B is a plan view of a stress relaxation portion 30A according to a modification of the present embodiment. In this example, frame-like structures 31 similar to those in FIG. 7A are arranged in a plurality of stages (in this example, two stages) in the extending direction of the beam portion 4, and the beam-like structures 31, 31 are arranged between the beam-like structures 31 and 31. They are connected by a connecting piece 34 provided on an extension line of the portion 4. In this example, the stress can be further relaxed as compared with the example of FIG.

図7の(c)は、本実施形態の別の変形例にかかる応力緩和部30Bの平面図である。この例では、ビーム部4と接続部5cとの間に、応力緩和部30Bとして、ビーム部4をその延伸方向と直交する方向に所定幅で反復的に複数回折り返した蛇行構造35を設けてある。このような蛇行構造35を設けることによっても、ビーム部4が接続部5cに直接に接続される場合に比べて、可動電極5の動作に伴って撓む領域が増大するため、隅部(根元部分)4b,5dにおける局所的な応力集中を緩和することができる。   FIG. 7C is a plan view of a stress relaxation portion 30B according to another modification of the present embodiment. In this example, a meandering structure 35 is provided between the beam part 4 and the connection part 5c as a stress relaxation part 30B, in which the beam part 4 is repeatedly diffracted multiple times with a predetermined width in a direction orthogonal to the extending direction. is there. Providing such a meandering structure 35 also increases the area of bending due to the operation of the movable electrode 5 as compared with the case where the beam portion 4 is directly connected to the connection portion 5c. (Parts) Local stress concentration in 4b and 5d can be relaxed.

なお、上記例では、いずれも、ビーム部4の可動電極5(の接続部5c)に接続される側の端部4bに応力緩和部30,30A,30Bを設けた例を示したが、これら応力緩和部30,30A,30Bは、ビーム部4の他方側の端部、すなわち、ビーム部4のアンカ部3に接続される側の端部4aにも同様に設けることができ、当該端部4aにおいて同様の効果を得ることができる。そして、ビーム部4の長手方向両端部に応力緩和部30,30A,30Bを設けるようにすれば、さらにビーム部4に生じる応力を低減することができる。なお、両端部で相異なる応力緩和部30,30A,30Bを設けてもよいし、これらを適宜に組み合わせて構成してもよい。   In the above examples, the stress relaxation portions 30, 30A, 30B are provided on the end portion 4b of the beam portion 4 on the side connected to the movable electrode 5 (the connection portion 5c). The stress relaxation portions 30, 30 </ b> A, and 30 </ b> B can be similarly provided on the other end portion of the beam portion 4, that is, the end portion 4 a on the side connected to the anchor portion 3 of the beam portion 4. The same effect can be obtained in 4a. If the stress relaxation portions 30, 30 </ b> A, 30 </ b> B are provided at both longitudinal ends of the beam portion 4, the stress generated in the beam portion 4 can be further reduced. In addition, you may provide the stress relaxation part 30,30A, 30B which is different in both ends, and may combine these suitably.

以上の本実施形態によれば、ビーム部4のアンカ部3に接続される側の端部4aおよび可動電極5に接続される側の端部4bのうち少なくともいずれか一方に、応力を緩和する応力緩和部30,30A,30Bを設けたため、ビーム部4に生じる応力を低減して耐久性を向上することができる上、可動電極5の変位量や重さ等のスペックの設定自由度を増大することができる。かかる応力緩和部30,30A,30Bは、ビーム部4のアンカ部3に接続される側の端部4aおよび可動電極5に接続される側の端部4bの双方に設けると、応力をより一層低減することができる。   According to the above embodiment, stress is relieved in at least one of the end portion 4a connected to the anchor portion 3 of the beam portion 4 and the end portion 4b connected to the movable electrode 5. Since the stress relaxation portions 30, 30A and 30B are provided, the stress generated in the beam portion 4 can be reduced to improve durability, and the degree of freedom of setting specifications such as the displacement amount and weight of the movable electrode 5 is increased. can do. When the stress relaxation portions 30, 30 </ b> A, 30 </ b> B are provided on both the end portion 4 a on the side connected to the anchor portion 3 of the beam portion 4 and the end portion 4 b on the side connected to the movable electrode 5, stress is further increased. Can be reduced.

このとき、応力緩和部30,30A,30Bは、一つの枠状構造31、枠状構造31を多段に含む構造、あるいは蛇行構造35として、容易に形成することができる。   At this time, the stress relaxation portions 30, 30 </ b> A, 30 </ b> B can be easily formed as one frame-shaped structure 31, a structure including the frame-shaped structures 31 in multiple stages, or a meandering structure 35.

特に、ビーム部4をねじりビームとして用いる場合、応力緩和部30,30A,30Bを、本実施形態で例示したような、一つの枠状構造31、枠状構造31を多段に含む構造、あるいは蛇行構造35として構成すると、軸方向と直交する部分を比較的長く設けることができる分、ビーム部4(および応力緩和部30,30A,30B)の単位長さあたりの撓み量を小さくすることができて、より一層効果的な応力低減が可能となる。   In particular, when the beam portion 4 is used as a torsion beam, the stress relaxation portions 30, 30 </ b> A, and 30 </ b> B are composed of a single frame-like structure 31, a structure containing multiple frame-like structures 31 as illustrated in the present embodiment, or meandering. When configured as the structure 35, the amount of deflection per unit length of the beam portion 4 (and the stress relaxation portions 30, 30A, 30B) can be reduced by the amount that the portion orthogonal to the axial direction can be provided relatively long. This makes it possible to reduce the stress even more effectively.

また、本実施形態では、ビーム部4の断面を略矩形断面とすることで、ビーム部4の曲がりやすい方向および曲がりにくい方向を規定して、可動電極5を所望のモードで動作させ、不本意なモードでの動作による不具合を抑制することができる。   Further, in the present embodiment, by making the cross section of the beam portion 4 a substantially rectangular cross section, the direction in which the beam portion 4 is easily bent and the direction in which the beam portion 4 is difficult to be bent are defined, and the movable electrode 5 is operated in a desired mode. Inconvenience due to operation in a mode can be suppressed.

特に、本実施形態のように、可動電極5を揺動させビーム部4をねじりビームとして構成する場合、図4に示すように、ビーム部4の延伸軸に垂直な断面形状について、センサ1の厚み方向の長さ(高さh)を、センサ1の表面に沿う方向の長さ(幅w)より長くすることで、可動電極5が全体的にセンサ1の厚み方向(図2の上下方向)に撓んで大板部5aおよび小板部5bともに固定電極6A,6B側に近接するように動作して検出精度が低下するのを抑制することができる。   In particular, when the movable electrode 5 is swung and the beam portion 4 is configured as a torsion beam as in the present embodiment, the cross-sectional shape perpendicular to the extending axis of the beam portion 4 is shown in FIG. By making the length in the thickness direction (height h) longer than the length in the direction along the surface of the sensor 1 (width w), the movable electrode 5 is entirely in the thickness direction of the sensor 1 (vertical direction in FIG. 2). ) And the large plate portion 5a and the small plate portion 5b are operated so as to be close to the fixed electrodes 6A and 6B, and it is possible to suppress a decrease in detection accuracy.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。例えば、上記実施形態では、ビームをねじりビームとして用いる場合を例示したが、曲げビームとして用いる場合にも本発明は同様に実施することが可能であるし、渦巻き形状や折り返し形状など種々の形状のビームに対しても同様に実施可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications can be made. For example, in the above-described embodiment, the case where the beam is used as the torsion beam has been illustrated. However, the present invention can be similarly applied to the case where the beam is used as a bending beam. The same can be applied to the beam.

また、枠状構造や蛇行構造のスペック(例えば枠状構造の段数や、蛇行構造の折り返し数、各部の大きさ、形状等)も種々に変形可能である。例えば、枠状構造を、図8のように、平面視で三角形状(例えば、正三角形状や二等辺三角形状)としてもよいし、(b)のように、当該三角形状の単位枠をトラス状に多重に重ねてもよい。かかる構成によれば、平面視矩形状の枠状構造に比べて、応力集中をより一層低減することができる。   Also, the specifications of the frame-like structure and the meandering structure (for example, the number of steps of the frame-like structure, the number of turns of the meandering structure, the size and shape of each part, etc.) can be variously modified. For example, the frame structure may have a triangular shape (for example, a regular triangle shape or an isosceles triangle shape) in plan view as shown in FIG. 8, or the triangular unit frame may be a truss as shown in FIG. You may overlap in multiple. According to such a configuration, stress concentration can be further reduced as compared with a frame structure having a rectangular shape in plan view.

本発明の実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning embodiment of this invention. 図1のA−A線における静電容量式センサの断面図。Sectional drawing of the electrostatic capacitance type sensor in the AA line of FIG. 図1のB−B線における静電容量式センサの断面図。Sectional drawing of the electrostatic capacitance type sensor in the BB line of FIG. 本発明の実施形態にかかる静電容量式センサのビーム部の断面図(図2のC−C断面図)。Sectional drawing (CC sectional drawing of FIG. 2) of the beam part of the electrostatic capacitance type sensor concerning embodiment of this invention. 本発明の実施形態にかかる静電容量式センサの可動電極が揺動する様子を示す模式図であって、(a)は揺動していない状態、(b)は一方側が固定電極に近付いた状態、(c)は他方側が固定電極に近付いた状態を示す図。It is a schematic diagram which shows a mode that the movable electrode of the capacitive sensor concerning embodiment of this invention rock | fluctuates, Comprising: (a) is the state which is not rock | fluctuating, (b) has approached the fixed electrode on one side. A state, (c) is a figure which shows the state which the other side approached the fixed electrode. 本発明の実施形態にかかる静電容量式センサの半導体層の一部としての電位取出部を示す拡大図であって、(a)は平面図、(b)は(a)のD−D断面図、(c)は組立前の状態を示す図。It is an enlarged view which shows the electric potential extraction part as a part of semiconductor layer of the electrostatic capacitance type sensor concerning embodiment of this invention, (a) is a top view, (b) is DD cross section of (a). FIG. 3C is a diagram showing a state before assembly. 本発明の実施形態にかかる静電容量式センサの応力緩和部の各実施例を示す平面図((a)〜(c))。The top view ((a)-(c)) which shows each Example of the stress relaxation part of the capacitance-type sensor concerning embodiment of this invention. 本発明の実施形態にかかる静電容量式センサの応力緩和部の別の実施例を示す平面図((a)および(b))。The top view ((a) and (b)) which shows another Example of the stress relaxation part of the electrostatic capacitance type sensor concerning embodiment of this invention.

符号の説明Explanation of symbols

1 静電容量式センサ
2 半導体層
4 ビーム部(ビーム)
5 可動電極
6A,6B 固定電極
25a,25b 間隙
30,30A,30B 応力緩和部
31 枠状構造
35 蛇行構造

DESCRIPTION OF SYMBOLS 1 Capacitance type sensor 2 Semiconductor layer 4 Beam part (beam)
5 Movable electrode 6A, 6B Fixed electrode 25a, 25b Gap 30, 30A, 30B Stress relaxation part 31 Frame-like structure 35 Serpentine structure

Claims (4)

固定電極と、半導体層の固定部分にビームを介して可動支持された可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサにおいて、
前記ビームの固定部分に接続される側の端部および可動電極に接続される側の端部のうち少なくともいずれか一方に、局所的な応力集中を緩和する応力緩和部を設け、前記応力緩和部は、平面視で三角形状の単位枠をトラス状に多重に重ねて前記単位枠よりも大きな三角形状の構造にしたことを特徴とする静電容量式センサ。
A fixed electrode and a movable electrode movably supported by a fixed portion of the semiconductor layer via a beam, and the detection unit is configured by disposing the fixed electrode and the movable electrode so as to face each other with a gap. In a capacitance type sensor that detects a predetermined physical quantity by detecting a capacitance according to the size of
A stress relaxation portion for relaxing local stress concentration is provided at least one of an end portion connected to the beam fixed portion and an end portion connected to the movable electrode, and the stress relaxation portion Is a capacitive sensor characterized in that triangular unit frames in a plan view are overlapped in a truss shape to form a triangular structure larger than the unit frame .
前記応力緩和部を、前記ビームの固定部分に接続される側の端部および可動電極に接続される側の端部の双方に設けたことを特徴とする請求項1に記載の静電容量式センサ。   2. The capacitance type according to claim 1, wherein the stress relieving portion is provided at both an end connected to the fixed portion of the beam and an end connected to the movable electrode. Sensor. 前記ビームは、可動電極の動作に伴ってねじられる矩形断面を有するねじりビームであることを特徴とする請求項1または2に記載の静電容量式センサ。   3. The capacitive sensor according to claim 1, wherein the beam is a torsion beam having a rectangular cross section that is twisted in accordance with the operation of the movable electrode. 前記可動電極は、前記ねじりビームを介して揺動可能に支持され、
前記検出部は、揺動する可動電極の表面とそれに対向する固定電極の表面との間隙の大きさに応じた静電容量を検出することを特徴とする請求項3に記載の静電容量式センサ。
The movable electrode is swingably supported via the torsion beam,
The capacitance type according to claim 3, wherein the detection unit detects a capacitance according to a size of a gap between a surface of the swinging movable electrode and a surface of the fixed electrode facing the surface. Sensor.
JP2006126437A 2006-04-28 2006-04-28 Capacitive sensor Expired - Fee Related JP4600344B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006126437A JP4600344B2 (en) 2006-04-28 2006-04-28 Capacitive sensor
US12/296,554 US8176782B2 (en) 2006-04-28 2007-04-25 Capacitive sensor
CN2007800154915A CN101432627B (en) 2006-04-28 2007-04-25 Capacitive sensor
KR1020087027013A KR101012248B1 (en) 2006-04-28 2007-04-25 Capacitive sensor
EP07742395A EP2023152A4 (en) 2006-04-28 2007-04-25 Capacitive sensor
PCT/JP2007/058960 WO2007125961A1 (en) 2006-04-28 2007-04-25 Capacitive sensor
CN2012101627849A CN102654409A (en) 2006-04-28 2007-04-25 Capacitive sensor
TW099108899A TWI417547B (en) 2006-04-28 2007-04-27 Capacitive sensor
TW096115114A TW200804814A (en) 2006-04-28 2007-04-27 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126437A JP4600344B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Publications (2)

Publication Number Publication Date
JP2007298383A JP2007298383A (en) 2007-11-15
JP4600344B2 true JP4600344B2 (en) 2010-12-15

Family

ID=38767993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126437A Expired - Fee Related JP4600344B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Country Status (1)

Country Link
JP (1) JP4600344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210424A (en) * 2009-03-10 2010-09-24 Panasonic Electric Works Co Ltd Acceleration sensor
JPWO2014061099A1 (en) * 2012-10-16 2016-09-05 日立オートモティブシステムズ株式会社 Inertial sensor
JP2015059830A (en) * 2013-09-19 2015-03-30 株式会社デンソー Acceleration sensor
JP2018077201A (en) 2016-11-11 2018-05-17 ソニーセミコンダクタソリューションズ株式会社 Sensor element, inertial sensor, and electronic apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623630A (en) * 1985-06-29 1987-01-09 Teraoka Seiko Co Ltd Load detecting vibrator
JPH05502945A (en) * 1990-03-14 1993-05-20 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド semiconductor chip gyro transducer
US5220835A (en) * 1991-09-12 1993-06-22 Ford Motor Company Torsion beam accelerometer
JPH05333052A (en) * 1992-05-28 1993-12-17 Omron Corp Electrostatic capacity type acceleration sensor
JPH06213923A (en) * 1992-12-08 1994-08-05 Commiss Energ Atom Capacitive sensor which responds to acceleration directed toward all directions of plane
JPH1133751A (en) * 1997-07-23 1999-02-09 Hitachi Ltd Manufacture of structural element
JP2003509670A (en) * 1999-09-17 2003-03-11 キオニックス インク Electrically separated micromechanical gyroscope
JP2003510591A (en) * 1999-09-24 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanism rotation rate sensor
WO2004088330A1 (en) * 2003-03-26 2004-10-14 Honeywell International Inc. Bending beam accelerometer with differential capacitive pickoff
US20050005698A1 (en) * 2003-07-08 2005-01-13 Motorola Inc. Single proof mass, 3 axis mems transducer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623630A (en) * 1985-06-29 1987-01-09 Teraoka Seiko Co Ltd Load detecting vibrator
JPH05502945A (en) * 1990-03-14 1993-05-20 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド semiconductor chip gyro transducer
US5220835A (en) * 1991-09-12 1993-06-22 Ford Motor Company Torsion beam accelerometer
JPH05333052A (en) * 1992-05-28 1993-12-17 Omron Corp Electrostatic capacity type acceleration sensor
JPH06213923A (en) * 1992-12-08 1994-08-05 Commiss Energ Atom Capacitive sensor which responds to acceleration directed toward all directions of plane
JPH1133751A (en) * 1997-07-23 1999-02-09 Hitachi Ltd Manufacture of structural element
JP2003509670A (en) * 1999-09-17 2003-03-11 キオニックス インク Electrically separated micromechanical gyroscope
JP2003510591A (en) * 1999-09-24 2003-03-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Micromechanism rotation rate sensor
WO2004088330A1 (en) * 2003-03-26 2004-10-14 Honeywell International Inc. Bending beam accelerometer with differential capacitive pickoff
US20050005698A1 (en) * 2003-07-08 2005-01-13 Motorola Inc. Single proof mass, 3 axis mems transducer

Also Published As

Publication number Publication date
JP2007298383A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
TWI417547B (en) Capacitive sensor
JP2007298405A (en) Electrostatic capacity type sensor
JP4605087B2 (en) Capacitive sensor
JP5175308B2 (en) Physical quantity sensor
JP4595862B2 (en) Capacitive sensor
JP5790920B2 (en) FUNCTIONAL ELEMENT, SENSOR ELEMENT, ELECTRONIC DEVICE, AND FUNCTIONAL ELEMENT MANUFACTURING METHOD
JP5974938B2 (en) Capacitance type pressure sensor and input device
JP4600345B2 (en) Capacitive sensor
JP6311341B2 (en) Capacitance type pressure sensor and input device
JP4600344B2 (en) Capacitive sensor
JP5083635B2 (en) Acceleration sensor
WO2011111539A1 (en) Physical quantity sensor
JP2009244070A (en) Physical quantity sensor
JP4775412B2 (en) Semiconductor physical quantity sensor
JP4692373B2 (en) Capacitive sensor
JP6070787B2 (en) Functional elements, sensor elements and electronic devices
WO2009099124A1 (en) Physical quantity sensor
JP4752874B2 (en) Semiconductor physical quantity sensor
JP4595864B2 (en) Capacitive sensor
JP5747092B2 (en) Physical quantity sensor
JP2018132310A (en) Functional element, sensor element, electronic device, and production method of functional element
JP2007298407A (en) Capacitance sensor
JP2012047530A (en) Electrostatic capacitance type sensor
JPH06201724A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees